
Research in Intrusion-Detection Systems:

A Survey�

Stefan Axelsson

Department of Computer Engineering

Chalmers University of Technology

G�oteborg, Sweden

email: sax@ce.chalmers.se

TR: 98{17

December 15, 1998

Revised

August 19, 1999

� This work was funded by The Swedish National Board for Industrial and Technical
Development (NUTEK) under project P10435.

Abstract

There is currently need for an up-to-date and thorough survey of the research in

the �eld of computer and network intrusion detection. This paper presents such

a survey, with a taxonomy of intrusion detection system features, and a classi-

�cation of the surveyed systems according to the taxonomy. The conclusion is

reached that current research interest should lie in the study of the e�ectiveness

of intrusion detection and how to handle attacks against the intrusion detection

system itself.

Contents

1 Intrusion detection, introduction and survey 1

1.1 Introduction . 1

1.1.1 Introduction to intrusion detection 1

1.1.2 Intrusion detection in a wider context 2

1.1.3 Early research in intrusion detection systems 3

1.1.4 Summary of early �ndings|anomaly versus signature de-

tection . 5

1.2 A generic architechtural model of an intrusion detection system . 6

1.3 A simple taxonomy of intrusion detection systems 8

1.4 A classi�cation of the surveyed systems 10

1.5 Trends and constants in intrusion detection research 12

1.5.1 Trends . 12

1.5.2 Constants . 13

1.6 Open research questions . 15

1.7 Remaining contents of this survey 16

2 Details of the surveyed systems 17

2.1 Haystack . 17

2.1.1 Introduction . 17

2.1.2 System organisation and operation 18

2.1.3 Future research . 19

2.1.4 Survey conclusions . 19

2.2 MIDAS|Expert systems in intrusion detection: A case study . . 19

2.2.1 Introduction . 19

2.2.2 Expert knowledge in intrusion detection 19

2.2.3 Application of the expert system 20

2.2.4 Threat model . 21

2.2.5 System organisation, performance, and conclusions 22

2.2.6 Survey conclusions . 22

2.3 IDES|A real-time intrusion-detection expert system 22

2.3.1 Introduction . 22

2.3.2 The prototype . 23

2.3.3 Pro�le data . 23

2.3.4 Anomaly detection . 24

2.3.5 User interface . 25

2.3.6 Future work . 25

2.3.7 Survey conclusions . 25

i

2.4 Wisdom & Sense|Detection of anomalous computer session ac-

tivity . 25

2.4.1 Introduction . 25

2.4.2 System operation . 26

2.4.3 Rule generation . 27

2.4.4 Anomaly detection . 28

2.4.5 Results and future work 28

2.4.6 Survey conclusions . 29

2.5 The ComputerWatch data reduction tool 29

2.5.1 Introduction . 29

2.5.2 DBMS . 30

2.5.3 Report generator . 30

2.5.4 Queries Module . 31

2.5.5 Rules Module . 31

2.5.6 Survey conclusions . 31

2.6 NSM|Network security monitor 31

2.6.1 Introduction . 31

2.6.2 System organisation . 32

2.6.3 Results . 34

2.6.4 Survey conclusions . 34

2.7 NADIR|An automated system for detecting network intrusion

and misuse . 34

2.7.1 Introduction . 34

2.7.2 Overview of the computer installation 35

2.7.3 NADIR System organisation 36

2.7.4 Results . 37

2.7.5 Survey conclusions . 37

2.8 Hyperview|A neural network component for intrusion detection 38

2.8.1 Introduction . 38

2.8.2 Underlying hypotheses about user behaviour and the au-

dit trail . 38

2.8.3 The neural network component 39

2.8.4 System implementation 40

2.8.5 Experimental results . 40

2.8.6 Conclusions . 42

2.8.7 Survey conclusions . 42

2.9 DIDS|Distributed intrusion detection prototype 42

2.9.1 Introduction . 43

2.9.2 Host monitor . 43

2.9.3 The LAN monitor . 44

2.9.4 The DIDS director . 44

2.9.5 Results and future development 45

2.9.6 Survey conclusions . 45

2.10 ASAX|Architecture and rule-based language for universal audit

trail analysis . 45

2.10.1 Introduction . 45

2.10.2 ASAX architecture and operation 46

2.10.3 Survey conclusions . 47

2.11 USTAT|State transition analysis 47

2.11.1 Introduction . 47

ii

2.11.2 More about state transitions 47

2.11.3 The prototype system . 49

2.11.4 Results . 50

2.11.5 Survey conclusions . 50

2.12 DPEM|Execution monitoring 50

2.12.1 Introduction . 50

2.12.2 The speci�cation language 51

2.12.3 Design and implementation 52

2.12.4 Performance of the prototype 52

2.12.5 Survey conclusions . 52

2.13 IDIOT|An application of petri-nets to intrusion detection . . . 53

2.13.1 Introduction . 53

2.13.2 Model . 53

2.13.3 Applying Petri nets to the proposed IDS model 54

2.13.4 System overview . 55

2.13.5 Survey conclusions . 56

2.14 NIDES|Next generation intrusion detection system 56

2.14.1 Introduction . 56

2.14.2 The major versions . 56

2.14.3 System organisation . 58

2.14.4 Experimental results . 59

2.14.5 Future directions . 60

2.14.6 Survey conclusions . 61

2.15 GrIDS|A graph based intrusion detection system for large net-

works . 61

2.15.1 Introduction . 61

2.15.2 Design goals . 61

2.15.3 Paradigm . 62

2.15.4 Graph building . 62

2.15.5 Rule sets . 62

2.15.6 Implementation . 62

2.15.7 Survey conclusions . 63

2.16 CMS|Cooperating security managers 63

2.16.1 Introduction . 63

2.16.2 System overview . 63

2.16.3 Prototype test results . 64

2.16.4 Survey conclusions . 65

2.17 Janus|A secure environment for untrusted helper applications . 65

2.17.1 Introduction . 65

2.17.2 Architecture . 65

2.17.3 Security modules . 66

2.17.4 Results . 66

2.17.5 Conclusions . 67

2.17.6 Survey conclusions . 67

2.18 JiNao|Scalable intrusion detection for the emerging network in-

frastructure . 67

2.18.1 Introduction . 67

2.18.2 System overview . 68

2.18.3 Survey conclusions . 72

iii

2.19 EMERALD|Event monitoring enabling responses to anomalous

live disturbances . 72

2.19.1 Introduction . 72

2.19.2 Organisational model . 72

2.19.3 The EMERALD monitor 73

2.19.4 Interoperability . 74

2.19.5 Putting it all together . 74

2.19.6 Survey conclusions . 74

2.20 Bro . 75

2.20.1 Introduction . 75

2.20.2 System overview . 75

2.20.3 libpcap . 76

2.20.4 Event engine . 76

2.20.5 Policy script interpreter 76

2.20.6 Implementation issues . 77

2.20.7 Possible attacks on the network monitor 77

2.20.8 Conclusion . 78

2.20.9 Survey conclusions . 78

Bibliography 80

iv

List of Figures

1.1 Summary of anti-intrusion techniques (from [20]) 2

1.2 Organisation of a generalised intrusion detection system 6

2.1 Data
ow diagram of ComputerWatch components (from [11]) . . 30

2.2 Block diagram of the Hyperview system (from [7]) 41

2.3 USTAT: State transition diagram (from [24]) 48

2.4 Finger daemon example (from [30]) 52

2.5 IDIOT: A Petri-net intrusion signature (from [34]) 54

2.6 Block diagram of the JiNao system (from [15]) 68

2.7 Bro: layering and data
ow (from [46]) 76

v

List of Tables

1.1 Classi�cation of the surveyed systems 11

2.1 STAT: Penetration scenario (from [24]) 47

vi

Chapter 1

Intrusion detection,

introduction and survey

1.1 Introduction

This paper is a survey of the research in the �eld of computer and network

intrusion detection. Some of the previous surveys of the �eld are [13, 40, 43, 45].

Most of these are somewhat dated,1 and/or super�cial, and the growing num-

ber of people taking interest in the �eld calls for an up-to-date and thorough

survey. This survey is indeed intended to be thorough, with the surveyed sys-

tems described in some detail and classi�ed according to a number of interesting

features.

There are several ideas in the literature about how to perform intrusion de-

tection, such as [5, 16, 27, 44] to name a few. These have not been covered since

the emphasis here is on intrusion detection systems. We wish to survey substan-

tial research e�orts that have generated a prototype that can be studied, both

quantitatively, and qualitatively. No slight towards the systems not covered, or

its authors, intended. That said, the line drawn between surveyed systems, and

those that were excluded, is somewhat arbitrary, since the distinction can be

diÆcult to make.

1.1.1 Introduction to intrusion detection

To introduce the concept of intrusion detection we draw the analogy to the

common \burglar alarm," 2 to instrument a computer system or network in

such a way as to enable it to detect possible violations of a security policy, and

raise an alarm to notify the proper authority. (This authority is henceforth

referred to as the SSO, short for Site Security OÆcer). Some of the same

problems, \false alarms" and circumvention of the alarm system, are common

to both types of intrusion detection systems.

1 A proposed taxonomy of intrusion detection systems that reci�es many of these shortcom-
mings was published after the conclusion of this survey [8]. 2 Unfortunately, there is a clash
in terminology, in that the scienti�c term for \burglar alarm/intrusion alarm" is the same as
in our case|intrusion detection system. We will use the latter term when referring to the
computer systems version, to avoid confusion. My apologies to those in the security �eld at
large who might feel slighted by the term \burglar alarm."

1

However, the analogy unfortunately breaks down quickly after the above

similarities are noted. In comparison, even the most sophisticated \burglar

alarms" operate under a much simpler security policy. Typically, no normal

activity is performed on the premises while the monitoring is enabled, and thus

any (human) activity can be construed as suspicious. If this were true of the

computer system and network intrusion detection, the problem could be more

readily disposed of. Unfortunately, we demand that intrusion detection systems

operate in an environment where (often considerable) normal activities take

place (whatever they may consist of), and the problem becomes one of being

able to sort out the few rotten apples from a (substantial) barrel full.

1.1.2 Intrusion detection in a wider context

Several methods are available to protect a computer system or network from

attack, a strong perimeter defence being only one of them. A good introduction

to many such methods is [20], which this section borrows heavily from. The

paper lists six general, non-exclusive approaches to anti intrusion techniques

(Figure 1.1 depicts the various approaches):

External
deterrence

Internal
deterrence

Internal
prevention

System perimiter

prevention
External

Intrusion attempts

"Honey pot"

Counter
measures

System
resources

Preemption

Deflection

DETECTION

Figure 1.1: Summary of anti-intrusion techniques (from [20])

1. Prevention To preclude or severely handicap the likelihood of a particular

intrusion's success. One can for instance elect to not be connected to

the Internet if one is afraid of being attacked via it. Unfortunately, this

can be an expensive and awkward approach, since it is easy to \throw

the baby out with the bath water" in one's attempts to prevent attacks.

Internal prevention is under the control of the system owner, while external

prevention takes place in the environment surrounding the system, such

as a larger organization, or society as a whole.

2. Preemption To strike against the threat before it has had a chance to

mount its attack.3 In a civilian setting, this is a dangerous (and probably

illegal) approach, where innocent4 bystanders may be harmed.

3. Deterrence Persuade an attacker to hold o� his attack, or to break o� an

ongoing attack. Typically accomplished by increasing the perceived risk

3 Popularly, and in jest, referred to as \Do unto others, before they do unto you." 4 And
not so innocent. . .

2

of negative consequences for the attacker. Of course, if the value of the

protected resource is great, the determined attacker may not \scare o�"

easily. Internal deterrence could take the form of login banners warning

potential internal, and external attackers of dire consequences should they

proceed. External deterrence could be e�ected by the legal system, making

laws against computer crime, and the strinct enforcement of same.

4. De
ection Lure an intruder into thinking that he has succeeded when, in

fact, he has been shunted o�, or tricked away, from where he could do real

damage. The main problem is that of managing to fool an experienced

attacker, at least for a suÆcient period of time. . . .

5. Detection This is where the subject under discussion �ts into the greater

scheme of things. Detection aims to �nd intrusion attempts, so that the

the proper response can be evoked. This is most often a noti�cation to

the proper authority. Problems include the obvious; diÆculty of defending

against a hit-and-run attack, and problems with false alarms, or failing to

sound the alarm when someone surreptitiously gains, or attempts to gain,

access.

6. Countermeasures To actively and autonomously counter an intrusion as it

is being attempted. This can be done without the need for detection, since

the countermeasure does not have to5 discriminate between legitimate

users that perform a mistake, and an intruder that sets o� a predetermined

response (a \booby trap" if you wish).

In light of the above taxonomy, it is straightforward to put intrusion det-

ection into perspective. Current intrusion detection systems fall (almost) ex-

clusively in the category of detection, although recently more interest has been

shown in the question of how to provide an automated response to the detected

intrusion. However, the discussion is then focused around the quality of the

detection (or rather, lack thereof), and the perceived risk of having the intru-

sion detection system mistakenly striking down on benign activity. This being

somewhat in contrast with the de�nition of \countermeasures" above.

1.1.3 Early research in intrusion detection systems

The �eld of intrusion detection is currently some eighteen years old. The seminal

paper that is most often cited is James P. Anderson's technical report [3], where

he divides the possible attackers of a computer system into the four groups:

External penetrator The external penetrator has gained access to a com-

puter that he is not a legitimate user of. Anderson uses this de�nition

to include users that are, e.g. employees of some organisation, where they

have physical access to the building that houses the computing resource,

even though they are not authorised to use it.

Masquerader The masquerader is a user who, having gained access to the

system|the masquerader can be both an external penetrator, and an-

other authorised user of the system|attempts to use the authentication

information of another user, in e�ect becoming him, as far as the computer

5 Although it is preferable if it does. . .

3

system is concerned. This is an interesting case, since there is no direct

way of di�erentiating between the legitimate user and the masquerader.

Misfeasor The the legitimate user can operate as amisfeasor, that is, although

he6 has legitimate access to privileged information, he abuses this privilege

to violate the security policy of the installation.

Clandestine user The clandestine user operates at a level below the normal

auditing mechanisms, perhaps by accessing the machine with supervisory

privileges. Since there is little, if any, evidence of this type of intrusive

activity, this class of perpetrator can be diÆcult to detect.

While this problematisation in itself does not open the �eld of intrusion

detection, Anderson goes on to state in reference to the masquerader class that:

Masquerade is interesting in that it is by de�nition extra use of the

system by the unauthorised user. As such it should be possible to detect

instances of such use by analysis of audit trail records to determine:

a. Use outside of normal time

b. Abnormal frequency of use

c. Abnormal volume of data reference

d. Abnormal patterns of reference to programs or data

As will be discussed in the subsequent section, the operative word is

\abnormal" which implies that there is some notion of what \normal"

is for a given user.

This statement is the �rst in literature that presents the idea of (semi)-

automatic intrusion detection in computer systems, in terms of of anomalies

encountered. Furthermore, later in the paper the author expands the idea to

also include the detection of outright violations of some security policy.

The paper that really opened the �eld was published some seven years later.

Dorothy Denning [10] presented the idea that intrusions in computer systems

could be detected by assuming that users of a computer system would behave in

a manner that would lend itself to automatic pro�ling, i.e. that some model of

the behaviour of a particular user could be constructed by the intrusion detec-

tion system, and that subsequent behaviour of a presumed user could be veri�ed

against that user's model, with the intention that behaviour that deviated suf-

�ciently from the norm would be
agged as anomalous, and hence indicative of

a possible intrusion. Denning mentioned several such models, based on the use

of statistics, Markov chains, time-series, etc. Denning stressed that the work

presented gives the basis for performing these functions in real-time, or near

real-time. This paper has its base in the earliest prototype of IDES, on which

Peter Neumann worked with Denning [9].

Another early system, that was in
uenced by the work of Denning and Neu-

mann, wasMIDAS [50]. The design of MIDAS centered around an expert system

with rules concerning anomalous behaviour, but also, predetermined rules codi-

fying the security policy of the installation. This is one of the earliest instances

6 While the present author does not wish to stereotype, it feels appropriate to refer to the
computer criminal with the third person masculine pronoun, since the overwhelming majority
of computer criminals (as is true of most other criminals in society), belong to that gender.

4

of the idea to process audit data for manifestations of already known intrusive

behaviour.

About the same time it was suggested [19, 40] that the two complimen-

tary approaches of seeking anomalous activity based on some historic data, and

searching for signatures of already known intrusions, should be employed in the

same intrusion detection system, to better complement the relative strengths

and weaknesses of the two approaches. One of the papers ([19]) also suggested

that this system be autonomous enough to be trusted to respond unsupervised

to detected intrusions. Although the author of that paper recognised that much

research was yet to be done before this goal could be attained.

In summary: early research concerned itself with the question of whether

pro�les of normal subject behaviour could be constructed, and used for intru-

sion detection purposes. A split occurred with the advent of the principle of

specifying known intrusion signatures so that audit data could be eÆciently

scanned for these signatures, and later the two ideas were combined into the

hybrid approach.

1.1.4 Summary of early �ndings|anomaly versus signa-

ture detection

The early research uncovered several features of the two major approaches,

anomaly based and signature based intrusion detection. The problems and ad-

vantages of the approaches can be summarised as:

Anomaly detection

Advantages The operator need not con�gure the system, it automati-

cally learns the behaviour of a large number of subjects, and can be

left to run unattended. Since it contains no knowledge, some would

say prejudice, about how an intrusion would manifest itself, it has

the possibility of catching novel intrusions, as well as variations of

known intrusions.

Disadvantages By de�nition it only
ags unusual behaviour, not neces-

sarily illicit behaviour per se. This can be a problem when the two

types of behaviour do not overlap. A system that learns to accept

dangerous behaviour as \normal" for a particular user, that slowly

changes his behaviour over time, will not �nd anything out of the

ordinary when that user �nally mounts his attack. The updating of

the subject's pro�les, and the correlation of current behaviour with

those pro�les is typically a computationally intensive task, that can

tax the available computing resources hard.

Signature detection

Advantages The system \knows" for a fact, either suspect behaviour, or

how normal behaviour should manifest itself. This leads to simple

and eÆcient processing of the audit data. The rate of false positives

(benign activity classed as an intrusion) can also be kept low.

Disadvantages Specifying the detection signatures is a highly quali�ed,

and time consuming task. It is not something that \ordinary" op-

erators of the system would do. Depending on how these signatures

5

are speci�ed, subtle variations of the intrusion scenarios can lead to

them going undetected. Of course, the method has limited predictive

powers. It cannot detect intrusions that are novel to it, especially not

those of a fundamentally new class of intrusions.

As previously stated is was hoped that by combining these approaches into

a hybrid approach, the best of both worlds could be attained.

1.2 A generic architechtural model of an intru-

sion detection system

Since the publishing of the early papers, several intrusion-detection systems have

seen the light of day. Thus, today there exists a suÆcient number of systems in

the �eld for one to be able to form some sort of notion of a \typical" intrusion

detection system, and its constituent parts. Figure 1.2 depicts such a system.

Please note that not all possible data/control
ows have been included in the

�gure, but rather the most important ones.

SSO

Active/Processing
Data

Reference
Data Data

Audit Audit

Monitored
system

Processing
(Detection) ALARM

Configuration

Active intrusion response

SSO Response to intrusion

collection storage

Figure 1.2: Organisation of a generalised intrusion detection system

The generalised model of an intrusion detection system would contain at

least the following elements:

Audit collection Audit data from which to make intrusion detection decisions

must be collected. Many di�erent parts of the monitored system can be

used as sources of data, keyboard input, command based logs, application

based logs etc. However, typically, network activity, or host based security

logs (or both) are used.

Audit storage Typically, the audit data is stored somewhere, either inde�-

nitely7 for later reference, or temporarily awaiting processing. The vol-

7 Or at least for a long time|perhaps several months/years|compared to the processing
turn around time.

6

ume of data is often exceedingly large8 i.e., this is a crucial element in any

intrusion detection system, and this has led some researchers in the �eld

to view intrusion detection as a problem in audit data reduction [14].

Processing The processing block is the heart of the intrusion detection system.

It is here that one or many algorithms are executed to �nd evidence (with

some degree of certainty) of suspicious behaviour, in the audit trail.

Research has to date uncovered three principles of performing intrusion

detection:

1. Anomaly based intrusion detection. The system reacts to deviations

from normal behaviour. \Normal" is de�ned in relation to previ-

ously observed subject behaviour, and is typically updated as new

knowledge about subject behaviour becomes known. This update is

periodic and automatic in nature, the machine \learns" new behavi-

our pro�les.

Note that \subject" is to be interpreted loosely. Not only user be-

haviour, but also host parameters, network parameters, etc. can be

monitored for deviations from the set norm.

2. Signature based intrusion detection. The system tries to �nd evidence

in the data that matches known signatures of intrusive or suspect

behaviour. These signatures are constructed o� line, manually, as

new types of intrusions becomes known to the security community.

Note that even though these signatures can encode behaviour that is

only \suspicious" in nature, and not prima facie evidence of known

intrusive activity, it is still not anomaly detection as above, since the

self learning component is missing in the system.

3. Speci�cation based intrusion detection. A special case of signature

based intrusion detection, where the system is fed with signatures

not of intrusive behaviour, but instead of benign behaviour. Every

action that deviates from the set norm is then
agged as indicative

of an intrusion attempt.

We reduce the above classi�cation into two classes:

1. Anomaly based detection As per the de�nition above.

2. Policy based detection Where the detection is based on some security

policy external to the system. In the case this policy is speci�ed

in a default permit manner, the detection principle becomes that of

signature based detection. In the case the policy is of the default

deny variant, the detection principle is clearly speci�cation based.

Con�guration data This is the state that a�ects the operation of the intru-

sion detection system as such. How and where to collect audit data, how

to respond to intrusions etc. etc. This is thus the SSO's main means of

controlling the intrusion detection system. This data can grow surpris-

ingly large, and complex for a real world intrusion detection installation.

It is furthermore quite sensitive, since access to this data would give the

8 The problem of collecting enough, but not too much audit data has somewhat humorously
been described as; \You either die of thirst, or you're allowed a drink from a �re hose. . . "

7

competent intruder information about which avenues of attack are likely

to go undetected.

Reference data The reference data storage stores information about known

intrusion signatures and/or pro�les of normal behaviour. In the later case

the processing element updates the pro�les as new knowledge about the

observed behaviour becomes available. This update is often performed at

regular intervalls, in a batch oriented fashion.

Stored intrusion signatures are most often updated by the SSO, as and

when new intrusion signatures becomes known. The analysis of novel

intrusions is a highly quali�ed task. More often than not, the only realistic

mode of operation of the intrusion detection system is one where the SSO

subscribes to some outside source of intrusion signatures. These are then

proprietary, it is diÆcult, if not impossible, to make intrusion detection

systems operate with signatures from an alternate source.

Active/Processing data The processing element frequently must store inter-

mediate results, e.g information about partially ful�lled intrusion signa-

tures. The space needed to store these active data can grow quite large.

Alarm This part of the system handles all output from the system, whether

that be an automated response to the suspicious activity, or which is most

common, the noti�cation of some site security oÆcer.

In a hybrid system|containing both anomaly and policy based detection

elements|there will be two processing elements, and two sets of con�guration

and active data storage. The alarm module must then make a decision based

on outputs from both (or more) detection modules, either a simple and/or type

decision, or a more complex one, weighing other factors into the equation.

Of the parts described in �gure 1.2, to date, the processing part has been

most thoroughly studied. Other parts are less well studied, for example little

emphasis has been placed on data collection (e.g. what data to collect to be

able to ascertain that an intrusion has taken place, how to perform this ef-

�ciently)9, how to store that data eÆciently. Another question that remains

largely unadressed is that of how to handle the intrusion, especially the inter-

action between the alarm component, and the SSO.

1.3 A simple taxonomy of intrusion detection

systems

The surveyed intrusion detection systems can be classi�ed according to many

di�erent features. The most obvious is the classi�cation according to the det-

ection principles previously mentioned:

Anomaly detection The system reacts to anomalous behaviour, as de�ned

by some history of the monitored subjects previous behaviour, or by some

previously de�ned pro�le of that subject. (Note that subject could mean

user, host, network, etc.) In order to di�erentiate anomaly detection from

9 We have published one paper that concerns itself with such a study [4].

8

policy based detection, the present author requires that the system auto-

matically learns from past example. If a human operator where to draw

the same conclusions from past data, and codify this knowledge into rules

for an expert system, for example, then we would call that system policy

based instead.

Policy based detection The system reacts when some policy is violated. This

policy can be speci�ed either in a default permit, or a default deny10 fash-

ion. I.e. the SSO either speci�es some kind of signature that describes

illicit behaviour, or he speci�es, the normal, security benign, operation

of the system, deviations from the set norm are viewed as an attempted

intrusion by the intrusion detection system.

Hybrid As previously stated, most researchers believe that both approaches

above should be combined when designing intrusion detection systems, to

reap the bene�ts of both, avoid the weaknesses, and accomplish synergistic

e�ects.

