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Abstract

The traditional clustering algorithm, K-means, is famous for its soitpland
low time complexity. However, the usability of K-means insitdd by its
shortcoming that the clustering result is heavily dependent on the useedle
variants, i.e., the selection of the initial centroid seeds anchtimber of clusters
(k). A new clustering algorithm, called K-means+, is proposed toméxemeans.
The K-means+ algorithm can automatically determine a semi-optimal number of
clusters according to the statistical nature of data; moreover, thaliméntroid
seeds are not critical to the clustering results. The experimesuiits on the Iris
and the KDD-99 data illustrate the robustness of the K-means+ clogteri
algorithm, especially for a large amount of data in a high-dimensional space.
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1. Introduction

Classificationis the process of partitioning a group of existing objects int
different classes in order to extract desired modelpriedicting the classes of new
objects. In other words, it is a learning process thatvallus to find models or rules

for projecting data onto a number of classes. Many iflzson methods have
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been proposed for knowledge discovery and pattern recagnitio general,
classification approaches can be divided into two caieg the supervised
learning methods and the unsupervised learning metfdessupervised learning
methods, such as Multilayer PerceptrdtLP) [1], Support Vector MachineSVM
[2], K-Nearest Neighbor [3] and Decision Tree [4], essibmodels by mapping
inputs to the known outputs, i.e., mapping objects to the Rnolasses; these
models can be used for predicting the patterns of new ebject

Different from the supervised learning methods, the unsugerviearning
methods, known as clustering methods, do not have the kigevie the classes to
which the objects can be mapped. The classes can leedtia the learning
processes; consequently, models can be established by mappimgles to the
classes. Clustering divides a collection of objects ditferent clusters according to
their similarities. High inter-object similarity wiin each cluster and low inter-
cluster similarity are desired for the clustering spakemeans is a very
straightforward clustering algorithm [5]. It partitionscallection of objects into a
number of clusters by assigning them to their closesteis. The centroid of each
cluster is the mean vector of the cluster members.uke usually needs to define
the number of clusterk); The similarity between two objects is usually mead
using Euclidean distance.

K-means has been used as a popular clustering method dsiesitopticity and
high speed in clustering large data sets. However, K-nte@$wo shortcomings:
dependency on the initial state and degenefékcyThe initial state includes the

selection of initial centroids and the value lof Different selections of initial



centroids often lead to different clustering resultsabse the algorithms based on
the mean squared-error often converge to local minima [i#$.i$ especially true if
the initial centroids are not well separated. Usualig, better the initial centroids
are separated, the better the clustering result eanbbained. Additionally, the
number of clusterskf is also critical to the clustering result, and atiteg an
optimalk for a given data set is a&tP-hard probleni6]. When the distribution of
the data set is unknown, the optinkais hard to attain. The second shortcoming,
degeneracy, is that the clustering may end with some echpdters, i.e., K-means
stops with lesk non-empty clusters. This clustering result is not whatexpect
since the classes of the empty clusters are meanirfiglet® classification.

Two possible methods can be applied for eliminating the reegey: (1)
deleting the empty clusters, and (2) replacing the emptiectusith newly created
non-empty clusters. The former solution reduces the nuwibelusters while the
latter does not change it. The latter has to seanchuitable objects to form a non-
empty clusters to replace the empty ones; afterwardbelbbjects need to be re-
assigned to their closest clusters until there is ngityciuster and all centroids are
stable. This method is obviously more complicated and expetisan the former
method. The H-means+ algorithm, an improved version ofd&ims, eliminates the
degeneracy by using the latter method [8]. Whenever an efustercis created, H-
means+ removes thglobal furthest objec{GFO), and uses it to create a new
cluster to replace the empty cluster. Afterwardstladl objects are reassigned to
their closest centroids the same as the K-meansithlgodoes. This iteration of

eliminating empty clusters and reassigning objects will inaet until no empty



clusters exist. Here, t@FO is one of thdocal furthest object§LFOs). A LFO of
a cluster is defined as the object that has the laE@didean distance from the

centroid comparing to its siblings in the same clushergfore, foik clusters, there

arek LFO;
Clusters: G GC,....,G, ..., &
local furthest objects: LFOLFO,, ..., LFQ,..., LFO

Euclidean distances from LFE@® G:  dy, &b, ..., d, ..., &k
Let dn = max @, b, ..., d, ...,d), thenGFO is LFQ,. Although, H-means+ can
prevent the degeneracy by eliminating empty clusters,illit sstffers from the
shortcoming: dependency on the initial state.

