
Unsupervised Anomaly Detection Using an

Optimized K-Nearest Neighbors Algorithm

Michael J. Prerau, Eleazar Eskin

Abstract

Unsupervised anomaly detection has great utility within the context

of network intrusion detection system. Such a system can work without

the need for massive sets of pre-labelled training data and has the added

versatility of being free of the overspecialization that comes with systems

tailored for specific sets of attacks. Thus, with a system that seeks only

to define and categorize normalcy, there is the potential to detect new

types of network attacks without any prior knowledge of their existence.

This paper discusses the creation of such a system that uses a k-nearest

neighbors algorithm to detect anomalies in network connections, as well as

the optimization necessary to make the algorithm feasible for a real-world

system.

1 Unsupervised Anomaly Detection

In the Unsupervised Anomaly Detection (UAD) problem, we are given a large
data set where most of the elements are normal, and there are intrusions buried
within the data set. Unsupervised anomaly detection algorithms have the major
advantage of being able to process unlabeled data and detect intrusions that
otherwise could not be detected. In addition, these types of algorithms can
semi-automate the manual inspection of data in forensic analysis by helping
analysts focus on the suspicious elements of the data.
UAD algorithms make two assumptions about the data which motivate the

general approach. The first assumption is that the number of normal instances
vastly outnumbers the number of anomalies. The second assumption is that the
anomalies themselves are qualitatively different from the normal instances. The
basic idea is that since the anomalies are both different from normal and are
rare, they will appear as outliers in the data which can be detected. An example
of an intrusion that an unsupervised algorithm will have a difficulty detecting is
a syn-flood DoS attack. The reason is that often under such an attack there are
so many instances of the intrusion that it occurs in a similar number to normal
instances. Thus, UAD algorithms may not label these instances as an attack
because the region of the feature space where they occur may be as dense as
the normal regions of the feature space.

1

UAD algorithms are limited to being able to detect attacks only when the
assumptions hold over that data, which is not always the case. For example,
these algorithms will not be able to detect the malicious intent of someone
who is authorized to use the network and who uses it in a seemingly legitimate
way. The reason is that this intrusion is not qualitatively different from normal
instances of the user. In the framework, these instances would be mapped very
close to each other in the feature space and the intrusion would be undetectable.

2 A Geometric Framework for Unsupervised Anomaly

Detection

The key to the framework used in the system is mapping the records from the
audit stream to a feature space. The feature space is a vector space typically
of high dimension. Inside this feature space, we assume that some probability
distribution generated the data. We wish to label the elements that are in
low density regions of the probability distribution as anomalies are labelled as
anomalies. However, in general the probability distribution is unknown. Instead
points that are in sparse regions of the feature space. For each point, we examine
the point’s location within the feature space and determine whether or not it
lies in a sparse region of the feature space.

2.1 Feature Spaces

Data is collected from some audit stream of the system. Without loss of gen-
erality, this data is split into data elements x1, ..., xl. The space of all possible
data elements is defined as the input (instance) space X. Exactly what the
input space is depends on the type of data that is being analyzed. The input
space can be the space of all possible network connection records, event logs,
system call traces, etc.
The elements of the input space are mapped to points in a feature space Y .

In this framework a feature space is typically a real vector space of some high
dimension d, <d, or more generally a Hilbert space. The main requirement for
the system in the feature space is that we can define a dot product between
elements of the feature space.
A feature map is defined to be a function that takes as input an element in

the input space and maps it to a point in the feature space. In general, we use
φ to define a feature map and we get

φ : X → Y . (1)

The term image of a data element x is used to denote the point in the feature
space φ(x).
Since the feature space is a Hilbert space, for any points y1 and y2 their dot

product < y1, y2 > is defined. Any time there is a dot product, it can also be
defined as norm on the space as well as a distance.

2

The norm of a point y in the feature space ||y|| is simply the square root of
the dot product of the point with itself, ||y|| = √< y, y >. Using this and the
fact that a dot product is a symmetric bilinear form we can define the distance
between two elements of the feature space y1 and y2 with

||y1 − y2|| =
√
< y1 − y2, y1 − y2 >

=
√

< y1, y1 > −2 < y1, y2 > + < y2, y2 > .