Having drawn a major line between groups of systems, based on their ap-

proach of detecting an intrusion in audit data, a closer study brings forth the

following (albeit sometimes weak) dichotomies:

Time of detection Two major groups can be identi�ed, those that attempt

to detect intrusions in real-time, or near real-time, and those that process

audit data with some delay (non-real-time). The latter approach would in

turn delay the time of detection. Without any real exceptions the surveyed

systems that fall into the real-time category, can also be run, o�-line, on

historic audit data. This is most likely for reasons of being able to simplify

the veri�cation process, as the system is being developed, but of course, it

can sometimes be valuable to run an otherwise real-time capable system

on previous saved data to establish past security critical events.

Granularity of data-processing This cathegory contrasts systems that pro-

cess data continuously, with those that process data in batches, at some

regular interval. This category is linked with the Time of detection cat-

egory above, but note that they do not overlap, since a system could

process data continuously with (perhaps) considerable delay, or process

data in (small) batches in \real-time".

Source of audit data The two major sources of audit data in the surveyed

systems are network data, typically data read directly o� of some multicast

network (Ethernet), and host based security logs. The host based logs can

include operating system kernel logs, application program logs, network

equipment (e.g. routers, and �rewalls) logs, etc. etc.

Response to detected intrusions Passive versus active. Passive systems re-

spond by notifying the proper authority, they do not in themselves try to

mitigate the damage done, or actively seek to harm or hamper the at-

tacker. Active systems could be further subdivided into two classes:

10 Named speci�cation based intrusion detection by its authors [29].

9

1. Those that exercise control over the attacked system, i.e. they modify

the state of the attacked system to thwart or mitigate the e�ects of

the attack. Such control could be in the form of terminating network

connections, increase the security logging, kill errant processes etc.

2. Those that exercise control over the attacking system, i.e they in

turn attack the attacker to try and remove his platform of operation.

Since this approach is diÆcult to defend in court, we do not envision

much interest in this approach outside of military/law enforcement

circles.

Of the systems surveyed one sewers network connections in response to

suspected attacks, and one blocks suspect system calls, terminating the

process if that option fails. This mode of defence is generally diÆcult to

�eld, in that it opens up the system to obvious denial of service attacks.

Locus of data-processing The audit data can either be processed in a central

location, irrespective of whether the data originates from one|possibly

the same|site, or is collected and collated from many di�erent sources in

a distributed fashion.

Locus of data-collection Audit data for the processor/detector can be col-

lected from many di�erent sources, i.e. in a distributed fashion, or from a

single point, the centralised approach.

Security The ability to withstand hostile attack against the intrusion detection

system itself. This is a little studied area. The classi�cation would naively

be on a high|low scale. The surveyed systems, with one exception, all

fall in the latter category.

Degree of interoperability The degree to which the system can operate in

conjunction with other intrusion detection systems, accept audit data from

other sources etc, etc. This is not the same as the number of di�erent

platform the intrusion detection system itself runs on.

In fairness it should be said that not all of the above categories are di-

chotomies in the true sense of the word. However, the author believes that

many of the surveyed systems display suÆcient di�erence that it is meaningful

to speak of a dichotomy.

1.4 A classi�cation of the surveyed systems

When applying the above taxonomy to the surveyed systems the classi�cation

in table 1.1 is arrived at.

10

T
a
b
le
1
.1
:
C
la
ss
i�
ca
ti
o
n
o
f
th
e
su
rv
ey
ed
sy
st
em
s

N
a
m
e
o
f
sy
st
em

P
u
b
l.

D
et
ec
ti
o
n

T
im
e
o
f

G
ra
n
u
la
ri
ty

A
u
d
it

T
y
p
e
o
f

D
a
ta
-

D
a
ta
-

S
ec
u
ri
ty

In
te
r-

y
ea
r

p
ri
n
ci
p
le

d
et
ec
ti
o
n

so
u
rc
e

re
sp
o
n
se

p
ro
ce
ss
in
g

co
ll
ec
ti
o
n

o
p
er
.

H
a
y
st
a
ck
[5
1
]

1
9
8
8

h
y
b
ri
d

n
o
n
-r
ea
l

b
a
tc
h

h
o
st

p
a
ss
iv
e

ce
n
tr
a
li
se
d

ce
n
tr
a
li
se
d

lo
w

lo
w

M
ID
A
S
[5
0
]

1
9
8
8

h
y
b
ri
d

re
a
l

co
n
ti
n
u
o
u
s

h
o
st

p
a
ss
iv
e

ce
n
tr
a
li
se
d

ce
n
tr
a
li
se
d

lo
w

lo
w

ID
E
S
[4
1
]

1
9
8
8

a
n
o
m
a
ly

a

re
a
l

co
n
ti
n
u
o
u
s

h
o
st

p
a
ss
iv
e

ce
n
tr
a
li
se
d

d
is
tr
ib
u
te
d

lo
w

lo
w

W
&
S
[5
4
]

1
9
8
9

a
n
o
m
a
ly

re
a
l

co
n
ti
n
u
o
u
s

h
o
st

p
a
ss
iv
e

ce
n
tr
a
li
se
d

ce
n
tr
a
li
se
d

lo
w

lo
w

b

C
o
m
p
-W
a
tc
h
[1
1
]

1
9
9
0

a
n
o
m
a
ly

c

n
o
n
-r
ea
l

b
a
tc
h

h
o
st

p
a
ss
iv
e

ce
n
tr
a
li
se
d

ce
n
tr
a
li
se
d

lo
w

lo
w

N
S
M

[2
1
]

1
9
9
0

h
y
b
ri
d

d

re
a
l

co
n
ti
n
u
o
u
s

n
et
w
o
rk

e

p
a
ss
iv
e

ce
n
tr
a
li
se
d

ce
n
tr
a
li
se
d

f

lo
w

lo
w

g

N
A
D
IR
[2
5
]

1
9
9
1

p
o
li
cy

n
o
n
-r
ea
l

co
n
ti
n
u
o
u
s

h
o
st

h

p
a
ss
iv
e

ce
n
tr
a
li
se
d

d
is
tr
ib
u
te
d

lo
w

lo
w

H
y
p
er
v
ie
w
[7
]

1
9
9
2

h
y
b
ri
d

re
a
l

co
n
ti
n
u
o
u
s

h
o
st

p
a
ss
iv
e

ce
n
tr
a
li
se
d

ce
n
tr
a
li
se
d

lo
w

lo
w

D
ID
S
[5
2
]

1
9
9
2

h
y
b
ri
d

re
a
l

co
n
ti
n
u
o
u
s

b
o
th

i

p
a
ss
iv
e

d
is
tr
ib
u
te
d

d
is
tr
ib
u
te
d

lo
w

lo
w

j

A
S
A
X
[1
8
]

1
9
9
2

p
o
li
cy

re
a
lk

co
n
ti
n
u
o
u
sl

h
o
st

p
a
ss
iv
e

ce
n
tr
a
li
se
d

ce
n
tr
a
li
se
d

lo
w

h
ig
h
er

m

U
S
T
A
T
[2
4
]

1
9
9
3

p
o
li
cy

re
a
l

co
n
ti
n
u
o
u
s

h
o
st

p
a
ss
iv
e

ce
n
tr
a
li
se
d

ce
n
tr
a
li
se
d

lo
w

lo
w

n

D
P
E
M

[3
0
]

1
9
9
4

p
o
li
cy

o

re
a
l

b
a
tc
h

h
o
st

p
a
ss
iv
e

d
is
tr
ib
u
te
d

d
is
tr
ib
u
te
d

lo
w

lo
w

ID
IO
T
[3
4
]

1
9
9
4

p
o
li
cy

re
a
lp

co
n
ti
n
u
o
u
s

h
o
st

p
a
ss
iv
e

ce
n
tr
a
li
se
d

ce
n
tr
a
li
se
d

lo
w

h
ig
h
er

N
ID
E
S
[1
]

1
9
9
5

h
y
b
ri
d

re
a
lq

co
n
ti
n
u
o
u
s

h
o
st

r

p
a
ss
iv
e

ce
n
tr
a
li
se
d

d
is
tr
ib
u
te
d

lo
w

s

h
ig
h
er

t

G
rI
D
S
[5
3
]

1
9
9
6

h
y
b
ri
d

u

n
o
n
-r
ea
l

b
a
tc
h

b
o
th

v

p
a
ss
iv
e

d
is
tr
ib
u
te
d

d
is
tr
ib
u
te
d

lo
w

lo
w

C
S
M

[5
8
]

1
9
9
6

p
o
li
cy

re
a
l

co
n
ti
n
u
o
u
s

h
o
st

a
ct
iv
ew

d
is
tr
ib
u
te
d

d
is
tr
ib
u
te
d

lo
w

lo
w

J
a
n
u
s
[1
7
]

1
9
9
6

p
o
li
cy

re
a
l

co
n
ti
n
o
u
s

h
o
st

a
ct
iv
ex

ce
n
tr
a
li
se
d

ce
n
tr
a
li
se
d

lo
w

lo
w

J
iN
a
o
[1
5
]

1
9
9
7

h
y
b
ri
d

re
a
l

b
a
tc
h

\
h
o
st
"

y

p
a
ss
iv
e

d
is
tr
ib
u
te
d

d
is
tr
ib
u
te
d

lo
w

lo
w

E
M
E
R
A
L
D
[4
7
]

1
9
9
7

h
y
b
ri
d

re
a
l

co
n
ti
n
u
o
u
s

b
o
th

a
ct
iv
e

d
is
tr
ib
u
te
d

d
is
tr
ib
u
te
d

m
o
d
er
a
te

h
ig
h

B
ro
[4
6
]

1
9
9
8

p
o
li
cy

re
a
l

co
n
ti
n
u
o
u
s

n
et
w
o
rk

p
a
ss
iv
e

ce
n
tr
a
li
se
d

ce
n
tr
a
li
se
d

z

h
ig
h
er

lo
w

a

ID
E
S
p
io
n
ee
re
d
th
e
a
n
o
m
a
ly
d
et
ec
ti
o
n
a
p
p
ro
a
ch
.
ID
E
S
w
a
s
a
p
u
re
a
n
o
m
a
ly
b
a
se
d
sy
st
em
,
si
g
n
a
tu
re
b
a
se
d
d
et
ec
ti
o
n
w
a
s
a
d
d
ed
la
te
r.

b

T
h
e
a
u
th
o
rs
cl
ea
rl
y

in
te
n
d
th
e
m
et
h
o
d
to
b
e
g
en
er
a
ll
y
u
se
fu
l.

c

T
h
e
a
n
o
m
a
ly
d
et
ec
ti
o
n
is
re
a
ll
y
p
er
fo
rm
ed
b
y
th
e
S
S
O

h
im
se
lf
,
th
e
sy
st
em

co
ll
ec
ts
st
a
ti
st
ic
s,
a
n
d
th
en
p
re
se
n
t

th
em

to
th
e
S
S
O
.

d

W
it
h
a
st
ro
n
g
te
n
d
en
cy
to
w
a
rd
s
si
g
n
a
tu
re
b
a
se
d
d
et
ec
ti
o
n
.

e

T
h
e
�
rs
t
sy
st
em

to
u
ti
li
se
th
e
ra
w
n
et
w
o
rk
tr
a
Æ
c
a
s
a
so
u
rc
e
o
f
a
u
d
it

d
a
ta
.

f

O
n
e
ce
n
tr
a
l
n
et
w
o
rk
ta
p
.

g

T
h
e
u
se
o
f
n
et
w
o
rk
p
ro
to
co
ls
co
m
m
o
n
to
se
v
er
a
l
co
m
p
u
te
r
a
n
d
o
p
er
a
ti
n
g
sy
st
em
a
rc
h
it
ec
tu
re
s
le
n
d
s
so
m
e
in
te
ro
p
er
a
b
il
it
y

fr
o
m

th
a
t
p
er
sp
ec
ti
v
e.

h

T
h
e
h
o
st
s
re
co
rd
in
fo
rm
a
ti
o
n
a
b
o
u
t
n
et
w
o
rk
ev
en
ts
,
b
u
t
th
e
n
et
w
o
rk
is
n
o
t
u
se
d
d
ir
ec
tl
y
a
s
a
so
u
rc
e
o
f
a
u
d
it
d
a
ta
.

i

D
ID
S
h
a
s

co
m
p
o
n
en
ts
th
a
t
m
o
n
it
o
r
b
o
th
in
d
iv
id
u
a
l
h
o
st
s
(H
y
p
er
v
ie
w
),
a
n
d
n
et
w
o
rk
tr
a
Æ
c
(N
S
M
)
fo
r
a
u
d
it
d
a
ta
.

j

T
h
e
n
et
w
o
rk
m
o
n
it
o
ri
n
g
co
m
p
o
n
en
t
le
n
d
s
so
m
e

in
te
ro
p
er
a
b
il
it
y
fr
o
m
a
p
la
tf
o
rm
a
n
d
/
o
r
o
p
er
a
ti
n
g
sy
st
em
p
er
sp
ec
ti
v
e.

k

D
ed
u
ce
d
fr
o
m
th
e
p
ro
p
o
se
d
a
rc
h
it
ec
tu
re
.

l

D
ed
u
ce
d
fr
o
m
th
e
p
ro
p
o
se
d
a
rc
h
it
ec
tu
re
.

m

T
h
e
a
u
th
o
rs
d
is
cu
ss
th
e
is
su
e
in
so
m
e
d
et
a
il
,
a
n
d
p
re
se
n
t
a
p
ro
p
o
se
d
a
rc
h
it
ec
tu
re
to
so
m
ew
h
a
t
re
m
ed
y
th
e
p
ro
b
le
m
.

n

T
h
e
p
ro
to
ty
p
e
p
re
se
n
te
d
is
p
la
tf
o
rm

sp
ec
i�
c,
th
e
a
u
th
o
rs
d
is
cu
ss
th
e
g
en
er
a
l
a
p
p
li
ca
b
il
it
y
o
f
th
e
m
et
h
o
d
.

o

T
h
is
w
a
s
th
e
�
rs
t
sy
st
em

to
em
p
lo
y
a
d
ef
a
u
lt
d
en
y
p
o
li
cy
in
a
co
n
si
st
en
t
m
a
n
n
er
.

p

T
h
e
u
se
r
o
f
th
e
sy
st
em

ca
n
m
a
k
e
th
e
ch
o
ic
e
b
et
w
ee
n
re
a
l
o
r
n
o
n
-r
ea
l
ti
m
e
p
ro
ce
ss
in
g
.

q

B
o
th
ty
p
es
o
f
p
ro
ce
ss
in
g
a
re
a
v
a
il
a
b
le
.

r

N
ID
E
S
ca
n
u
se
h
o
st
-b
a
se
d

lo
g
s
o
f
n
et
w
o
rk
a
ct
iv
it
y
a
s
in
p
u
t.

s

H
o
w
ev
er
,
th
e
a
u
th
o
rs
a
re
th
e
�
rs
t
to
d
is
cu
ss
th
e
p
ro
b
le
m
s
w
it
h
a
tt
a
ck
s
a
g
a
in
st
th
e
in
tr
u
si
o
n
d
et
ec
ti
o
n
sy
st
em
,
a
t
le
n
g
th
.

t

N
ID
E
S
co
n
ta
in
s
u
se
r
su
p
p
o
rt
fo
r
ea
si
n
g
th
e
co
n
v
er
si
o
n
o
f
p
ro
p
ri
et
a
ry
a
u
d
it
tr
a
il
s
to
N
ID
E
S
fo
rm
a
t.

u

T
h
e
a
u
th
o
r'
s
st
a
te
in
d
ir
ec
tl
y
th
a
t
th
e
sy
st
em

co
u
ld

b
e
m
a
d
e
to
v
is
u
a
li
se
th
e
d
a
ta
,
a
n
d
h
en
ce
h
el
p
in
p
er
fo
rm
in
g
th
e
sa
m
e
a
n
o
m
a
ly
d
et
ec
ti
o
n
,
a
s
in
[1
1
]
a
b
o
v
e.

v

P
ri
m
a
ri
ly
a
n
et
w
o
rk
m
o
n
it
o
ri
n
g
to
o
l.

w

T
h
e

p
ro
to
ty
p
e
v
er
si
o
n
is
p
a
ss
iv
e,
b
u
t
th
e
a
u
th
o
rs
en
v
is
io
n
a
fu
tu
re
v
er
si
o
n
to
se
v
er
th
e
co
n
n
ec
ti
o
n
th
a
t
th
e
in
tr
u
d
er
a
p
p
ea
rs
to
b
e
u
ti
li
si
n
g
.

x

T
h
e
m
o
st
a
ct
iv
e

sy
st
em

su
rv
ey
ed
.

y

T
h
e
a
u
d
it
lo
g
s
o
ri
g
in
a
te
fr
o
m

n
et
w
o
rk
e
q
u
ip
m

e
n
t
,
n
o
t
th
e
n
et
w
o
rk
d
ir
ec
tl
y
th
ro
u
g
h
n
et
w
o
rk
\
sn
iÆ
n
g
,"
h
en
ce
th
e
\
h
o
st
"
cl
a
ss
i�
ca
ti
o
n
.

z

O
n
e
ce
n
tr
a
l
n
et
w
o
rk
ta
p
.

11

1.5 Trends and constants in intrusion detection

research

When studying the historical development of a �eld of research, both in terms of

the research done, and the research prototypes that has resulted, it is interesting

to note trends, and also what has been constant over the years. A closer study

of the classi�cation in section 1.4|the surveyed systems spanning nearly �fteen

years of research|and the references describing said systems, the following few

trends and constants come to light.

1.5.1 Trends

From host to network

A shift from host-based intrusion detection to network based detection. This

correlates with the shift from single multi-user systems to networks of worksta-

tions. However, recent network technology (switching networks, faster network

communication speeds) has made it more diÆcult to monitor the network for

audit data. Furthermore, the problem of what to do with encrypted data on

the network has presented a problem, that yet remains to be solved. The lat-

ter question it is starting to be addressed, mainly by considering the hybrid

approach, see [47].

From centralised to distributed

Another shift that correlates with the shift from multi-user systems to networks

of workstations is the shift from centralised intrusion detection to distributed

intrusion detection.

We see the trend most clearly in the case of data collection. Host based

security logging must by it's very nature be distributed in order to operate in a

network of workstations scenario. In the case of network data, it is conceiavable

that one could monitor a network of workstations from a central network tap,

and indeed the two purely network monitoring systems surveyed, has taken this

approach, however, others that also monitor host based security logs have also

distributed the network monitoring taps, there is thus no absolute concencus on

the matter.

In the case of data processing, the trend towards distribution seems to lag

behind, which is only natural when one considers the general diÆculties of

distributed data processing. However, since it is probably the only solution to

the problem of how to make intrusion detection systems scale, there is a clear

interest in the matter, and recent attempts have been made. It is interesting to

note that even though as the processing is distributed, the reliance of a central

SSO to receive and act on the alarms is often maintained.

Towards interoperability

While most of the early systems were closely linked to one speci�c platform, a

recent trend is to move towards more and more open and interoperable intrusion

detection systems. The perceived bene�ts are to be able to leverage di�erent

methods from di�erent suppliers, capitalizing on their respective strengths and

12

weaknesses, and to be able to operate an intrusion detection system in a het-

erogeneous environment.

One e�ort in the line with the former argument is [27], another in line with

the later is [47]. The latter authors claim that the thorough speci�cation of

a framework in which several smaller agents can cooperate, allows them to do

one well de�ned task eÆciently and e�ectively, and leads to an architectural

integrity that is paramount in a system that is envisioned to be very large,

covering, and protecting infra structure scale investments.

More resistant to attack

Resistance to attack against the intrusion detection system itself is also an

active topic, which previous research did not actively address. The trend is

clearly towards systems that can withstand attack against themselves, as well

as the monitored system. One recent system that attempts to address this issue

is Bro [46].

However, there is still very little study of the nature of the attacks an intru-

sion detection system could realistically be able to withstand. One recent paper,

that addresses some issues regarding evasion of detection is [49], but others still

remain unaddressed.

1.5.2 Constants

The following issues seem to have remained largely constant over the period

covered by the survey.

The hybrid between anomaly and policy

There seems to still be general agreement that in order to make an e�ective

intrusion detection system, one must employ both anomaly and policy based

intrusion detection methods, even though this is one of the original results.

It is interesting to note the relative shift|trend if you will|in concentration

of the research where newer research often stress policy based detection, at

the expense of anomaly based detection. There are probably practical reasons

for this, in that it is more diÆcult to perform experiments that say anything

conclusively about the coverage of anomaly based techniques, even though it

must be said, that the discussion of coverage is somewhat lacking in other work

based on policy detection techniques, as well.

Real-time detection

Early research systems performed non-real time detection, it was realised that

this was an imperfection of the systems, neccesitated by then current technology

limitations. Of the more recent systems, only one claim non-real time perfor-

mance from a more philosophical standpoint.

While it is clear that real-time detection has desirable properties, the present

author would not rule out the usefulness of non-real time detection altogether.

There are many cases where after the fact assessment of the situation, to be able

to accurately depict events as they transpired, is perhaps more desirable than

being given an immediate warning that something may be amiss, and nothing

more.

13

Such situations arise in cases where law enforcement is involved, where the

accuracy, and traceability of events are more important than real-time perfor-

mance. Another similar case is when the security policy of an organization states

accountability, rather than preemptive control, such as in medical emergencies.

Medical personnel need unrestricted access to possibly sensitive data quickly,

the security repercussions of which can be dealt with later.

As previously mentioned there are links between the time of detection cathe-

gory and the granularity of data processing, and it is clear from studying table 1.1

that real-time detection correlates well with continous data processing, and that

non real-time detection correlates well with batch data processing. There are a

few exptions to this rule, however, so the overlap is not perfect.

Few active responses

There is some discussion whether to allow systems to respond more actively, for

instance by terminating the connections that appear to be causing the attack.

The opinion is clearly in favour of more active systems, but research is, perhaps

not surprising, still immature in this �eld. DiÆcult questions regarding the

accuracy of the detection, the possibility of opening the system to a denial-

of-service attack, and liability, remain to be solved before intrusion detection

system can be trusted to respond on their own.

The consumption of resources

As computers and networks get faster, we can process more audit data per

unit time, but that same computer or network unfortunately produce (some)

audit data at a much higher rate as well.11 Hence, the total ratio of consumed

resources to available resources is, if not constant, at least not decreasing at

a suÆciently fast pace, that the performance of the intrusion detection system

becomes a non-issue. Quite the contrary, network communication speeds for

instance, seems to be one of those obstacles that the research community seems

to never be able to quite clear.

There is also little study into the question of how to collect, store, and prune,

these vast amounts of audit data, even though the present author feels that this

area hides contains some interesting problems to be researched.

Little study of coverage

There is still a lack of study in the �eld of coverage,12 of the intrusions the

system can realistically be thought to handle.13 The problems are both that of

incorrectly classifying benign activity as intrusive, a so called false positive,14

and that of classifying intrusive activity as non-intrusive, a false negative. These

mis-classi�cations lead to di�erent problems. The term coverage, borrowed from

the �eld of dependability, could in our �eld be de�ned as the ratio of correctly

11 This cathegory has not been tabulated, even though it is conceivably a feature of the
surveyed intrusion detection systems. The reason is mainly that few authors make solid
claims in this area, and especially in relation to some usability scenario, i.e. as a percentage of
how much a system owner would be willing to let intrusion detection cost him. 12 Since the
�rst version of this paper, there has been some activity in this area, most notably [12, 39, 57].

13 This cathegory has not been tabulated as it is not a feature of the surveyed systems. It
becomes clear when studying the surveyed references however. 14 \False alarm," if you
will.

14

classi�ed intrusions (true positives) to the number of intrusions incorrectly clas-

si�ed as non-intrusive, (false negatives) plus the number of true positives, i.e. the

fraction of intrusions that can be detected.15 Even though the term would be

a useful measure on the e�ectiveness of a proposed intrusion detection system,

there are few references to it in the published literature.

The nature of computer security intrusions, from an intrusion detec-

tion perspective

Closely linked to the study of coverage is the lack of study of the nature of the

intrusions the system should be able to classify, and the nature of the intrusions

the intrusion detection system itself should be able to withstand.16 Papers

that do address the question of the nature of the computer security intrusion

are [36, 37], and more speci�cally [38], and [32]. A paper that concerns itself with

the nature of attacks against intrusion detection systems themselves, is [49].

The role, and capabilities of the SSO

The reliance on some SSO to handle the �nal arbitration, and response to the

intrusion.17 The speci�c role of the SSO has not been well studied, how results

should be reported to him, how many results he can realistically be expected to

handle, his abilities to respond etc. Of course, if one fails to address the issue of

the number of false positives, for instance, both in relative terms, i.e. not more

than 0.5% false alarms, and in absolute terms|0.5% could well mean 5000

alarms|then the diÆculty of putting the function of the SSO in perspective

follows.

1.6 Open research questions

In summary then, the most obvious shortcomings in the research performed to

date, is that it fails to thoroughly address the following questions:

� What is the nature of the intrusions that the system is trusted to detect,

� to what degree can the system correctly classify these intrusions, and can

the system correctly classify intrusion to such a degree that it can be

trusted to respond actively to them? The reason we ask these questions is

that we would like our intrusion detection system to be able to respond as

accurately, quickly, and hence, with as little human intervention as possi-

ble. The use of active response also raises questions about the possibility

of a denial-of-service attack, which compounds the problem.