Leonid Portnoy proposed a new clustering algorithm base#-oreans [9].
Similarly, Portnoy’s algorithm also uses Euclidean distato determine the
similarity between objects. The value lofis automatically defined by Portnoy’'s
algorithm. But this method requires the user to define therlugpexd of the cluster
widths (W) and the initial value ok before clustering. During the clustering, each
object needs to find its closest centroid; if thetatise between the object and its
closest centroid is less th&y it joins the cluster; otherwise, it forms a newstér,
and the value df increases. Note thd¢,increases monotonically, and its final value
still heavily depends on its initial value as well asyakie ofW. A smallW usually
leads a large increment kfand a larg&V leads a small or even no incremenkof
When the distribution of a data set is unknown, a prop&re ofW is difficult to

obtain.



In [10] a new genetic clustering heuristic, called CLUSTNER, is proposed.
This heuristic integrates the genetic strategy into daast-neighbor algorithm. It
is proposed to find a proper number as the number of dusigomatically.
However, it still needs the user to specify two varigbtbe thresholdgd, and the
variable,w; and their values are critical to the clustering resditee number of
generations specified by the user also affects thet reigmificantly. On the other
hand, the randomly generated initial strings at its illmadon step and the
randomly selected position for substring crossover malke pdérformance of
CLUSTERING show a random feature according to our expetsne

This paper introduces a new clustering method, named K-mednhsis
developed based on the K-means algorithm. Different fioenldtter, K-means+
adjusts the value d&f autonomously by exploiting the statistical nature ofdhta.
In other words, K-means+ partitions the data into an@ppate number of clusters
rather than an ad hoc fixed number of clusters; moretive initial clustering state
is not critical to the final clustering results. K-mea also eliminates the
shortcoming of degeneracy by removing the empty clustersitidwily, K-
means+ uses multi-centered instead of mono-centered relusteobtain better
performances.

The rest of this paper is organized as follows. In SecBp the K-means+
heuristic of clustering is introduced. Section 3 preseotsparative computational
results on the Iris [11] and the KDD-99 data [12]. The p&peoncluded in Section

4.

2. Proposed Heuristic



Being developed from the K-means algorithm, K-means+ ismelementation
of sum-square-error minimization as well. The maifiedence between the two
algorithms is that the number of clusters in K-mearss& iself-defined variable
instead of a user-defined constant. The user-defineghnot always guarantee an
appropriate partition of objects with an arbitrary dsttion. An improper value of
k usually leads to a poor clustering. One solution to this enolds to find an

appropriate number of clusters by trying all the possiblaes ofk. However, this
approach suffers from a large time complexity as muc®(amkC), wheren is

the number of objects to be partitioned, am the number of iterations of the loop
for stabilizing cluster centroids. Obviously, this approachnpractical for a large
data set. Our approach to this problem is to obtain acptimalk according to the
statistical properties of the data. For instance,afgranularities of clusters are too
‘coarse’ (i.e., the initial value &fis too small), we split the ‘coarse’ clusters to make
them finer. On the other hand, if the clusters are toe''(i.e., the initial value df

is too large), we merge some contiguous clusters to forgerleclusters. Even
without knowledge of the objects' distribution, the K-nsaralgorithm can
determine an appropriate valuekdsy splitting and merging clusters.

