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Abstract

Clustering has been one of the most widely studied top-
ics in data mining and k-means clustering has been one of
the popular clustering algorithms. K-means requires several
passes on the entire dataset, which can make it very expensive
for large disk-resident datasets. In view of this, a lot of work
has been done on various approximate versions of k-means,
which require only one or a small number of passes on the
entire dataset.

In this paper, we present a new algorithm, called Fast and
Exact K-means Clustering (FEKM), which typically requires
only one or a small number of passes on the entire dataset,
and provably produces the same cluster centers as reported
by the original k-means algorithm. The algorithm uses sam-
pling to create initial cluster centers, and then takes one or
more passes over the entire dataset to adjust these cluster
centers. We provide theoretical analysis to show that the clus-
ter centers thus reported are the same as the ones computed
by the original k-means algorithm. Experimental results from
a number of real and synthetic datasets show speedup be-
tween a factor of 2 and 4.5, as compared to k-means.

This paper also describes and evaluates a distributed ver-
sion of FEKM, which we refer to as DFEKM. This algorithm
is suitable for analyzing data that is distributed across loosely
coupled machines. Unlike the previous work in this area,
DFEKM provably produces the same results as the origi-
nal k-means algorithm. Our experimental results show that
DFEKM is clearly better than two other possible options for
exact clustering on distributed data, which are down-loading
all data and running sequential k-means, or running parallel
k-means on a loosely coupled configuration. Moreover, even
in a tightly coupled environment, DFEKM can outperform
parallel k-means if there is a significant load imbalance.

1. Introduction
Clustering has been one of the most widely studied topics

in data mining. Clustering refers to techniques for grouping

similar objects in clusters. Formally, given a set of � dimen-
sional points and a function �����	��
��
������ that gives the
distance between two points in ��� , we are required to com-
pute � cluster centers, such that the points falling in the same
cluster are similar and points that are in different cluster are
dissimilar.

Most of the initial clustering techniques were developed
by statistics or pattern recognition communities, where the
goal was to cluster a modest number of data instances. How-
ever, within the data mining community, the focus has been
on clustering large datasets. Developing clustering algo-
rithms to effectively and efficiently cluster rapidly growing
datasets has been identified as an important challenge. For
example, Ghosh states “The holy grail of scalable clustering
can be to find near linear algorithm that involve only a small
number of passes through the database” [13].

In this paper, we address the problem of fast data clus-
tering on a very large and out-of-core datasets, using one
or a small number of passes over the data, without compro-
mising on its result. Our work is in the context of k-means
clustering. K-means clustering algorithm was developed by
MacQueen [22] in 1967 and later improved by Hartigan [16].
Bottou and Bengio [3] proved the convergence properties of
the k-means algorithm. It has been shown to be very useful
for a corpus of practical applications. The original k-means
algorithm works with memory resident data, but can be easily
extended for disk-resident datasets.

The main problem with the k-means algorithm is that it
makes one scan over the entire dataset for every iteration, and
it needs many such iterations before converging to a quality
solution. This makes it potentially very expensive to use,
particularly for large disk-resident datasets. A number of
algorithms or approaches focus on reducing the number of
passes required for k-means [4, 5, 10, 14]. However, these ap-
proaches only provide approximate solutions, possibly with
deterministic or probabilistic bounds on the quality of the so-
lutions. A key advantage of k-means has been that it con-
verges to a local minimum [15], which does not hold true for
the approximate versions.
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Therefore, an interesting question is, “Can we have an al-
gorithm which requires fewer passes on the entire dataset,
and can produce the same results as the original k-means al-
gorithm?”. In this paper, we present an algorithm that makes
one or a few passes over the data and produces the exact clus-
ter centers as would be generated by the original k-means al-
gorithm. We refer this algorithm as Fast and Exact K-Means
algorithm, denoted by FEKM.

The main idea in the algorithm is as follows. We initially
sample the data and run the original k-means algorithm. We
store the centers computed after each iteration of the run of
the k-means on the sampled data. We now use this informa-
tion and take one pass over the entire dataset. We identify
and store the points which are more likely to shift from one
cluster to another, as the cluster centers could move. These
points are now used to try and adjust the cluster centers.

We provide theoretical analysis to show that the algorithm
produces the same cluster centers. In the worst case, the al-
gorithm can require the same number of passes as the orig-
inal k-means. However, our detailed experimental analysis
on several synthetic and real datasets shows that it requires
at most 3 passes, whereas, the average number of passes re-
quired is less than 1.5. This results in speedups between 2
and 4.5 as compared to the original k-means.

This paper also describes and evaluates a distributed ver-
sion of FEKM, which we refer to as DFEKM. This algo-
rithm is suitable for analyzing data that is distributed across
loosely coupled machines. Unlike the previous work in this
area, DFEKM provably produces the same results as the
original k-means algorithm. Our experimental results show
that DFEKM is clearly better than two other possible op-
tions for exact clustering on distributed data, which are down-
loading all data and running sequential k-means, or running
parallel k-means on a loosely coupled configuration. More-
over, even in a tightly coupled environment, DFEKM can
outperform parallel k-means if there is a significant load im-
balance.

The outline of the rest of the paper is as follows. In Sec-
tion 2, we discuss the related work. In Section 3, we present
the main ideas of the FEKM algorithm and explain the details
of the pseudo code of the algorithm. In Section 4, we provide
the theoretical framework for the algorithm. The experimen-
tal results from FEKM are provided in Section 5. The dis-
tributed version of the FEKM and its evaluation is presented
in Section 6. We conclude in Section 7.

2. Related Work

There has been an extensive study on clustering algorithms
in the literature. Comprehensive survey on this subject can
be obtained from the book [17] and papers [2, 13]. In this
discussion, we limit ourselves to the improvements over k-
means.

Moore and Pelleg [26] proposed a variant of k-means us-
ing a k-d tree based data structure to store distance informa-

tion, which can make each iteration of k-means significantly
faster. This algorithm focuses on the in-core datasets.