� What audit data do we need to make a sound decision from an intrusion

detection perspective? How do we collect, store, prune, and transmit this

audit data, eÆciently and e�ectively?

15 Mathematically: True positives=(False negatives + True positives). This is often the most
convenient way of calculating P (Intrusion indicatedjIntrusion existing). 16 This cathegory
has not been tabulated as it is not a feature of the surveyed systems. It becomes clear when
studying the surveyed references however. 17 This cathegory has not been tabulated as it is
not a feature of the surveyed systems. It becomes clear when studying the surveyed references
however.

15

� We also need to have more knowledge about the nature of the intrusions to

be able to draw sound conclusions when it comes to the issue of coverage;

have we found all possible types of intrusions, can we �nd all possible

types, have we found all possible intrusions of this particular type? etc.

etc.

� What is the nature of the attacks against the intrusion detection system

itself,

� to what degree can it be trusted to continue correct operation in the face

of opposition, and

� when it can no longer correctly perform its duties, how can graceful degra-

dation of service be ensured? Can the system fail in such a way that

security is not compromised and what charaterises such a failure?

Since there is more and more commercial interest in intrusion detection,

we will likely see more and more attackers become aware of the threat

that intrusion detection poses. It is probably prudent to assume that

those attackers that are motivated enough, will seek ways to attack the

intrusion detection system itself, in order to avoid detection. This raises

the questions above as well as others.

� What of the run-time eÆciency of the intrusion detection systems? One

criticism that is often raised is that intrusion detection systems consume

too many resources to be �elded e�ectively. To date, very little has been

done to study the execution eÆciency of intrusion detection systems.

These are fundamental, interesting, and diÆcult, questions, and while we

have started to address them [4, 36{38, 49], much work still needs to be done

before any sort of major conclusion can be reached. This is especially true of the

latter questions regarding attacks against the intrusion detection system itself,

where research to date has been scant.

1.7 Remaining contents of this survey

The remaining paper consists of a detailed overview of each of the surveyed sys-

tems. The systems are presented in roughly chronological order. Each presented

system is followed by the surveyor's opinion of the work presented.

16

Chapter 2

Details of the surveyed

systems

As previously mentioned, this chapter consists of a detailed overview of each

of the surveyed systems. The systems are presented in roughly chronological

order. Each presented system is followed by the surveyor's opinion of the work

presented. In the following the term \authors" is to be taken to mean the

authors of the work currently being surveyed, while we will refer to ourselves as

the \present author."

2.1 Haystack

2.1.1 Introduction

The Haystack prototype [51] was developed for the detection of intrusions in a

multi-user Air Force computer system, then mainly a Unisys (Sperry) 1100/60

mainframe running the OS/1100 operating system. This was the standard Air

Force computing platform at the time.

Haystack was primarily designed to detect six di�erent types of intrusions

(more or less verbatim from [51]):

1. Attempted break-ins: When an unauthorised user tries to gain access to

the computing system.

2. Masquerade attacks: When an authorised user makes an unauthorised

attempt to assume the identity of another authorised user.

3. Penetration of the security control system: Where a user attempts to

modify the security characteristics of the system.

4. Leakage: Moving potentially sensitive data from the system.

5. Denial of service: Denying other users the use of system resources, making

the resources unavailable to the other users.

6. Malicious use: Miscellaneous attacks such as deletion of �les, resource

hogging, etc. etc.

17

In order to detect these six types of intrusions the system employs two

methods of detection: anomaly detection, and signature based detection. The

anomaly detection is organised around two concepts; a per user model of how

that user has behaved in the past, and pre-speci�ed generic user group models,

that specify generic acceptable behavior for a particular group of users. The

combination of these two methods solves many of the problems associated with

the application of any one of them in intrusion detection systems.

The authors explain that even though the US Air Force has well de�ned

security policies|that may be lacking in the civilian sector|there are still many

problems associated with the application of these policies in intrusion detection

systems. e.g. there is no consensus on formal speci�cations for security policies,

there is a lack of understanding of how intrusions are made, etc.

2.1.2 System organisation and operation

The system was divided into two platforms. The Unisys (Sperry) operating

system was responsible for the audit data collection. The Unisys part of Hay-

stack then converted this audit trail into a uni�ed audit trail, the so called

Canonical Audit Trail format (CAT for short), and parsed it with respect to

the abstract elements that constituted a generalised audit trail event, possibly

selecting records pertaining to certain users, etc. as per the SSO's instructions.

This canonical format audit trail was then written to (then) standard 9 track

ANSI tape.

The CAT audit trail was then processed on a Zenith Z-248, 80286 PC-

AT clone, with at least 4 MB main memory. This platform ran the MS-DOS

operating system. The PC part of the Haystack system constituted most of the

code of the system. The PC would read the 9 track tape, detect and log obvious

breaches of security, according to the policy based part of the intrusion system,

aggregate several audit records for each user together into a session record for

that user. This session record would then be inserted into the session record

database, a commercial DBMS, using the standard SQL command set.

All security relevant events are listed separately for the bene�t of the SSO,

these typically account for less than 0.5% of the total number of audited events,

and can thus be perused manually by the SSO. The event horizon, i.e. the

amount of previous audit records that the processing mechanism has to con-

sider when processing the current audit record, is set to one, i.e. the processing

mechanism only considers the current audit record when searching for intru-

sions/anomalies in this phase of the processing. This design decision limits the

amount of processing done in this step signi�cantly.

The intrusion detection system then processes the new session records that

comprise the database, using both statistical and pattern-based techniques look-

ing for evidence of prede�ned \bad" behavior, and atypical or suspicious be-

havior. The pattern-based techniques assess multivariate characteristics of the

sessions compared against expected characteristics of particular types of intru-

sions.

Should the SSO decide to look for evidence of a user that attempts to \learn"

the anomaly based part of the system|that his, in fact, suspicious behavior,

is actually normal, and nothing out of the ordinary|the SSO can choose to

process past user sessions to look for trends that could indicate this. This also

18

handles the case where a user gains savvy in operating the system, and thus

deviates from his \normal" behavior.

2.1.3 Future research

The authors identify a number of areas for future research, among them:

� How do we test an intrusion detection system, and measure it's e�ective-

ness?

� Could we implement a real-time intrusion detection system with suÆcient

security and reliability to be entrusted with the ability to shut down an

o�ending user or even the entire system?

� What visual metaphors are most e�ective for presenting computer security

information to the SSO? Is there a security metaphor that is analogous to

the spreadsheet for �nancial analysis?

� What are the relevant privacy and legal issues? What are the e�ects

on employee morale? Could heavy handed auditing reduce the perceived

usefulness of the target computer system for exploratory or research work?

2.1.4 Survey conclusions

The questions identi�ed under future research are of course still valid today,

despite the fact that the research presented is more than ten years old. More

recent research (see section 2.7) indicate that the assumption that all users would

interpret auditing as something negative could perhaps be overly pessimistic.

It is interesting to note that one important question above|how to present

the information to the SSO|has not really been addressed since the paper was

published, excepting perhaps the cursory treatment in [56].

2.2 MIDAS|Expert systems in intrusion det-

ection: A case study

2.2.1 Introduction

MIDAS [50] was developed by the National Computer Security Centre, in co-

operation with the Computer Science Laboratory, SRI International, to provide

intrusion detection for the NCSC's networked mainframe, Dockmaster, a Honey-

well DPS-8/70. This computer was primarily used for electronic communication

within the employee community at NCSC, and aÆliated agencies. The authors

acknowledge previous work by Denning et. al., and work at Sytek, as their main

source of inspiration.

2.2.2 Expert knowledge in intrusion detection

MIDAS is built around the concept of heuristic intrusion detection. The authors

make the example with the human site security oÆcer, and how he would go

about analysing audit logs manually, to �nd evidence of intrusive behaviour. He

could for instance reason that most intrusions probably occur late at night/early

19

morning, when the system is unattended. That would narrow the search some-

what. He could go on to hypothesise that most intruders, in an attempt to cover

their tracks, would vary their points of attack from di�erent locations on the

network. Combining these two criteria he could well have narrowed the search

to the point of him being able to peruse log records for individual user sessions.

The seasoned security oÆcer, could well �nd cause for suspicion simply by look-

ing at the records for a particular session, that wouldn't \feel" right, and close

that account, pending further investigation.

From this (imagined) process, the authors identify that successful (manual)

intrusion detection, involve knowledge, and symbolic reasoning, with a measure

of uncertainty. This leads to the conclusion that a rule-based expert system

could be employed as a means of performing intrusion detection.

The authors note that the requirement that the expert system provide the

knowledge of an \expert" security oÆcer, is a minimum requirement, considering

how abysmally small rate of success human security experts have when trying

to �nd evidence of intrusive behaviour by manually examining audit records,

that may either be too numerous to examine, or too sparse to contain enough

information to draw the correct conclusions from.1

2.2.3 Application of the expert system

MIDAS applies the Production Based Expert System Toolset (P-BEST) for

intrusion detection. P-BEST is a forward chaining expert system shell, in which

the introduction of a new fact in its fact base, triggers the reevaluation of the

rule base. This in turn can introduce new facts into the fact base, and processing

stops with the conclusions drawn when no new rules �re.2 P-BEST is written

in Lisp, and produces Lisp code, that can be compiled and run on a dedicated

Symbolics Lisp machine. The compilation of the expert system code into object

code, provides for eÆcient execution of the expert system shell.

In MIDAS, P-BEST's rule-base is populated with rules in three distinct

categories:

Immediate Attack The immediate attack heuristics, operate without any

knowledge of the (statistical) history of the system, on a very narrow

time-window of audit records, typically only one. Furthermore, the imme-

diate attack heuristics are static, they do not change to re
ect new trends

in input data, other than as a direct result of site security oÆcer action.

The idea behind the immediate attack heuristic is that they would be able

to �nd activity that is exceptional in and of itself, in e�ect searching for

already known indications of intrusions.

User anomaly The user anomaly class of rules make use of statistical pro�les

of previous user behaviour to be able to detect suÆcient deviations from

those statistics. Two levels of user pro�les are kept, statistics pertaining

to the current session (session pro�le), and statistics pertaining to a longer

period of time concerning the user in question (user pro�le). The session

1 However, the present author feels that it is perhaps not in the �eld of reasoning, but rather
in the department of sheer force of labour that the human SSO falls behind his computerised
counterpart. 2 Contrast this with a backward chaining expert system, in which inference
is triggered by the posing of some question, such as: \Is X true, for some statement X ?" The
system then evaluates the rules until all (necessary) facts have been processed.

20

pro�le is updated at time of login, from the user pro�le, which in turn

is updated by the session pro�le, at time of logout. The updating of the

pro�les thus form a cycle.

System state The system state heuristics maintain knowledge about the stat-

istics of the system as a whole, without concern for individual users. For

example, the total number of failed login attempts, for a given period of

time, as opposed to the number of failed login attempts for a particular

user.

The structure of the rule base is two tiered. The �rst, lowest, layer, handles

the immediate deduction about certain types of events, such as \number of bad

logins" and asserts a fact to the e�ect that some threshold of suspicion has been

reached when they �re. These suspicions are then processed by second layer

rules, that decide whether to actually raise an alarm based on the suspicion

facts asserted by the lower level rules, e.g. \This user is a masquerader because,

he has made 40 command errors in this session, and he has tried the invalid

commands suid , and priv , and he is logged in at an unusual time." This put

together would be a strong indication that something is amiss, and the second

level rule|representing a masquerader|would trigger, alerting the site security

oÆcer.

2.2.4 Threat model

The authors adapt the threat model from Denning [10], by collapsing some

of her categories into one. The threat categories remaining, and how MIDAS

attempts to counter them can be summarised as:

Attempted break-ins Countered by immediate attack heuristic, the rules

that deal with this situation is mainly, but not exclusively, concerned

with login failures.

Masquerade The assumption made by the authors is that this is a straightfor-

ward category of intruders to detect, by nature of their actions deviating

from established statistical use by the authorised user. Anomaly heuristics

are used.

Penetration The direct violation of system security policy. This type of attack

is handled by all three heuristics, targeted towards access, or attempted

access, of system sensitive programs or data.

Misuse Misuse of computer resource by an authorised user, detected using

both anomaly, and system heuristics. The direction of printer output to

some unusual location can be detected, for instance.

Trojan horse/virus Anomaly and system heuristics are applied to this area of

concern. The authors do not di�erentiate between these two areas since

they have not been able to separate the two using the available audit

data. The key factors to consider are access violations on system sensitive

objects, and execution statistics that violate norms established for given

commands.

21

2.2.5 System organisation, performance, and conclusions

MIDAS itself runs on a symbolics list station, that receives it's audit data via the

network from the Dockmaster mainframe, having been preprocessed to massage

the audit data into a common format, and having had some simplistic reductions

applied. The mainframe sends both operating system provided audit logs, and

command logs from a specialised MIDAS module that runs on Dockmaster.

The Symbolics Lisp machine maintains a rule-base, a fact-base that re
ects the

converted audit data, and a database of user and system statistics. MIDAS is

provided with a graphical user interface, where the site security oÆcer can view

results from the processing, as well as parameters pertaining to the speed of

processing itself, in real-time.

MIDAS was tested on a subset of the users, the data was feed via tape, in

simulated real-time, and was found to execute more eÆciently than the authors

had previously expected. It managed to keep up with full scale operation of the

system, some 1200 users, in real-time. The authors state as problems that even

though MIDAS seems to detect, at least naive, simulated intrusion attempts,

it gave too many false alarms. As a question for future research the authors

mention the employment of other algorithms for the detection of anomalies,

Markovian analysis being one such technique. The authors state further that

some means of validating performance of the rule base should be developed. Fur-

thermore, the authors hope to employ results in (then) ongoing expert system

research, to validate the rule base itself, for completeness, and consistency.

2.2.6 Survey conclusions

Aside from the fact that the system presented is \seminal"|MIDAS was the

�rst published system to employ signature based detection|it is interesting in

that the authors clearly de�nes what type of problems MIDAS was designed to

handle, and how MIDAS would handle them. Furthermore, the performance of

the system was tested, and results published. While this is interesting data to

obtain, more recent research often fails in this respect.

Also, the authors have begun by studying the situation of a senior SSO, and

even though the demands on him made by the system is not clearly stated, that

he is part of the system, other than as an ill de�ned recipient of the output of

the system, is of course interesting.

2.3 IDES|A real-time intrusion-detection ex-

pert system

2.3.1 Introduction

IDES is one of the classic intrusion detection systems [41, 42], and to date one

of the best documented. It is diÆcult to write about one IDES system however,

since the IDES project went on for a number of years, continuing into the

Next-Generation Intrusion Detection Expert System, or NIDES, after the IDES

project was oÆcially �nished. Thus, there is really no one IDES system of which

to speak, since the system underwent (sometimes) fundamental change as the

research project progressed. This survey will focus on the earlier stages of the

22

project, around 1988, and describe di�erences between the systems presented

in the earlier, and later stages of the project, where appropriate.

The basic motivation behind IDES is that users behave in a consistent man-

ner from time to time, when performing their activities on the computer system,

and that the manner in which they behave can be summarised by calculating

various statistics for the user's behaviour. Current activity on the system can

then be correlated with the calculated pro�le, and deviations
agged as (possi-

bly) intrusive behaviour.

IDES intended to detect intrusions in all of Anderson's categories, even the

misfeasor category (i.e. a user that is authorised to access both the system, and

its data, but who abuses this privilege.) IDES performs this detection by con-

structing a pro�le for a group of users, who should behave in the same manner,

by virtue of their organisational status, and attempt to correlate behaviour for

a particular user, not only with past behaviour for that user, but also with the

behaviour that is recorded as \normal" for that group.

2.3.2 The prototype

The 1988 prototype of IDES di�ered from the original prototype in many re-

spects. It runs on two Sun-3 workstations, one Sun-3/260 that maintains the

audit database and the pro�les, and one Sun-3/60 that manages the SSO user

interface. The audit database is implemented using a COTS Oracle DBMS.

The monitored system is a DEC-2065 that runs a local version of the TOPS-20

operating system. The audit data is transmitted (securely) to IDES via the

network, one record at a time, and processed to provide a real-time response.

Later in the project IDES was run on faster hardware, and monitored a

network of workstations. The Oracle database was discontinued, in favour of a

locally developed audit database, while it was felt that the feature set of Oracle

was not well suited to the access patterns of IDES. A signature based detection

(sub)system based on the P-BEST expert system shell was also incorporated,

since it was felt that signature based detection was necessary to provide a com-

plete set of detection capabilities.

2.3.3 Pro�le data

IDES monitors three types of subjects; users, remote hosts, and target systems.

Some, in total, 36 di�erent parameters, called measures by the authors, are

monitored for the subjects, 25 for users, 6 for hosts, and 5 for target systems.

These measures fall into two categories:

Categorical measure A measure that is discrete in nature, and the values

of which are members of a �nite set, e.g. the commands that a user has

invoked during a session is a categorical measure, with the set of possible

values being the set of all possible commands, that that user can issue to

the system.

Continuous measure A measure that is a real valued function of some pa-

rameter, say for instance, the number of lines printed for this session, or

the length of a user session.

23

The prototype under discussion measures these measures during each user

session, de�ned as the time from login to the system, to the time the user exits

the system, either normally or abnormally, as the result of a systems malfunction

for example.

Some of the measures that the system monitors for a user are:

CPU usage The number of CPU seconds consumed during this session, con-

tinuous measure.

Command usage Categorical measure, that records the commands used. Ex-

amples of other related measures are \Mailer usage", \Editor usage", and

\Compiler usage," where by IDES keeps track of particular classes of com-

mands.

Command usage (binary) A categorical measure that records whether a

particular command was used during this session. The value is restricted

to \true" or \false," respectively.

Network activity A continuous measure that keeps track of the number of

\network activity" audit records received during a session. There are

several other measures related to network activity as well.

These measures are kept in a real valued vector as summarised statistics

for the session, the categorical measures having been converted to continuous

measures �rst. Other data such as the standard deviation etc. is also kept in

di�erent vectors for a particular subject.

These statistical pro�les are typically updated to re
ect new user behaviour

once a day, after the original pro�le has been \aged." This aging process ensures

that newer behaviour plays a larger part in the detection of anomalies, than older

behaviour. The rational being that subjects behaviour slowly change over time.

The \half-life" (i.e. after this amount of time, the data contributes only half

as much to the pro�le values as the new data) of the pro�le is approximately

50 days in the early prototype, 30 days in the later. The nature of the stored

anomaly pro�les, and what data to store, changed between the di�erent versions

of IDES.

2.3.4 Anomaly detection

IDES process each new audit record as it enters the system, and veri�es it

against the known pro�le for both the subject, and the group of the subject,

should it belong to one. IDES also veri�es each session against known pro�les,

when the session completes. In order to further di�erentiate between di�erent

but authorised behaviour, the prototype was extended to handle two sets of

pro�les for monitored subjects depending on whether the activity took place

on an \on" or \o�" day. The site security oÆcer de�nes which days are (in

e�ect) \normal" workdays for a particular subject, mostly users, and which are

not. This further helps to increase the true detection rate since a �ner notion

of what is \normal" for a particular subject, based on real-world heuristics can

be developed.

In order to detect anomalous behaviour during the session, when all session

statistics are not yet present, IDES extrapolates the current session statistics

and compares this extrapolation with the pro�le for the subject, otherwise, all

24

subjects would report an abnormality until roughly half-way through the session,

since some (continuous) measures would not yet have reached even their mean

value for a session.

In the case the user is a new user, and not yet known to the system, IDES

uses a default pro�le, to start o� the monitoring of that user.

When an anomaly is detected IDES reports what measures that contributed

the most to the classi�cation, so that the site security oÆcer can make his own

judgement as to the validity of the reported anomaly.

2.3.5 User interface

IDES has a well thought out user interaction model, which de�nes three di�er-

ent classes of users. Each of these has his own user interface, tailored to their

speci�c needs. The interfaces are graphical in nature, and provide the site secu-

rity oÆcer(s) with both; plots of anomaly data, as well as text based interaction,

explaining why IDES found an activity anomalous. From the user interface, the

user can also control many aspects of IDES behaviour, for instance, IDES has

a feature where by which the site security oÆcer can \roll-back" an updated

pro�le, when he suspects that that session may be \tainted" by intrusive beha-

viour, that should not have been learnt as \normal" for that subject. He can

also enable/disable monitoring for individual subjects etc.

2.3.6 Future work

The papers list several future enhancements, many of which where addressed in

the later versions of IDES, and NIDES.

2.3.7 Survey conclusions

As previously stated, IDES falls in the category of \seminal" systems. It was

the �rst that utilised anomaly based detection, and the rational for, and im-

plementation of the statistical methods, and what parameters are used, is very

well documented. Which makes it relatively easy to follow the thoughts, and

work, of the authors, which is important since research continues in the �eld.

It is interesting to note that the session statistics in themselves do not ad-

equately handle multi-modal distributions of data, but that some (somewhat

crude) e�ort has been made|the introduction of \on" and \o�" days|to sim-

ulate such a capability. This problem would come to be redressed in NIDES,

where the statistical routines were altered to accommodate multi-modal distri-

butions. See section 2.14 on page 56 for a survey of NIDES.

2.4 Wisdom & Sense|Detection of anomalous

computer session activity

2.4.1 Introduction

W&S [54] is another seminal anomaly detection system. Development started

as early as 1984, with the �rst publication in 1989. It is interesting to note

that W&S was at �rst not intended for the computer security application but

25

\a related problem in nuclear materials control and accountability."3 W&S

is unique in its approach to anomaly detection. W&S studies historic audit

data and produces a forest of rules describing \normal" behaviour, this is the

\wisdom" part of W&S. These rules are then fed to an expert system, that

evaluates recent audit data for violations of the rules, and alerts the SSO when

the rules indicate anomalous behaviour, the \sense" part of W&S.

The design criteria was for W&S to:4

� Reduce audit data to more usable forms.

� Build its own rule base without human guidance.

� Store and use very large, instantiated rule bases eÆciently.

� Tolerate con
icting rules.

� Deal with uncertain and erroneous knowledge.

� Continue to learn from experience, and adapt to transient conditions.

� Accept human modi�cations to its rule base, but not be overly dependent

on scarce human expertise.

� Make real-time, graded decisions regarding anomalous behaviour.

� Provide human-readable feedback on anomalies to aid in anomaly resolu-

tion.

� Create minimal interference with the real functions of its host system.

� Be portable to di�erent applications, operating systems, and hardware.

The authors claim that most of these design criteria have been met, but

that they would need more experience with operating environments, and simu-

lated intrusions, to design additional evaluation tools, and to �ne tune W&S to

increase the precision of its classi�cations.

2.4.2 System operation

W&S reads historic audit records from a �le. The authors state that more is

better when it comes to the creation of rules from previous audit records, up to

about 10000 records per user. A �gure of around 500{1000 audit records per

user is a good target to aim for according to the authors. The audit records

that are used, typically record one event for each process execution, at the end

of execution of that process.

The natural unit of processing for W&S is the audit record. However, to

make an observation on the statistics of an occurrence some sort of aggregation

has to be made. W&S creates a thread class for each aggregation of audit

records. This thread is de�ned in terms of speci�c data values of the audit

records. The authors give the example of a user/terminal thread, where each

audit record that pertains to user \bob" on terminal TTA1 are grouped together

3 The authors were at Los Alamos National Laboratory, and Oak Ridge National Laboratory
at the time of publication. These facilities have strong ties with the US nuclear weapons
program. 4 Verbatim from [54].

26

in one thread, which is a member of the class. Each thread class has a number of

functions associated with it that typically compute statistics, or perform other

actions for the thread as each new record is added to the thread.

The authors note that the rule generation mechanism generates everything

from very general rules, \the valid terminals are T1, T2, etc." to very spe-

ci�c ones, such as \on Tuesdays between 6:00 am and 7:00 am, when the user

has system operator privileges, and is using terminal T3, only commands that

generate little direct disk activity are used."

The \sense" part of the system reads audit records, evaluate the thread class

that they are part of against the rule base, and triggers an alarm if enough of

the rules report enough of a discrepancy|a high enough score|with the pro�le.

The score of the thread (named Figure-of-merit, FOM by the authors) is a time-

decayed sum of the FOM's for that thread's audit records. Thus several events,

across several sessions, that are slightly anomalous, will eventually accumulate

to an anomaly for that thread.

2.4.3 Rule generation

The rule base is generated in form of a tree, where each branch of the tree

contains more speci�c rules pertaining to the same measured behaviour, closer

to the leaf. The rules themselves contain a right-hand-side (RHS), and left-

hand-side (LHS). The RHS, named \restriction" by the authors, describes the

conditions under with the rule applies. The RHS speci�cation can take one of

three basic forms:

1. A list of acceptable categorical values for a particular audit record �eld.

2. A list of acceptable ranges for a continuous, metric audit record �eld.

3. A list of user-de�ned functions to be executed until either, one of them

returns true, or the list is exhausted.

There are two types of nodes in the tree. The �rst type designates data �elds

in the audit record, and can have a maximum of 32 branches. The other type

designates acceptable �eld values, and can have at most 255 branches. Together

these two types compose a rule base \level." The tree is typically pruned to a

maximum of 4{5 levels. The rules themselves are condensed into an average of

6{8 bytes of storage each5 and a typical rule base can contain between 104 and

106 rules. This enables W&S to store the entire rule-base in memory, which

leads to eÆcient evaluation of the rule base by the \sense" part of the system.

