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Abstract 
 

This paper proposes a novel scheme that uses robust 
principal component classifier in intrusion detection 
problem where the training data may be unsupervised.  
Assuming that anomalies can be treated as outliers, an 
intrusion predictive model is constructed from the major 
and minor principal components of normal instances.  A 
measure of the difference of an anomaly from the normal 
instance is the distance in the principal component space. 
The distance based on the major components that account 
for 50% of the total variation and the minor components 
with eigenvalues less than 0.20 is shown to work well. 
The experiments with KDD Cup 1999 data demonstrate 
that our proposed method achieves 98.94% in recall and 
97.89% in precision with the false alarm rate 0.92% and 
outperforms the nearest neighbor method, density-based 
local outliers (LOF) approach, and the outlier detection 
algorithms based on Canberra metric. 

 
Keywords: Anomaly detection, data mining, intrusion 
detection, outliers, principal component analysis, 
distance measures. 
 
 
1. Introduction 

 
Communication networks make physical distances 

meaningless. People can communicate with each other 
through the networks without any restriction of the real 
distance. While we are enjoying the ease of being 
connected, it is also recognized that an intrusion of 
malicious or unauthorized users from one place can cause 

severe damages to wide areas.  Computer network’s 
security becomes a critical issue and it is important to 
develop mechanisms to defense against the intrusions. 

Heady, et al. [8] defined an intrusion as “any set of 
actions that attempt to compromise the integrity, 
confidentiality or availability of information resources.” 
The identification of such set of malicious actions is 
called intrusion detection. The intrusion detection 
problem has received great interest from researchers.  In 
1999, the Third International Knowledge Discovery and 
Data Mining Tools Competition was held in conjunction 
with The Fifth International Conference on Knowledge 
Discovery and Data Mining (KDD-99).  The contest task 
was to build a network intrusion detector from the KDD 
Cup 1999 data, which is a predictive model capable of 
distinguishing between “bad” connections (called attacks) 
and “good” normal connections.  Three winning entries in 
the KDD’99 Classifier Learning contest were B. 
Pfahringer [22], I. Levin [17], and M. Vladimir, et al. [23]. 

The existing intrusion detection methods fall in two 
major categories: signature recognition and anomaly 
detection [10][18]. For signature recognition techniques, 
signatures of known attacks are stored and monitored 
events are matched against the signatures. The techniques 
signal an intrusion when there is a match. An obvious 
limitation of these techniques is that they cannot detect 
new attacks whose signatures are unknown. Anomaly 
detection, on the other hand, builds models of normal data 
and detects any deviation from the normal model in the 
observed data. Given a set of normal data to train from, 
and given a new piece of test data, the goal is to 
determine whether the test data belong to “normal” or to 
an anomalous behavior.  The anomaly detection 
algorithms have the advantage that they can detect new 
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types of intrusions as deviations from normal usage [3]. 
However, their weakness is the high false alarm rate. This 
is because previously unseen, yet legitimate, system 
behaviors may also be recognized as anomalies [4][16].  

There are various intrusion detection techniques that 
fall into anomaly detection category, some of which are 
machine learning techniques (e.g., robust support vector 
machines [9]) and some are statistical-based.  Markou and 
Singh [19][20] gave an extensive review of a number of 
approaches to novelty detection.  

Statistical-based anomaly detection techniques use 
statistical properties of normal activities to build a norm 
profile and employ statistical tests to determine whether 
the observed activities deviate significantly from the 
norm profile. They usually assume a normal or 
multivariate normal distribution, which can be one 
drawback. A technique based on a chi-square statistic was 
presented in [25], which builds a norm profile of normal 
events in an information system and detects a large 
departure from the norm profile as a likely intrusion.  The 
technique was demonstrated to have a low false alarm and 
a high detection rate.  

Emran and Ye [5] developed a multivariate statistical 
based anomaly detection technique called Canberra 
technique and applied it towards intrusion detection.  The 
method does not suffer from the normality assumption of 
the data. However, their experiments showed that the 
technique performed very well only in the case where all 
the attacks were placed together. A multivariate quality 
control technique to detect intrusions that built a long-
term profile of normal activities in information systems 
and used the profile to detect anomalies was proposed in 
[26]. The technique is based on Hotelling’s T test that 
detects both counterrelationship anomalies and mean-shift 
anomalies. When testing with a small set of computer 
audit data, its performance resulted in all intrusions 
detected with no false alarms; while for a large data set, 
92% of intrusions were detected and also with no false 
alarms. 