The K-means+ algorithm uses the Euclidean distance tolatd the similarity
between two objects. In order to avoid some attribuess{fes) dominating other
attributes in calculating Euclidean distance the data beisiormalized. The initial
value ofk is chosen from the set {2, 3., n}. First, these data are partitioned ifto
clusters in the same way as K-means does, then thmeadfs+ algorithm splits

clusters by removing outliefsom existing clusters to form new clusters. éutlier



is an object that is far from the majority of theeadtg in a cluster. At the splitting
stage, outliers are removed from their current clusi@ng are assigned as new
centroids. These new centroids may attract some sbjenn adjacent clusters to
form new clusters. In this way, the coarse clustexsplit into fine clusters, and the
value ofk is increased. During the process of splitting clustérs, module of
eliminating degeneracy will be frequently revisited in cakempty clusters occur.
If there are empty clusters after an iteration osidung, K-means+ simply deletes
them without creating new non-empty clusters to repleeempty ones, and thus
avoids the time cost in the iterations of searcl@i@ and re-clustering.

After the splitting procedure, K-means+ may merge songceadt clusters by
linking them to form larger clusters. The centroids okéid clusters are kept intact
after linking; therefore, the newly formed clusters emdti-centered, and they can
be in arbitrary shapes, e.g. spatial chains. These-oaultered clusters are more
appropriate than the mono-centered spherical clusterdawssification. The detail

of splitting and linking procedures are discussed below.

2.1 Splitting Clusters

An outlier is an object that is quite different frohetmajority of the objects in a
cluster. When the Euclidean distance is used to medseisnhilarity between two
objects, an outlier is an object that is far from nhegority of the objects. One can
find outliers by comparing the radii of the objects; tkaif the radius of an object
is greater than a given threshold, it is deemed areouflhis idea of determining

outliers comes from the theory of robust regressiwh @utlier detection [13]. As



shown in Figure 1, a set of objects are partitioned knt® clusters. Leto denote
the standard deviation of clust&r Each object is assigned to its nearest cluster.
Objectc represents the centroid of clusk¥erObjectp (the square object) is assigned
to clusterX, since centroidc is the closest cluster th@t can be assigned to.
However, objectp is far from the majority of the objects in the clustad is
probably a local outlier of clustef. Lettsdenote a threshold of determining the
outliers, andr represent the distance between ohpeahd centroic, i.e.,r = ||p, c||.
A point is deemed an outliernif> ts. The function ofs of K-means+ is quite similar
to that ofW of Portnoy’s method. The difference is thais defined autonomously
while W is user-defined.
*** Eigure 1 is about here***
Central Limit Theorem: Let xi, X,..., X% denote a set of independent random

variables with an arbitrary probability distributidt{x;, », ..., X,) with meanu

and a finite variancer [14] . Then, the normal form variable as shown in Equation
(1) has a limiting cumulative distribution function whi@pproaches a normal

distribution [14].

 x —nu
V i=1 1
X =5 1)

“The normal approximation in the Central Limit theoraml be good ifn = 30
regardless of the shape of the populatiom 4f 30, the approximation is good only
if the shape of the population is not drastically déférfrom a normal distribution”
[15]. By the central limit theorem, we can infer thany arbitrary distributions are

close to the normal distribution, i.e., the Gaussistridution. The closer to the



mean, the larger the population of objects can be olikerikere is a very
important proposition regarding the normal distributiomwn asthe Empirical

Rule[15].
Empirical Rule: for any normal distribution

« about 68.26% of the objects will lie within one standard deviation ahtan;

« about 95.44% of the objects will lie within two standard deviations ahten;

« about 99.73% of the objects will lie within three standard deviatiotiseofmean;
« about 99.994% of the objects will lie within four standard deviations of gaam
« about 99.99994% of the objects will lie within five standard deviatiortseof t

mean.

Besides the Empirical Rule, Chebyshev's Theorem, whachdiscovered by the
Russian mathematician P.L. Chebyshev, shows that thetioh of the
measurements falling between any two values symmetoictabe mean is related

to the standard deviation [15].

Chebyshev's Theorem: for any data distribution, at least (1 - 1Anof the objects
in any data set will be within m standard deviations of the mean, whéseany

integer greater than onfd4].

By Chebyshev's Theorem, we can see that at least 96%ect® (majority) in a
cluster lie within the sphare of radiu$z (i.e., 5 standard deviations of the mean).
Chebyshev's Theorem gives the lower bound of the perceMégenight assume

that the objects of a cluster are approximately in anabrdistribution by the



Central Limit Theorem. The Empirical Rule estimathat about 99.99994% of
objects stay within the sphere of radius &f6r a normal distributionTherefore,

we can set the threshotig= 50 for splitting, i.e., the objects that stay beyond the
five standard deviations of the cluster centroid can be eéam outlier.