W&S views data mainly as categorical, and generates rules by �rst sorting

continuous data into variable size bins with approximately the same number of

points in each bin, by an ad-hoc method|this in e�ect clusters the data|and

then including more and more bins into the rule, until a target ratio of \normal"

data has been reached. The remaining data values are then regarded as \abnor-

mal" by the rule. The authors claim that this clustering reaches good results

with data that is binomially, normally, and multi-normally distributed. Purely

categorical data are clustered in the same manner until a target percentage is

reached.

5 This is accomplished by using a data dictionary, that the rules can reference. This dictionary
typically ends up around the the 10 KB-mark.

27

The rule base is then combined, where similar rules are condensed into one,

and other rules, because they are not deemed signi�cant, or because of concerns

about tree size, are pruned from the tree.

Each rule is then assigned a grade measuring the \seriousness" of the rule.

This grade is composed of two parts. The �rst part takes the historical accuracy

of the rule into consideration, and the second part favours the rule with the

longer RHS, i.e. the more speci�c the rule is, the more weight it is assigned by

the grade measuring algorithm.

The rule base is not automatically updated, since the authors feel that this

is a process that should run under the supervision of a trained SSO, perhaps

once every 1{4 weeks.

2.4.4 Anomaly detection

The \sense" part of W&S then reads the rule-base, dictionary, and new audit

records, either in batch, or as they become available. The inference engine

then processes each audit record, �nding the rules that apply, and computes

a transaction score for that audit record. In doing so, the inference engine

basically sums all contributions from the di�erent failed rules|remember that

we are searching for anomalies|and that the rules describe \normal" behaviour,

taking the thread that the audit record is a part of into account. The thread

score is updated, and aged by the previous process. W&S then reports an

anomaly whenever the thread score, or individual audit record score, surpasses

an operator de�ned threshold.

W&S aids the SSO in the task of anomaly resolution, it can help the SSO

identify which data in the audit record was considered anomalous, it can list

the rules that triggered the anomaly detection, provide a thread history, and

suggest what data speci�c �elds would have avoided the anomaly determination.

2.4.5 Results and future work

The process of detecting anomalous activity is quite fast. The authors report

that W&S hhandles rule-bases of up to 500,000 rules averaging 6.0{9.0 bytes

per rule, and 20,000{40,000 rule �rings per second. Firing approximately 1%

of the rules for a more ordinary rule-base of 100,000 instantiated rules, this

gives a performance of between 20{40 transactions (audit records) per second.

Searching the rule base can be done in under 0.05 seconds. These performance

�gures are for an IBM RT Model 6151-125, with an advanced
oating point

accelerator. The operating system is IBM's AIX version 2.1.

The authors recognise that even though they have performed suÆcient tests,

both in vitro, and using staged intrusion attempts, to ascertain the usefulness of

the methods W&S use, more research into the nature of the computer security

threat is needed.

The authors further state that W&S could probably be applied to other ar-

eas, both pertaining to security, and other �elds, where the detection of anoma-

lous data is of interest.

28

2.4.6 Survey conclusions

W&S is an interesting system in that it is one of the earliest systems, useful

on a wide range of problems|not only in computer security|utilises anomaly

detection, and does this using a novel approach to the subject. This approach

would probably make for time eÆcient use of the detection resources, even

though it is diÆcult to determine how e�ective the detection would be. (This

is of course still an open question in the �eld of intrusion detection.)

The fact that the ideas behind W&S originated when studying security prob-

lems in another domain, that of nuclear materials control, makes W&S both

unique, and interesting, and it supports the claims of the authors that W&S

could probably be applied to many other �elds of security|as well as other

�elds, that are not directly security related|such as the supervision of biologi-

cal systems, for example.

2.5 The ComputerWatch data reduction tool

The ComputerWatch [11] data reduction tool was developed as a commercial

venture by the Secure Systems Department at AT&T Bell Laboratories, as an

add on package for use with the AT&T System V/MLS. System V/MLS is a B1

evaluated version of System V unix that provides multi-level security features

that comply with the NCSC orange book B1 security criteria.

2.5.1 Introduction

The ComputerWatch tool operates on the host audit trail to provide the system

security oÆcer with a summary of system activity, from which he can decide

whether to take further action, i.e. investigate particular anomalous looking

statistics further. The tool then provides the SSO (Site Security OÆcer) with

the necessary mechanisms for making speci�c inquiries about particular users,

and their activities, based on the audit trail.

The B1 certi�cation requires that the operating system provides the SSO

with an audit trail that incorporates all security relevant events that have taken

place on the system. Since the mere collection of this potentially voluminous

amount of data can signi�cantly a�ect system operation, the System V/MLS

operating system has gone to some length to optimise the process of collecting

audit data. The processing overhead of collecting data is less than 4%, this has

been achieved by clever use of bu�ering to optimise disk traÆc, and the use of

a binary audit format, that reduces the individual records to an average length

of 16 bytes. The latter minimises both disk traÆc, and processing time. A

problem with bu�ering of audit data, is of course potential loss of audit data in

the event of a system crash, whether benign or malign. Another problem is that

the binary format has to be translated to the database format before processing

ComputerWatch would normally be used by the SSO, with some periodicity,

in an attempt to establish an overview of the type of system activity that has

occurred. The tool provides the SSO with a summary report of this activity.

This report can be perused as is, or certain entries can be automatically high-

lighted by the system according to a set of prede�ned rules, to provide a form

of threshold highlighting capacity. The SSO then decides what type of activity,

if any, merits further study, and can then make speci�c enquiries about users,

29

and their activity to the audit trail database. Figure 2.1 provides an overview of

the ComputerWatch system organisation, and the data-
ow between the com-

ponents.

Audit Trail (raw)
Audit Trail
(8 Tables 6
Warnings File)

Formatter/Filter

Audit Trail
(DBMS)

Dynamic Set of
Intrusion-Detection
Rules

DB Schemas

Loader

Built-In
Intrusion-Detection
Queries

Queries
CustomReport Generator

System Activity
Summary Report

activity highlighted)
(w/ suspicious

Different Views
of User Activity

Figure 2.1: Data
ow diagram of ComputerWatch components (from [11])

2.5.2 DBMS

The database manager was especially designed for the task at hand. It is simple,

small, and supports a very reduced set of SQL like operations, such as project,

select etc. It contains no commands for data modi�cation, since this could a�ect

the integrity of the data negatively.

2.5.3 Report generator

The report generator generates a statistical summary of the system's activity

since the last time the report generator was run. These statistics include items

such as; number of failed logins, number of �le accesses, whether these where

reads or writes, successful or not, superuser activity, �le declassi�cation etc, etc.

The report generator module can operate in one of two modes, detection

\on," or \o�." In the detection \on" mode, the report generator applies a

set of prede�ned, modi�able set of simple threshold type rules that may �re

when applied to a certain statistic generated by the report generator. e.g. \The

number of failed logins (58%) is too HIGH." In the other mode, this simple kind

of detection is turned o�. This saves processing time, and enables the SSO to

study the statistics generated.

The authors claim that although there is some controversy over whether

viewing statistics at a system level can help detect intrusions, they have found

that such statistics can be useful in determining what kind of activity does not

30

merit further investigation. i.e. if little or no �le declassi�cation is evident, this

type of operation does not merit further investigation.

2.5.4 Queries Module

The queries module was designed to help detect \simple" breaches of security.

These consist of a prede�ned set of possible queries that can be made to the

audit database, either per user, or about the whole system. The set of prede�ned

rules can be augmented with speci�c queries tailored to the situation at hand.

The prede�ned queries are simple threshold like queries, they are designed to

re
ect the same kind of statistics that is evident in the system wide report,

but at a user level. The SSO de�ned queries are made in the special SQL like

query language of the DBMS. These can be made more complex than the simple

prede�ned queries.

2.5.5 Rules Module

The SSO has the ability to augment and modify the rules applied to the system

level statistics reported by the report generator. These rules can be of a simple

set of prede�ned types, e.g. value > threshold, value1� value2 >= threshold

etc. It is possible for the SSO to specify preconditions, i.e. other rules that must

have �red for the equation of this rule to be considered. Error checking logic

prevents the creation of rules with a preconditions list that would result in a

loop.

2.5.6 Survey conclusions

ComputerWatch is one of a precious few systems that put the SSO in the focus

of activity. ComputerWatch as a tool tries to visualise, and present data to the

SSO, in a manner that enables him to operate more eÆciently, and e�ectively

in his role as monitor (guard if you will) of the system. This line of research has

largely been ignored since this work was presented. (But, see [56], for a recent,

cursory stab at the problem.)

Otherwise ComputerWatch feels slightly dated. Its merit would be that it

is a very simple system, which would lend itself to eÆcient implementation.

However, it is doubtful whether such a simple system could be e�ective today.

2.6 NSM|Network security monitor

2.6.1 Introduction

This section describes the latest published version of NSM [21, 45]. NSM is

the �rst system to use network traÆc directly as the source of audit data.

NSM listens passively to all network traÆc that passes through a broadcast

LAN, and deducts intrusive behaviour from this input. This approach stems

from the observation that even though several other intrusion detection systems

try to ameliorate the problems of having several di�erent forms of audit trails

available from di�erent platforms, the network traÆc between these systems

typically take place on broadcast networks, utilising standard protocols, such as

TCP/IP, telnet , ftp , etc. Thus NSM can monitor a network of heterogenous

31

hosts without having to convert a multitude of audit trail formats into some

canonical format.

The authors identify several other bene�ts from using this approach:

1. The broadcast nature of these networks make the audit data almost in-

stantaneously available to NSM. This in contrast with some host based

audit trails that can delay the writing of audit records by several min-

utes, according to the authors. Furthermore, there is no need to transfer

the logs to a separate computer for analysis, since they will already be

available at the analysing computer.

2. The passive listening nature of NSM makes it impervious to (direct) at-

tack, there is no possibility of an intruder corrupting the logs.6

3. Since NSM does not consume any resources on the monitored host, its

performance will not degrade as a result of auditing, or analysis of audit

trails. Furthermore, there will not be any loss of network bandwidth as

audit trails are transmitted via the network to a centralised analysis ma-

chine, and the e�ectiveness of the intrusion detection is not a�ected by

the administrative corroboration of the monitored hosts. I.e. the admin-

istrator of those hosts does not have to cooperate.

4. Finally, the authors are of the opinion that most of the serious intrusions

involve the use of a network at some time, many attackers attack the

system from a remote location, via a network for instance. The authors

recognise however, that if the attack targets the host without accessing

the network, NSM can do little to detect the intrusion.

2.6.2 System organisation

NSM follows a layered approach, called the Interconnected Computing Environ-

ment Model (ICEM). There are six layers in the ICEM:

1. The packet layer. This layers takes a bit stream from a broadcast LAN, i.e.

an Ethernet, and divides it into proper Ethernet packets. These packets

are timestamped and forwarded to the next layer.

2. The thread layer takes the packets from the packet layer, and correlates

them into unidirectional data streams. These streams represent the data|

sans packet headers|that are transmitted from one host to another, using

a particular protocol and a particular set of ports. This stream is called

a thread, and is passed as a set of thread vectors to the next layer.

3. The connection layer takes the tread vectors from the thread layer and

attempts to pair them to form a bidirectional communication channel

between sets of hosts. These connections are condensed into a connection

vector, with some of the data gained from the lower layers pruned, and

the reduced vector is sent on to the next layer.

6 This is a moot point, see[49] for a detailed account of how an intruder could go about to
avoid detection, or attack the IDS, in this scenario.

32

4. The data from the connection layer is accepted as input by the host layer,

that condense several connection vectors belonging to a particular host

together, to form a host vector, that represents the state of network activity

of that host.

5. The host vectors are then combined|in the connected-network layer|into

a graph, G, by treating the host-to-host information of the host vectors

as an adjacency list. This layer can also build the sub-graphs of this

graph, and compare those sub-graphs against historical connected sub-

graphs. Furthermore, the user can ask questions about the graph to this

layer. The authors make the example where a user (SSO) asks if there is a

connection between two hosts|via any number of intermediate hosts|by

a speci�c set of protocols. The graphs are passed on to the �nal layer as

a set of connected-network vectors.

6. The �nal layer, the system layer, condenses the connected-network vectors

into a single vector, the system vector, that describes the state of the entire

system.

In the system described, only the host vectors, and the connection vectors

are used as input to a simple expert system that analyses the data for intrusive

behaviour. The expert system takes several other inputs, such as the pro�les of

expected traÆc behaviour. These pro�les consist of expected data-paths, which

systems are expected to communicate with which systems, using what protocols.

Another type of pro�le is constructed for each kind higher-level protocol, e.g.

what does a typical telnet session look like.

Other types of input is the knowledge about the various capabilities of the

protocols|e.g. telnet is a powerful protocol that enables the user to perform

a variety of tasks|and knowledge about how well these protocols authenti-

cate their requests. Telnet authenticates its requests, while sendmail requests

identi�cation, but does not authenticate this identi�cation.

Furthermore NSM requests the level of security, as de�ned by the SSO,

for each host, this �gure could come from running a security analysis tool on

the host. Finally, the last type of input that NSM requires is a collection of

signatures of past attacks.

The data from these sources is combined to make a decision about the like-

lihood that a particular connection represents intrusive behaviour, based on

anomaly reasoning. This is combined into a concept of the security state of the

connection. This security state consists of four di�erent factors:

Abnormality The abnormality of the connection is a function of the proba-

bility of the connection occurring, and the nature of the connection. This

is based on the knowledge of the relative occurrence of the type of con-

nection, for that pair of hosts, at that particular time, and the pro�le of

the protocols involved, e.g. is it an ftp session with an unusual number

of bytes transmitted or received?

Security level The security level of the connection is based on information

about the capabilities of the protocol, and the authentication it requires.

For instance, tftp , a very capable protocol, with no authentication, would

rate high on the security level scale.

33

Connection sensitivity level Or rather the direction of the connection sen-

sitivity level, i.e. which host in the pair initiated the connection, and what

are the hosts' respective sensitivity levels.

Signatures of attack To what degree does the data transmitted over the con-

nection match signatures of known attacks. These signatures are stored

as simple strings, and a simple string match is made against the data

transmitted.

The default presentation of the data to the SSO, is in the form of a sorted

list, where each row in the list consist of a connection vector, and the computed

suspicion level. The results are also stored in a database, whereby the SSO can

make queries, about speci�c events he would like to take a closer look at.

2.6.3 Results

The authors report that the prototype system was deployed at UC Davis,

Lawrence Livermore National Laboratory, and other DOE (Department of En-

ergy), and US Air Force sites. In one two month period, NSM monitored more

than 111,000 connections at UC Davis, and it correctly identi�ed more than

300 of these as indicative of intrusive behaviour. These incidents spanned more

than 40 di�erent computers, four hardware platforms, and six di�erent operating

systems. Only about one percent of these attacks, (intrusions, and attempted

intrusions) were detected by the system administrators of these systems. The

system administrators operated in parallel with the evaluation, and without the

bene�t of utilising NSM.

2.6.4 Survey conclusions

The system presented is interesting in that it was the �rst to utilise network

data directly, as a source of input. While not all the presented bene�ts of such a

decision still hold true today|network technology has changed since the work

presented was performed|many of them are still valid. The basic idea has

still merit today, but paradoxically, more secure network technology, such as

encryption, may thwart the e�ectiveness of this approach. How the switch to

more secure network technology should be handled by intrusion detection system

is a hot research topic today, but no real results have yet been presented. The

authors also present some performance data, which is something that is all to

often overlooked in recent research.

2.7 NADIR|An automated system for detect-

ing network intrusion and misuse

2.7.1 Introduction

NADIR [22, 25] was developed at the Los Alamos National Laboratory, for use

by the Laboratory to aid in its internal computer security e�ort.7 As such

NADIR was conceived with the problems and organisational needs of the Los

7 It is not known what in
uence W&S (see section 2.4) had on the development of NADIR.

34

Alamos National Laboratory in mind. NADIR was designed to counter four

di�erent types of intrusive behaviour:

Disclosure Where someone (legitimate or an intruder) discloses information

in violation of the security policy.

Integrity violation Where data or programs are subjected to unauthorised

modi�cation.

Denial of service Where the computer system is rendered temporarily or per-

manently unusable.

Unauthorised access Even though none of the above criteria are met, some-

one may use the computer system without authorisation. The authors

note that many outsider attacks of course take their origin in this type of

attack, where the intruder has not yet had time to perform an action that

could be classi�ed in the �rst three categories.

The authors stress that the �rst defence against any such violation is the

\institution of formality of operations" and that such actions includes promoting

safeguards, accountability, user training, and physical security measures.8 The

authors then go on to declare that intrusion detection has a place as a second

line of defence, whereby intrusive behaviour can be detected and the proper

authorities be noti�ed. The authors have solid experience with manual audit

review, and recognises that this practice has no real merit.

2.7.2 Overview of the computer installation

Since NADIR is closely tied to the computer installation it is put to protect, a

discussion of said installation is not out of place.

The target system is the Integrated Computing Network (ICN) that is (was)

Los Alamos main computer network, serving nearly 9000 users, and including

six Cray-class supercomputers, many smaller computers, �le servers, terminals

etc. The ICN is divided into four partitions, each of which processes data at one

de�ned security level, according to the US \military" security classi�cation. All

access to the ICN is through \ports" each of which connects to one partition. A

computer that has connected to a partition through a port, can access computers

in that partition, and partitions with lower security classi�cation levels.

The system contains ICN service nodes that administrate the system. These

service nodes store �les, authenticate users, enforce access controls, schedule

jobs, move �les between partitions, provide hard copy output etc. These nodes

also enforce the network partitioning, by, for instance, blocking access to clas-

si�ed �les by unclassi�ed users etc.

The service nodes can be divided into three classes:

Network security controller (NSM) This service node provides authenti-

cation and access control service to the ICN.

Common �le system (CFS) Stores data that is to be made available to the

ICN. It stores data from di�erent partitions separately, and prevent access

from lower-partition machines, to higher-partition data.

8 It is diÆcult to over-stress the importance of this statement.

35

Security assurance machine (SAM) The SAM is responsible for all down

classing of �les in the ICN. It authenticates and records all attempts to

perform this operation.

2.7.3 NADIR System organisation

NADIR is implemented on a Sun SPARCstation II, using the Sybase relational

database management system. NADIR collects audit information from the three

di�erent kinds of service nodes discussed above. The audit data is collected

and subjected to extensive processing before being entered into the relational

database as audit information. The audit data consists of audit data pertaining

to the di�erent kinds of service nodes, and the network traÆc that they generate

and receive.

Each audit record entered into NADIR pertains to a speci�c event. The

information for the event is logged; whether the corresponding action succeeded

or not, and contains a unique ID for the ICN user, the date and time, an

accounting parameter, and an error code. The rest of the record describes the

event itself. This description varies depending on what kind of service node it

originates from.

The data that is kept in the database of NADIR is treated as sensitive by the

operators of the system and NADIR itself is part of the security hierarchy that

Los Alamos operates under, to ascertain that NADIR itself does not become a

security liability, instead of a security asset.

NADIR calculates an individual user pro�le on a weekly basis, where each

record summarises the user's behaviour. The pro�le contains static information

about the user, historic information about the user, such as; the number and

a list of the di�erent source machines from which the user has attempted to

login to the ICN; blacklist|the number of times and the date upon which a

user was last blacklisted.9, and so on. The user activity �eld contains account

statistics for di�erent types of activity during the week for the three classes of

service nodes, such as; source|eight counters that tally all attempted logins

from source machines in each of the four partitions etc.

Furthermore, a composite user pro�le is constructed. This pro�le describes

the system as a whole; the number of valid and invalid logins onto the NSC for

each hour, for example.

These pro�les are then compared against a set of expert system rules. These

rules were derived from a number of di�erent sources. First, and foremost,

security experts where interviewed, and the security policy of the laboratory

was encoded as a set of expert system rules. Second, statistical analysis of the

audit records from the system was performed, and the results from this analysis

was hard coded into the system as rules in the expert system.

NADIR generates weekly hardcopy reports in the form of activity summaries

for each node, and various graphs plotted for user activity for that node. These

graphs enable the SSO, or rather the SSO team in this case, to quickly grasp any

abnormalities in the pro�les. When the SSO decides to further investigate any of

these reports, he can generate other reports on the spot, from either historical,

or near real-time data. This helps in the investigation of both past intrusion

9 Blacklisted individuals lose their ICN privileges under certain circumstances of unauthorised
behaviour.

36

attempts, and ongoing suspicious activity. The raw audit data is also made

available to authorised personnel for other statistical analysis, for example.

2.7.4 Results

The authors found that users responded very positively to the application of

NADIR. The authors attribute this to three identi�ed bene�ts beyond increased

security:

Error detection The application of NADIR uncovered errors both in the au-

diting mechanisms, and in the audited systems, thus helping system man-

agers to improve their systems.

Systems management The pro�les produced by NADIR helped understand-

ing how the system operated. In several instances the authors identi�ed

operation of the system that was not what was expected, or even speci�ed.

User education The authors often identi�ed non-malicious but undesirable10

user behaviour, such as severe programming errors. In such cases the

authors worked with the users to help them avoid such errors in the fu-

ture. This the authors identify as having helped increase user support for

NADIR.

The authors recognise that the evaluation of intrusion detection systems is

diÆcult, because the frequency of positives (i.e. the actual number of intrusion

attempts) is unknown. The number of false positives, i.e. legitimate use that is

misclassi�ed as intrusive is more straightforward to handle. NADIR has quite

a high number of false positives according to its authors. However, since they

envisioned NADIR as a highly interactive tool, they do not see this as major

problem. Furthermore, they note that since the list of false positives is short

enough to permit quick review, that also makes the problem tolerable.

The authors state that NADIR has not failed to detect an intrusion attempt

that was subsequently discovered by other means. Also, NADIR has managed to

detect intrusion attempts that were staged by security oÆcers, as well as many

real intrusion attempts such as: automated logins, misuse of special-use user

numbers, attempted (unsuccessful) logins using another person's user number,

attempted logins from terminals in partitions to which the user had no access,

and attempted logins to computers in partitions to which the user did not have

access.

For the future, the authors envision a system that would operate under

near real-time constraints, the requirement mentioned is detection in under 30

seconds from the intrusion attempt, and to complement NADIR with a true

anomaly detection component that learns the behaviour of the users of the

system.

2.7.5 Survey conclusions

The work presented is interesting in that it is based on solid experience in the

handling and nature of security incidents, in an organisation that takes these

incidents seriously enough to have instigated manual computer security audit

10 \Never attribute to malice that which can be adequately explained by stupid-
ity"|Unknown.

37

review. This enables the authors to discuss issues relating to how the system

can aid a site security oÆcer in his task of monitoring the system, utilising audit

data visualisation, and how an intrusion detection system can be �elded in such

a manner as to gain the support of the users of the system.

This close ties with the organisation that NADIR operates in is perhaps a

source of weakness as well. It is diÆcult to determine whether the experiences

from the system would transfer to another environment, NADIR is perhaps too

closely tied to the ICN at Los Alamos National Laboratories.

Furthermore, the authors clearly discuss the nature of the security violations

they wish to detect, and to what degree they were able to do so.

2.8 Hyperview|A neural network component

for intrusion detection

2.8.1 Introduction

Hyperview [7] is a system with two major components. The �rst component is an

\ordinary" expert system that monitors audit trails for signs of intrusions known

to the security community, the other is a neural network based component that

adaptively learns the behaviour of a user and raises an alarm when the audit

trail deviates from this already \learned" behaviour.

The designers of the system notes that the audit trail could emanate from

a number of di�erent sources, with di�erent levels of detail. For instance; the

keyboard level|the system observes every keystroke made by the user, the

command level|the system records every command issued by a user, the session

level|the system aggregates several commands issued from the time of login to

the system to the time of logout, and �nally, group level|where several users

are grouped together and treated as a class of known users.

The authors then note that the more detailed|\raw" if you will|data made

available to the intrusion detection system, the better the chance of the system

being able to correctly raise an alarm. However, the more data presented to

the system the more problematic storage and processing becomes. The most

aggregated level of data will not put such a strain on the intrusion detection

system. For the purpose of Hyperview, the authors decided to provide the

system with an audit trail on the command level.

2.8.2 Underlying hypotheses about user behaviour and

the audit trail

The decision to attempt to employ a neural network for the statistical anomaly

detection function of the system stems from a number of hypotheses about what

the audit trail will contain. The fundamental hypothesis is that the audit trail

constitutes a multivariate time series, where the user constitutes a dynamic

process that emits a sequentially ordered series of events. The audit record

that represent such an event consists of variables of two types; one, the values

of which can be chosen from a �nite set of values|for instance the name of

the terminal the command was issued on|the other, a continuous value, for

instance CPU usage or some such.

38

The more detailed hypotheses that follow from the fundamental hypothesis

are:

1. The user submits commands to accomplish a given task. These commands

will be consistent over time, as the user acquires preferences vis-a-vis which

way the task should be performed. Between tasks the actions of the user

will be less predictable, or even unpredictable. Thus, we will observe pat-

terns of usage in the audit trail, as quasi-stationary sequences, interspersed

with periods of non-stationary activity.