There are many anomaly detection techniques that 
employ the outlier detection concept. Aggarwal and Yu [1] 
discussed a technique for outlier detection that finds the 
outliers by studying the behavior of the projections from 
the data set. The method is suited to very high 
dimensional data sets.  Breunig, et al. [2] assigned to each 
object a degree of being an outlier called the local outlier 
factor (LOF) of an object.  The degree depends on how 
isolated the object is with respect to the surrounding 
neighborhood.  Lazarevic, et al. [16] proposed several 
anomaly detection schemes for detecting network 
intrusions. A comparative study of these schemes on 
DARPA 1998 data set of network connections indicated 
that the most promising technique was the LOF approach 
[18]. 

In this paper, we propose a novel anomaly detection 
scheme based on principal components and outlier 
detection. The underlined assumption of the proposed 
method is that the attacks appear as outliers to the normal 
data.  Being an outlier detection method, the principal 
component classifier (PCC) can find itself in many 
applications other than intrusion detection, e.g., fault 
detection, sensor detection, statistical process control, 
distributed sensor network, etc.  The principal component 
based approach to intrusion detection has some 
advantages. First, it does not have any distributional 
assumption. Many statistical based intrusion detection 
methods assume a normal distribution or resort to the use 
of central limit theorem by requiring the number of 
features to be greater than 30 [25][26]. Secondly, it is 
typical for the data of this type of problem to be high 
dimensional. Hence, in our proposed scheme, robust 
principal component analysis (PCA) is applied to reduce 
the dimensionality to arrive at a simple classifier that is a 
simple function of the principal components. PCA 
reduces the dimension of the data without sacrificing 
valuable information. Only a few parameters of principal 
components need to be retained for future detection. 
Another benefit of our proposed scheme is that the 
statistics can be computed in less amount of time during 
the detection stage, which makes it possible to use the 
method in real time. Our experimental results show that 
our proposed scheme has a good detection rate with low 
false alarm. It outperforms the k-nearest neighbor 
method, the LOF approach, and the Canberra metric. 

This paper is organized as follows. Section 2 provides 
some statistical backgrounds on the concept of distance, 
PCA and outlier detection. The proposed scheme is 
described in Section 3.  Section 4 gives the details of the 
experiments followed by the results and the discussions in 
Section 5.  We conclude our study in Section 6. 

 
2. Multivariate Statistical Analysis 
 
2.1. Distance  

 
Many multivariate techniques applicable to anomaly 

detection problem are based upon the concept of 
distances.  The most familiar distance metric is the 
Euclidean or straight-line distance.  It is frequently used 
as a measure of similarity in the nearest neighbor method.  
Let ),,,( 21 ′= pxxx Kx  and ),,,( 21 ′= pyyy Ky  be two p-
dimensional observations, the Euclidean distance between 
x and y is 

 )()(),( yxyxyx −′−=d  (1) 
Since each feature contributes equally to the 

calculation of the Euclidean distance, this distance is 
undesirable in many applications. When the features have 
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very different variability or different features are 
measured on different scales, the effect of the features 
that have large scales of measurement or high variability 
would dominate others that have smaller scales or less 
variability. 

As an alternative, a measure of variability can be 
incorporated into the distance metric directly.  One of this 
metric is the well-known Mahalanobis distance 

 )()(),( 12 yxSyxyx −′−= −d  (2) 
where S is the sample covariance matrix. 

Another distance measure that has been used in the 
anomaly detection problem is the Canberra metric.  It is 
defined for nonnegative variables only. 
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2.2. Principal Component Analysis (PCA) 
 

Data found in intrusion detection problem are high 
dimensional in nature.  It is desirable to reduce the 
dimensionality of the data for easy exploration and 
further analysis.  The PCA is often used for this purpose.  
PCA is concerned with explaining the variance-
covariance structure of a set of variables through a few 
new variables which are linear combinations of the 
original variables. 