Using this framework, the feature map can be used to define relations be-
tween elements of the input space. Given two elements in the input space x1 and
x2, we can use the feature map to define a distance between the two elements
as the distance between their corresponding images in the feature space. We
can define the distance function dφ as

dφ(x1, x2) = ||φ(x1)− φ(x2)|| (2)

=
√

< φ(x1), φ(x1) > −2 < φ(x1), φ(x2) > + < φ(x2), φ(x2) > .

For notational convenience, the subscript is often dropped from dφ.
If the feature space is <d, this distance corresponds to standard Euclidean

distance in that space.

3 Normalization

When dealing with unsupervised learning for very large datasets with high di-
mensionality, there is little practical feasibility in performing learning algorithms
so as to determine weight values for the attribute vectors. Therefore, it is nec-
essary to cut one’s losses by performing normalization on the data, which will
reduce unwanted artificial weighting based on the ranges of the features. This
should alleviate the problem of biasing the learning for a particular attribute
with a naturally larger magnitude than the other attributes.
For the datasets utilized in these experiments, we encountered three forms

of attribute types: continuous, discrete or categorical, and binary. The goal was
to affect different methods of specialized normalization for each attribute type
such that the aggregate effect produced a sense of homogeneity for the entire
vector.

3.1 Continuous

The continuous data was normalized by replacing each attribute value with its
distance to the mean of all the values for that attribute in the instance space. In
order to do this, the mean and standard deviation vectors must be calculated:

mean[j] =
1

n

n
∑

i=1

instance[j] (3)

3

standard[j] =

√

√

√

√

(

1

n− 1

) n
∑

i=1

(instance[j]−mean[j])2 (4)

From this, the new instances can be calculated by dividing the difference of
the instances with the mean vector by the standard deviation vector:

newinstance[j] =
instance[j]−mean[j]

standard[j]
(5)

This results in rendering all continuous attributes comparable to each other
in terms of their deviation from the norm, which is exactly what we are seeking
in anomaly detection.

3.2 Discrete

For discrete or categorical data, two possible means of normalization were con-
sidered. The first method was based on the thought that categorical data can
be conceptualized as a set of equidistant points, thus creating a spacial rep-
resentation that equally favors each category. Therefore, one can create an n
dimensional binary vector for a discrete attribute with n possible values. Each
element in the vector would represent a unique discrete value and would have a
value of either zero or a constant.
This works well in many cases. For the KDD-cup data set, however, since

we were dealing with attributes with many values, this ended up tripling the
size of the instance vectors and became unfeasible in respect to loading in and
working with the entire 4.9 million instances in the set.
Thus, a comparable alternative had to be sought. It was found that it was

possible to achieve similar results not by modifying the data, but by modify-
ing the distance metric employed by the system. The system still employed a
Euclidean distance metric, however for the discrete attributes it would give a
distance of zero if the values differed, or it would give a constant, which was
inversely proportional to the number of possible values if they were the same.
This resulted in a fairly good method of normalization which was highly superior
in space and memory usage to the vector method.

3.3 Binary

For the binary data, it is impossible to use the standard deviation metric as
the result was often an extremely large number of standard deviations from the
mean if there were many zero values and a few one values. Therefore, the binary
values were left alone and incorporated into distance metric as is.

3.4 Scaling

At one point there was an attempt to bring further cohesiveness to the data
by scaling all values between zero and one. This removed all sense of artificial
weighting. The down side to such a scaling was that there was a great loss of

4

precision that occurred with some attributes. An attribute with a very anoma-
lous instance would end up squashing all the normal values within an extremely
small range, thus losing often important distinctions between instances. For
this reason, the algorithms were applied to the data set without scaling.

4 K-Nearest Neighbor Algorithm

The K-Nearest neighbors determines whether or not a point lies in a sparse
region of the feature space by computing the sum of the distances to the k-
nearest neighbors of the point. We refer to this quantity as the kNN score for
a point.
Intuitively, the points in dense regions will have many points near them and

will have a small kNN score. If the size of k exceeds the frequency of any given
attack type in the data set and the images of the attack elements are far from
the images of the normal elements, then the kNN score is useful for detecting
these attacks.