Once an outlier is found, it is removed from its curmdaster and is assigned as
the centroid of a new cluster. Then, all the data paeitioned again intdk+1
clusters as illustrated in Figure 1.

The split procedure makes the cluster-granularities tmer the objects within
the same cluster more similar to each other. On dnérary, if the initialk is too

large, we may need to merge some close clusters to rdgunember of clusters.

2.2 Linking Clusters

In the merge procedure, we also need to set a thredhplidr( linking clusters.
Using Chebyshev's theorem, we observe that when+/2 = 1.414, there are at
least 50% of the objects withim = 1.414 standard deviations of the mean, which

suggests that the objects in a cluster are appeigignin a normal distribution. Let

tmdenote the threshold of linking and defined as

tn=m (G+ &) = 1.414 o+ o) (2)

Let d represent the Euclidean distance between twoetlegntroids. Id < t,, as
shown in Figure 2, some objects of cluskesire probably closer to the centroid of
the clusterY than some objects of clustérare. Thus, we may merge them into one
cluster. In Figure 2;, andc, represent the centroids of clust&randY respectively

and g and ¢, denote their corresponding standard deviations.
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There are two possible approaches to merge clostecs: fusing and linking.
The first approach is to fuse two cluster centraite a new centroid. The new
centroid is set to the mean vector of the two exro&ds. The standard deviation of
the new cluster must be greater than the two forstandard deviations. The
thresholdfor merging this new cluster with its neighborseislarged. It probably
leads to further merging until no neighbors arselenough to merge with.

There are two disadvantages of fusing clusterseS#ach cluster can only have
one centroid, the cluster can only be in spatiakesp-shape. However, the spatial
spherical clusters may not properly reflect thateaty distribution of the real data.
In the real world, objects can form clusters initaalby shapes, such as spatial
concave or convex, or even a chain. The other disadge is that each merging
may lead to expensive iterations for re-assignitigh@ objects to the updated
centroids.

***Eigure 2 is about here***

K-means+ uses the second approach of mergingnénklose clusters. Their
centroids will be kept intact and no new centraidrieated. The merged cluster has
multi centers. It is not required to re-assign ddtar linking. Another advantage is

that the clusters can be in arbitrary shapes ssiehchain.

3. Testsand Discussion
K-means+ is tested with the Iris data and the K@¥Ddata. The results obtained
by K-means+ are compared with those obtained bgrotlell-known classification

methods, such as K-means and Self-Organized Q&) [16].
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3.1 Performance M easures

Unsupervised learning methods, such as clustelgayidoms, normally do not
use the data labels for classification. Howeves,|#lbels can be used for evaluating
the performance of partition result; that is, astdun can be labeled according to the
majority data inside. For example, if the data witibel “X” has the largest
population in a cluster, the cluster will be laloetX”. During the test, each datum
will be assigned to the closest cluster, and idiedtiwith the same label of the
Cluster.

Confusion matrix is a common measure of the perdoigre of a classification
method. It contains the information of the actual @redicted classification results
[17]. For comparing and analyzing the performanoé<lassification methods,
accuracy AC) is often used as the primary indicator. The eacy is the

proportion of the total number of correct classifion, and is defined as,

_ number of correctly labeled instances 3)
total number of instances

AC

AC is not sufficient to evaluate the classifier'sfpenance when the number of
instances of one class is overwhelmingly greatan tthe other [18]. For example,
there are 10 000 instances, 9 990 of which aretivegand 10 of which are positive.
If all of them are classified as negative, the aacyis 99.9% even though all of the
positive instances are misclassified. For binaassifiers, true positive ratd®),

and false positive rateé=P), are also used to reinforce the accurft§]. True
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positive rate is the proportion of positive instasidhat were correctly classified,

and it is defined as,

_ numberof correctly labeled positiveinstances @)
total numberof positiveinstances

TP

The false positive rate is the proportion of negainstances that are incorrectly

classified as positive, and it is defined as,

_numberof mis-labeled negativeinstances
numberof negativeinstances

FP

(5)

The confusion matrix is used to calculate accuraaye positive rate and false

positive rate.