Principal components are particular linear 
combinations of the p random variables X1, X2, …, Xp, 
with three important properties: (1) the principal 
components are uncorrelated, (2) the first principal 
component has the highest variance, the second principal 
component has the second highest variance, and so on, 
and (3) the total variation in all the principal components 
combined equal to the total variation in the original 
variables X1, X2, …, Xp.  The new variables with such 
properties are easily obtained from eigenanalysis of the 
covariance matrix or the correlation matrix of X1, X2, …, 
Xp [11][12][13].   

Let the original data X be an n x p data matrix of n 
observations on each of p variables (X1, X2, …, Xp) and 
let S be a p x p sample covariance matrix of X1, X2, …, 
Xp.  If (λ1, e1), (λ2, e2), …, (λp, ep) are the p eigenvalue-
eigenvector pairs of the matrix S, then the ith principal 
component is 

pixxe
xxexxey

ppip

iiii

,,2,1),(
)()()( 222111

'

KK =−++
−+−=−= xxe

 (4) 

where 
λ1 ≥ λ2 ≥ … ≥ λp ≥ 0 

),,,( 21
'

ipiii eee K=e  is the ith eigenvector, 

),,,( 21
'

pxxx K=x  is any observation vector on the 
variables X1, X2, …, Xp, 

and ),,,( 21
'

pxxx K=x  is the sample mean vector of the 
variables X1, X2, …, Xp. 

The ith principal component has a sample variance λi 
and the sample covariance of any pair of principal 
components is 0.  In addition, if sii is the sample variance 
of the variable Xi, then the total sample variance in all 
variables X1, X2, …, Xp is 

 p

p

i
iis λλλ +++=∑

=
K21

1
 (5) 

which is the total sample variance in all the principal 
components.  This means that all of the variation in the 
original data is accounted for by the principal 
components. 

PCA can be carried out on the p x p sample 
correlation matrix R of the variables X1, X2, …, Xp in the 
same fashion as with the covariance matrix. If (λ1, e1), 
(λ2, e2), …, (λp, ep) are the p eigenvalue-eigenvector pairs 
of the matrix R, then the ith principal component takes the 
form 

pizezezey pipiiii ,,2,1,2211
' KK =+++== ze

where 
),,,( 21

'
pzzz K=z  is the vector of standardized 

observations defined as 

pk
s

xxz
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kk
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K=
−

=  

The principal components from the sample correlation 
matrix still have the same properties as before. That is, 
the ith principal component has sample variance λi, the 
sample covariance of any pair of principal components is 
0, and the total sample variance in all the principal 
components is 

 pp =+++ λλλ K21  (6) 
which is the total sample variance in all standardized 
variables Z1, Z2, …, Zp.  

The principal components from the sample covariance 
matrix S and the sample correlation matrix R are usually 
not the same. Besides, they are not simple functions of the 
others. When some variables are in a much bigger 
magnitude than others, they will receive heavy weights in 
the leading principal components.  For this reason, if the 
variables are measured on scales with widely different 
ranges or if the units of measurement are not 
commensurate, it is better to perform PCA on the sample 
correlation matrix. 

  
2.3. Outlier Detection 
 

Most data sets contain one or a few unusual 
observations that do not seem to belong to the pattern of 
variability produced by other observations. When an 
observation is different from the majority of the data or is 
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sufficiently unlikely under the assumed probability model 
of the data, it is considered an outlier. With data on a 
single feature, unusual observations are those that are 
either very large or very small relative to the others. If the 
normal distribution is assumed, any observation whose 
standardized value is large in an absolute value (say, 
larger than 3 or 4) is often identified as an outlier of the 
data set. With many features, the situation becomes 
complicated, however. In high dimensions, there can be 
outliers that do not appear as outlying observations when 
considering each dimension separately and therefore will 
not be detected from the univariate criterion. Thus all 
features need to be considered together using a 
multivariate approach. 