2. The preferred behaviour of the user follows a stochastic law, the audit

trail belonging to which, is a projection of this law onto the variables of

the audit record in question. The audit trail can thus be viewed as a set

of samples of the quasi stationary process. The authors note that it is

diÆcult to express a law from a set of samples, even when the underlying

process is quasi-stationary. This law will instead be treated as a black box,

and it will be approximated by the neural network, without ever having

been made explicit.

3. There are correlations between the various measures contained in the au-

dit record. This is a common sense hypothesis, since there would for

instance|almost by necessity|be an e�ect on, for instance, cache hit

ratio, with increased CPU usage. Since the authors do not make the pa-

rameters of the user model explicit they cannot express these correlations.

The proposed neural network component must be able to take advantage

of these correlations during the learning process.

2.8.3 The neural network component

The authors proposed a then untested approach of mapping the time series to

the inputs of the neural network. At the time, the researched approach was

to map N inputs to a window of time series data, shifting the window by one

between evaluations of the network. The authors acknowledged that this would

make for a simple model, easiiy trained. However, there would be a number of

problems with this approach:

� N is completely static, if the value of N were to change, a complete re-

training of the network would be required.

� If N was not adequately chosen the performance of the system would be

dramatically reduced. Too low a value of N , and the prediction would lack

accuracy because of a lack of older relevant information, too high a value

of N and the prediction would be perturbed by irrelevant information.

� During the quasi stationary periods of the usage, a large value of N would

be preferred, to encompass this quasi-stationary process. During the tran-

sition periods, on the other hand, where the older data has no meaning,

we would like as small a value of N as possible, to eliminate this irrelevant

data quickly.

The authors then go on to state that the correlations between input patterns

are not taken into account with this model, since these type of networks learn to

39

recognise �xed patterns in the input and nothing else. Other disadvantages are

that they are slow to converge and the adaptability is low since partial retraining

can lead to a network that forgets everything it has learned before.

Instead the designers of Hyperview choose to employ a recurrent network,

where part of the output network is connected to the input network, as input

for the next stage. This creates an internal memory in the network. Between

evaluations the time series data is fed to the network one datum at a time,

instead of as a shifting time window, the object of the latter being the same,

namely to provide the network with a perception of the past. It is interesting

to note that the recurrent network has long term memory about the parameters

of the process in the form of the weights of the connections in the network, and

short term memory about the sequence under study, in form of the activation

of the neurons. These kinds of networks were at the time of the design much

less studied than non-recurring ones.

2.8.4 System implementation

The design of the system as a whole is a complex and interesting one. The

authors choose to connect the arti�cial neural network to two expert systems.

One monitors the operation, the training of the network|to prevent the network

from learning anomalous behaviour for instance|and evaluates the output of

it. The other expert system scans the audit trail for known patterns of abuse,

and together with the output from the �rst expert system (and hence from the

arti�cial neural network) forms an opinion about whether to raise an alarm or

not. The decision expert system also provides the arti�cial neural network with

\situation awareness" data|data that the audit trail itself does not contain|

from the simple \current time and date," to the complex \state of alert, or state

of danger for the system," de�ned by the site security oÆcer. See �gure 2.2.

It becomes clear from the system graph, that the arti�cial neural network

component of the system could be viewed as a �lter that �lters the audit record

stream before it is presented to the decision expert system. This is perhaps not

surprising, since arti�cial neural networks are often put to this use. The division

of labour presented here has|according to the authors|the advantage that the

numeric evaluation of the arti�cial neural network is an eÆcient process, that

does not consume a lot of resources in terms of processing power, while the more

intensive data processing done by the decision expert system is concentrated on

a much reduced set of the audit trail. This could lead to the detection of

intrusions in real time.

2.8.5 Experimental results

The designers put the neural network component of the system|the only part

that was fully functional at the time of publication|to the test by feeding it

an audit trail submitted by an anonymous user on a SUN3 unix work station.

They used the accounting �les as the source of the audit data, where each record

contains the name of the command, the amount of CPU and core memory used,

and the number of input/output performed. The beginning, and end, of each

session was discernible from the audit trail.

The �rst experiment considered the input as an endless continuous sequential

stream of events. The arti�cial neural network was given each audit record

40

D
at

a
fo

rm
at

tin
g

D
at

a
aq

ui
si

tio
n

ANN Analysis
and control

L
ea

rn
in

g
C

on
tr

ol

Expert system

R
es

ul
ts

Artificial
Neural
NetworkD

at
a

D
ec

od
in

g

D
at

a
E

nc
od

in
g

Adjust

Complementary
Context dependand
inputs

Knowledge base
Security policy

Expert system
Analysis and decision

1

2

3

4

5

6

2

3

4

6

context dependant input
Computation of complementary 5

1

Input from the model of the behaviour of the user

Final secision and alarm generation

Supervised learning and output interpretation

Raw output of the ANN

Retrieval and formatting of audit data

Model of the user’s behaviour

In
tr

us
io

n
de

te
ct

io
n

ex
pe

rt
 s

ys
te

m

Figure 2.2: Block diagram of the Hyperview system (from [7])

sequentially, and asked to predict the next command in the sequence. When the

next one was presented the network was retrained to re
ect the new discovery.

The commands, of which there where 60 di�erent given in the audit trail, where

mapped onto one output neuron each, the optimal result being 1 neuron with

a numeric value of 1.0, and the other 59 neurons with a value of 0.0. Three

important parameters de�ne the success of the network's performance:

Con�dence The maximum activation is numerically large, and there exists a

convincing di�erence to the second highest activation. If the prediction is

correct, this is an ideal state of a�airs, and very troublesome one if the

prediction is, in fact, false. Then the network is overcon�dent in its ability

to predict the correct user behaviour.

Uncertainty The largest activation is very low. The output of the neurons are

in the same range, the network cannot discriminate from what it knows,

to propose the next command. This is either from a lack of example, i.e.

this time series has not been seen before, or from an overabundance of

choices the time series could mean one of possibly many things.

Con
ict The largest activation is somewhere in the middle, and the di�erence

to the second largest is too small. That means that either of the commands

could be considered likely candidates, and the output of the network is

only an indication of which is the more likely.

The researchers observed a sequence of 6550 commands, trained the network

on half of that sequence, and then fed the network with the entire sequence. The

results looked quite promising. Correctly predicted commands had a high degree

41

of con�dence and the farther away from the correct prediction the output of the

arti�cial neural network was, the lower the con�dence.

When looking closer at the results it became evident that some types of

commands were often predicted in error, for instance the date command, that

displays the current time and date. The network had learned however to classify

this as an irrelevant command, not worth considering for inclusion in the user

pro�le. Such commands could be characterised as noise in the deterministic

sequence.

Other commands, such as those issued when dealing with a prototype of a

database system (that crashed often, and at random intervals), where marked as

very indicative of the usage of that particular user. The network also managed

to automatically associate commands with similar actions, such as sh , and csh ,

often predicting a sh for a csh or vice versa. The authors left it to the neural

network control expert system to decide that \errors" like these were in fact not

indicative of a security violation, but instead of a more benign kind.

2.8.6 Conclusions

There were at the time publication of the system several problems with the use

of arti�cial neural networks. There were, and to a certain extent, still are, few

theoretical results on recurrent neural networks. The authors found it diÆcult

to determine the correct size for the network, and the parameters would often

have to be determined by trial and error thus leading to a time consuming design

process.

Furthermore, since recurrent arti�cial neural networks are an example of

systems with feedback there would be stability concerns. The researchers saw

unstable con�gurations, that they could not, at the time, fully understand.

2.8.7 Survey conclusions

The paper clearly demonstrates that arti�cial neural networks could have a place

in the detection of anomalous computer system activity. The present author

feels that current interest in ANNs probably lie elsewhere, further research in

intrusion detection has not employed ANNs to any signi�cant degree. One could

of course envision the use of ANNs for policy based detection as well, but the

present author knows of no such approach.

The work presented is furthermore valuable in that it discusses the e�ective-

ness of the approach, when subjected to test data.

2.9 DIDS|Distributed intrusion detection pro-

totype

DIDS [52], is a distributed intrusion detection system, that incorporates Hay-

stack (see section 2.1, on page 17), and NSM (see section 2.6, on page 31), in

its framework.

42

2.9.1 Introduction

DIDS tries to correlate information about the individual monitored users, via

a NID (Network Identi�er) concept, where each user is tracked as he \moves"

across the network, and in doing so, assuming di�erent identities. Another

strong point of DIDS is that it attempts to solve the problem of how to handle

hosts on the network which do not participate in the host logging mechanism.

DIDS attempts to keep track of actions performed by these hosts via the LAN

manager, since each action such a host takes, eventually will manifest itself

on the network level, if that host is to communicate via that network with the

outside world. DIDS is speci�cally designed to deal with C2 compliant hosts in a

heterogenous environment. In the prototype implementation the hosts typically

run SunOS 4.1.1, with the BSM (Basic Security Module) installed, although the

authors report on developing parts of DIDS to run on VMS.

DIDS is made of up of three major components. On each host, a host

monitor, performs local intrusion detection, and summarises results, and parts

of the audit trail for communication with the DIDS director. Furthermore each

(broadcast) network segment houses its own LAN monitor, that monitors traÆc

on the LAN, and reports on it to the DIDS director. Finally, the centralised

DIDS director, analyses material from the host monitors and the LAN monitors,

that report to it, and communicate the results to the SSO.

2.9.2 Host monitor

The host monitor performs the local intrusion detection and reporting. It is

made up of �ve major components, three of which are responsible for analysis

of the audit data. The audit data is analysed in parallel. The �ve components

are:

Preprocessor The preprocessor converts the raw audit trail into a canonical

format suitable for further processing. It also �lters the audit trail for su-

per
uous audit data, and passes it along to the three processing elements.

Signature analysis The host monitor performs signature analysis, whereby

patterns of known violations of security policies are scanned for.

Notable events The notable events processing analyses the canonical audit

trail event by event (record by record) to determine if an event in and

of itself, is suÆciently interesting to be forwarded to the DIDS director's

expert system directly. This is always done for such events as logins,

remote logins, etc. to help in the collection of the NID data, but also to

feed the centralised expert system data that it is a priori interested in.

Haystack Each instance of the host monitor runs a copy of Haystack, to build

session pro�les of user and system behaviour, and to look for statistical

anomalies in light of these pro�les. Each such anomaly is transmitted to

the DIDS director for further analysis.

Host agent The host agent is responsible for correlating the information pro-

duced by the three analysis components. In order to do so, it consults

tables that list the higher level events that the three analysis components

can generate, and which of these to send to the DIDS director's expert

43

system for further analysis. Some of these events that are important for

the system's construction of the NID:s are always forwarded to the DIDS

director.

2.9.3 The LAN monitor

The LAN monitor is a subset of the NSM, the Network Security Monitor, devel-

oped at UC Davis, California, USA. The LAN monitor analyses every packet on

the network to form a view of signi�cant events on that network segment. This

simple analysis identi�es certain types of network behaviour; the use of certain

protocols|telnet , rlogin|traÆc that emanates from an unmonitored host,

and therefore is interesting, etc., etc. among other things to identify users as

they move across the network. Furthermore the LAN monitor constructs pro-

�les of host behaviour; which hosts are likely to communicate with which hosts,

utilising which protocols etc. The LAN monitor uses simple heuristics to try

and ascertain whether a particular connection represents intrusive behaviour or

not.

2.9.4 The DIDS director

The director is the brain of the DIDS intrusion detection system. The director

contains the user interface by which the SSO can con�gure the system, and

which he uses to attain knowledge about presumed intrusions etc.

The director consist of two main parts: the communications manager, and

the expert system. The communications manager is responsible for collecting

the data sent to it from the host managers, and LAN managers, respectively,

and communicate this data to the expert system for further processing.

The expert system makes inferences about the security state of the system,

and each individual host, and aggregates the information for presentation to the

SSO. The expert system is an ordinary rule-based (or production based) expert

system. It is implemented in CLIPS, a C language expert system implementa-

tion from NASA.

The low level events reported by the host and LAN monitors are asserted

as facts in the expert system database. The reported facts are independent of

the system of platform, from which they originated. The expert system then

tries to assign a single identi�er to each user of the system as a whole, the

NID concept, and each user's activities are attributed to this NID. Events

are then placed in context. Two major types of contexts exist; spatial and

temporal. For instance, the authors give the example of some behaviour that

would be perfectly innocuous when performed during business hours, but highly

suspect when performed in the middle of the night, as an example of temporal

behaviour. The expert system uses time windows to to correlate events that

occur in temporal proximity.

Spatial events take into account the source of the event, certain events from

one user may be more indicative of intrusive behaviour, than the same event

originating from another user.

The NID-instance of a user, is represented using a four tuple fsession start,

user-id, host-id, timestampg, where each login to the system creates a new

instance of a NID. DIDS correlate di�erent users identity when they traverse

through an unmonitored host, or where several connections from the outside

44

world exist, to try to ascertain if indeed any of these connections could be

another instance of a user already connected to the system. The authors state

that even though they are well on their way to solve the problems with building

the NIDs, there are some areas that remain yet to be addressed.

2.9.5 Results and future development

Preliminary trials with the prototype indicated that the system performed as

expected, it managed to track users as they moved across the network, and cor-

rectly classi�ed simulated intrusions as they occurred, however, no performance

�gures are available. Furthermore, the authors planed to develop host monitors

that would monitor speci�c hosts, such as �le servers, and network servers, in

addition to ordinary user workstations.

2.9.6 Survey conclusions

DIDS incorporates two other systems in its design, Haystack, and NSM. DIDS

addresses the question of how to handle distributed, heterogenous systems.

There is precious little work in the �eld of how to handle heterogenous sys-

tems, some of which may not be willing to participate in intrusion detection.

DIDS itself is not fully distributed, but relies on both distributed and centralised

resources to detect intrusions. It is diÆcult to determine whether DIDS man-

ages to make the optimal division of labour without any performance �gures

neither pertaining to the e�ectiveness, nor the eÆciency of the system.

2.10 ASAX|Architecture and rule-based lang-

uage for universal audit trail analysis

The paper describing ASAX [18] only describes a (proposed) prototype of the

system, and hence, it cannot be fully surveyed.

2.10.1 Introduction

ASAX is a rule-based intrusion detection system, with a specialised, eÆcient

language (RUSSEL) for describing the rules. In the views of the authors', there

are four major problems with the automatic analysis of audit trails:

Disparity of security breeches There are several di�erent types of security

intrusions, and each of these require di�erent methods to detect the in-

trusions. The authors state that the two main principles are; statistical

modelling of normal behaviour, and modelling of experts' knowledge about

known intrusive behaviour. The authors then go on to claim that: \The

former approaches are appropriate to detect known penetration scenarios

and the latter ones are appropriate to detect unknown intrusions." The

present author does not know if this statement originates in poor proof-

reading, or if there is something more substantial underlying the reasoning.

The former seems more likely. . .

Amount of audit data The operating systems, in and of themselves, provide

a huge amount of data to be processed, and for storage and eÆciency

45

reasons this amount of data has to be culled. The authors di�erentiate

between preselection where by the SSO determines what audit data the

system should collect|being careful to collect enough data to be able to

determine if an intrusion has taken place|and postselection, where the

data is reduced in the later analysis stage. The authors state that it is

probably wise to employ some sort of simple preselection in all cases, to

lessen the burden on the analysis algorithm, freeing it from irrelevant data.

Reusability of the intrusion detection system The authors state that the

intrusion detection system should be reusable, and then go on to de�ne two

di�erent classes of reusable systems; generic, and universal. Characteristic

of the generic system is that it can be instantiated for di�erent types of

audit trails, while the universal intrusion detection system is applicable

to any audit trail, provided this has �rst been converted into a generic

format. The authors put ASAX into the latter class.

User interface The authors state that: \An auditing system should have a

suitable user interface allowing security oÆcers to converse easily with

the system and to take advantage of all its features." but then the scope

narrows considerably when they go on to write that: \Practically, the

purpose is to make a compromise between a powerful language allowing

to express complex queries and to update the system knowledge, and an

easy but less powerful language which does not require tedious training."

While the latter certainly may be true, the present author feels that there

is much more to the issue of SSO interaction, then the authors would have

us believe.

2.10.2 ASAX architecture and operation

ASAX �rst converts the underlying (unix-like) operating system's audit trail

to a canonical format| named NADF by the authors|and then processes the

resulting audit trail in one pass, by evaluating rules in the RUSSEL language.

The audit trail conversion is aided by the fact that, in the authors words,

NADF is simple and
exible enough to allow all existing audit trails to be

translated in a straightforward way. Furthermore, the system saves information

from the format translator in external �les, to preserve the connection between

the raw audit trail, and the translated audit trail, thus enabling later analysis

queries to be stated with reference to the external format.

The RUSSEL language, is a declarative rule-based language, that is speci�-

cally tailored to audit trail analysis. The authors state that: \a general purpose

rule-based language should not necessarily allow encoding of any kind of declar-

ative knowledge or making a general reasoning about that knowledge." This in

contrast with more general expert systems, such a P-BEST (see sections 2.2, 2.3,

and 2.14), that the authors state is more cumbersome for the SSO to use. Rules

in the RUSSEL language are applied to each audit record sequentially, they en-

capsulate all the relevant knowledge about past results of the analysis in the form

of new rules, and they are active only once, requiring explicit re-instantiation

when they have �red.

The authors claim that this language may still be too opaque for the aver-

age SSO, and hence a higher level language (RUSSEL2), that will be converted

46

to RUSSEL was suggested as a further development. By nature of its simplic-

ity, and straightforwardness, the authors envision an eÆcient implementation|

more so than for example that of P-BEST|where the expressions in RUSSEL

are converted to an internal code that can be eÆciently executed on the target

machine. They also suggest some (trivial) optimisation techniques, that could

be applied.

2.10.3 Survey conclusions

The paper presents work that was somewhat immature, from a systems per-

spective, at the time of its publication. The introductory analysis has merit,

and the system probably would also, had it been available for evaluation, by the

authors at least.

The criticisms of other approaches (notably the P-BEST system) are not well

founded in argument, and in the present author's opinion lack merit. One cannot

make speci�c claims about di�erences in eÆciency between an existing system,

and a proposed one, without �gures, based on the kind of loose argumentation

presented here.

2.11 USTAT|State transition analysis

2.11.1 Introduction

USTAT [23, 24] is a mature prototype implementation of the state transition

analysis approach to intrusion detection. State transition analysis takes the

view that the computer is initially in some secure state, and via a number of

penetrations, modeled as state transitions, the computer ends up in a com-

promised target state. (U)STAT reads speci�cations of the state transitions

necessary to complete an intrusion, supplied by the SSO, and then evaluates an

audit trail with respect to these speci�cations.

2.11.2 More about state transitions

Table 2.1 depicts a unix intrusion scenario in which an attacker gains adminis-

trative privileges by exploiting a
aw present in the 4.2 BSD unix distribution.

Table 2.1: STAT: Penetration scenario (from [24])
Step Command Comment

1. %cp /bin/csh /usr/spool/mail/root Assumes no root mail �le

2. %chmod 4755 /usr/spool/mail/root Make setuid �le

3. %touch x Create empty �le

4. %mail root < x Mail root empty �le

5. %/usr/spool/mail/root Execute setuid to root shell

6. root#

The speci�c
aw in mail is that it does not reset the setuid-bit when chang-

ing owner of the mail-�le, that it has just appended the newly delivered mail

to. The attacker can exploit this by copying a setuid command interpreter to

the mail directory, have mail append essentially nothing to it, and at the same

47

time have it change owner of the shell to the user root . The attacker has thus

gained administrative (or root/super-user) privileges.

To model this scenario as a number of state transitions, we �rst identify the

start and goal states. In order to execute the �rst step above, root cannot

have a mail �le, that is the �rst assumption that must hold. As we progress

through the steps in the example, we �nd that also; the intruder must have write

permission to the mail delivery directory, he must be able to execute cp , chmod ,

touch (or a variation thereof) and mail . The authors make the observation

that on an ordinary unix system the �rst two assertions almost always hold

true, and they can thus be ignored. Note that the nature of the penetration

in this case is not the execution of the setuid-shell per se. Even if the intruder

chose not to execute the command interpreter, there would still be a violation

in that there now exists an executable setuid-to-root �le on the system that the

super-user (root) did not create!

S R S CS C-1S C-2

1. owner(object)=attacker
2. setuid(object)=disabled

1. owner(object)=attacker
2. setuid(object)=enabled2. attacker=root

1. exists(object)=false

1. owner(object)=attacker
2. setuid(object)=enabled

object=/usr/spool/mail/root

attacker creates(object)
attacker mod_setuid(object)

attacker mod_owneruid(object)

Figure 2.3: USTAT: State transition diagram (from [24])

The intrusion described above leads to the state transition diagram in �g-

ure 2.3. Note how the intrusion scenario above has been stripped of many

assumptions about what the nature of the intrusion is, e.g. the fact that the �le

/usr/spool/mail/root is a copy of the command interpreter csh . This infor-

mation is not necessary to detect the violation. The �rst step, that of creating

/usr/spool/mail/root is paramount in detecting this intrusion however, it is

not of vital importance how this �le is created, or what it contains. Thus, the

state transition diagram has abstracted away from the intrusion in such a way as

to allow the diagram to represent variations of the same intrusion scenario, that

a more straightforward, simplistic, signature based intrusion detection system

may fail to detect.

48

2.11.3 The prototype system

In order to apply the state transition diagrams presented earlier the authors

make two provisions:

1. The intrusion must have a visible e�ect on the system state and,

2. That visible e�ect must be recognisable without knowledge external to the

system, i.e. the attacker's true identity for example.

Some types of intrusive behaviour, does not fall in the category described above.

For instance, the passive monitoring of broadcast network traÆc could be diÆ-

cult to detect from outside of the resource employed to perform the monitoring.

Another problematic intruder that is diÆcult to detect is the masquerader.

However, if that masquerader then goes on to perform any of a number of

intrusion-attempts, to gain greater privileges, state transition will have the op-

portunity of catching him. The C2 audit trail produced by the computer is used

as the source of information about the system's state transitions.

The USTAT prototype is intended as a real-time expert system for detecting

intrusions in real-time. The prototype runs on SunOS 4.1.1, with the SunOS

BSM (Basic security module) installed. This module provides USTAT with a

\C2" compliant audit trail. USTAT's design can be divided into four major

modules:

Audit collection/preprocessing The purpose of this module is to collect au-

dit data, and to store that data for future reference. In the prototype this

module reads, �lters, and passes the BSM audit records to the inference

engine. The USTAT canonical format identi�es the audit record accord-

ing to the triple: fSubject, Action, Objectg, where the normal BSM/unix

audit record contents are mapped onto these �elds.

Knowledge Base The knowledge base consists of two components, the rule-

base, and the fact-base. The fact-base contains information about the

objects in the system, i.e. groups of �les or directories (called �lesets by

the authors) that share certain characteristics that make them vulnerable

to certain types of attacks. The rule-base contains the state transition

diagrams that describe a particular intrusion scenario. The latter infor-

mation is stored in two �les; the state description table, and the signature

action table. The state description table store the state assertions, de-

picted below the circles in �gure 2.3, and the signature action table stores

the signature actions, placed above the arcs in �gure 2.3.

Inference engine The inference engine then evaluates the new audit records,

using information from the rule-base, and the fact-base, and updating the

fact-base with state information. The evaluation is done in a forward

chaining fashion, i.e. new facts (audit records) lead to the evaluation of all

rules that could depend on the newly asserted fact, and the fact-base is

updated accordingly, and/or a possible intrusion is reported. The evalua-

tion of the intrusion scenarios invariably lead to a lot of partial matching,

the state of which has to be stored in the fact-base for possible future

matching against new audit records, that could complete the intrusion

scenario. These facts are stored in a table maintained by the inference

engine.

49

Decision engine The decision engine informs the SSO that the inference en-

gine has detected a possible intrusion. In the prototype, the decision

engine reports the detected intrusion to the SSO, informs him whenever

a state of any instance of the scenario has been satis�ed, and suggests

possible actions to the SSO to preempt a state transition that can lead

to a compromised state. The authors suggest that a fourth mechanism

could be added to make the decision engine respond actively to thwart

the attack, as it progresses.

2.11.4 Results

The authors put the prototype to two kinds of tests, function as well as per-

formance was evaluated. The prototype was put against a number of possible

intrusion scenarios, and variations thereof, where the attacks were performed by

several attackers in unison, using hard links to �les, instead of the original �le

names etc. These tests demonstrated that USTAT indeed managed to detect

intrusions under these circumstances.

Performance-wise the prototype was run on a single workstation that also

performed the audit collection, these tests indicated that under light load,

USTAT kept up well with the stream of audit records, but when audit inten-

sive applications such as find were run, USTAT did not fair as well. USTAT

consumed approximately 13% of the CPU, and the bottleneck was identi�ed as

being the disk to which both the audit facility stored audit records, and USTAT

attempted to read those same records from.

2.11.5 Survey conclusions

It is interesting to note that the idea behind the system presented started with

the research into the question of how to represent intrusion scenarios. One

problem the authors mention is that of representing possibly parallel prerequisite

actions to prepare for the intrusion in the scenario. It is interesting to note that

later work (presented in section 2.13 on page 53) has expanded on the model

presented, while incorporating it in the mathematical framework of Petri nets.