5 Optimization

Though a k-nearest neighbor value will give yield an excellent sense of how
closely a new instance fits in with the rest of the data, it is extremely costly to
calculate, with a complexity of O(n2). This problem is accentuated with with
the complex data used for intrusion detection, as a large amount of data-points
are required for a solid cross-section of the data. Thus, it is necessary to find
computational shortcuts that will allow us to perform anomaly detection with
greater celerity. This is especially vital in intrusion detection systems because
the damage caused by an attack may often be relative to the time in which it
takes for it to be discovered.
In this system, clustering is used as a means of breaking down the search

space into smaller subsets so as to remove the necessity of checking every data
point. This is a variation of agglomerate-neighbor algorithms, however it only
uses agglomeration(clustering) as a tool to reduce the time of finding the k
neighbors, not as the metric of calculation itself. It should also be noted that
clustering itself can also be an affective means of UAD.

Kulling, which eliminates data in linear time from cluster information, is an-
other form of optimization on the k-nearest neighbor algorithm. Kulling exploits
the thresholding that happens after the values are computed and invaluable in
the application of this algorithm to massive datasets.

5.1 Cluster Optimization

Since we are interested in only the k-nearest points to a given point, we can
significantly speed up the algorithm by using a technique similar to canopy
clustering. Canopy clustering is used as a means of breaking down the space into
smaller subsets so as to remove the necessity of checking every data point. We

5

use the clusters as a tool to reduce the time of finding the k-nearest neighbors.
Clusters (Fig. 1)are defined as hyperspheres in the instance space which contain
data points from the training set. This way, a new instance can be quickly tested
against a small number of similarly located instance sets before the actual point
to point calculation begins. This is done in a way that makes it possible to
eliminate clusters without looking at their contents, thus drastically reducing
the calculation time.

Figure 1: Clusters

We first cluster the data using the fixed-width clustering algorithm of the
previous section with a variation where we place each element into only one
cluster. Once the data is clustered with width w, we can compute the k-nearest
neighbors for a given point x by taking advantage of the following properties.
We denote as c(x) the point which is the center of the cluster that contains a

given point x. For a cluster c and a point x we use the notation d(x, c) to denote
the distance between the point and the cluster center. For any two points x1

and x2, if the points are in the same cluster

dφ(x1, x2) ≤ 2w (6)

and in all cases

dφ(x1, x2) ≤ dφ(x1, c(x2)) + w (7)

dφ(x1, x2) ≥ dφ(x1, c(x2))− w . (8)

The algorithm uses these three inequalities to determine the k-nearest neigh-
bors of a point x.
Let C be a set of clusters. Initially C contains all of the clusters in the data.

At any step in the algorithm, we have a set of points which are potentially
among the k-nearest neighbor points. We denote this set P . We also have a
set of points that are in fact among the k-nearest neighbor points. We denote
this set kNN . Initially kNN and P are empty. We precompute the distance
from x to each cluster. For the cluster with center closest to x, we remove it
from C and add all of its points to P . We refer to this operation as “opening”

6

the cluster. The key to the algorithm is that we can obtain a lower bound the
distance from all points in the clusters in set C using equation (7). We define

dmin = min
c∈C

d(x, c)− w . (9)

The algorithm performs the following. For each point in xi ∈ P , we compute
d(x, xi). If d(x, xi) < dmin, we can guarantee that xi is closer point to x then
all of the points in the clusters in C. In this case, we remove xi from P and add
it to kNN . If we can not guarantee this for any element of P (including the
case that if P is empty), then we “open” the closest cluster by adding all of its
points to P and remove that cluster from C. Notice that when we remove the
cluster from C, dmin will increase. Once kNN has k elements, we terminate.
Most of the computation is spent checking the distance between points in D

to the cluster centers. This is significantly more efficient than computing the
pairwise distances between all points.
The choice of width w does not affect the k-NN score, but instead only affects

the efficiency of computing the score. Intuitively, we want to choose a w that
splits the data into reasonably sized clusters.