Let X1, X2, …, Xn be a random sample from a 
multivariate distribution with the mean vector µ and the 
covariance matrix ∑, where 

 njXXX jpjjj ,,2,1),,,,( 21 KK ==′X  (7)  

The procedure commonly used to detect multivariate 
outliers is to measure the distance of each observation 
from the center of the data using the Mahalanobis 
distance.  If the distribution of X1, X2, …, Xn is 
multivariate normal, then for a future observation X from 
the same distribution, the statistic T2 based on the 
Mahalanobis distance 
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and Fp,n-p denotes a random variable with an F-
distribution with p and n-p degrees of freedom [12]. A 
large value of T2 indicates a large deviation of the 
observation X from the center of the population and the 

F-test statistic 2

)1(
)( T
pn

pn
−
−  can be used to detect an 

outlier.  

Instead of the Mahalanobis distance, we can use other 
distance measures such as Euclidean distance and 
Canberra metric as well. Any observation that has the 
distance larger than a threshold value is considered an 
outlier. The threshold is typically determined from the 
empirical distribution of the distance. This is because the 
distributions of these distances are hard to derive even 
under the normality assumption.  

PCA has long been used for multivariate outlier 
detection. Consider the sample principal components, y1, 
y2, …, yp, of an observation x. 

 piy ii ,,2,1),(' K=−= xxe  (10)

The sum of squares of the standardized principal 
component scores, 

 
p

p
p

i i

i yyyy
λλλλ

2

2

2
2

1

2
1

1

2

+++=∑
=

K  (11) 

is equivalent to the Mahalanobis distance of the 
observation x from the mean of the sample [11]. 

The first few principal components have large 
variances and explain the largest cumulative proportion of 
the total sample variance. These major components tend 
to be strongly related to the features that have relatively 
large variances and covariances. Consequently, the 
observations that are outliers with respect to the first few 
components usually correspond to outliers on one or more 
of the original variables. On the other hand, the last few 
principal components represent linear functions of the 
original variables with minimal variance. These 
components are sensitive to the observations that are 
inconsistent with the correlation structure of the data but 
are not outliers with respect to the original variables [11]. 
Therefore, large values of observations on the minor 
components reflect multivariate outliers that are not 
detectable using the criterion based on large values of the 
original variables. 

It is customary to examine individual principal 
components or some functions of the principal 
components for outliers. Gnanadesikan and Kettenring [6] 
recommended graphical exploratory methods such as 
bivariate plotting of a pair of principal components.  
There are also several formal tests, e.g., the tests based on 
the first few components proposed by Hawkins [7].  
Though the graphical methods are proved to be effective 
in identifying multivariate outliers, particularly when 
working on principal components, they may not be 
practical for real time detection applications. To apply an 
existing formal test, the data need to follow some 
assumptions in order for the tests to be valid, e.g., data are 
from a multivariate normal distribution. 

Since the sample principal components are 
uncorrelated, under the normal assumption and assuming 
the sample size is large, it follows that 

 pq
yyyy

q

q
q
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has a chi-square distribution with the degrees of freedom 
q. For this to be true, it must also be assumed that all the 
eigenvalues are distinct and positive, i.e., λ1 > λ2 > … > 
λp > 0. Given a significance level α , the outlier detection 
criterion is then 

Observation x is an outlier if  )(2

1

2

αχ
λ q

q

i i

iy
>∑

=

 



 5

where )(2 αχ q is the upper α  percentage point of the chi-
square distribution with the degrees of freedom q. The 
value of α  indicates the error or false alarm probability 
in classifying a normal observation as an outlier. 

An examination of the sum of squares of the last r 

components, ∑
+−=

p

rpi i

iy
1

2

λ
, is also useful to determine how 

much of the variation in the observation x is distributed 
over these latter components. When the last few 
components contain most of the variation in an 
observation, it is an indication that this observation is an 
outlier with respect to the correlation structure [11].  By 

examining the value of ∑
+−=

p

rpi i

iy
1

2

λ
 or 

i

i

pirp

y
λ

max
1 ≤≤+−

 for 

each observation x, the relative importance of the last r 
components can be determined. 