3.2 Testswith thelrisdata

The Iris data, which is created by R.A. Fisher,aisvell-known dataset for
classification. It has been used for testing maagsification methods. This dataset
contains 3 classes: Setosa, Versicolor, and Vigir[il9]. Each class has 50
instances and refers to a type of Iris flower. Feg® illustrates the Iris data
distribution in 3-dimensional space. There arellot&’ = 4 combinations of three
attributes of the Iris data. The graphs show that $etosa class can be linearly
separated from the Versicolor and Virginica classesl the latter two classes are
overlapping so that they are not linearly separable

*** Figure 3 is about here***

Two-fold cross-validation is used for evaluating ttiassification methods. The

Iris data are divided into two halves. One halised for training data while another
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half for testing. Each of the both data sets hasSétosa data, 25 Versicolor data
and 25 Virginica data. After the training data g@eatitioned into clusters, each
cluster is identified according to the majoritytbé data inside. For example, if the
Setosa data in a cluster has the largest populatencluster is identifieGetosa
During the test, each datum was assigned to itestacentroid, and identified with
the same label of the closest cluster.

We run K-means with different values bkfand different initial centroids, and
obtained different clustering results. The bestwhenk = 3 is shown in Table 1.

The SOM toolbox from Matlab 6.1 is used to classify thés Idata. The

configuration ofSOMused in our simulation is:

net = newsom(PR,[1 3],'hextop’, 'linkdist’, 0.9, 1000, 0.05,1) (6)

It means that the network has 1 layer, which has3lLdimension; the function is
'hextop’, which calculates the neuron positions lyers whose neurons are
arranged in a multi-dimensional hexagonal pattéfhe distance function is
'linkdist', which is a layer distance function udedfind the distances between the
layer's neurons. The learning rate is 0.9. The murobthe ordering phase steps is
1000. The tuning phase learning rate is 0.05. flimng phase neighborhood
distance = 1. The confusion matrix of the simulatis shown in Table 1.
Hereinafter Sedenotes Setos&e denotes Versicolor; andi denotes Virginica.
Attempting with different initial number of clustefrom set {2, 3..., 75}, K-

means+ classified the testing data after the trgiwith the training data, and

produced 74 confusion matrices. All of them areteggimilar to each other, and
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most of them are the same as Table 1. Even thialicigntroids are randomly
selected from Iris data; the results are still $hene. Obviously, the initial number
of clusters and the initial centroids are no longstical to the clustering resul.
That is, K-means+ does not have the shortcomingdependency on the initial

state for the classification of the Iris data.

Predictions with clustering algorithi
K-means (k=% SOM (1 % 3 K-means:
Se Ve Vi Se Ve Vi Se Ve Vi
Se 25 0 0 25 0 0 25 0 0
Ve 1 23 1 0 24 1 0 0 25
Vi 0 5 20 0 2 23 0 0 25

Table 1: Confusion Matrices for the Iris data

Since the Versicolor and Virginica classes arelinetrly separable, without the
knowledge of the classes, K-means+ always idestifiem as one class. Actually,
no classification methods based on the unsuperteseding to date can separate

the Versicolor and Virginica classes well withoug knowledge of their classes.

3.3 Testswith KDD-99 data

The log data are the footprints of activities ompaoters and networks. Intrusion
log data are usually different from normal log datherefore, clustering methods
may be used to distinguish them by partitioningusion data and normal data into
different clusters. We assess the applicability)Keheans+ in intrusion detection

using KDD-99 dataset [12].
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The KDD-99 dataset was used for The Third Inteomati Knowledge Discovery
and Data Mining Tools Competition, which was helcconjunction with KDD-99,
the fifth International Conference on Knowledge doigery and Data Mining [12].
The competition task was to build a network intonsdetector. This database was
acquired from the 1998 DARPA intrusion detectionaleation program. An
environment was set up to acquire raw TCP/IP duatp tr a local-area network
(LAN) simulating a typical U.S. Air Force LAN, whicwas operated as if it was a
true environment, but blasted with multiple attackbere are totally 4 898 431
connections recorded, of which 3 925 650 are astaetar each TCP/IP connection,
41 various quantitative and qualitative featuresewextracted [12].