Bradley and Fayyad [4] have developed a single pass ap-
proximation of multi-pass k-means. This algorithm summa-
rizes the input points based on their likely-hood to belong to
different centers. Farnstorm and his colleagues [11] have
further refined this idea.

Domingos and Hulten [10] proposed a faster version (sub-
linear) of k-means using sampling based on Hoeffding or
similar statistical bound. The algorithm consists of a num-
ber of runs of k-means with sample where in every iteration
sample size is increased to maintain the loss bound from the
multi-pass k-means. The goal here is to converge to a so-
lution which is close to that of a multi-pass k-means by a
predefined bound with good probability. Motwani, Charikar,
and their colleagues [6, 1, 24, 14, 5] proposed a series of con-
stant factor approximation algorithms for one pass � -center
and � -median problems.

More recently, Nittel et. al. [23] propose to apply k-
means algorithm to cluster massive datasets, scanning the
dataset only once. Their algorithm splits the entire dataset
into chunks, and each chunk can fit into the main mem-
ory. Then, it applies k-means on each chunk of data, and
merge the clustering results by another k-means type algo-
rithm. Good results are shown for a real dataset, however, no
theoretical bounds on the results are established.

All of the above efforts on reducing the number of passes
on the data involve algorithms that cannot maintain the exact
result which will be obtained using a multi-pass k-means al-
gorithm. Developing an algorithm with this goal is the focus
of our work.

3. Algorithm Description
This section describes new algorithm, Fast and Exact K-

means (FEKM) that we have developed. Initially, we de-
scribe the main ideas behind the algorithm. Then, we give
some formal definitions, present and explain the pseudo-
code, and explain some of the choices we have made in our
current implementation.

3.1. Main Ideas

The basic idea behind our algorithm is as follows. We be-
lieve that approximate cluster centers computed using sam-
pling can be corrected and moved to exact cluster centers us-
ing only one or a small number of passes on the entire data.
By exact cluster centers, we mean the cluster centers that are
computed by the original k-means algorithm. Thus, we can
use sampling to speedup the computation of exact clusters.

There are three key questions to be addressed. First, when
approximate cluster centers are computed using sampling,
what information need to be stored. Second, how can this
information be used to avoid a large number of passes on the
entire dataset. Third, how do we know that we have computed
the same cluster centers as in the original k-means algorithm.
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We initially run the k-means algorithm on a sample, us-
ing the same convergence criteria and same initial points as
we would use for the k-means. The following information is
stored for future use. After every iteration of k-means on the
sampled data, we store the � centers that have been computed.
In addition, we compute and store another value, referred to
as the Confidence Radius of each cluster, whose computation
will be described later. This information can be stored in a
table with � columns, and the number of rows equaling the
number of iterations for which k-means was run on the sam-
pled data. Each entry of the table contains a tuple (center,
radius) for each cluster.

Next, we take one pass through the entire dataset. For
every point and each row of the table, we compute the cluster
to which this point will be assigned at this iteration, assuming
that executing the algorithm on the entire dataset produces
the same cluster centers as the initial run on sampled data.
Next, we try to estimate how likely it is that this point will be
assigned to a different cluster when the algorithm is executed
on the entire dataset.

Our goal is to identify and store the points which could
be assigned to a different cluster during any of the iterations.
These points are refereed to as boundary points, because intu-
itively, they fall at the boundary of the clusters. If these points
could be identified and stored in memory, we can eliminate
any need for any further passes on the entire dataset. How-
ever, we can only estimate these points, which means that we
could require additional passes if our estimate is not correct.

Thus, for a given point and row of the table, we determine
if this point is a boundary point. If it is, it is stored in a buffer.
Otherwise, we update the sufficient statistics tuple, which has
the number and sum of the data points for the cluster.

After the pass through the dataset and storing the bound-
ary point, we do the following processing. Starting from the
first row of the table, we recompute centers using the bound-
ary points and sufficient statistics tuple. If any of the new
computed centers fall outside the pre-estimated confidence
radius which means that our computation of boundary points
is not valid, we need to take another pass through the data.
We use the new centers as new initialization points and again
repeat all the steps. However, if the new computed centers
are within the confidence radius, we use these centers for the
next iteration and continue. The key observation is that using
cluster centers from sampling, boundary points, and sufficient
statistics, we are able to compute the same cluster centers that
we would have gotten through one pass on the entire dataset.
Finally, the algorithm terminates by checking for the same
termination condition that one would use in the original algo-
rithm.

3.2 Formal Definitions
This subsection formalizes some of the ideas on which the

algorithm is based.
Suppose we execute the original k-means algorithm on the

complete dataset At ����� iteration, the � centers are denoted

by ��� ������� !�#"$"#"��%���& , respectively. In the new algorithm, FEKM,
initially the k-means algorithm is executed on the sampled
dataset with the same initialization. At �'��� iteration, let the �
centers be denoted as (�� � �)(*� �$"#"$"#��(*�& , respectively. For conve-
nience, the first � centers are called as the k-means centers,
and the later � centers are called as the sampling centers.

Further, for each sampling center (��+ , FEKM associates
a confidence radius, , �+ with it. The confidence radius , �+ is
based upon an estimate of the upper-bound of the distance be-
tween the sampling center (��+ and the corresponding k-means
center � �+ . Ideally, the confidence radius , �+ should be small,
but should still satisfy the condition �.-��#�+ �)(*�+$/10 ,2�+ , where �
is the distance function.

Now, consider the scan of the complete dataset taken by
FEKM. As we discussed before, the sampling centers are
stored in a table with � columns, where the �3��� row repre-
sents the � ��� iteration. To facilitate our discussion, we call
the closest center among a set of � centers for a point as the
owner of this point.

Definition 1 For any point 4 in the complete dataset, assum-
ing (*�+ to be the owner of point 4 with respect to the sampling
centers at the � -th iteration, if there exists 56�%5879;: , such that< 0 �.-=( �> �=4 /@? �A-B( �+ ��4 /C0 , �+CD , �>
then, 4 is a boundary point for the � -th iteration.