 
3. The Proposed Anomaly Detection Scheme 
 

As mentioned earlier, the graphical methods may not 
be practical for real time detection applications due to 
some assumptions on the data. On the other hand, in our 
proposed scheme, we are interested in developing an 
anomaly detection scheme based on the principal 
components that can be applied in real time and does not 
impose too many restrictions on the data, where PCA is 
applied with the objective to reduce the dimensionality of 
the data space, but not as an outlier detection tool. 

 Following the anomaly detection approach, we 
assume that the anomalies are qualitatively different from 
the normal instances.  That is, a large deviation from the 
established normal patterns can be flagged as attacks. No 
attempt is made to distinguish different types of attacks. 
To establish a detection algorithm, we perform PCA on 
the correlation matrix of the normal group. The 
correlation matrix is used because each feature is 
measured in different scales. It is important that the 
training data are free of outliers before they are used to 
determine the detection criterion since outliers can bring 
large increases in variances, covariances and correlations. 
The relative magnitude of these measures of variation and 
covariation has a significant impact on the principal 
components solution, particularly for the first few 
components. Therefore, it is of value to begin a PCA with 
a robust estimator of the correlation matrix. One simple 
method to obtain a robust estimator is multivariate 
trimming. First, we use the Mahalanobis metric to 
identify the 100γ% extreme observations that are to be 
trimmed. Beginning with the conventional estimators x  
and S, the distance )()( 12 xxSxx −′−= −

iiid  for each 
observation xi (i=1,2,…,n) is computed. For a given γ 
(0.005 in our experiment), the observations corresponding 

to the γ*n largest values of { }nidi ,,2,1,2 K= are 
determined. New trimmed estimators x and S of the mean 
and the covariance matrix are then computed from the 
remaining observations. A robust estimator of the 
correlation matrix is obtained using the elements of S. 
The trimming process can be repeated to ensure the 
estimators x and S are resistant to outliers. As long as the 
number of observations remaining after trimming exceeds 
p (the dimension of the vector x ), the estimator S 
determined by the multivariate trimming will be positive 
definite [11]. 

This robust procedure incidentally makes our method 
well suited for unsupervised anomaly detection. We 
cannot expect that the training data will always consist of 
only normal instances. Some suspicious data or intrusions 
may be buried in the data set.  However, in order for the 
anomaly detection to work, we assume that the number of 
normal instances has to be much larger than the number 
of anomalies.  Therefore, with the trimming procedure as 
described above, anomalies would be captured and 
removed from the training data set. 

In our proposed scheme, the principal component 
classifier (PCC) consists of two functions of principal 

component scores, one from the major components ∑
=

q

i i

iy
1

2

λ
 

and one from the minor ∑
+−=

p

rpi i

iy
1

2

λ
. The first function, 

which is the one that has been used often in the literature, 
is to detect extreme observations with large values on 
some original features. Different from other existing 
approaches, we propose the use of the second function in 
addition to the first one to help detect the observations 
that do not conform to the normal correlation structure.  A 
clear advantage of our proposed scheme over others is 
that it keeps the information concerning the nature of the 
outliers whether they are extreme values or they do not 
have the same correlation structure as normal instances. 

The number of major components, q, will be 
determined from the amount of the variation in the 
training data that are accounted for by these components.  
Based on our experiments, we suggest using q major 
components that can explain about 50 percents of the total 
variation in the standardized features.  When the original 
features are uncorrelated, each principal component from 
the correlation matrix has eigenvalue equal to 1.  So the r 
minor components used in PCC are those components 
whose variance or eigenvalue is less than 0.20 which 
would indicate some relationships among the features. 

The classification scheme using PCC goes as follows. 
Compute the principal component scores of the 
observation x for which the class is to be determined. 

Classify x as an attack if 
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Classify x as a normal instance if 

1
1

2

cyq

i i

i ≤∑
= λ

  and  2
1

2

cyp

rpi i

i ≤∑
+−= λ

 

where c1 and c2 are outlier thresholds such that the 
classifier would produce a specified false alarm rate. 
Assuming the data are distributed as multivariate normal, 
the false alarm rate of this classifier is 
 2121 ααααα −+=  (13) 
where 
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Under other circumstances, Cauchy-Schwartz inequality 
and Bonferroni inequality provide a lower bound and an 
upper bound for the false alarm rate α  [15]. 