5.1.1 Clustering Algorithm

The clusters are created in linear time with the following algorithm:

1. Set C = φ

2. ∀ x ε D:

(a) If ∃ ci ε C s.t. [di < W], add x to ci as the center

(b) Else if C = φ or ¬∃ ci ε C s.t. [di < W], create a new cluster cnew
and add x to it as the center

Where:

• D = The training set

• x = The given point for which to calculate the k nearest neighbors

• C = Set of clusters

• W = The cluster radius

• Di = The distance from x to the center of Ci

First an empty cluster set C is created. Then each point in the training set
D is looked at in succession. If a x point falls within the radius of a cluster
W, it is added to the cluster. If the cluster set is empty or if the point doesn’t
fall into any preexisting cluster within C, a new cluster is created with x as the
centroid and add it to this set. In this method, the entire training set can be
clustered in a single pass.

7

D i

C i

W

x

Figure 2: A Cluster

5.1.2 The Cluster-Optimized K-Nearest Neighbor Algorithm in Greater

Detail

The pseudocode for the algorithm is as follows:

1. For x, calculate di for each ci ε C

2. Sort C by di

3. While |kNN| < k

(a) Calculate distance to all points in P0 and put them in Pc

(b) If [d1 −W < I], set I = d1 −W

(c) Else, set I = d0 +W

(d) For each pi ε Pc where distance(x, pi) < I

i. If |kNN| < k

A. Move pi from Pc to kNN

ii. Else, if |kNN| = k and distance(x, pi) < kNNmax

A. Move pi from Pc to kNN replacing kNNmax

(e) Remove c0 from C

Where:

• k = Number of nearest neighbors needed

• x = The given point for which to calculate the k nearest neighbors

• C = Set of clusters

• W = The cluster radius

• I = Closest point interval

• kNN = Set of k-nearest neighbors

8

• Pc = Set of candidate points

• A cluster c ∈ C is made up of the pair (P, d) where:

– P = The set of points p within the cluster (p ∈ P)

– d = The distance from x to the center of c

• kNNmax = Largest element in kNN

To find the k-nearest neighbors, the distance from a given point x to every
cluster center must first be calculated. Based on these distances, the cluster set
C is sorted. The cluster in C with the smallest distance from x is called c0,
and the next closest is called c1, etc. Next, the distance from x to all the points
in P0 is calculated, after which those points are moved to the list of candidate
points, Pc.
The rest of this algorithm is concerned with the creation of an interval I

and its modification in terms of cluster boundaries. The modification is done
with the goal that I should include the minimum number of points needed to
calculate the k-nearest neighbors, given the current cluster configuration.
When the clusters are initially sorted, a partial ordering is created. The

reason that this is only a partial ordering is that there can be overlap between
two clusters. Since the goal of this system is to guarantee that only the points
that must be checked are checked, it is necessary to ensure when a point is
added to kNN based on I, it is impossible that a point outside that interval is
closer than it to x. Thus, it is vital to initially exclude the parts of a cluster that
are overlapped by another cluster, as that section could contain points from the
overlapping cluster that are closer to x than those in the cluster with the closer
center.
When the interval is first created, c1 is checked to see if it overlaps c0. If

there is no overlap, that is if the distance to the farthest point in the closest
cluster (d0+W) is less than the closest point of the next closest cluster (d1−W),
then all points are all necessary candidates and the interval is set to d0+W. If
there does exist an overlapping cluster, the interval is set to di −W, the point
of intersection closest to x, so that a given point within this new interval is
guaranteed to be closer than any point in the overlapping cluster.
Once the interval for this iteration has been determined, all points in Pc

that are within I can be moved to kNN. If kNN is full, then if the distance
of a given point is less than that of the largest element in kNN, kNNmax is
replaced by that point. We now remove c0 from C, making c1 the new c0, c2
the new c1, etc. If kNN has k elements in it, the process can halt. If kNN has
less than k elements, the process begins again with the new c0 as the closest
cluster.