The complete set of boundary points is the union of bound-
ary points for all iterations. Thus, the complete set of bound-
ary points includes the points in the entire dataset whose own-
ers with respect to the k-means centers are quite likely to be
different from the owners with respect to the sampling cen-
ters, for one or more of the iterations.

For a given iteration � , the stable points are the points in
the complete dataset that are not boundary points for the �6���
iteration. Usually, for any stable point, the difference between
its distance to its owner with respect to the sampling cen-
ters and its distance to other sampling centers is quite large.
Mathematically, assuming (��+ to be owner of the point 4 with
respect to the sampling centers at the � -th iteration, for any56�%5879;: , we have�.-=( �> �=4 /@? �A-B( �+ ��4 /FE , �+ D , �>
3.3 Detailed Description

The detailed algorithm is shown in Figure 3.2. We now
explain the algorithm.

The main data structure in FEKM is the table containing
the summary of k-means run on sample data. We call this
table as the cluster abstract table or the CAtable. Our al-
gorithm starts with building a CAtable from a sample of the
original dataset. Initially, each entry of the CAtable contains
the two tuple, the center and the confidence radius of each
cluster in that iteration. This is done through the function
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Input: G � (Data Points), H � (Sample Data Points),IKJ ��L6MNL'O!( (Initial Centers), P (Stopping criteria
in kmeans algorithm)

Output: � Cluster Centers
begin�Q5�RTSVU ?XW ;

while flag doY �3(#L[Z]\^�^�Q_#O�U ?a`cb Y8Y ;IKJ �d_*egf h^U ?i`jb YkY ;l R�mn5�_oM�p	L3R�mn5=_qU ?i`cb YkY ;` \Arts�u�v U ? BuildCATable(
ITJ ��L6MNL'O!( ,H � , M�p	L3R�mn5�_ , P ) ;

for each G � do
for each O2u�v +�w ` \Arts�u�v do

if -BM�5�u!(*_2($L6M�_ J L3_*O�U ? IsBndrPoint( G � / )
then
BufferInsert( G � ) ;IKJ �d_*egf Z J �xM J L�h�f : hQU ?yW ;Z J �xM J L DiD ;

else
UpdateSufficientStats(M�5�u!(*_2($L6MNL'O , M�p�L3Rxm�5�_ , G � , O�u�v + )
;

end
end

end
for each O2u�v + w ` \.rzs�u�v do` _*vqMNL'O!(1U ? RecomputeCtrs( M�p�L3R�mn5�_ ,Z�\Q�^�Q_*O , ITJ �T_*e , O�u�v + ) ;

if (IsCtrsWithinRadii( ` _*vqMNL'O!( ,M�p�L3Rxm�5�_ , O2u�v +%{ � ) then
UpdateCATableCtrs( ` _*vqMNL'O!( ,M�p	L3R�mn5=_ , O�u�v +%{ � ) ;�Q5�RTS|U ? < ;

elseITJ �BL6MNL'O!(NU ?a` _*vqMNL'O!( ;�Q5�RTS|U ?yW ;
end

end
end
OutputCATableCtrs( M�p	L3R�mn5�_ , O2u�v
}o~��o�[�6� )
;

end

Algorithm 1: Pseudo Code of Fast and Exact Out of Core
KMeans (FEKM).

BuildCATable. After this, we take one scan over the com-
plete dataset and find out the likely boundary points for each
iteration or for each row of the table. The function IsBndr-
Point checks for each data point if it meets the conditions of
being a boundary point.

If one point becomes a boundary point for one particular
row, it is possible that the same point also be a boundary point
for the next rows or next iterations of the CAtable. We define
two lists, one to store the points and another to store the in-
dexes of the rows where these points are found as boundary
point. The first list is named as Buffer and the second list is
named as Index. The second list is two dimensional where
each row signifies one specific point and each column has �
bits, where � is the number of iterations or rows in CAtable.
If the specific point is found as a boundary point in the : -th
row of the CAtable, then the : -th bit of the corresponding
column of the Index list is set to 1. We also store the number
and sum of the non-boundary points with each CAtable entry.
The function UpdateSufficientStats accomplishes this.

Next, we recompute centers for each row of the CAtable
from the boundary points corresponding to that row and from
the sufficient statistics. In the Figure 3.2, it has been done by
the function RecomputeCtrs. We then verify if the new cen-
ters are located within the pre-estimated confidence radius to
maintain the correctness. The function IsCtrsWithinRadii is
responsible for this verification. If we find that the new cen-
ters are located within the confidence radius of correspond-
ing clusters, we update the centers of the CAtable in the next
row using the function UpdateCAtableCtrs. If any of the new
centers is found outside the confidence radius of the corre-
sponding cluster, the initial centers are replaced by those new
centers and the algorithm repeats from the creation of CAt-
able.

3.4. Computation of Confidence Radius
The computation of confidence radius for each cluster and

each iteration is an important aspect of the algorithm. Large
radius values are likely to result in a large number of bound-
ary points, which cannot be stored in memory. At the same
time, very small confidence radius values could mean that
the difference between corresponding sampling centers and
k-means centers could be greater than this value, and there-
fore, an additional pass on the entire dataset may be required.

In our implementation, we use the following method for
computing the confidence radius. Recall that at the iteration� , the confidence radius for the cluster : is denoted by , �+ . We
use , �+ 9 ��
 �	� }��� � -�� � ? ��� /` �c��
where, � � denotes a � dimensional point assigned to the clus-
ter : at the iteration � , � � is the center of the cluster : at it-
eration � , ` is the number of points assigned to the cluster : ,
and � is a factor that is chosen experimentally. For a fixed � ,
the above expression will choose confidence radius value that
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is proportional to the average distance of a point in the clus-
ter to the cluster center. This ensures small confidence radius
values for a dense cluster, and larger radius values otherwise.

Clearly, a problem that can arise is that number of bound-
ary points can be huge and in the worst case, can also exceed
memory size. Thus, in our implementation, we have two con-
ditions on the number of boundary points. First, they should
not exceed 20% of all points in the complete dataset. Sec-
ond, they should not exceed the available memory. If during
an execution, the number of boundary points violate either of
the above two conditions, we reduce all the confidence radii
by choosing a lower value of � , and repeat the computation
of boundary points. For our experiments, the value of � was
always fixed at 0.05.