(It is not known to the present author whether the later research was speci�cally

inspired by the approach taken here.) Despite this objection, the approach

appears to have merit, especially since it lends itself to eÆcient execution.

Otherwise, the work is presented with unusual thoroughness, with perfor-

mance tests and �gures.

2.12 DPEM|Execution monitoring

2.12.1 Introduction

The author(s) make the observation that past e�orts in the �eld of the detection

of the exploitation of previously known intrusions have focused on the patterns

of use that arises from these exploitations [29{31]. Instead the authors proposes

that the opposite approach could be taken, i.e. that the intrusion detection sys-

tem focus on the correct security behaviour of the system, speci�cally a security

privileged application that runs on the system, as speci�ed. The authors have

designed a prototype, DPEM, that reads security speci�cations of acceptable

50

behaviour of privileged unix programs, and checks audit trails for violations of

these security speci�cations.

There are many di�erent security relevant aspects of program behaviour.

For instance:

Access of system objects The set of objects, typically �les in a unix envi-

ronment, that a program accesses as it runs. This is a simple, yet im-

portant measure. Many potential attacks can be detected if stringent

demands is made on a program with respect to the �les is can access.

Sequencing In some instances, it is not only the access to objects that matters,

but also the sequence in which these objects are accessed. For instance,

the login program should read the user authentication database �le, i.e.

/etc/passwd before executing the command interpreter for that user, fail-

ure to do so would be a security concern.

Synchronisation In a distributed system, security failures often result from

improper synchronisation of programs. If, for example, a user changes his

password, while the system administrator is updating the password �le,

the �le may be left in an inconsistent state.

Race conditions This is a special case of the synchronisation problem. If a

program has a race-condition
aw, an attacker can a�ect the operation of

the program by performing certain operations during the execution of the

program. This is diÆcult to monitor.

2.12.2 The speci�cation language

In order to be able to specify these di�erent requirements on the execution of

privileged (unix set-UID) programs the authors speci�ed a language, based on

predicate logic, and a method for parsing this language, in which to specify

the correct security benign operation of a program. More formally, the authors

state that a trace policy, that captures the intended behaviour of a program, is

speci�ed by means of a grammar. This grammar de�nes a formal language (a set

of sentences of that language) whose alphabet consists of program operations.

Monitoring a program amounts to syntax driven parsing of the sequence of

program operations executed by the subject. This sequence of operations (the

trace from the execution of the program) is obtained from audit trails in real

time. An unsuccessful parsing attempt indicates a violation of the trace policy

and triggers remedial responses.

The authors have developed the reasoning about the speci�cation language,

and its grammar substantially during the period from the earliest publication

of their results, to the later ones. An example of a speci�cation for the finger

daemon is in �gure 2.4.

The speci�cation in �gure 2.4 �rst states the execution of the fingerd dae-

mon, as user U . The allowed sequence continues with a rule that states that it

is allowed to read �le X, if, and only if, �le X is world readable, i.e. there are

no read-access restrictions, on it. Fingerd is then allowed to open port 79 for

the reply, write to its log �le, and execute the finger program to provide the

remote user with the same output as he would have received, had he run the

finger program locally. One would then have to specify the security policy

51

PROGRAM fingerd(U)

read(X) :- worldreadable(X);

bind(79);

write("/etc/log");

exec("/usr/ucb/finger");

END

Figure 2.4: Finger daemon example (from [30])

for the invocation of the finger program, in order to have a more complete

example.

2.12.3 Design and implementation

The ideas presented have been implemented in a prototype named DPEM|

the Distributed Program Execution Monitor. DPEM, as its name suggests,

monitors programs executed in a distributed system. This is accomplished by

collecting execution traces from the various hosts, and (possibly) distribute them

across the network for processing. DPEM consists of a director, a speci�cation

manager, trace dispatchers, trace collectors, and analysers, that are spread across

the hosts of the network.

More speci�cally; traces from the various hosts are sent on demand to a

central location where the trace dispatcher combines the various traces to form

one system wide trace, as requested by the then active analysers. Meanwhile

the speci�cation manager consults its database to se if any of the processes

recently started by any and all particular users should be monitored. If this is

found to be the case, the speci�cation manager distributes the process started

by the particular user to be analysed by an analyser. At no time will any

subject/process pair be monitored by more than one analyser. The analyser

then applies the speci�c trace policy to the trace obtained from executing the

process, and decides if a violation has taken place. If so, the analyser reports a

violation to the site security oÆcer, by con�gurable means.

2.12.4 Performance of the prototype

The prototype was implemented in C, on top of the Solaris 2.4 operating system,

using the SunBSM audit subsystem, to collect audit data. When run on a Sun

SPARCstation 5 with 32 MB of memory, and activating it with well known

vulnerabilities in rdist , sendmail , and binmail , the system responded quite

quickly, and reported policy violations in under 0.1 seconds in all cases.

2.12.5 Survey conclusions

This is the �rst, and perhaps only, example of a system that utilises policy

based detection, that is a policy with a default deny stance. Furthermore, the

presented work discusses the nature of the intrusive behaviour that the method

could detect. The discussion on scalability, and how the system distributes is

also thorough. The test cases could be more thorough, but given the current

52

state of a�airs, one must of course be satis�ed with the fact that the authors

make any claims of the e�ectiveness, and eÆciency of the system at all.

2.13 IDIOT|An application of petri-nets to in-

trusion detection

2.13.1 Introduction

IDIOT [6, 32{35], is a system developed at COAST, University of Purdue, IN,

USA. The basic idea behind IDIOT is to employ coloured Petri nets for signature

based intrusion detection. The authors suggest that a layered approach be taken

when applying signature (pattern matching) based techniques to the problem

of intrusion detection.

2.13.2 Model

The authors suggest a layered model that divides the intrusion detection e�ort

into three distinct abstraction layers:

The information layer To isolate any machine/platform dependencies in the

audit data, and provide the upper layers with a low-level data interface.

The signature layer Describes the signatures indicative of intrusive behavi-

our in a system independent fashion, by the use of a virtual machine

model.

The matching engine That matches the signatures in the preceding layer.

This enables the use of any suitable matching technology as, and when, it

becomes available.

The proposed model has as it's basis the notion of an auditable event. These

events have tags, that hold data about the event. Intrusion signatures are

speci�ed with a \follows" rather than an \immediately follows" semantics, in

terms of the events that the matcher would see. The authors have previously

identi�ed that unix attacks could be classi�ed, from a signature perspective

into the following classes [32]:

Existence The mere fact that something ever existed is evidence of an intrusion

in some instances. For example, searching for the presence of a particular

�le, with particular permissions could provide enough evidence.

Sequence The fact that several things happened in strict sequence is suÆcient

to assert the intrusion.

Partial order Several events are de�ned in a partial order, i.e. many parallel

or sequential preconditions must exist in order for the later part of the

intrusion speci�cation to hold.

Duration Something happened for not more than, or less than, x seconds.

Interval Events took place an exact (plus or minus some delta) interval apart.

Thus, the speci�cation says that event y took place not, more than t1

or less than t2 time after event x. The exploitation of a race condition

typically gives rise to such speci�cations.

53

The authors believe that the majority of known intrusions in unix systems

fall in the �rst and second category above.

2.13.3 Applying Petri nets to the proposed IDS model

The authors argue that of the many available techniques of pattern matching,

coloured Petri nets, or CP-nets for short, would be the best technique to apply,

since it does not su�er from a number of shortcomings common to other tech-

niques. These latter techniques do not allow conditional matching of patterns,

do not lend themselves to a graphical representation etc.

The proposed Coloured Petri Automaton (CPA henceforth) di�ers from

\regular" CPA:s in a number of respects, they lack concurrency for example.

They retain all the features necessary for use in intrusion detection however.

For an introduction to CPAs the authors recommend [26].

For an example of a speci�cation of an intrusion signature using the proposed

Petri nets, see �gure 2.5.

s2s1 s3 s7t7t1 t2

chmod execwrite

stat

unam
e

t4

t5

s4

s5

s6

F = true_name(this[OBJ])

this[PID] != 0 &&
true_name(this[OBJ]) =
true_name("/usr/spool/mail/root")
&& FILE = this[OBJ]

true_name(this[PROG]) =
true_name("/usr/ucb/mail") &&
this[ARGS]= ~"\\<root\\>"

cp /bin/sh /usr/spool/mail/root
chmod 4755 /usr/spool/mail/root
touch x
mail root < x
/usr/spool/mail/root

Invariant: same_uid

this[OBJ] = FILE

Intrusion scenario

Figure 2.5: IDIOT: A Petri-net intrusion signature (from [34])

In 2.5 the start states are s1 and s4, with s7 the �nal state. The evaluation

begins with the system placing a token in each start state. These tokens11 then

\
ow" through the Petri net making the transitions speci�ed by the vertical bars

in the picture, when the event marking the transition occurs. These transitions

may be guarded by boolean expressions that must evaluate to true for the

transition to take place. There is a special operator this that is instantiated to

the most recent event.

Each speci�cation also has a set of preconditions, postconditions, and invari-

ants. These are similar to guards that must be true to be successful. Patterns

11 Each token also has a set of variable associated with it, it is coloured in CP-net terminol-
ogy.

54

that have no transitions can be speci�ed using pre-conditions to an empty pat-

tern. The authors state that post-conditions are provided for symmetry, and to

allow recursive invocation of the same pattern. Invariants are provided to allow

the user to specify some condition that should not be true while the matcher is

busy with another pattern. The authors felt that it would unnecessarily clutter

the Petri net to introduce these negative conditions directly.

In order to instantiate this generic model to a speci�c platform, say unix

the user would have to de�ne the primitives supported by the guard expressions,

coding �le test operations, system interaction hooks etc., etc.

2.13.4 System overview

IDIOT consists of four major components:

Audit trail Of course technically the audit trail is not a part of IDIOT, even

though IDIOT receives all its information about the system via the audit

trail. The version of IDIOT described uses the Solaris 2.4, BSM (Basic

Security Module) C212 audit mechanism as its source of input. However,

IDIOT is designed to be easily portable to any other form of audit trail

format.

showaudit.pl This PERL script converts the audit trail to a canonical format,

to be used by the rest of IDIOT. This division of labour is intended to ease

porting of IDIOT to other platforms, with other forms of audit trails.13

showaudit.pl can be run either in batch mode, to convert an already

existing audit �le, or record-by-record mode, where the script watches the

end of the audit �le, and converts each record as it becomes available.

C2 server This is the heart of the intrusion detection system. Implemented

as a C++ class, the C2 server, reads an audit record from showaudit.pl ,

steps through the di�erent intrusion detection patterns (implemented by a

pattern matching engine each) that request an event, and lets each pattern

matching engine decide whether to update its state according to the event.

Thus each pattern gets access to each event. The pattern matching engines

can be dynamically added to an already running C2 server.

C2 appl The C2 appl provides the SSO with a user interface, from which to

control IDIOT, he can start and add new pattern matching engines for

example, and learn of the status of IDIOT.

Of the parts described above, only the audit trail, and the showaudit.pl

script needs to be ported when moving IDIOT to a new platform, the C2 engine,

and (where applicable) the patterns can be moved unchanged to the new plat-

form, they are intended to be platform independent.

The patterns play a major role in IDIOT, they are written in an ordinary

textual language, and parsed, resulting in a new pattern matching engine. As

previously mentioned this engine can then be dynamically added to an already

running IDIOT instance, via the user interface. Furthermore, the user can

extend IDIOT, to recognise new audit events, for example.

12 This audit trail generation mechanism is designed to provide an audit trail that meets the
\Orange book" C2 criteria. 13 This is the same approach as taken in NIDES, see section 2.14
on page 56.

55

2.13.5 Survey conclusions

The work presented is thorough on the nature of the intrusions that the system

is supposed to detect. It is in fact by far the most thorough presentation in all

the work surveyed. The description of the patterns that describe the intrusions

is based on theoretical foundations, and thus not ad-hoc in nature. The authors

furthermore stress the necessity of testing the e�ectiveness of intrusion detection,

by building a set of standard test cases. Although the work presented is a few

years old, this has not yet been performed, although at the time of writing such

an e�ort appears to be underway.

2.14 NIDES|Next generation intrusion detec-

tion system

NIDES [1, 2] is the direct continuation of the IDES project (see section 2.3).

Following the tradition of its predecessor it is very well documented, there are

many more references available than the two given here.

2.14.1 Introduction

It is diÆcult to speak of one NIDES system|a trait it has in common with its

ancestor|there are really four di�erent systems, each built on top of the pre-

vious system. NIDES follows the same general principles as the later versions

of IDES, i.e. it has a strong anomaly detection foundation, complemented with

a signature based expert system component. The latter component is imple-

mented using the P-BEST expert system shell. This is a later version of P-BEST

than that presented in the survey of MIDAS (see section 2.2), implemented in

C, and generating C as output.

2.14.2 The major versions

NIDES development resulted in four major versions of the software, each with

re�nements, based on input both from further research at CSL-SRI, and user

input. The four major versions are presented in the following paragraphs.

NIDES Alpha|Feb 1993

This release was really a version of IDES, the same functionality was there,

but the architecture was changed. NIDES is more architecturally sound, it is

modular and built on a client-server architecture.

Furthermore, while the rule-based intrusion detection system remained the

same, the anomaly detection functionality was changed. This change came

about to enable NIDES to deal not only with simpler parameterised distribu-

tions, but also with multi modal distributions, such as could arise from a user

that performs two completely di�erent tasks; he is either developing software,

or he is writing documentation for that software, and on Friday mornings he is

busy using the time reporting software. Usage patterns such as this one requires

a statistical model that takes the di�erent modes the user is in, into account.

56

NIDES Alpha patch|Oct 1993

This version was a result of user feedback as to the performance of NIDES.

In order to speed up development, no changes were made to the user interface

proper, all features introduced where to be controlled by setting environment

variables, or writing/changing con�guration �les.

Three changes were made in an attempt to alleviate what was being experi-

enced as poor performance:

1. The statistical analysis component stores information about �le and di-

rectory accesses as lists. It was found that these lists could grow quite

large|thousands of entries|in some circumstances. In order to allevi-

ate this problem, the authors redesigned the analysis algorithm so that

it need not traverse the entire list at the time of audit record processing,

this processing was moved to pro�le generation stage instead.

Furthermore, it was found that many of the �les that where considered in

the previous paragraph was of a temporary nature, and that they would

not be included in the �nal pro�le of that user anyway. NIDES was thus

extended to be able to ignore those �les, by naming directories such as

/usr/tmp, /tmp, etc. to be excluded from further processing.

2. A feature was added to give the user the choice of having the real-time

NIDES update pro�les based on the audit record timestamps instead of

the real time clock, exclusively.

3. A user con�gurable subject pro�le cache was added, to speed up processing

in the anomaly detection module.

NIDES Beta|May 1994

This represented a major overhaul of the NIDES system. Several new features

were added along with a new user manual. The features were (the list headings

verbatim from [1]):

� Optimised pro�le storage structure. NIDES generates two �les per subject

for the storage of short term, and long term pro�les. Users of NIDES

with many subjects expressed concern that the pro�le storage consumed

too much space, and by judicious culling of the stored data, as well as

some format changes, the authors were able to reduce the baseline storage

requirements of the two �les by as much as 62%.

� Real-time con�guration of NIDES analysis, both for real-time detection,

and batch mode detection. The beta release of NIDES introduced exten-

sive possibilities for the SSO to con�gure almost any aspect of the analysis

components, from how detected intrusions are reported, to the various pa-

rameters that govern the anomaly detection component of NIDES. This

(re)con�guration can be performed in real-time, when NIDES is running.

� Expanded status reporting. The status reporting from the running NIDES

was improved in three major areas:

1. NIDES reports extensively on various measures of throughput, and

state, for analysis and data storage functions.

57

2. NIDES reports the status and con�guration of each monitored host.

3. When NIDES is analysing audit data in batch mode, the status, and

summaries of alerts are reported periodically.

� Data management facility. This facility enables the SSO to archive and

retrieve audit data, and result data from processing.

� Expanded rule-base. The policy based detection module had its rule-base

expanded from 21, to 39 rules.

NIDES Beta-update|Nov 1994

The is considered the �nal release by the authors, and it consisted of bug-�xes,

performance improvements and added features.

The main performance improvement improved on the �le access statistics

modi�cations introduced in the NIDES alpha patch release. It was noted that

some users would access on the order of 100,000{300,000 �les in a four day pe-

riod, even though temporary �les were already not being considered. However,

most of these �les would not be included in the user pro�le for that subject any-

way, due to them being deemed insigni�cant by the statistical pro�le generator.

NIDES was thus enhanced to be able to remove these �les from the outset, and

thus they would not later come to burden the statistical pro�le generator. This

enabled NIDES to process these diÆcult cases in a matter of hours, instead of

aborting processing altogether.

The major new features were:

� Introduction of the Perl script agen . Previously the converter from the

host speci�c audit trail to the NIDES canonical format was written i C,

somewhat limited, and hard to port. To alleviate these problems a Perl

version was constructed, since Perl is powerful, and available for a number

of di�erent platforms. A number of sample Perl scripts to interface the

auditing mechanisms to NIDES where also provided.

� An agen monitor for promiscuous Ethernet interfaces. To be enable the

detection of the use of \sni�ers."

� Expanded audit record fact template. This was performed to enable the

rule based detection part of NIDES to consider all the available �elds in

the audit record for detection. Previously the expert system was only

aware of a smaller subset of the possible �elds.

2.14.3 System organisation

The NIDES system is highly modularised, with well de�ned interfaces between

components, and built on a client-server architecture. The system is centralized

in that the analysis runs on a speci�c host, named the NIDES host by the

authors, and collects data from various hosts via a computer network. The

target hosts collect audit data, from various host-based logs|there is a provision

to utilise TCP WRAPPER [55] i.e. host-based network traÆc logs|converts

them to the canonical NIDES format, and transmits it to the NIDES host. The

SSO interacts with the system through the NIDES host.

The key components of the NIDES system are:

58

Persistent storage This component provides the rest of NIDES with storage

management functions, for audit data etc.

Agend The agend process runs on all NIDES target hosts, and is responsible

for starting and stopping the agen audit data converter, when instructed

to do so by the NIDES user interface. It is implanted using the RPC

protocol.

Agen This is the audit data converter, that converts audit data to the NIDES

canonical format. The converted audit records are then handed to the

arpool process.

Arpool This process collects the audit data from agen and provides it to the

statistical, and rule-based analysis components on demand. Arpool runs

on the NIDES host.

Statistical analysis This module performs the statistical intrusion detection.

In real-time or in batch mode, i.e. non-real time.

Rule-based analysis This module performs the signature based intrusion de-

tection, also in real-time or in batch mode fashion. Both these modules

report their �ndings to the resolver.

Resolver This component is responsible for evaluating, and acting on the data

received from the statistical and rule-based analysis modules. The authors

state that a user action could well result in tens or hundreds of di�erent

alarms, in order not to drown the SSO in irrelevant alarms, the resolver

aggregates them and makes a compound decision. The SSO also has

the ability to turn o� reporting altogether for speci�ed subjects, that for

instance, is performing some known new task etc. that upsets the anomaly

detection.

Archiver The archiver is responsible for storing audit records, analysis re-

sults, and alerts.

Batch analysis The batch analysis component allows the SSO to experiment

with new con�gurations on old, known audit data, in parallel with running

the production NIDES system.

User interface The user interface is responsible for communicating with the

SSO. This is the place from where the SSO controls all of NIDES, and

NIDES reports suspected violations of security to the SSO, as well as a

wealth of general processing status. Only one instance of the user interface

can be active at one time, and it always runs on the NIDES host. It is

implemented using the MOTIF toolkit under X-Windows.

2.14.4 Experimental results

The authors have made extensive experiments with a version of NIDES modi�ed

to study application behaviour, instead of (typically) user behaviour. For a

detailed account of these experiments the reader is referred to [2]. A short

summary of the �ndings is that NIDES is indeed capable of detecting these

types of anomalies, and both the false positive rate, and the false negative rate

can be kept at reasonable levels.

59

2.14.5 Future directions

The authors list several possible future enhancements to NIDES, the construc-

tion of a test bed to enable testing of intrusion detection systems etc. However,

one of the more interesting areas mentioned regard the threat against NIDES

itself, and the increased risk to the computer installation that the employment

of an intrusion detection system could result in.

The authors state that they perceive two major areas of risk when it comes

to NIDES; tampering, and reverse engineering. Tampering would seek to render

NIDES ine�ective directly, by shutting it down, for example. By reverse engi-

neering the attacker would attempt to learn of NIDES's rule base, for instance,

and armed with this knowledge he would attempt to devise an attack that would

go undetected by NIDES.14

The authors state seven security goals for NIDES:

1. Target system integrity. NIDES should not have an adverse e�ect on the

target systems, and should authenticate all interactions, as well as keep

track of the status of the target systems, to monitor any unscheduled

shutdowns.

2. Audit data security. Since the audit data itself could be very interesting

to an attacker, NIDES must protect the con�dentiality, integrity, and

availability of this audit data.

3. NIDES system integrity. NIDES itself must be protected from undue

outside in
uences.

4. Availability. NIDES must remain available, and not fall to denial-of-

service attacks.

5. Rule-base protection. The major dangers with the rule-base is that of

reverse engineering, and of course undue modi�cation. NIDES must resist

these types of attack.

6. User access. Due to the sensitive nature of the data that NIDES processes,

access to NIDES itself must be restricted to authorised personnel only.

7. User accountability. The authorisation of personnel using NIDES is not

enough in itself, NIDES must itself be monitored for management to be

able to hold users of NIDES accountable, and to detect attempts at misuse,

and intrusions by unauthorised personnel.

The authors further state that with the modular architecture of NIDES, im-

provements to make it more tamper-resistant, and able to withstand reverse en-

gineering could include: separation of roles, interprocess and server authentica-

tion, detection of|and protection against|denials-of-service, improved target

system integrity/availability, arpool target host authentication, smokescreen

detection, logging of NIDES user actions, improvement of NIDES processes

integrity/security, improvement of alert reporting integrity, authentication of

NIDES users, restrictions on TCP/IP services, protection of the rule-base and

software from reverse engineering etc.

14 \Flying under the radar" so to speak.

60

2.14.6 Survey conclusions

It is interesting to note the position of NIDES between IDES, and EMERALD

(see section 2.19 on page 72). Many of the components of EMERALD clearly

was incepted in the NIDES project, generalised, and carried over to the EMER-

ALD project.

The \future directions" section in [1] is interesting in that it is one of the

�rst to recognise the threat against the intrusion detection system itself, as well

as the fact that the employment of an intrusion detection system in itself could

result in an increased risk to the computer installation.

NIDES in itself represents a major research e�ort, strong in; theory, dis-

cussion of e�ectiveness, implementation, and last but not least, documentation.

The researchers at the three CSL/SRI projects referred in this survey (IDES,

NIDES, EMERALD) have made available more documentation15 than the other

systems surveyed put together.16 This of course, of great value to the research

community.

2.15 GrIDS|A graph based intrusion detection

system for large networks

2.15.1 Introduction

The authors suggest a method for constructing graphs of the network activity

in large networks, to aid in intrusion detection [53]. The graphs typically codify

hosts on the networks as nodes, and connections between hosts as edges between

these nodes. Which traÆc is chosen to represent activity in the form of edges

is decided on the basis of user supplied rule sets. The graph globally, and the

edges locally, have attributes, such as time of connection etc., that are computed

by the user supplied rule sets. The authors suggest that these graphs present

network events in a graphical fashion that enables the viewer to ascertain if

suspicious network activity is taking place.

2.15.2 Design goals

The authors identify some large scale network attacks:

Sweep A sweep occurs when a single host systematically contacts many other

hosts i rapid succession.

Coordinated attacks These attacks are multi-step exploitations using paral-

lel sessions where the distribution of steps between sessions is designed to

obscure the uni�ed nature of the attack, or to allow the attack to proceed

more quickly.

Worms A worm is; \a program that propagates itself across a network using

resources on one machine to attack other machines."

15 Most of this documentation is available on the web at the time of writing, at:
http://www.csl.sri.com. 16 The IDIOT project, see section 2.13 on page 53, is also strong in
this respect. See ftp://coast.cs.purdue.edu for more information.

61

2.15.3 Paradigm

The construction of the network activity graph is based on the organisational

paradigm of a hierarchy of departments. A department consists of several hosts,

and the department centrally collects audit data and combine it into department

graphs according to the speci�ed rule sets. If network events in the department

involve entities (hosts) outside the department, then the network graph of the

respective departments can be combined, according to rules speci�ed in a rule

set. The new graph consists of nodes that are the two departments, and edges

that represent the network traÆc between them. This recombination is done at

the next higher level of departments, that include the two original departments.

This process can be repeated, and a hierarchy of departments is formed.

2.15.4 Graph building

Reporting all network activity in one single graph would be unwieldy. Therefore,

the system allows several rule sets that de�ne one graph each. All the collected

data are considered for inclusion in all the rule sets, and thus two di�erent rule

sets could render the same audit data into two di�erent graphs.