There are total 42 features of each datum. Thetfiree qualitative features are
protocol_type, service and flag. Currently, onlyeth protocol types (tcp, udp or
icmp) are used. In KDD-99 data, there are 70 wiffe services (such as, http or
smtp) and 11 flags (such & or S2). We map these three qualitative features into
guantitative features so as to calculate the giitida of instances. There are also
some other qualitative features, such as root_¢H&lif root shell is obtained; “0”
otherwise), logged_in (“1” if successfully loggewl; ‘0" otherwise), land (“1” if
connection is from/to the same host/port; “0” otiee). They are also used as
guantitative features here because they are ifothe of an integer. The rest of the
features except the last one are positive quamgtdeatures, such as src_bytes
(number of data bytes from source to destinatiamgent (number of urgent
packets) and serror_rate (percentage of connedti@ishave SYN errors). They

can be used directly to calculate the similarityingtances. The last feature is the
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label, which indicates the identification of thesti@nce. If the instance is a normal
instance, the label is “normal’; otherwise it isteing of an attack type.

From the KDD-99 dataset, which contains 4 898 ldB&led data, we randomly
select 101 000 data for training. Among them, @00 are normal and 1 000 are
intrusive. From the KDD-99 dataset, we also rangosellect 200 000 normal data
and 200 000 intrusive data for test. If a datumtbeen selected for training, it will
not be selected for test.

K-means partitioned the training data into a givermber of clusters, and
labeled each cluster according to the label ofrtiagority data of the cluster. For
example, if intrusion data form the largest popatatin a cluster, the cluster is
labeled 'intrusive’; otherwise, it is labeled 'nafmDuring the simulation with the
testing data, each datum was assigned to its tlosatoid, and identified with the
same label of the closest centroid. The simulaticcuracyof K-meansvaries with
the value ok. The best accuracy is obtained whesguals to 53.

The SOM toolbox from Matlab 6.1 is used to classify the BdD9 data. The

configuration ofSOMused in our simulation is:

net = newsom(minmax, [2 2, 2 2],'hextop’, 'linkdist’, 0.9, 1000, D)05, (7)

It means that the network has 2 layers. Each lager2x 2 dimension; the function
is 'hextop’. The distance function is 'linkdistheTlearning rate is 0.9. The number
of the ordering phase steps is 1 000. The tunirggghearning rate is 0.05. The

tuning phase neighborhood distance is 1.
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With different initial values ofk, K-means+ finally partitioned the 101 000
training data into 53 multi-centred clusters. Dgrihe simulation, each test datum
is assigned to its closest cluster, and identdiecbrding to the label of the cluster.

As illustrated in Table 2, K-means+ has attaiA€= 96.38%,TP = 99.98% and
FP = 7.22%. This performance is better than the perdmces of K-means and

SOM Almost all the normal data have been correctgsified by K-means+.

Predictions with clustering algorithms
K-means+ K-means SOM
Normal Intrusive Normal Intrusive Normal Intrusive

Normal 199952 48 191202 8798 171021 28979

Intrusion 14438 185562 82168 117832 36168 163832
Accuracy 96.38% 77.26% 83.71%
TP 99.98% 95.60% 85.51%
FP 7.22% 41.08% 18.08%

Table 2: Simulation results with 400,000 KDD-99alafter the training

K-means+ not only has a better performance tharotier clustering methods,
but also has a better usability compared to therotlassification methods. The
user does not need to worry about the initial valbi& since it rarely affects the
result of the classification. For K-means, the us®s to choose a value lobefore
clustering. However, the real data are often inaditrary distribution and the
appropriate value ok is hard to obtain. The performances SOM are heavily
dependent on the selected topologies and corresgpmarameters. To find a
proper topology and parameters, the user must baeeigh knowledge of the

complicated topology of the network.
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With different initial values ok and randomly selected initial cluster centroids,
K-means+ partitioned a dataset consisting of 51afdnal data and 5 000 intrusion
data. These data are randomly selected from KDD&8set. Figure 4 illustrates
the relationship curve of the initial number of stiers and the final number of
clusters. The final number of clusters is almosadily at 20 when the initial
number of clusters varies from 2 to 100. Figuré&wss the curves of accuracy, true
positive rate and false positive rate vs. theahiiumber of clusters. All of the three
curves are nearly horizontal lines, it means that initial state rarely affect the
clustering result.