4 Theoretical Analysis
In this section, we initially present a proof of correctness

for the FEKM algorithm. Then, we also analyze the execu-
tion time of this algorithm.

4.1 Proof of Correctness
We now show how FEKM computes the same cluster cen-

ters as k-means. Our description here builds on the defini-
tions of k-means centers, sampling centers, owners, bound-
ary points, and stable points given in the previous section.
We further add the definition of changing points.

Definition 2 For the �'��� iteration, the changing points are
defined as the points in the dataset that have different owners
with respect to the sampling centers and the k-means centers.

Lemma 1 Suppose at �'��� iteration, the following condition
holds for each center : , W�0 : 0 � ,�.-=( �+ ��� �+ /o0 , �+
Then, the stable points will have the same owners with respect
to the sampling centers and the k-means centers, and the set
of changing point is a subset of the set of boundary points.

Proof:Consider any point 4 in the complete dataset, and
let (#�+ be the owner of 4 with respect to the sampling centers at
the ����� iteration. For any 56�%5k79;: , from the triangle inequality,
we have�A-B( �+ �=4 /@? �A-B( �+ �%� �+ /C0 �.-�� �+ �=4 /C0 �A-B( �+ �=4 / D �A-B( �+ �%� �+ /�A-B( �> ��4 /�? �A-B( �> �%� �> /o0 �A-=� �> �=4 /C0 �A-B( �> �=4 / D �A-B( �> �%� �> /
Further, applying the condition that is assumed, we can have
the following inequalities�.-=( �+ ��4 /@? , �+ 0 �.-�� �+ �=4 /C0 �A-B( �+ �=4 / D , �+�.-=( �> �=4 /�? , �> 0 �A-=� �> �=4 /C0 �A-B( �> �=4 / D , �>
Therefore,�.-=( �> �=4 /@? �A-B( �+ ��4 /@? , �> ? , �+ 0 �A-=� �> �=4 /@? �A-=� �+ �=4 /

Case 1: If 4 is a stable point,�A-B( �> �=4 /@? �A-B( �+ ��4 /CE , �> D , �+
Therefore, we have the inequality<�� �A-=� �> ��4 /@? �.-�� �+ �=4 /
This suggests that the center : is still the owner of the point4 .
Case 2: If the point 4 changes its owner in the complete
dataset, there exists a center 5 , such that�.-�� �> �=4 /@? �A-=� �+ ��4 / �i<
Therefore, we have�A-B( �> �=4 /@? �A-B( �+ ��4 /C0 , �> D , �+
This suggests that the point 4 is a boundary point. Combining
both cases, we prove the lemma.

Lemma 2 If FEKM has computed the k-means correctly at
the ����� iteration, and at the �'��� iteration, the condition�.-=( �+ �%� �+ /�0 , �+�� : � W�0 : 0 �
holds, then FEKM will compute the k-means centers for the
iteration � D W correctly.

Proof:This follows the result of Lemma 1. The stable
points will have the same owners with respect to sampling
centers and the k-means centers at the �'��� iteration. There-
fore, in the ����� row in the M�p	L3R�mn5�_ , we maintain the cor-
rect and sufficient statistics to summarize the stable points.
Further, after the �'��� iteration, each boundary point can be
assigned to the correct owner since we have the correct k-
means centers for the �'��� iteration. Therefore, each center
in the � ��� iteration owns the correct partition of the complete
dataset, and the k-means centers of the iteration � D W can be
computed correctly.

Theorem 1 Suppose that for each iteration ��� < 0 � 0 r ,
the condition �.-=( �+ �%� �+ /�0 , �+�� : � W�0 : 0 �
holds, and at the iteration r D W , this condition does not hold.
Then, for each iteration �)� < 0 � 0 r D W , the k-means centers
of the ����� iteration can be computed correctly by FEKM.

Proof:This can be proved inductively. For the base case,
we use the fact that at iteration 0, the same initialization cen-
ters are used by k-means and FEKM. For the induction step,
we use the Lemma 2.

Theorem 2 Assuming the same termination condition,
FEKM will iterate the same number of times for the centers
as the k-means algorithm, and at each iteration, will generate
the same centers as the k-means algorithm.
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Proof:Recall that once the FEKM algorithm finds that the
distance between sampling centers and k-means centers is
greater than the confidence radius, it will sample again and
take the k-means centers at that iteration as the initialization
centers. Using this, and the Theorem 1, we have the above
result.

4.2 Analysis of Performance
We now analyze the execution time for our algorithm, and

compare it with that of original k-means.
Let the number of iterations that k-means takes on entire

dataset be
J

. Let the I/O cost for reading the dataset once beM8� , and let the computing cost (besides the I/O cost) associ-
ated with each pass on the complete dataset be M	� . Therefore,
the total running time of k-means algorithm

l &*� �
�3���K� can be
expressed as lQ�	� 9 J 
j-BMC� D MC� /

Now, let us consider our algorithm. Let � denote the num-
ber of times we need to sample the dataset. Also, let the size
of each sample be a fraction H�H of the entire dataset. Further,
let the execution of k-means on the sampled dataset require an
average of r iterations. This suggests that the total number
of rows that are maintained in FEKM is r 
�� . Therefore,
the total running time of FEKM algorithm

l[�
¡g�	�
can be

expressed asl^¢[¡g�	� 9 �£
¤-=H�Hi
¤-=MC� D Mo� / D MC� D r¥
�MC� /9 �¦
j-BH�H D W*/ 
�M8� D �¦
¤-=H�H D r / 
�Mo�
From the expression above, we can see that in most cases,

FEKM has higher computing cost than the k-means algo-
rithm, since usually, FEKM has to compute more rows
( �§
�r ) than the number for k-means (

J
). For execution

on disk-resident datasets, the computing cost of k-means is
typically much smaller than the I/O cost. Also, if we have the
ability to overlap computation and I/O, the overall execution
time reduces to the maximum of the I/O and computational
costs, which is likely to be the I/O cost. In either case, we
can see that if � is small, FEKM will be much faster than
the k-means algorithm.