2.15.5 Rule sets

The rule sets serve several purposes, to decide whether to combine graphs into

higher level graph, to control how this combination should take place, how

to compute the attributes of the graphs|both originally, and when they are

combined|and to decide what actions to take, if any, when graphs are con-

structed, or combined. The last point is interesting, because it is in this activity

that the automatic intrusion detection capability of the system lies.

The rule sets can be quite complicated to specify, and especially to specify

correctly. Because of this, GrIDS contains a policy language, with which to spec-

ify policies of acceptable, and unacceptable network behaviour. The prototype

implementation allows the user to specify whether a connection, represented

as an edge in the graph, is allowed or not. The speci�cation is in the form of

a tuple, faction, time, source, destination, protocol, stage, status, . . . g, where

action is allow, or deny, time quali�es the rule with respect to a clock or time

interval, source, and destination describe the connection endpoints, and proto-

col describes the connection type. As a connection progresses though its stages,

i.e. start, login, authentication, etc., the stage, and status attributes further

characterise the connection.

2.15.6 Implementation

The GrIDS system consists of a software manager, a graph building engine, a

module controller, and data sources.

All software in the GrIDS system consists of con�gurable modules with a

standardised interface. The specialised software manager module manages the

state of the hierarchy, and the distributed modules. The data sources are mod-

ules that monitor host, or network, activity and reports this to the rest of

GrIDS. The graph building engine, receives data from the data sources, applies

the di�erent rule sets to build the graphs, and reports summaries of graphs to

higher departments.

62

2.15.7 Survey conclusions

The GrIDS system purports to be \graphical" but it is diÆcult to ascertain just

what the authors intend by that statement. Certainly, it is not meant to display

network information to the SSO in a way that enables him to more easily detect

anomalous behaviour. The work presented is furthermore weak in the areas

of e�ectiveness, and eÆciency. The authors discuss scalability in a convincing

fashion however, and the system probably has merit in this respect.

2.16 CMS|Cooperating security managers

2.16.1 Introduction

The authors of cooperating security managers [58] make the observation that

as networks grow larger, centralised intrusion detection will not scale well with

them. In order to alleviate this problem they suggest that several intrusion

detection agents, one at each computer connected to the network, cooperate

in a distributed fashion, where the computer from which a user �rst entered

the system is made responsible for all that user's subsequent actions. This, the

authors claim, result in the load being evenly distributed among the cooperating

entities.

Three main ideas stand behind cooperating security managers:

1. Each computer on the network run a copy of the security manager. This

manager is responsible for detecting intrusions|anomaly and signature

based|on the local system, as well as intrusive behaviour originating

from an original user of the machine. In order to accomplish the latter, the

manager collects information from other computers the user under interest

may be connected to. This results in an assurance that one computer, the

one the user �rst connects to, will have a complete record of that user's

activity on the networked computer system.

2. When a user accesses a host from another host, the managers in question

connect to each other, and communicate information about the user, and

the nature of the connection. This helps in tracking the user, but more

importantly, the authors claim, helps in preventing spoo�ng attacks.

3. Finally, the SSO has the ability to initiate a trace request, where by a

user's connections across the network are traced. If this results in the user

appearing to connect from two distinct locations, the alarm is raised, since

ordinarily, users are never in more than once place at any one time.

With these features, the managers can cooperate to detect intrusive be-

haviour through out the network, without having to rely on some centralised

resource. The authors does not describe a fully developed system, but a fairly

full featured prototype version.

2.16.2 System overview

The cooperating security managers system is comprised of �ve separate compo-

nents:

63

Local intrusion detection system This is the system that is responsible for

detecting intrusive behaviour local to the computer on which it is running.

The local intrusion detection system uses command based audit logs as

its source of audit data. The authors envision that future enhancements

will include GUI-based command interception, and the ability to include

monitoring of protocols such as http . The system maintains a suspicion

level for each user that it monitors, and one system wide suspicion level.

When either of these suspicion levels exceed a SSO-de�ned threshold, the

system generates an alarm to that e�ect.

Distributed intrusion detection system Is responsible for detecting intru-

sive behaviour that originates from this host, by a user who has connected

to another host through the network. This task is accomplished by com-

municating with both the local intrusion detection system, in order to

learn about the user's activities, and to communicate with the remote

system that the user has entered.

User tracking system Tracks a user as he moves across the network. The

user tracking is integrated with the distributed intrusion detection above,

since in order to be able to receive audit data on the user from the remote

computer, the system has to keep track of him. Information about the

user's path through the system is also needed for intrusion alarms, since

cooperating security managers report any suspected intrusive behaviour

to all systems that the user has traversed.

Intruder handling Decides what action to take, if any, when possibly intru-

sive behaviour has been detected. The module is able to terminate the

suspect connection if so con�gured, i.e. this module has active response

capabilities. This termination can be the result of SSO input via the user

interface, but also the result of preset suspicion thresholds being reached,

whereby the intruder handling module can be con�gured to terminate the

connection automatically.

User interface The user interface component has the responsibility to com-

municate with the SSO, to con�gure the system, report alarms, to track

users as they move through the network, and to terminate a suspicious

connection.

2.16.3 Prototype test results

The prototype was evaluated by running a variety of prepacked exploit scripts.

These were of two types. The �rst was designed to test the system's ability to

detect intrusions being performed locally, and the second type was designed to

test the ability to detect intrusive behaviour on other hosts.

A small number of these simulated intrusions were performed, and the au-

thors report favourable results. Cooperating security managers operated as

speci�ed, the SSO was able to sever connections, and trace users across the net-

work, even when the paths of two such users crossed. Furthermore, each instance

of intrusive behaviour was correctly identi�ed as such, and when thresholds were

exceeded appropriate alarms were generated.

64

2.16.4 Survey conclusions

The work presented is (yet) another approach to the solution of the problem of

how to make intrusion detection system scale, when introduced into a network

environment. It fails to address the problem of how to handle scalability of the

SSO in such a situation. The present author knows of no research that has

continued along the line of reasoning presented.

2.17 Janus|A secure environment for untrusted

helper applications

Janus [17] is a security tool inspired by the reference monitor concept, and Janus

was developed at the University of California, Berkeley. While Janus isn't an

intrusion detection system per se. It has many interesting similarities with spec-

i�cation based intrusion detection, and it's high degree of active in
uence over

the running application makes it an interesting case-in-point, when studying

active response.

2.17.1 Introduction

Janus is a user-space, per application reference monitor that is intended to

supervise the running of potentially harmful web browsing helper applications.

It does this by enclosing the application in a restricted environment, as so called

\sand box." In the words of its authors, the main idea behind Janus is:

An application can do little harm if its access to the underlying

operating system is appropriately restricted.

From this statement the authors derive the corollary that the application is

thus allowed to perform any action as long as that does not entail the invocation

of a system call to the underlying operating system.

Janus is a policy based tool, where the user speci�es a (restrictive) \default

deny" policy on what type of actions the supervised program may perform. If

an action is not explicitly allowed, Janus by default will not permit it.

The authors discuss several other possible solutions to the problem of hin-

dering applications from making malicious system calls|such as modifying the

operating system kernel|and reject the proposals one-by-one, arriving at the

present solution.

2.17.2 Architecture

Janus is implemented as a set of security modules, connected through a frame-

work. Janus utilises the /proc interface of the Solaris 2.4 operating system|

originally intended as a system call tracing, and debugging facility|to watch

over the monitored application. Since a rogue application has complete control

over its own address space, Janus is implemented in a separate address space,

that communicates with the supervised program via the /proc facility. See [28]

for an introduction to the /proc \processes as �les" interface.

The Janus framework �rst reads a con�guration �le that de�nes the secu-

rity policy, and consequently which modules should be loaded. These modules

65

then register interest in certain system calls with the operating system, and the

supervised application is started. During the running of the application the

supervised system calls are checked against the current policy in a top down

fashion, where the most general rules are checked �rst. Latter, more speci�c

rules may override these.

The security modules (also called policy modules) may also contain special

code that is run just prior to the operating system receiving the system call

parameters, in order to check these parameters for illegal activity.

2.17.3 Security modules

Several policy modules are implemented, each responsible for supervising one

part of the policy. Examples of such modules are:

basic This module supplies defaults for the simple system calls that for instance

are always denied, such as setuid , mount , chdir etc. These calls are

always denied because they would either not be allowed to run by an

unprivileged process in the �rst place, or they violate the basic \sand

box" that Janus tries to enforce.

putenv The putenv module sanitizes the running application's environment,

so that dangerous variables such as IFS etc. are removed.

tcpconnect A special module exists that supervises the application's network

activity. The user may as a matter of policy restrict with whom the

application may communicate, using which ports etc.

path The path module is the most complex module. It supervises all open

requests, and checks the requested pathnames, only allowing access to the

sand box environment, and a small set of carefully chosen system �les,

such as shared libraries necessary for the running of the application, and

system wide con�guration �les. The path module di�erentiates between

read and write access. While it would for instance allow read access to

the .rhosts �le, it would universally disallow write access.

When the framework detects that a policy module would disallow a certain

system call, it aborts the system call with an EINTR error, before it has been

executed. To the supervised program this is indistinguishable from an inter-

rupted system call, and some programs are designed to retry the system call

when this condition becomes true. Janus detects this situation when 100 in-

vocations of the same system call has been denied, and then opts to kill the

application completely. The authors note that they would like to abort the sy-

stem call with a more appropriate error code, perhaps EPERM , signalling that

the process had insuÆcient privileges for the operations. However the Solaris

/proc interface lacks this facility.

2.17.4 Results

The authors note that since the user community general is more interested in

performance than security, the performance aspects of their implementation

must be studied. In addition, they study the applicability, ease of use, and

security of their prototype.

66

When Janus is run on two typical, performance critical applications, ghostview ,

and mpeg play , no signi�cant slowdown is encountered. This the authors at-

tribute to the fact that since only \important" system calls are supervised17,

and that system calls are already expensive, the extra overhead of Janus is not

noticeable. The application is free to go about it's business in the common case.

2.17.5 Conclusions

The authors stress that there are several other possible routes that could be

explored towards the solution of the stated goal of achieving security in the face

of complex helper applications that receive their input from suspect sources.

For example security logging could easily be added to provide after the fact

capabilities. However, they feel con�dent in having proved their concept a

workable solution to the problems at hand.

The authors list the URL: http://www.cs.berkeley.edu/aw/janus/ as a refer-

ence for more information about the Janus system, and its availability.

2.17.6 Survey conclusions

Janus is an interesting and fresh approach to the problem of intrusion avoid-

ance. While the authors don't present it as such, it could be argued that their

implementation is an intrusion detection system, with a default deny policy

speci�cation, and strong active response. It is interesting to see that the au-

thors have addressed the problems of ease of use and performance. The paper

shares the weaknesses in the areas pertaining to e�ectiveness, so common in

intrusion detection research to date.

2.18 JiNao|Scalable intrusion detection for the

emerging network infrastructure

2.18.1 Introduction

The authors have developed a prototype implementation of JiNao [15], a network

intrusion detection system aimed at protecting the network infrastructure itself,

rather than the individual hosts on that network. The threat model assumes

that some routing entities in a network can be compromised, and hence begin to

mis-behave, or stop routing altogether. The prototype assumes that the routers

communicate via the OSPF protocol. The project is eventually envisioned as

detecting both external, and internal, intrusion attempts at the network infras-

tructure, in a comprehensive, and scalable, fashion, interoperating with other

intrusion detection systems.

The intrusion detection in JiNao is operated using, the authors claim, three

di�erent paradigms, misuse based detection, anomaly based detection, and pro-

tocol based (misuse) detection.

17 For example, the read system call is never traced in the example policies.

67

2.18.2 System overview

JiNao can be divided into two parts, the local intrusion detection subsystem,

and the remote intrusion detection modules. The intention is that a system

could be built by connecting the various local instances of JiNao running on

various pieces of equipment throughout the system. While the remote element

of the system had yet to be developed at the time of publication, it's the authors'

intention to have a distributed system, that could be controlled centrally via the

SNMP protocol.

The JiNao system is comprised of quite a few di�erent modules, that imple-

ment di�erent aspects of the local subsystem of the JiNao intrusion detection

system.

Interception
Module

Protocol Engine NETWORK

Protocol
Analysis

Statistical
Analysis

Local
Decision
Module

Prevention Module
(Rule-based)

Local detection module

Managment
Information
Base

Information
Abstraction
Module

Agent
Extension
Protocol

Remote MIB agent

Protocol data unitSSO

Local JiNao

Statistical
Analysis

Protocol
Analysis

Remote
Managment
Application

Managment I/F

Statistical
Analysis

Protocol
Analysis

Remote
Managment
Application

Managment I/F

Remote MIB agent

Manager to manager

Local JiNao

Figure 2.6: Block diagram of the JiNao system (from [15])

Figure 2.6 describes the relationships between the di�erent modules in the

local subsystem. The function of the modules are:

Interception/redirection module

This module intercepts protocol information from the network, time-stamps it,

and hands it over to the prevention layer. When signaled from the prevention

layer, it then releases the packet, for further study by the protocol engine.

The authors discuss the problems associated with encrypted data, something

that may become more common in the future with the advent of IPSEC etc.

There are three principal layers where the network traÆc could be intercepted,

IP/IPSEC layer, device driver layer, or in the higher layer protocols. The au-

68

thors reason that we would like to intercept the traÆc at the IP/IPSEC layer,

but in the case where the higher level protocol is encrypted, we must intercept

it when it has been decrypted. The problem with this is that information that

is interesting from an intrusion detection standpoint, may well have been lost at

this level, for instance, information about on which hardware network interface

the information entered the system, is almost certainly lost by the time the

packet has reached the higher levels of the protocol stack.

Prevention module

The prevention module acts as a �rst, fast acting, �lter, against obvious prede-

�ned security violations.

The prevention module is further subdivided into two layers, the prevention

layer, and the extraction layer. The prevention layers �rst task is to quickly

decide whether to forward the protocol data unit, under study, to the target

protocol engine. The reason the decision is made here is that the target proto-

col engine could observe a considerable delay in seeing the protocol data unit

otherwise.

The extraction layer on the other hand has the duty to format any, and

all, di�erent network dependent data formats into a JiNao protocol data unit

(packet) to simplify further processing. It may be necessary to aggregate in-

formation from several network packets, or sources, into a single JiNao packet.

This would be the case for instance, when we would like to know the identity

of the hardware network interface on which the information entered the local

system, as well as the data itself.

Detection module

Consists of two sub modules, the statistical analysis module, and the proto-

col analysis module. The statistical analysis module determines if the observed

behaviour is within the historically established parameters for the observed sub-

ject. The protocol analysis module analyses, via the use of state machines, the

OSPF, and eventually PNNI, routing protocols, and the SNMP network man-

agement protocols, triggering whenever the protocol enters a suspect state.

Statistical analysis module The statistical analysis module draws heavily

from the work done by SRI on the NIDES system (see section 2.14 on page 56).

JiNao uses NIDES's statistical algorithm with some small modi�cations. The

idea is that the subject under study should exhibit short term behaviour that

is consistent with its long term behaviour, in terms of the measured quantities,

certain log entries, number of packets sent, etc., etc. In general, when the short

term behaviour varies suÆciently from the established long term behaviour, a

warning
ag is raised.

However, there will always be some variation in the short term behaviour,

since this behaviour is comprised of only one activity of the subject, while the

long term behaviour is comprised of all the activity performed by the subject. In

order to adjust for this e�ect, JiNao should, according to the authors, account

for the amount of deviation that it sees between short, and long term behaviour,

and only
ag as anomalous, short term behaviour, that is very unlikely long term

behaviour, relative to the amount of deviation between these types of activities

69

that it has seen in the past. JiNao's view of what long term behaviour is, i.e.

the pro�le for the subject, is updated once a day.

Protocol analysis module The protocol analysis module, on the other hand,

uses information about the speci�c protocol, and the traÆc that is generated

by these protocols to ascertain if some suspicious activity is taking place. The

protocol analysis module maintains a number of di�erent state machines that

codify the known behaviour of the protocols that JiNao knows about. The state-

machines, are not pure state machines, in the sense that JiNao state machines

have been expanded with a counter feature, since counters are unwieldy to

handle in normal �nite state machines.

The state machines are quite speci�c, for example, there is one state machine

for each adjacent router, codifying the correct behaviour of each and every one,

despite the fact that much of the information would be the same.

The authors had two speci�c goals, when specifying the state machine mech-

anism:

1. The protocol analysis module should be recon�gurable at run time, as new

intrusions become a concern, and others cease to be.

2. Adding a new state machine should not require recompilation of the pro-

tocol analysis module.

The authors identify several other means of optimising the execution of the

state machines, in future versions of the software, but have not had time to

apply any of them in the prototype.

Local decision module

The local decision module handles two tasks, it coordinates the information

from the detection and prevention modules, and it issues commands to update,

and/or activate rules in prevention module. The local decision modules also has

the responsibility to report suspected intrusions to the site security oÆcer.

Functionally the local decision module interfaces with the detection mod-

ules, the local management information base, and the protocol engine. The

interface with the local detection modules is required to evaluate the possibil-

ity of an intrusion on the basis of local information, from network neighbours

etc., the interface with the management information base is to gain access to

remote, network wide data, to be able to take part in detection of network wide

events, and to gain knowledge of network wide events that could a�ect the local

detection system.

In the last instance, say that a part of the network has su�ered a power

failure, this could lead to both the detection modules to report that a router in

that segment of the network was under attack, or faulty. If the local decision

module where to learn about the power failure via the management information

base, it could rightly conclude that the router outage was a result of the power

failure, and not indicative of either router failure, or the sign of an intrusion.

The fact that the local decision module uses both local, and network wide

information to reach a decision, the authors claim, leads to a scalable intrusion

detection architecture.

70

Information abstraction module

E�ects the communication between the local JiNao subsystem, and the remote

JiNao modules, as well as other network management systems.

The information abstraction module, performs its task by collecting data,

and intrusion indications from the local decision module, aggregating it, reduc-

ing it, converting it to management information base format, and compressing

it.

JiNao management information base

Handles a collection of parameters etc. for the local intrusion detection system,

that are of interest to other, remote parts of the system.

The management information base acts as a standard abstraction interface

between the JiNao agent and the management applications that are interested in

utilising the intrusion detection services provided by JiNao. The management

applications primarily use SNMP to communicate with the various manage-

ment information bases throughout the system. (It is the underlying paradigm

of SNMP, to set and read various parameters in the managed systems, that

probably prompts the authors to name this component the management in-

formation base.) The various services that can be performed remotely by the

management information base are:

Rule/FSM con�guration The rules and �nite state machines used in detec-

tion can be con�gured, deleted, or updated.

Local detection results The result of the processing made by the local de-

cision module can be made remotely available through the management

information base.

Detection noti�cations Remote management applications can register inter-

est in a certain event, and automatically receive noti�cation when that

event has taken place. This signi�cantly decrease the time spent search-

ing for a certain type of intrusion, when this intrusion is suspected to take

place. For instance, if a remote management application suspected that a

router had been compromised it could instruct a neighbour to route traf-

�c through the suspected router, and then instruct another router, down

stream from the suspected one, to trap, and immediately report the events

that we would expect from a fully operational router. If these events failed

to manifest themselves at the trapping router, we could conclude that the

interlying, suspected, router, is indeed showing signs of suspect behaviour.

Security control Allows a system administrator to directly control the local

intrusion system, instead of the indirect control a�orded by the setting of

parameters in the management information base proper.

Log access the prevention module logs certain interesting transactions, the

management information base provides access to a search engine, that

can access the logged data, the authors write that apparently it would be

unrealistic to gain access to each individual log record, via the management

information base.

71

The authors note that even though the current release of the SNMP protocol

does not a�ord enough security measures to be realistically used in this context,

versions of the protocol due in the near future, at the time of their writing the

paper, does seem to provide such features.

2.18.3 Survey conclusions

It is diÆcult to have an opinion on the system as an intrusion detection system,

since the authors make few claims in that area. As a distributed, and scalable

system for collecting, and processing network information it probably has merit.

The main failing of the work presented is thus, that it does not to any signi�cant

degree discuss the nature of the intrusions that it is supposed to detect, or how

this detection should be performed.

2.19 EMERALD|Event monitoring enabling re-

sponses to anomalous live disturbances

2.19.1 Introduction

EMERALD [47, 48], is intended as a framework for scalable, distributed, in-

teroperable computer and network intrusion detection. The authors begin by

describing a situation in where large, organic, computing, and network resources

provide critical and costly service to its operator, yet have little in the way of

speci�c security policies, or organisational support for the speci�cation of such

policies. These resource typically contain COTS (Commercial-o�-the-shelf), as

well as non-COTS components, and legacy systems, integrated with current

technology. These infrastructures clearly need to be protected, and yet, there is

little in the way of widely available robust tools to detect, and track, intruders

moving across such infrastructures. EMERALD will also contain components

to enable the system to respond actively to the threats posed. The main threat

that EMERALD proposes to meet is a penetrator external to the organisation,

at least, external on some level. However, the proposed architecture does not

preclude the detection of internal attackers.

2.19.2 Organisational model

The authors envision a distributed system (EMERALD) that operate on three

di�erent levels in an large enterprise network, made up of administratively more

or less separate domains. These domains trust one and other to a greater or

smaller extent|two domains could operate in a peer-to-peer relationship, while

another could trust virtually no-one else, only allowing out bound connections.

The enterprise network would typically be made up of thousands of entities.

EMERALD would operate on three di�erent levels within the domain:

Service analysis level The most local level, where distributed instances of

EMERALD would operate locally, on its own target.

Domain-wide level Where the locally distributed instances of EMERALD

would operate in concert, sharing information to detect domain wide in-

trusion attempts. Picture for instance, a network �le server monitor, that

72

receives noti�cation of some anomalous DNS event, and with that infor-

mation could deduce that, indeed the requests to the �le server would be

highly suspicious in the light of the information received.

Enterprise-wide level Where the results of the domain-wide level analysis

would propagate upwards in the organisation, and infrastructure-wide

information-warfare style, attacks could be detected.

2.19.3 The EMERALD monitor

The architecture of EMERALD hinges around the local EMERALD monitor.

This is the smallest complete instance of EMERALD. The service monitor is

dynamically employed through out the system, to monitor points of interest.

It communicates with other instances of the monitor, distributed throughout

the network, via a push/pull mechanism, whereby a monitor can subscribe to

noti�cations of interest from its peers. It's the view of the authors that this en-

ables EMERALD to communicate eÆciently the information that is needed, to

where it's needed, without the overhead associated with other plausible means

of communication. The interface to the module is well speci�ed, to enable inter-

operation with other network intrusion detection resources, and it can receive

con�guration information across the same interface.

The monitor consists architecturally of the following modules:

Resource object The resource object is the heart (though not the brain) of the

EMERALDmonitor. The resource object handles all target speci�c issues,

and provides interfaces to deal with these issues. Furthermore, it contains

con�guration parameters for the various �elded analysis engines, both for

accessing and processing the local audit event format. The resource object

contains the resolver's, and the resolver's decision units con�guration as

well, including valid response methods to detected violations, and when

to invoke them. Last but not least, the resource object maintains the

subscription list, for communication with its peers.

Pro�ler engine The pro�ler engine, of which there may be several, performs

some anomaly based detection on the audit data. The authors have gener-

alised the concepts from NIDES|see section 2.14|to totally separate the

calculation, and analysis of the statistics for the audit event stream, from

any target speci�c considerations. The pro�ler engine also subscribes to

information of interest from other instances of EMERALD monitors, via

the resolver.

Signature engine The signature engine provides a signature based intrusion

detection capability. However, the authors point out that in many respects

the signature engine departs from traditional signature analysis engines,

in that it is envisioned to operate with a small set of rules, and on a

reduced audit data stream, and hence with much less noise to �lter out.

It's the intention of the authors that this will enable eÆcient, and e�ective

signature based intrusion detection.

Universal resolver The resolver is the \brain" of the EMERALD monitor, if

you will. It handles correlation between the result of the local modules,

decide whether an intrusion is taking place, decides whether to invoke

73

a response, communication with the peer monitors, at higher and lower

levels, with the resulting authentication etc. The resolver is at heart an

expert system that receives the intrusion and suspicion reports from the

pro�ler and signature engines, and based on these reports, and reports

from other peer monitors, decides what response to invoke, and how to

invoke it. As previously mentioned, it maintains state, important for the

con�guration of the monitor as a whole, in the resource object. One of

the most critical aspects of the operation of the resolver is to handle the

interface with the site security oÆcer himself. In the view of the resolver

however, he is just another EMERALD monitor.

When the EMERALD module operates at di�erent levels in the intrusion

detection framework, the various internal modules operate along di�erent di-

rections, say for instance, a signature analysis module will search for di�erent

signatures when it operates in a service analysis module, than when it operates

in an enterprise-wide analysis module.

2.19.4 Interoperability

EMERALD speci�es well de�ned interfaces on many levels, both internal to

the EMERALD monitor, and external to it, to enable other existing intru-

sion detection components to interoperate with it. These components could

be plugged in as an internal module in the monitor, or partake in the intru-

sion detection e�ort via the network interface. In order to resolve these two

situations EMERALD de�nes a two layered, subscription based, message pass-

ing, communication system, and interface. The idea is that this will enable a

completely implementation neutral path of communication|both internally in

the EMERALD monitor, and externally|between monitors, in the distributed

EMERALD system.