5.2 Kulling

In order to determine whether an instance is an attack or a normal connection,
its kNN score is compared to a threshold. If it is greater than the threshold

9

then it is a considered an attack, if it is less than the threshold then it is
considered normal. It turns out that it is possible to utilize the threshold to
quickly elminate a large portion of the data in linear time.
If the entire dataset is clustered with a W of θ

2k
, where θ is the threshold

value and k is the number of nearest neighbors that will be summed for the kNN ,
then any cluster that has more than k elements inside it can automatically be
disgarded. The reason for this is that assuming the worst case scenario, where
the instance being checked is on the opposite end of the cluster as all of the other
cluster elements, if the W = θ

2k
and there more than k elements in the cluster,

its kNN value will be k ∗ θ
k
≤ θ. Therefore, in any cluster with a diameter

of θ
k
that has more than k elements in it, all of its elements will have a kNN

value of less than the threshold (Fig. 3). As a result, the entire cluster can be
removed because all the elements within it are automatically classified normal
connections. This entire process can be done in linear time, as clustering is
linear and the counting and removal of clusters can be done in one pass.

θ
k

Figure 3: Kulling Threshold

Kulling has worked excellently in practice because in the KDD-Cup dataset,
for example, all the normal connections are very similar to each other and
grouped within just a few clusters. This algorithm consistantly removes 95% or
more of the datapoints when a threshold is used that gives favorable detection
results. Kulling therefore saves an enormous amount of time and allows datasets
to be used for k-nearest neighbor that would have otherwise been unfeasible.

6 Experiments

Experiments were performed over two different types of data: network connec-
tion records, and system call traces.

6.1 Performance measures

To evaluate the system, two major indicators of performance were of interest:
the detection rate and the false positive rate. The detection rate is defined as
the number of intrusion instances detected by the system divided by the total

10

number of intrusion instances present in the test set. The false positive rate is
defined as the total number of normal instances that were (incorrectly) classified
as intrusions divided by the total number of normal instances. These are good
indicators of performance, since they measure what percentage of intrusions
the system is able to detect and how many incorrect classifications it makes
in the process. These values are calculated over the labelled data to measure
performance.
The trade-off between the false positive and detection rates is inherently

present in many machine learning methods. By comparing these quantities
against each other, there can be an evaluation of the performance invariant of
the bias in the distribution of labels in the data. This is especially important in
intrusion detection problems because the normal data outnumbers the intrusion
data by a factor of 100 : 1. The classical accuracy measure is misleading because
a system that always classifies all data as normal would have a 99% accuracy.
ROC (Receiver Operating Characteristic) curves are plotted depicting the

relationship between false positive and detection rates for one fixed training/test
set combination. ROC curves are a way of visualizing the trade-offs between
detection and false positive rates.

6.2 Data Set Descriptions

The network connection records we used was the KDD Cup 1999 Data, which
contained a wide variety of intrusions simulated in a military network environ-
ment. It consisted of approximately 4,900,000 data instances, each of which is
a vector of extracted feature values from a connection record obtained from the
raw network data gathered during the simulated intrusions. A connection is a
sequence of TCP packets to and from some IP addresses. The TCP packers
were assembled into connection records using the Bro program modified for use
with MADAM/ID. Each connection was labelled as either normal or as exactly
one specific kind of attack. All labels are assumed to be correct.
The simulated attacks fell in one of the following four categories : DOS -

Denial of Service (e.g. a syn flood), R2L - Unauthorized access from a remote
machine (e.g. password guessing), U2R - unauthorized access to superuser or
root functions (e.g. a buffer overflow attack), and Probing - surveillance and
other probing for vulnerabilities (e.g. port scanning). There were a total of 24
attack types.
The extracted features included the basic features of an individual TCP

connection such as its duration, protocol type, number of bytes transferred, and
the flag indicating the normal or error status of the connection. Other features
of an individual connection were obtained using some domain knowledge, and
included the number of file creation operations, number of failed login attempts,
whether root shell was obtained, and others. Finally, there were a number
of features computed using a two-second time window. These included - the
number of connections to the same host as the current connection within the
past two seconds, percent of connections that have ”SYN” and ”REJ” errors,
and the number of connections to the same service as the current connection