Our experiments have shown that � is 1 in most cases,
and at most 2 or 3. Furthermore, a sampling fraction of 5%
or 10% is usually sufficient. For such cases, the above expres-
sions suggest a clear advantage for the FEKM algorithm. The
next section further demonstrates this through experimental
results.

5. Experimental Results from FEKM
This section reports on a number of experiments we con-

ducted to evaluate the FEKM algorithm. Our experiments
were conducted using a number of synthetic and real datasets.
Our main goal was to compare the execution time of our al-
gorithm with that of the k-means algorithm. Additionally,
we were interested in seeing how many passes over the en-
tire dataset were required by the FEKM algorithm. All our

c e d ¨ dataset with e clusters and ¨ dimensionsI��	�
No. of iterations in k-means.

Init “g” good initialization
Init “b” bad initializationl �	�

Running Time of k-means (Sec.)l^¢[¡g�	�
Running Time of FEKM (Sec.)

SS Sample Size (%)� Number of Passes by FEKM(*_ Squared Error between final centers
and the centers after sampling

Table 1. Explanation of the notations used in
the result tables.

experiments were conducted on 700 MHz Pentium machines
with 1 GB memory.

In all the experiments, the initial center points and the
stopping criteria for this algorithm are kept same as those
of the k-means algorithm. As the performance of k-means
is very sensitive to the initialization, we considered differ-
ent initializations. We used two different initialization tech-
niques. In the first technique, which could only be applied for
the synthetic datasets, we perturbed each dimension in the
original center points of the Gaussians which were used to
generate the data sets. Two different initializations, referred
to as good and bad, were obtained by varying the range of
perturbation. In the second technique, we randomly selected
the initial center points from a sample of the dataset, such
that distance between any two points chosen is greater than
a threshold. In this case, the good and the bad initializations
corresponded to a large and small value of this threshold, re-
spectively.

Data ©�ª�« Init ¬Aª�« ¬A­A®Aª�« SS ¯
c5d200 3 g 1452.83 644.66 10 1
c5d200 3 g 1452.83 571.22 5 1
c5d100 6 b 2688.65 902.81 10 1
c5d100 6 b 2688.65 762.47 5 1
c5d50 8 b 3602.31 1114.62 10 2
c5d50 8 b 3602.31 987.43 5 2
c5d20 8 b 3313.84 1098.41 10 1
c5d20 8 b 3313.84 940.47 5 1
c5d20 2 g 829.29 507.94 10 1
c5d20 2 g 829.29 412.53 5 1
c5d10 8 g 3833.44 1633.39 10 1
c5d10 8 g 3833.44 1302.52 5 1
c5d5 6 b 3116.89 1387.13 10 1
c5d5 6 b 3116.89 1236.51 5 1

Table 2. Performance of k-means and FEKM
Algorithms on Synthetic Datasets, 5 Clusters
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Data © ª�« Init ¬ ª�« ¬ ­°®.ª�« SS ¯
c10d200 10 b 4808.48 1559.70 10 2
c10d200 10 b 4808.48 1324.38 5 2
c10d200 2 g 954.33 577.22 10 1
c10d200 2 g 954.33 459.52 5 1
c10d100 3 g 1081.45 435.25 10 1
c10d100 3 g 1081.45 386.49 5 1
c10d50 100 b 49144.98 11267.28 10 2
c10d50 3 g 1462.43 725.22 10 1
c10d50 3 g 1462.43 649.60 5 1
c10d20 10 b 4570.63 1708.57 10 2
c10d20 10 b 4570.63 1408.57 5 2
c10d10 3 g 1623.10 867.50 10 1
c10d10 3 g 1623.10 773.64 5 1
c10d5 100 b 60310.89 26491.76 10 2
c10d5 100 b 60310.89 19349.28 5 2

Table 3. Performance of k-means and FEKM
Algorithms on Synthetic Datasets, 10 Clusters

Data ©�ª�« Init ¬Aª�« ¬A­°®.ª�« SS ¯
c20d200 100 b 54862.33 27388.85 10 2
c20d200 3 g 1898.65 746.51 10 1
c20d200 3 g 1898.65 584.88 5 1
c20d100 100 b 41029.15 18106.51 10 2
c20d100 3 g 1233.12 646.75 10 1
c20d100 3 g 1233.12 585.63 5 1
c20d50 3 g 1796.30 938.90 10 1
c20d50 3 g 1796.30 882.36 5 1
c20d20 10 b 5335.15 2528.11 10 2
c20d20 10 b 5335.15 2112.42 5 2
c20d10 6 g 3919.08 1814.73 10 1
c20d10 6 g 3919.08 1643.75 5 1
c20d5 6 b 4619.95 2899.76 10 1
c20d5 6 b 4619.95 2353.41 5 1

Table 4. Performance of k-means and FEKM
Algorithms on Synthetic Datasets, 20 Clusters

We used two convergence criteria. The algorithm stops
when (1) the new centers are not sufficiently different from
those generated in the previous iteration, or (2) it has run for a
specified maximum number of iterations. The second criteria
is useful with bad initializations, where the algorithm could
run for a large number of iterations. The notation used in the
tables containing the results of the experiments are explained
in the Table 1.