2.19.5 Putting it all together

The various monitors that make up the EMERALD system is envisioned to

operate on the three di�erent levels previously mentioned, by communicating

intrusion detection results both between themselves, within the layer, and up-

ward, to notify higher layers of the ongoing intrusion detection activity. This

latter builds a hierarchy of EMERALD monitors, that can detect larger, and

larger, scale attacks against the enterprise wide network, and to let higher level

entities dynamically decide what entities to monitor, and how to perform this

monitoring.

2.19.6 Survey conclusions

The papers about EMERALD of course is very general in its approach. The

structure of the proposed system is discussed in detail, and appears sound.

Furthermore, the proposed architecture is not intended by the authors to exist

in a vacuum, the work discusses a proposed organisational structure, and the

problems that structure could have, from an intrusion detection standpoint,

and how the EMERALD framework would solve these problems. Substantial

thought has obviously gone into how to make the system scalable, extendable,

and resistant to outside in
uence.

74

It is interesting to follow the research from IDES, via NIDES, to EMERALD.

In the present author's opinion the fact that the research group is on their third

generation of intrusion detection system clearly shows.

2.20 Bro

2.20.1 Introduction

Bro [46] is in the words of its author \A standalone system for detecting network

intruders in real-time by passively monitoring a network link over which the

intruder's traÆc transits." The designers envisioned that their tool would meet

the following design goals and requirements (from [46]:

1. It would make high-speed, large volume monitoring of network traÆc pos-

sible.

2. It would not drop packets, i.e. it would be able to process incoming packets

at a suÆcient rate, not to have to discard input packets before they had

been processed.

3. Bro would provide the site security oÆcer with real-time noti�cation of

ongoing, or attempted, attacks.

4. Bro would be careful to separate mechanism from policy, so that it would

be simple to specify new security policies, and aid in the realisation of

both simplicity and
exibility in the system.

5. The system would be extensible, foremost, it would be easy to add knowl-

edge of new types of attack.

6. It would facilitate the user in avoiding making simple mistakes in the

speci�cation of the security policy.

The system would have to operate in an environment in which it itself would

come under attack. Since this is a little studied �eld, how to build survivable

security systems, the designers made the simplifying assumption that only one

of two systems communicating would be subverted. The author note that this

assumption would cost virtually nothing, since if the intruder had both systems

under his control, he could then proceed to establish intricate covert channels

between them.

It should be pointed out the the security environment in which Bro was

designed to operate is one where security concerns aren't the highest priority.

Rather the consequences of an intrusion would be mostly limited to securing

the compromised machines, and perhaps a tarnished public image.

2.20.2 System overview

The Bro system is divided into three distinct layers, each layer reduces the traÆc

to be analysed, by making decisions on successively higher levels of abstraction,

see �gure 2.7. Each layer processes the traÆc generated by the immediately

lower one, and responds by generating traÆc to the next higher level, as well as

generating events to control the lower layer.

75

Event Engine

libpcap

Policy Script Interpreter

Real-time notification
Record to disk

�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������

Event stream

Filtered packet stream

Packet stream

Policy script

Event control

Tcpdump filter

Network

Figure 2.7: Bro: layering and data
ow (from [46])

2.20.3 libpcap

Bro uses the freely available packet capture library libpcap , on which the

popular tcpdump package is built, among others. Libpcap has the advantage

to isolate the particulars about raw network packet capture from the rest of

Bro, and also the capability to download packet �lters into the kernel of the

operating system that Bro runs on, if the operating system is equipped with

such a feature. This enables libpcap to discard uninteresting packets early in

the processing, and thus consume much less resources in the �ltering of packets.

2.20.4 Event engine

The �ltered packet stream that results from libpcap is handed over to the event

engine. The event engine �rst performs checks to ascertain that the header of the

TCP/IP packet is well formed, if it is not, an event to that e�ect is generated,

and the packet is discarded. Otherwise, the event engine looks up the connection

state associated with the packet, or records one, if none is already recorded. The

packet is then handed over to a special handler corresponding to the connection.

The connection handler among other things, indicates whether Bro should log

the entire packet, just the header, or nothing at all, to the master tcpdump log

�le that it keeps.

The protocol analysers for TCP, and UDP traÆc, performs basic integrity

checks to see that the traÆc is well formed. This can in turn generate new

events that are inserted into the event queue.

2.20.5 Policy script interpreter

More specialised handlers can be formulated in the Bro scripting language. The

language is speci�cally tailored to the processing of TCP/IP traÆc, with special

76

data-types, and operators, to handle IP-addresses, lists of such etc. One inter-

esting design feature of the language is that it lacks any operator to facilitate

iteration, or recursion. This is to make it likely that the upper bound on any

processing of a Bro function would be low, and simple to calculate. This is

important, since there is limited amounts of CPU time to be spent in executing

the parts of the system implemented in the Bro language.

In any case, after the event engine has �nished processing a packet it checks

to see if the processing generated any events, if this was the case, the specialised

event handler written in the Bro scripting language can be invoked. This handler

can generate new events, perform real time noti�cation, record data or log

noti�cations to disk, and record internal state for access by subsequent event

handlers, or by the event engine itself. Timers can also be set, coupled with

some action to be performed when they expire. This is important to provide

the policy writer with the ability to remove internal state from Bro, lest Bro

consumes all available memory, with state variables that are no longer deemed

interesting.

That Bro is careful to distinguish between the generation of an event, and

what to do in response to that event, the author claims, facilitates the separation

of mechanism from policy that was one of the designs goals. Furthermore,

extensibility is increased. In order to extend the system, the user typically adds

new protocol analysers to the event engine, and a handler to respond to the

events generated by the protocol analyser.

2.20.6 Implementation issues

At the time the reference was written Bro consisted of some 22,000 lines of

C++ code, with another couple of thousand lines of Bro policy scripts. Spe-

cial handlers had been written for the finger , ftp , portmapper , and telnet

protocols, with more to be added. The author identi�ed several parts of the

system that could be improved, mainly in the construction of a compiler and

optimiser for the Bro language, instead of the interpreter of the original system.

Furthermore, issues related to check-pointing, managing of timers, especially

the addition of timers to the Bro scripting language, and o�-line analysis.

2.20.7 Possible attacks on the network monitor

The paper presenting Bro is interesting in that it is the �rst system that ad-

dresses the problem of what kinds of attacks the monitor must be capable of

withstanding. Previous work in this �eld has not speci�cally addressed the re-

sistance of the intrusion detection mechanism against malicious attacks, other

than in theory.

The author classi�es network attacks into three categories for the purpose

of discussing how well Bro is able to withstand an attack in each category.

Overload attacks

The goal of the attack is to overload the monitor with data, to the point where

it fails to keep up with the stream of data with which it has to deal. The attacks

aims to �rst overload the monitor to the point where it will fail to later detect

an attack, which it would detect under normal circumstance, had it not been

77

overloaded. Bro averts this attack by the nature of its design; being able to

handle a high load, and by logging with regular intervals, how many packets it

has missed, and processed, which can alert the site security oÆcer to the fact

that the traÆc volume itself is suspect.

Crash attacks

The purpose of these attacks is to make the network monitor stop working al-

together. This could perhaps be done by �nding programming errors in the

monitor, and exploiting these, or by making the monitor consume some criti-

cal resource, to the point of exhaustion. Bro resists these types of attacks by

providing a watchdog timer, that �res if Bro has been found to fail to process

the packet it was processing several seconds ago. The watchdog system then

stops Bro, logs this fact, and makes post mortem examination of the system

possible. It then starts a straight forward tcpdump logging of the traÆc on the

net, with the intent that the network traÆc be logged for later analysis|any

evidence of malicious network traÆc will at least be logged. There exists a win-

dow of opportunity between the time Bro stops functioning, and the time that

the tcpdump logging is started, but at least, all is not lost, with the malfunction

of the Bro monitor.

Subterfuge attacks

The attacker attempts to mislead the monitor as to the meaning of the traÆc

it analyses. The key principle is to �nd a pattern of traÆc that is interpreted

di�erently by the monitor and the receiving end point. These attacks are the

most sophisticated, and most diÆcult to guard against. The author claims that,

at each stage of the development of Bro the underlying explicit and implicit

assumptions made by the system, and how violating them would enable an

attack to go undetected, was carefully examined. The author lists several such

attacks, and how Bro defends against them, but of course Bro makes no claim

that every such attack has been identi�ed and dealt with.

2.20.8 Conclusion

Bro has run as a part of the security system of the author's site since April

1996, and is available in source code form, an undocumented alpha release, at

the time of writing. Release information is available via the world wide web

from: http://www-nrg.ee.lbl.gov/bro-info.html.

2.20.9 Survey conclusions

The work presented is strong on the subject of how to make the intrusion de-

tection system resistant to attack against itself. It is the only recent paper

that discusses the nature of the attacks that the system could be subjected to,

what assumptions have to be made about these attacks, and how the system

counteracts them. (A similar paper [49], about the nature of network attacks

against intrusion detection, was made available just after Bro was published.

That treatment is more thorough than that surveyed here.)

78

Furthermore the presentation is strong when it presents the rather solid

experiences the author have from running the system in a real-world hostile

environment. The approach appears to have merit.

79

Bibliography

[1] D Anderson, T Frivold, and A Valdes. Next-generation intrusion-detection

expert system (NIDES). Technical Report SRI-CSL-95-07, Computer Sci-

ence Laboratory, SRI International, Menlo Park, CA 94025-3493, USA,

May 1995.

[2] Debra Anderson, Teresa F. Lunt, Harold Javitz, Ann Tamaru, and Alfonso

Valdes. Detecting unusual program behavior using the statistical compo-

nent of the next-generation intrusion detection system (NIDES). Technical

Report SRI-CSL-95-06, Computer Science Laboratory, SRI International,

Menlo Park, CA, USA, May 1995.

[3] James P. Anderson. Computer security threat monitoring and surveillance.

Technical Report Contract 79F26400, James P. Anderson Co., Box 42, Fort

Washington, PA, 19034, USA, February 26, revised April 15 1980.

[4] Stefan Axelsson, Ulf Lindqvist, Ulf Gustafson, and Erland Jonsson. An

approach to UNIX security logging. In Proceedings of the 21st National

Information Systems Security Conference, pages 62{75, Crystal City, Ar-

lington, VA, USA, October 5{8 1998. NIST, National Institute of Standards

and Technology/National Computer Security Center.

[5] Jai Balasubramaniyan, Jose Omar Garcia-Fernandez, David Isaco�, E. H.

Spa�ord, and Diego Zamboni. An architecture for intrusion detection us-

ing autonomous agents. Technical Report Coast TR 98-05, The COAST

Project, Dept. of Comp. Sciences, Purdue Univ.,West Lafayette, IN, 47907{

1398, USA, 1998.

[6] Mark Crosbie, Bryn Dole, Todd Ellis, Ivan Krsul, and Eugene Spa�ord.

IDIOT|Users Guide. The COAST Project, Dept. of Computer Science,

Purdue University, West Lafayette, IN, USA, September 4 1996. Technical

Report TR-96-050.

[7] Herve Debar, Monique Becker, and Didier Siboni. A neural network com-

ponent for an intrusion detection system. In Proceedings of the 1992 IEEE

Computer Sociecty Symposium on Research in Security and Privacy, pages

240{250, Oakland, CA, USA, May 1992. IEEE, IEEE Computer Society

Press, Los Alamitos, CA, USA.

[8] Herv�e Debar, Marc Dacier, and Andreas Wespi. Towards a taxonomy

of intrusion-detection systems. Computer Networks, 31(8):805{822, April

1999.

80

[9] D. E. Denning and P. G. Neumann. Requirements and model for IDES|A

real-time intrusion detection system. Technical report, Computer Science

Laboratory, SRI International, Menlo Park, CA, USA, 1985.

[10] Derothy E. Denning. An intrusion-detection model. IEEE Transactions on

Software Engineering, Vol. SE-13(No. 2):222{232, February 1987.

[11] Cheri Dowel and Paul Ramstedt. The computer watch data reduction tool.

In Proceedings of the 13th National Computer Security Conference, pages

99{108, Washington DC, USA, October 1990. NIST, National Institute of

Standards and Technology/National Computer Security Center.

[12] Robert Durst, Terrence Champion, Brian Witten, Eric Miller, and Luigi

Spagnuolo. Testing and evaluating computer intrusion detection systems.

Communications of the ACM, 42(7):53{61, July 1999.

[13] M Esmaili, R Safavi, Naini, and J Pieprzyk. Intrusion detection: A survey.

In Proceedings of ICCC'95. (12th International Conference on Computer

Communication), volume xxxxii+862, pages 409{414. IOS Press, Amster-

dam, Netherlands, 1995.

[14] Jeremy Frank. Arti�cial intelligence and intrusion detection: Current and

future directions. Division of Computer Science, University of California

at Davis, Davis, CA. 95619, June 9 1994.

[15] Y. Frank Jou, Fengmin Gong, Chandru Sargor, Shyhtsun Felix Wu, and

Cleaveland W Rance. Architecture design of a scalable intrusion detec-

tion system for the emerging network infrastructure. Technical Report

CDRL A005, Dept. of Computer Science, North Carolina State University,

Releigh, N.C, USA, April 1997.

[16] Thomas D. Garvey and Teresa F. Lunt. Model-based intrusion detection.

In Proceedings of the 14:th National Computer Security Conference, pages

372|385, Baltimore, MD, USA, October 1991. NIST, National Institute

of Standards and Technology/National Computer Security Center.

[17] Ian Goldberg, David Wagner, Randi Thomans, and Eric Brewer. A secure

environment for untrusted helper applications (con�ning the wily hacker).

In Proceedings of the Sixth USENIX UNIX Security Symposium, San Jose,

California, USA, July 1996. USENIX, USENIX Association.

[18] Jani Habra, Baudouin Le Charlier, Abdelaziz Mounji, and Isabelle Math-

ieu. ASAX: Software architecture and rule-based language for universal

audit trail analysis. In Yves Deswarte et al., editors, Computer Secu-

rity { Proceedings of ESORICS 92, volume 648 of LNCS, pages 435{450,

Toulouse, France, November 23{25, 1992. Springer-Verlag.

[19] L. Halme and B. Kahn. Building a security monitor with adaptive user work

pro�les. In Proceedings of the 11th National Computer Security Conference,

Washington DC, October 1988.

[20] Lawrence R. Halme and Kenneth R. Bauer. AINT misbehaving|A taxon-

omy of anti-intrusion techniques. In Proceedings of the 18th National Infor-

mation Systems Security Conference, pages 163{172, Baltimore, MD, USA,

81

October 1995. National Institute of Standards and Technology/National

Computer Security Center.

[21] Todd Heberlein, Gihan Dias, Karl Levitt, BiswanathMukherjee, Je�Wood,

and David Wolber. A network security monitor. In Proceedings of the 1990

IEEE Symposium on Research in Security and Privacy, pages 296{304.

IEEE, IEEE Comput. Soc. Press, Los Alamitos, CA, USA, 1990.

[22] Judith Hochberg, Kathleen Jackson, Cathy Stallings, J. F. McClary, David

DuBois, and Josehpine Ford. NADIR: An automated system for detecting

network intrusion and misuse. Computers & Security, 12(3):235{248, 1993.

[23] Koral Ilgun. USTAT: A real-time intrusion detection system for UNIX. In

Proceedings of the 1993 IEEE Symposium on Security and Privacy, pages

16{28, Oakland, California, May 24{26, 1993. IEEE Computer Society

Press.

[24] Koral Ilgun, Richard A Kemmerer, and Phillip A Porras. State transition

analysis: A rule-based intrusion detection approach. IEEE Transactions

on Software Engineering, 21(3):181{199, March 1995.

[25] Kathleen A Jackson, David H DuBois, and Cathy A Stallings. An expert

system application for network intrusion detection. In Proceedings of the

14th National Computer Security Conference, pages 215{225, Washington,

D.C., October 1{4, 1991. National Institute of Standards and Technol-

ogy/National Computer Security Center.

[26] Kurt Jensen. Coloured Petri Nets|Basic Concepts I. Springer Verlag,

1992.

[27] C. Kahn, P. Porras, S. Staniford-Chen, and B. Tung. A common in-

trusion detection framework. Submitted to the Journal of Computer

Security, available through: http://seclab.cs.ucdavis.edu/cidf/papers/jcs-

draft/cidf-paper.ps, July 1998.

[28] T J Killian. Processes as �les. In Proceedings of the USENIX Summer

Conference, pages 203{207, Salt Lake City, Utah, 1984. USENIX Associa-

tion.

[29] Calvin Ko. Execution Monitoring of Security-critical Programs in a Dis-

tributed System: A Speci�cation-based Approach. PhD thesis, Department

of Computer Science, University of California at Davis, USA, 1996.

[30] Calvin Ko, George Fink, and Karl Levitt. Automated detection of vulner-

abilities in privileged programs by execution monitoring. In Proceedings of

the 10th Annual Computer Security Applications Conference, volume xiii,

pages 134{144. IEEE, IEEE Computer Society Press, Los Alamitos, CA,

USA, 1994.

[31] Calvin Ko, M. Ruschitzka, and K Levitt. Execution monitoring of security-

critical programs in distributed systems: A speci�cation-based approach.

In Proceedings of the 1997 IEEE Symposium on Security and Privacy, vol-

ume ix, pages 175{187, Oakland, CA, USA, May 1997. IEEE, IEEE Com-

puter Society Press, Los Alamitos, CA, USA. IEEE Cat. No. 97CB36097.

82

[32] Sandeep Kumar. Classi�cation and Detection of Computer Intrusions. PhD

thesis, Purdue University, West Lafayette, Indiana, August 1995.

[33] Sandeep Kumar and Eugene H. Spa�ord. An application of pattern match-

ing in intrusion detection. Technical Report CSD-TR-94-013, The COAST

Project, Dept. of Computer Sciences, Purdue University, West Lafayette,

IN, USA, June 17 1994.

[34] Sandeep Kumar and Eugene H. Spa�ord. A pattern matching model for

misuse intrusion detection. In Proceedings of the 17th National Computer

Security Conference, pages 11{21, Baltimore MD, USA, 1994. NIST, Na-

tional Institute of Standards and Technology/National Computer Security

Center.

[35] Sandeep Kumar and Eugene H. Spa�ord. A software architechture to sup-

port misuse intrusion detection. Technical report, The COAST Project,

Dept. of Comp. Sciences, Purdue Univ.,West Lafayette, IN, 47907{1398,

USA, March 17 1995.

[36] Ulf Lindqvist. Observations on the Nature of Computer Security Intrusions.

Licentiate thesis, School of Electrical and Computer Engineering, Chalmers

University of Technology, G�oteborg, Sweden, 1996.

[37] Ulf Lindqvist and Erland Jonsson. How to systematically classify computer

security intrusions. In Proceedings of the 1997 IEEE Symposium on Security

& Privacy, pages 154{163, Oakland, CA, USA, May 4{7 1997. IEEE, IEEE

Computer Society Press, Los Alamitos, CA, USA.

[38] Ulf Lindqvist, Douglas Moran, Phillip A Porras, and Mabry Tyson. De-

signing IDLE: The intrusion data library enterprise. Abstract presented

at RAID '98 (First International Workshop on the Recent Advances in

Intrusion Detection), Louvain-la-Neuve, Belgium, September 14{16, 1998.

[39] Richard P. Lippmann, Isaac Graf, S. L. Gar�nkel, A. S. Gorton, K. R.

Kendall, D. J. McClung, D. J. Weber, S. E. Webster, D. Wyschogrod,

and M. A. Zissman. The 1998 DARPA/AFRL o�-line intrusion detection

evaluation. Presented to The First Intl. Workshop on Recent Advances

in Intrusion Detection (RAID-98), Lovain-la-Neuve, Belgium, No printed

proceedings, September 14{16, 1998.

[40] Teresa F Lunt. Automated audit trail analysis and intrusion detection: A

survey. In Proceedings of the 11th National Computer Security Conference,

pages 65{73, Baltimore, Maryland, October 17{20, 1988. National Institute

of Standards and Technology/National Computer Security Center.

[41] Teresa F. Lunt, R. Jagannathan, Rosanna Lee, Sherry Listgarten, David L.

Edwards, Peter G. Neumann, Harold S. Javitz, and Al Valdes. IDES: The

enhanced prototype, A real-time intrusion detection system. Technical Re-

port SRI Project 4185-010, SRI-CSL-88-12, CSL SRI International, Com-

puter Science Laboratory, SRI Intl. 333 Ravenswood Ave., Menlo Park, CA

94925-3493, USA, October 1988.

83

[42] Teresa F. Lunt, Ann Tamaru, Fred Gilham, R. Jagannathan, Caveh Jalali,

and Peter G. Neuman. A real-time intrusion-detection expert system

(IDES). Technical Report Project 6784, CSL, SRI International, Com-

puter Science Laboratory, SRI Intl. 333 Ravenswood Ave., Menlo Park,

CA 94925-3493, USA, February 1992.

[43] N. McAuli�e, Wolcott. D, Schaefer. L, Kelem. N, Hubbard. B, and Haley. T.

Is your computer being misused? A survey of current intrusion detection

system technology. In Proceedings of the Sixth Annual Computer Secu-

rity Applications Conference, volume xx+451, pages 260{272. IEEE, IEEE

Comput. Soc. Press, Los Alamitos, CA, USA, 1990. Cat.No.90TH0351{7.

[44] Ludovic M�e. Genetic algorithms, An alternative tool for security audit

trails analysis. Presented at RAID, 1:st Workshop on Recent Advances in

Intrusion Detection, October 1998. Author's address: SUP�ELEC, B.P. 28,

35511 Cesson S�evign�e Cedex, France.

[45] Biswanath Mukherjee, L Todd Heberlein, and Karl Levitt. Network intru-

sion detection. IEEE Network, 8(3):26{41, May/June 1994.

[46] Vern Paxon. Bro: A system for detecting network intruders in real-time.

In Proceedings of the 7th USENIX Security Symposium, San Antonio, TX,

USA, January 1988. USENIX, USENIX Association. Corrected version, x7

overstated the traÆc level on the FDDI ring by a factor of two.

[47] Philip A Porras and Peter G Neumann. EMERALD: Event monitoring en-

abling responses to anomalous live disturbances. In Proceedings of the 20th

National Information Systems Security Conference, pages 353{365, Balti-

more, Maryland, USA, October 7{10 1997. National Institute of Standards

and Technology/National Computer Security Center.

[48] Philip A Porras and Alfonso Valdes. Live traÆc analysis of TCP/IP gate-

ways. In Proceedings of the 1998 ISOC Symposium on Network and Dis-

tributed Systems Security, San Diego, California, March 11{13 1998.

[49] Thomas H. Ptacek and Timothy N. Newsham. Insertion, evasion, and

denial of service: Eluding network intrusion detection. Technical report,

Secure Networks Inc., January 1998. Available via the web:http//... at the

time of writing.

[50] Michael M Sebring, Eric Shellhouse, Mary E Hanna, and R Alan White-

hurst. Expert systems in intrusion detection: A case study. In Proceedings

of the 11th National Computer Security Conference, pages 74{81, Balti-

more, Maryland, October 17{20, 1988. National Institute of Standards and

Technology/National Computer Security Center.

[51] S.E. Smaha. Haystack: An intrusion detection system. In Proceedings of

the IEEE Fourth Aerospace Computer Security Applications Conference,

Orlando, FL, USA, December 1988. IEEE, IEEE Computer Society Press,

Los Alamitos, CA, USA.

[52] Steven R Snapp, Stephen E Smaha, Daniel M Teal, and Tim Grance. The

DIDS (distributed intrusion detection system) prototype. In Proceedings

84

of the Summer USENIX Conference, pages 227{233, San Antonio, Texas,

June 8{12, 1992. USENIX Association.

[53] S. Staniford Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoag-

land, K Levitt, C. Wee, R. Yip, and D. Zerkle. GrIDS|A graph based

intrusion detection system for large networks. In Proceedings of the 19th

National Information Systems Security Conference, 1996.

[54] H S Vaccaro and G E Liepins. Detection of anomalous computer session

activity. In Proceedings of the 1989 IEEE Symposium on Security and Pri-

vacy, pages 280{289, Oakland, California, May 1{3, 1989. IEEE Computer

Society Press.

[55] Wietse Venema. TCPWRAPPER: Network monitoring, access control and

booby traps. In Proceedings of the 3rd USENIX UNIX Security Symposium,

pages 85{92, Baltimore, Maryland, September 14{16, 1992. USENIX As-

sociation.

[56] Greg Vert, Deborah A. Frincke, and Jesse C. McConnell. A visual math-

ematical model for intrusion detection. In Proceedings of the 21st Na-

tional Information Systems Security Conference, Crystal City, Arlington,

VA, USA, October 5{8 1998. NIST, National Institute of Standards and

Technology/National Computer Security Center.

[57] Christina Warrender, Stephanie Forrest, and Barak Perlmutter. Detecting

intrusions using system calls: Alternative data models. In IEEE Symposium

on Security and Privacy, pages 133{145, Berkeley, California, May 1999.

[58] G. White and V. Pooch. Cooperating security managers: Distributed in-

trusion detection systems. Computers & Security, Vol. 15(No. 5):441{450,

1996. Elsevier Science Ltd.

85