11

within the past two seconds. In total, there are 41 features, with most of them
taking on continuous values.
The KDD data set was obtained by simulating a large number of different

types of attacks, with normal activity in the background. The goal was to
produce a good training set for learning methods that use labeled data. As a
result, the proportion of attack instances to normal ones in the KDD training
data set is very large as compared to data that one would expect to observe in
practice.
Unsupervised anomaly detection algorithms are sensitive to the ratio of in-

trusions in the data set. If the number of intrusions is too high, each intrusion
will not show up as anomalous. In order to make the data set more realistic we
filtered many of the attacks so that the resulting data set consisted of 1 to 1.5%
attack and 98.5 to 99% normal instances.
The system call data is from the BSM (Basic Security Module) data portion

of the 1999 DARPA Intrusion Detection Evaluation data created by MIT Lincoln
Labs. The data consists of 5 weeks of BSM data of all processes run on a
Solaris machine. We examined three weeks of traces of the programs which
were attacked during that time. The programs we examined were eject, and ps.
Each of the attacks that occurred correspond to one or more process traces.

An attack can correspond to multiple process traces because a malicious process
can spawn other processes. The attack is considered detected if one of the
processes that correspond to the attack is detected.

6.3 Experimental Setup

For each of the data sets, the data was split into two portions. One portion,
the training set, was used to set parameters values for the algorithm and the
second, the test set, was used for evaluation.
The parameters were set based on the training set. Then for each of the

methods over each of the data sets, the detection threshold was varied and at
each threshold computed the detection rate and false positive rate. For each
algorithm over each data set we obtained a ROC curve.
For the KDD cup data, the value of k was set to 10, 000 of the data set. For

the eject data set, k = 2 and for the ps data set, k = 15. The k is adjusted to
the overall size of the data.

6.4 Experimental Results

the approach to unsupervised anomaly detection performed very well over both
types of data.
In the case of the system call data, the each of the algorithms performed

perfectly. What this means is that at a certain threshold, there was at least one
process trace from each of the attacks identified as being malicious without any
false positives. An explanation for these results can be obtained by looking at
exactly what the feature space is encoding. Each system call trace is mapped
to a feature space using the spectrum kernel that contains a coordinate for

12

each possible sub-sequence. Process traces that contain many of the same sub-
sequences of system calls are closer together than process traces that contain
fewer sub-sequences of system calls.
The results are not surprising when we consider previous approaches to

anomaly detection over system call traces. In the original work in this area,
sub-sequences of system calls were the basis of the detection algorithm. The
supervised anomaly detection algorithm presented in recorded a set of sub-
sequences that occurred in a normal training set and then detected anomalies
in a test set by counting the number of unknown sub-sequences that occur
within a window of 20 consecutive sub-sequences. If the number of previously
unseen sub-sequences is above a threshold, then the method would determine
that the process corresponds to an intrusion. The results of their experiments
suggest that there a many sub-sequences that occur in malicious processes that
do not occur in normal processes. This explains why in the feature space defined
by the spectrum kernel, the intrusion processes are significantly far away from
the normal processes. Also, in the experiments, the normal processes clumped
together in the feature space. This is why the intrusion processes were easily
detected as outliers.
For the network connections, the data is not nearly as regular as the system

call traces. From the experiments, it was found that there were some types
of attacks that the system was able to detect well and other types of attacks
that it were not able to detect. This is reasonable because some of the attacks
using the feature space were in the same region as normal data. Although the
detection rates are lower than what is typically obtained for either misuse or
supervised anomaly detection, the problem of unsupervised anomaly detection
is significantly harder because we do not have access to the labels or have a
guaranteed clean training set.

Detection Rate False Positive Rate
91% 8%
23% 6%
11% 4%
5% 2%

The ROC curve (Fig. 4) shows the performance of the kNN algorithm over
the KDD Cup 1999 data. Figure 1 shows the Detection Rate and False Positive
Rate for some selected points from the ROC curve.

13

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 70 80 90 100

Figure 4: ROC Curve

14