5.1 Evaluation with Synthetic Datasets
The evaluation with synthetic datasets was done using 18

1.1 GB datasets and 2 4.4 GB datasets. The datasets involve
different number of clusters and dimensions. For generating

Data © ª�« Init ¬ ª�« ¬ ­A®Aª�« SS ¯
c20d100 2 g 4393.02 2931.53 10 1
c20d100 2 g 4393.02 2204.42 5 1
c20d100 10 b 21985.62 8194.07 10 1
c20d100 10 b 21985.62 7467.53 5 1

c5d20 10 b 43254.34 10341.42 10 2
c5d20 10 b 43254.34 9632.71 5 2

Table 5. Performance of k-means and FEKM
Algorithms with 4.4 GB Synthetic Datasets

each synthetic dataset, points are drawn from a mixture of
fixed number of Gaussian distributions. Each Gaussian is as-
signed a random weight which determines the size of each
cluster. For each dimension, we kept the mean and variance
of each Gaussian in the interval f ?�± � ± h and f < "³²�� W " ± h , respec-
tively, to retain the flavor of the datasets used in the experi-
ments by Bradley et al. [4] and in the experiments by Farn-
storm et al. [11]. We did the experiments using 5, 10 and 20
clusters and with 5, 10, 20, 50, 100, and 200 dimensions.

We first consider the results from the 1.1 GB datasets. Ta-
bles 2, 3, and 4 show the execution times for FEKM and
original k-means with 5, 10, and 20 clusters, respectively. As
these tables show, FEKM requires one or at most two passes
on the entire dataset. FEKM is faster by a factor between 2
and 4 in almost all cases. The relative speedup of FEKM is
higher with bad initializations, where a larger number of it-
erations are required. We have considered sample sizes that
are 5% and 10% of the entire dataset. FEKM is always faster
with 5% sample size, because it reduces the execution time
for the k-means, and did not require any additional passes on
the entire dataset. The number of clusters or dimensions do
not make a significant difference to the relative performance
of the two algorithms.

Next, we consider the results from the 2 4.4 GB that we
generated. Table 5 shows these results. The first set has
20 clusters and 100 dimensions. The second dataset has 5
clusters and 20 dimensions. The relative speedup of FEKM
is between 2 and 4.5.

5.2. Evaluation with Real Data Set

We evaluated our algorithm with three publicly available
real datasets. These datasets are KDDCup99, Corel image
database, and the Reuters-21578. All these datasets are avail-
able from University of Irvine’s KDD archive1. We prepro-
cessed each of these datasets and generated feature vectors
using standard techniques, briefly described below. We then
applied k-means and the FEKM algorithm. To be able to ex-
periment with out-of-core datasets, we increased the size of
the datasets by random sampling.

It should be noticed that the running time of both the algo-

1http://kdd.ics.uci.edu

7



Data © ª@« Init ¬ ª�« ¬ ­°®.ª@« SS ¯ ´nµ
kdd99 19 g 7151 2317 10 2 4.0
kdd99 19 g 7151 2529 15 2 3.5
kdd99 19 g 7151 2136 5 2 4.2
Corel 43 g 28442 10503 10 3 2.2
Corel 43 g 28442 12603 15 3 2.15
Corel 43 g 28442 9342 5 3 3.24
Reuter 20 b 41290 10311 10 2 10.1
Reuter 20 b 41290 11204 15 2 8.6
Reuter 20 b 41290 9214 5 2 14.9

Table 6. Performance of k-means and FEKM
Algorithms, Real Datasets

rithms can vary depending on particular preprocessing of the
real dataset. In our experiments, we used simple preprocess-
ing techniques which can be improved upon. We used Eu-
clidean distance function to compute distance between two
points. Different distance metrics may help in obtaining bet-
ter quality clusters and it can also reduce number of iterations,
particularly for the datasets with categorical attributes.

The KDD Cup 99 data consists of feature vectors gener-
ated from network connection. This dataset is used for eval-
uating network intrusion detection techniques. The size of
this dataset is about 743 MB. We enumerated different sym-
bols of each type of categorical attributes. Each attribute is
normalized by dividing with the maximum value of that at-
tribute. After the preprocessing step, we obtained normal-
ized continuous-valued feature vectors of 38 dimensions. The
number of clusters specified in our experiments was 5. By su-
persampling the data, we created 5 million feature vectors for
a resulting dataset size of 1.8 GB.

Corel image database has 68,040 images of different cat-
egories. We used the 32 dimensions color histogram feature
vectors of these images which is available from UCI KDD
archive. This dataset is about 20 MB. We thus increased the
size of the dataset by randomly selecting vectors from the
dataset and created a 1.9 GB dataset containing 6,804,000
continuous-valued feature vectors. We kept the number of
clusters at 16. All attribute values are normalized between
zero to one.

Reuters text database is extensively used for text catego-
rization. We created integer-valued feature vectors of 258 di-
mensions by counting the frequency of most frequent words
in 135 different categories. Following Fayyad, Bradley and
Reina [4], we kept the number of clusters at 25 for our exper-
iments. We then increased the size of the dataset by super-
sampling and created 4.3 million records of 258 dimensions.
The size of the resulting dataset was approximately 2 GB.

Table 6 presents the experimental results from these three
real datasets. Similar to what we observed from synthetic
datasets, the speedup from FEKM is between 2 and 4.5. The

number of passes required by FEKM is either 2 or 3.
Clearly, FEKM produces the same cluster centers as the

ones from the original k-means. One question is, how do they
compare with the results from clustering the sampled data.
We report some data in this regard from the real datasets. The
column labeled se shows the squared difference between the
final centers and the centers obtained from running k-means
on sampled data. The values of all attributes were normalized
to be between 0 and 1 for the real datasets. In view of this,
we consider the reported squared errors to be significant. Fur-
ther, it should be noted that all datasets were super-sampled,
which favors sampling. Thus, we believe that using an accu-
rate algorithm like FEKM is required for getting high-quality
cluster centers.

6 Distributed Version of FEKM
This section describes the distributed version of FEKM,

which is refered to as DFEKM.

6.1 Motivation
With the emergence of the internet, web, and now grid

computing, data is increasingly being shared through data
repositories. Often, data of interest to a data analyzer is dis-
tributed across multiple data repositories. Analysis of large
and geographically distributed scientific datasets has emerged
as an important problem [7]. The challenges of develop-
ing mining algorithms for distributed datasets are well recog-
nized [20]. The biggest issue is that it is typically not feasible
to down-load the entire dataset on a single machine and apply
standard algorithms. Because the sites hosting the data are
only loosely coupled, the communication latencies are very
high and parallel algorithms cannot be directly applied either.