212121 ααααααα +≤≤−+  
The values of α1 and α2 are chosen to reflect the relative 
importance of the types of outliers we would like to 
detect. In our experiments, we choose 21 αα = . For 
example, to achieve the false alarm rate of about 2%, 
from Equation (13), we set 21 αα = = 0.0101. Since the 
normality assumption is likely to be violated, we opt to 
set the outlier thresholds based on the empirical 

distributions of ∑
=

q

i i

iy
1

2

λ
 and ∑

+−=

p

rpi i

iy
1

2

λ
 in the training data 

rather than the chi-square distribution. That is, c1 and c2 
are the 0.9899 quantile of the empirical distributions of 

∑
=

q

i i

iy
1
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λ
 and ∑

+−=

p

rpi i

iy
1

2

λ
, respectively. 

 
4. Experiments 
 

We study the performance of our proposed scheme 
(PCC method) by comparing it to the density-based local 
outliers (LOF) approach [2] and two other distance based 
intrusion detection methods: Canberra metric and 
Euclidean distance.  The method based on the Euclidean 
distance is, in fact, the k-nearest neighbor method.  We 
choose k=1 and 5 for the comparative study. 

The experiments are conducted under the following 
framework: 
1) All the outlier thresholds are determined from the 

training data.  We vary the false alarm rate from 1% to 
10%. For the PCC method, the thresholds are chosen 
such that 21 αα = . 

2) Both the training and testing data are from KDD’99 
training data set. 

3) Each training data set consists of 5,000 normal 
connections randomly selected by systematic sampling 
from all normal connections in the KDD’99 data. 

4) To assess the accuracy of the classifiers, we carry out 
5 independent experiments with 5 different training 
samples. In each experiment, the classifiers are tested 
with a test set of 92,279 normal connections and 
39,674 attack connections randomly selected from the 
KDD’99 data. 
 

4.1. The KDD’99 Data 
 
KDD CUP 1999 data [14] was the data set used for 

the Third International Knowledge Discovery and Data 
Mining Tools Competition. The training data set contains 
494,021 connection records, and the test data set contains 
311,029 records that were not from the same probability 
distribution as the training data. Since the probability 
distributions were not the same, in our experiments, we 
sample the data only from the training data set and use in 
both the training and testing stages. 

A connection is a sequence of TCP packets containing 
values of 41 features and labeled as either normal or an 
attack, with exactly one specific attack type. There are 22 
attack types in the training data. However, for the purpose 
of this study, we treat them the same as one attack group. 
The 41 features can be divided into three groups; the first 
group is the basic features of individual TCP connections, 
the second group is the content features within a 
connection suggested by domain knowledge, and the third 
group is the traffic features computed using a two-second 
time window. Among the 41 features, 34 are numeric and 
7 are symbolic. Only the 34 numeric features are used in 
our experiments. A complete listing of features and 
details are in KDD CUP 1999 data [14]. 
 
4.2. Performance Measures 

 
The result of classification is typically presented in a 

matrix called confusion matrix as shown in Table 1 [4]. 
The accuracy of a classifier is measured by its 
misclassification rate, or alternatively, the percentage of 
correct classification.   
 
Table 1:  Confusion metrics for evaluations of attacks 

Predicted Connection  
Attack Normal 

Attack Correctly 
detected (TP) 

False negative 
(FN) Actual 

Connection Normal False alarm 
(FP) 

True negative 
(TN) 
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Two other performance measures, precision and recall 
are also of interest [24].  

Precision =   TP/(TP+FP) 
Recall =   TP/(TP+FN) 

Another valuable tool for evaluating an anomaly 
detection scheme is the receiver operating characteristic 
(ROC) curve, which is the plot of the detection rate 
against the false alarm rate. The nearer the ROC curve of 
a scheme is to the upper-left corner, the better the 
performance of the scheme is. If the ROCs of different 
schemes are superimposed upon one another, then those 
schemes have the same performance [21].  
 
5. Experimental Results and Discussion 

 
In an attempt to determine the appropriate number of 

major components to use in the PCC, we conduct a 
preliminary study by varying the percentage of total 
variation that is explained by the major components. A 
classifier of only the major components (r=0) is used. 