Moreover, the CPU time of these tests with difféneitial number of clusters is
quite similar to each other. It means that thaahmumber of clusters also rarely
affects the time complexity of K-means+. Therefdfeneans+ does not have the
shortcomings of dependency on the initial state.

*** figures 4 and 5 are about here***

The K-means+ algorithm, which is implemented inajJag run on a personal
computer of Dell Dimension 2300 with a Celeron CUBO GHz and a RAM of
256MB. There are two primary parameters in studyhmg time complexity of K-
means+: the number of initial clustek$ &nd the size of data)

The curve in Figure 6 shows that the CPU time ah&ns+ does not vary much
with different initialk whenn is a constant. Thereforke will not be considered as a
parameter of the time complexity of K-means+. Wheis a constant and is a
variable, K-means+ classifies a number of subsdtsKDD-99 data. The

relationship of CPU time andch is shown in Figure 7. The curve is the
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corresponding fitting polynomial. The least-squagproximating polynomial of

degree 2 is:

Y =3.76 x 10 -3 X + 18.57X -3.3632 (8)

The axis Y is the CPU time of K-means+, and axis Xhe number of data for
clustering. The coefficient of Xin the least-square approximating polynomial of
degree 3 is 5.16 10’, which is too small to consider by comparing watther
coefficients; thus, the quadratic fitting polynomis used to express the
relationship between the CPU time. Thus, the tirmenglexity of K-means+ is
approximatelyOo(n?).

In order to avoid the memory overflow when therirag data set is very large,
K-means+ has to use I/O frequently to read in thming data one by one instead
of reading all of them into memory at once. Howewee I/O is very expensive

time-wisely; it is probably the most expensive mortof K-means+.

4. Discussion and Concluding Remarks
We have introduced a new clustering method baseg¢ means. The number of
clusters of K-means+ is a self-defined variable.tfi® best of our knowledge, it is
the first time that a method using the standardadiew of clusters for splitting and
linking clusters according to the statistic natafedata. K-means+ eliminates two
shortcomings of K-means: degeneracy and dependenthe initial state.
Empirically, the initial cluster number is no lomgeitical to the clustering result

of K-means+; therefore, it can partition data iatoappropriate number of clusters
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without knowing their distribution. This is the prary advantage of K-means+ over
K-means.

As an unsupervised classification method, K-meathsas not need pre-define
any parameter or topology. It is simple yet verywpdul method that can be
implemented easily. The comparative analysis of tds results shows that K-
means+ is a robust method for solving classificatproblems. For intrusion
detection, security administrators can use K-medadiiter out a large amount of
normal data before searching the database forsiotrs [20]. Thus, the workload of
security administrators can be significantly redldé-means+ can also be used for
classification in many other fields. For medicapkgation, K-means+ can be used
to group diseases by their symptoms, this coulp belfind effective treatments.
For e-commerce, K-means+ can be used to group rassoaccording to the
customer profile in order to find consumer need dadyet their advertising
advertisements efforts more effectively than semditbulk of spam to everyone.

Further developments of K-means+ include the fallmaresearch directions: (i)
integrating fuzzy clustering techniques into K-mg&ano improve its performance
[21]; (ii) building parallel versions of this hestic to reduce the time complexity;
(i) combining the K-means+ algorithm and metadfigics, such as Tabu Search
[22] and genetic strategy [23], for solving verygea instances; and, (iv) applying
enhanced procedure to more real world problemsatteph recognition, medical

diagnosis, data mining and e-business.
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(a) Clusters before splitting

Figure 1. An Example of Splitting Clusters
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Figure 2: Merging clusters
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Iris data with No.1.2 and 3 attributes

Iris data with Mo.1,2 and 4 attributes
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Figure 3: Visualization of the Iris data
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Figure 6: Initial number of clusters vs. CPU time
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