Now, let us consider the problem of clustering distributed
datasets. If there are no privacy considerations, one can
download the data to a local machine and then use any of the
standard algorithms for data clustering. Downloading large
volumes of data and then applying a serial clustering algo-
rithm can be very time-consuming. Moreover, this approach
also requires significant communication, storage, and com-
puting resources which may simply not be available.

Another potential approach could be to try and execute a
parallel clustering algorithm across the distributed data repos-
itories. k-means clustering algorithm has been parallelized by
many [9, 12], and has been shown to give high parallel effi-
ciency on tightly coupled parallel machines. However, these
implementations require uniform data distribution across the
nodes of the parallel machine, and one round of communica-
tion after every iteration of the clustering algorithm. If these
algorithms are executed on distributed data repositories, un-
even data distribution and high communication latencies will
likely result in poor performance.

In this section, we describe and evaluate a distributed
version of our FEKM algorithm, which is refered to as
DFEKM. This algorithm is suitable for analyzing data that
is distributed across loosely coupled machines. Unlike the
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previous work in this area [18, 19, 25, 27], our algorithm
provably produces the same results as the original k-means
algorithm.

We are not aware of any existing distributed clustering al-
gorithm which provably produces the same clusters as the
original k-means algorithm, or which maintains k-means
property of achieving a local minimum. Samatova, Ostrou-
chov and their group [27] has proposed a technique called
“Recursive Agglomeration of Clustering Hierarchies by En-
circling Tactic” (RACHET). This technique is based on suffi-
cient statistics. It collects local dendograms and then merges
them to create a global dendogram. However, this needs to
iterate until the sufficient statistics converges to the desired
quality. Parthasarathy and Ogihara [25] provided an algo-
rithm where the distance metric is formed applying associa-
tion rules locally. Kargupta and his group [19] have applied
PCA to do high dimensional clustering in a distributed fash-
ion. Januzaj et al. have recently proposed a distributed clus-
tering technique that involves creating local clusters, and then
deriving global clusters from them [18]. There have been
many efforts on parallelizing k-means, or other related clus-
tering algorithms such as k-harmonic and EM. Key efforts in
this area include Dillon and Modha [9] (for k-means), Kru-
engkrai et al. [21] and Lopez et al. [8] (both for EM), and
Forman and Zhang (for k-means, k-harmonic, and EM). All
of these approaches require data to be evenly distributed be-
tween the nodes, and one round of communication after every
pass on the data. Therefore, these approaches are not suitable
for clustering data resident on distributed repositories.

6.2 Algorithm Description
Our description in this section assumes that data to be clus-

tered is available at two or more nodes, which are referred to
as the data sources. In addition, we have a node denoted as
the central site, where the results of clustering are desired. It
is also assumed that additional computation for clustering can
be performed at the central site. We only consider horizon-
tal partitioning of the data, i.e., each data source has values
along all dimensions of a subset of the points.

Distributed version of FEKM proceeds as follows. We
sample data from each data source, and communicate it to the
central node. Then, on the central node, we run the k-means
algorithm on this sampled data. The main data structure of
FEKM, the CATable, is computed and stored. Then, we send
the table to all the data sources. Next, at each data source, we
take one pass through the portion of the dataset available at
that data source. For a given point and row of the table, we
determine if this point is a boundary point. If it is, it is stored
in a buffer. Otherwise, we update the sufficient statistics tu-
ple, which has the number and sum of the data points for the
cluster.

After the pass through the dataset and storing the boundary
point, all the nodes send their boundary points and sufficient
statistics to central node. The central node then does the fol-
lowing processing. Starting from the first row of the table, it

recomputes centers using the boundary points and sufficient
statistics tuple. If any of the new computed centers fall out-
side the pre-estimated confidence radius, which means that
our computation of boundary points is not valid, we need to
send the last corrected centers to all other nodes. Using these
centers as the new initialization points, we have to go through
another iteration and repeat all the steps. However, if the new
computed centers are within the confidence radius, we use
these centers for the next iteration and continue. Finally, the
algorithm terminates by checking for the same termination
condition that one would use in the original algorithm.

6.3 Experimental Results
We now report on a number of experiments we conducted

to evaluate the DFEKM algorithm. We initially discuss the
experiments we designed. As we stated earlier, two existing
approaches for applying k-means like clustering algorithm
on distributed datasets are: 1) down-loading data on a single
node and applying the centralized k-means algorithm, and 2)
executing parallel k-means algorithm across distributed data
sources. Our experiments compare our DFEKM algorithm
to these two approaches. As the main property of our algo-
rithm is that it produces the same results as the exact k-means
algorithm applied centrally, we did not compare DFEKM
against any of the existing approximate distributed clustering
approaches.

Another challenge in designing our experiments was to
simulate execution on distributed data repositories. As com-
pared to a tightly coupled parallel configuration, executing
parallel code on distributed data repositories potentially in-
volves large load imbalance and/or high communication la-
tencies. Our experiments were conducted on a parallel ma-
chine, and the above two effects were simulated by introduc-
ing delays during each round of communication. We also
considered cases in which data has not evenly distributed.
For such cases, we compare parallel k-means, sequential k-
means, and our DFEKM algorithm. Additionally, we were
interested in seeing how many passes over the entire dataset
and how many rounds of communication were required by
the DFEKM algorithm.

All our experiments were conducted on IA-32 cluster at
Ohio Super-computing Center (OSC). Each node of IA-32
cluster has two 900 MHz Itanium-2 processors and 4GB main
memory. These nodes are connected using Myrinet, which is
a switched 2.0GB/s network.