Classify x as an attack    if  cyq

i i

i >∑
=1

2

λ
 

Classify x as normal   if  cyq

i i

i ≤∑
=1

2

λ
 

where c is the outlier threshold corresponding to the 
desired false alarm rate. 

Table 2 shows the detection rates from five classifiers 
with different numbers of the major components. The 
components account for 30% up to 70% of the total 
variation. From this table, we observe that as the 
percentage of the variation explained increases, which 
means the more number of major components are used, 
the detection rate tends to be higher except for the false 
alarm rates of 1-2%. Another observation is that the 
proposed PCC method based on the major components 
that can explain 50% of the total variation is the best for 
low false alarm rate, and it is adequate for the high false 
alarm rate as well. This suggests the use of q = 5 major 
components that can account for about 50% of the total 
variation in the PCC method.  
 

Table 2: Detection rates of five PCCs for 
different false alarm rates 

 
False 
Alarm PC 30% PC 40% PC 50% PC 60% PC 70% 

1% 67.12% 93.68% 97.25% 94.79% 93.90% 
2% 68.97% 94.48% 99.05% 98.76% 96.07% 
4% 71.07% 94.83% 99.23% 99.24% 99.24% 
6% 71.79% 94.91% 99.33% 99.45% 99.44% 
8% 75.23% 98.85% 99.34% 99.49% 99.58% 
10% 78.19% 99.26% 99.35% 99.53% 99.65% 
 
We now evaluate the performance of the PCC with 

both the major and minor components as compared to 

other detection methods. The detection rates of five 
detection methods at different levels of false alarm are 
presented in Table 3.  The results are the average of five 
independent experiments with different training samples. 
The standard deviation indicates how much the detection 
rate can vary from one experiment to another. As can be 
seen from the table, the results of some methods vary 
wildly. For example, when the false alarm is 6%, the NN 
method (k=1) has 9.68% standard deviation, and the 
detection rate from the 5 experiments ranges from 
70.48% to 94.58%.    

 
Table 3: Average detection rates from five anomaly 

detection methods for various false alarm 
levels (Standard deviation of the detection 
rate is shown in the parentheses) 

 
False 
Alarm PCC Canberra NN KNN 

k=5 LOF 

1% 98.94% 
(+0.20%) 

4.12% 
(+1.30%) 

58.25% 
(+0.19%) 

0.60% 
(+0.00%) 

0.03% 
(+0.03%) 

2% 99.14% 
(+0.02%) 

5.17% 
(+1.21%) 

64.05% 
(+3.58%) 

61.59% 
(+4.82%) 

20.96% 
(+10.90%) 

4% 99.22% 
(+0.02%) 

6.13% 
(+1.14%) 

81.30% 
(+8.60%) 

73.74% 
(+3.31%) 

98.70% 
(+0.42%) 

6% 99.27% 
(+0.02%) 

11.67% 
(+2.67%) 

87.70% 
(+9.86%) 

83.03% 
(+3.06%) 

98.86% 
(+0.38%) 

8% 99.41% 
(+0.02%) 

26.20% 
(+0.59%) 

92.78% 
(+9.55%) 

87.12% 
(+1.06%) 

99.04% 
(+0.43%) 

10% 99.54% 
(+0.04%) 

28.11% 
(+0.04%) 

93.96% 
(+8.87%) 

88.99% 
(+2.56%) 

99.13% 
(+0.44%) 

 
In general, the Canberra metric performs poorly. The 

result on Canberra metric is consistent to Emran and Ye 
[5] that it does not perform at an acceptable level. The 
PCC has detection rate about 99% with a very small 
standard deviation at all levels of false alarm. It 
outperforms all other methods as easily seen from the 
ROC curves in Figure 1.  It is the only method that works 
well at low false alarm rate. 
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Figure 1: ROC curves of five anomaly detection 

methods 
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We take a closer look into the performance of PCC.  
Since the detection rate depends on the outlier threshold 
which is determined by the specified false alarm level, it 
is interesting to see what false alarm rate is actually 
attained when PCC is applied.  As shown in Table 4, PCC 
actually has false alarm rate lower than the specified 
value, while the detection rate reaches almost perfection.  
Table 5 presents the average values of precision and 
recall of PCC from the 5 experiments when the false 
alarm is fixed at 1%. PCC clearly has higher precision 
and recall values. For example, it achieves 98.94% in 
recall and 97.89% in precision, while maintaining the 
false alarm rate at 0.92%. It also has a good balance of 
these two measures. 

 
Table 4: Observed false alarm rate of PCC 

from 92,279 normal connections 

Specified 
False Alarm 

Observed False 
Alarm 

1% 0.92% 
2% 1.92% 
4% 3.92% 
6% 5.78% 
8% 7.06% 

10% 8.49% 
 
Table 5: Average precision and recall of PCC 

(Fixed 1% false alarm) 

Predicted Actual 
Attack Normal  

Recall 

Attack 39,254 420 98.94%
Normal 848 91,431 99.08%

Precision 97.89% 99.54%  
 

In KDD’99 training data, there are 24 attack types that 
fall into 4 big categories: DOS – denial-of-service, Probe 
– surveillance and other probing, u2r – unauthorized 
access to local superuser (root) privileges, and r2l – 
unauthorized access from a remote machine. A detailed 
analysis of the detection results indicates that a large 
number of attacks can be detected by both major and 
minor components, some can only be detected by either 
one of them, and some are not detectable at all since those 
attacks are not qualitatively different from the normal 
instances. An example is some attack types in category 
Probe. The detection rate for this category is not high, 
but it does not hurt the overall detection rate due to a very 
small proportion of this attack type in the whole data set, 
414 out of 39,674 connections. We will use this attack 
type to illustrate the advantages of incorporating minor 
components in our detection scheme. Figure 2 gives 
detailed results of how the major components and minor 

components alone perform as compared to the 
combination of these two in PCC. In general, for this 
attack type, the minor component function has a better 
detection rate than that of the major component function. 
Many more attacks are detected by the minor components 
but would otherwise be ignored by using the major 
components alone. Therefore, the use of the minor 
function does improve the overall detection rate for this 
group.  
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Figure 2: Average detection rates in Probe attack 

type by PCC and its major and minor 
components 

 
 

From the above experimental results, our proposed 
anomaly detection scheme based on the principal 
components works effectively in identifying the attacks. 
The only comparable competitor in our study is the LOF 
approach, but only when the false alarm rate is 4% or 
higher. Our proposed scheme not only has good precision 
and recall, but also has the ability to maintain the false 
alarm at the desired level.   

We noted earlier that the sum of squares of all 

standardized principal components  ∑
=

p

i i

iy
1

2

λ
 is basically the 

Mahalanobis distance. By using some of the principal 
components, the detection statistic would have less 
power. However, in the experiments with the KDD’99 
data, PCC has sufficient sensitivity to detect the attacks.  
Also, unlike the Mahalanobis distance, PCC offers more 
information on the nature of attacks from the use of two 
different principal component functions. One additional 
benefit of PCC is that during the detection stage, the 
statistics can be computed in less amount of time, which 
makes it possible to use the method in real time. This is 
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because that only one third of the principal components 
are used in PCC, 5 major principal components which 
explain 50% of the total variation in 34 features and 6-7 
minor components that have eigenvalues less than 0.20. 

 
6. Conclusions 

 
As more and more organizations become vulnerable to 

a wide variety of cyber threats, it is important to have an 
efficient algorithm that is capable of distinguishing 
between the attacks and normal connections. Following 
the anomaly detection approach, we study the use of 
robust PCA in outlier detection and apply it to the 
anomaly detection problem. The predictive model is 
developed from two functions of the principal 
components of the normal connections, which include the 
major principal components that explain about 50% of the 
total variation and the minor components whose 
eigenvalues are less than 0.20. One additional benefit of 
this approach is its ability to distinguish the nature of the 
anomalies whether they are different from the normal 
instances in terms of extreme values or different 
correlation structures.  The experiments with the KDD’99 
data indicate that the proposed anomaly detection scheme 
performs better than other techniques.  Its detection rate is 
close to 99% for the false alarm rate as low as 1%.  With 
its robustness feature, our proposed scheme will also 
work with unsupervised training data.   
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