The evaluation with synthetic datasets was done using four
1.1 GB datasets. The method used for generating these was
described in the previous section. As in the previous section,
a synthetic dataset with

J
clusters and r dimensions is re-

ferred to as c
J

d r .
The four datasets used in our experiments had 5 and 20

clusters, and 10 and 100 dimensions. We considered par-
allel/distributed configurations with 1, 2, and 4 nodes, and
with 0, 50, 100, 150, and 200 seconds communication de-
lays. This communication delay is a waiting time before any
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Dataset No. of Points (Millions) Size (GB) No. of Iterations (k-means) No. of Passes (DFEKM)
c5d100 2 1.1 20 2
c5d10 20 1.1 20 2

c20d100 2 1.1 20 2
c20d10 20 1.1 20 2

kdd 1.5 1.8 18 2
Corel 1.5 1.9 20 2

Table 7. Statistics from Parallel k-means and DFEKM Executions on Synthetic and Real data sets.
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Figure 1. Running Time of DFEKM and Paral-
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Figure 2. Running Time of DFEKM and Paral-
lel k-means with Increasing Delays: 1,2 and 4
nodes, dataset c20d10
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Figure 3. Running Time of DFEKM and Paral-
lel k-means with Increasing Delays: 1,2 and 4
nodes, dataset c5d100
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lel k-means with Increasing Delays: 1,2 and 4
nodes, kddcup99 dataset
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Figure 6. Running Time of DFEKM and Paral-
lel k-means with Increasing Delays: 1,2 and 4
nodes, Corel dataset
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Figure 9. Running Time of DFEKM and Parallel
k-means in the Presence of Load Imbalance:
Corel dataset

round of interprocessor communication. A delay of 0 sec-
onds corresponds to a tightly coupled parallel configuration
in which data is evenly distributed between the nodes. Non-
zero delays simulate high communication latencies in loosely
coupled environments, as well as waiting time for the slowest
node, when the data is not evenly distributed.

Table 7 compares the number of passes or iterations re-
quired by (parallel) k-means and DFEKM. Parallel k-means
on each of the four synthetic datasets required 20 iterations,
which also means 20 rounds of interprocessor communica-
tion. DFEKM required two passes in each case, which also
corresponds to 3 rounds of interprocessor communication.
The execution times for these four synthetic datasets are pre-
sented in Figures 1, 2, 3, and 4, respectively.

Several things should be noted from these experiments.
First, even on a single node, DFEKM does better than k-
means. This is because this algorithm needs much fewer
passes on the data. As expected, the relative speedup of par-
allel k-means is linear. In comparison, DFEKM sequential-
izes a part of the computation, and does not scale that well.
However, because it requires much fewer rounds of commu-
nication, increasing delays only have a modest impact on its
performance. As communication delays increase, DFEKM
outperforms parallel k-means on 2 and 4 nodes.

As we stated earlier, one way of clustering data from dis-
tributed data repositories is to down-load all data at one node,
and apply a centralized clustering algorithm. Our results in
Figures 1, 2, 3, and 4, show that DFEKM on 2 and 4 nodes
outperforms both k-means and DFEKM on 1 node. Thus,
even without including the cost of down-loading and storing
data, DFEKM has better performance than applying a cen-
tralized algorithm.

In Figure 7, we explicitly create load imbalance and
compare the relative performance of parallel k-means and
DFEKM. The dataset c20d100 was used for this experi-
ment. On a 4 nodes configuration, we considered three dif-
ferent distributions of data. In the first case, the fraction of
data resident on each of the 4 nodes was 40%, 20%, 20%,
and 20%, respectively. In the second case, the fractions were
30%, 30%, 30%, and 10%, respectively. In the third case, the
fractions were 50%, 20%, 20%, and 10%, respectively. No
further delays were introduced.

In both first and third cases, DFEKM performs better. In
the second case, parallel k-means did better. This was be-
cause the performance of k-means depends upon the slow-
est of the nodes. The fraction of the data with the slowest
node was 40%, 30%, and 50% for the three cases, respec-
tively. Thus, we can see that if the load imbalance is sig-
nificant, DKEKM can outperform parallel k-means even in
tightly coupled configuration.

We also evaluated our algorithm with KDDCup99 and
Corel image database, which we had described in the pre-
vious section. Initially, we looked at the number of passes
required by k-means and DFEKM. As shown in Table 7, the
number of iterations for k-means were 18 and 20, whereas
the number of passes required by DFEKM was 2 for both
the datasets. The execution times with increasing communi-
cation delays are shown in Figures 5 and 6. The results are
quite similar to those obtained from the synthetic datasets.
As communication delays increase, DFEKM performs bet-
ter on 2 and 4 nodes. Also, the performance of DFEKM on
2 and 4 nodes is better than sequential execution with either
k-means or DFEKM. Again, this shows that even without in-
cluding the cost of down-loading and storing data, DFEKM
has better performance than applying a centralized clustering
algorithm.

We also repeated the experiment with load imbalance. The
results are shown in Figures 8 and 9. When the slowest of
the 4 nodes has 30% of the data, parallel k-means performs
better. However, in the cases when the slowest node has 40%
or 50% of the data, DFEKM is better.

7. Conclusions

We have presented, analyzed, and evaluated an algorithm
that provably produces the same cluster centers as the k-
means clustering algorithm, and typically requires one or a
small number of passes on the entire dataset. This can sig-
nificantly reduce the execution times for clustering on large
or disk-resident datasets, with no compromise on the qual-
ity of the results. While a number of approaches existed for
approximating k-means or similar algorithms with sampling
or using a small number of passes, none of these approaches
could provably produce the same cluster centers as the origi-
nal k-means algorithm. The basic idea in our algorithm is to
use sampling to create approximate cluster centers, and use
these approximate cluster centers for speeding up the compu-
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tation of correct or exact cluster centers. Our experimental
evaluation on a number of synthetic and real datasets have
shown a speedup between 2 and 4.5.

This paper has also described and evaluated a distributed
version of FEKM. This algorithm is suitable for analyzing
data that is distributed across loosely coupled machines. Un-
like the previous work in this area, DFEKM provably pro-
duces the same results as the original k-means algorithm. Our
experimental results show that DFEKM is clearly better than
two other possible options for exact clustering on distributed
data, which are down-loading all data and running sequential
k-means, or running parallel k-means on a loosely coupled
configuration. Moreover, even in a tightly coupled environ-
ment, DFEKM can outperform parallel k-means if there is a
significant load imbalance.
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