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“[…]QUESTION_HUMAN > If Control’s control is absolute, why does Control need 
to control? 
ANSWER_CONTROL > Control…, needs time. 
QUESTION_HUMAN > Is Control controlled by his need to control ? 
ANSWER_CONTROL > Yes. 
QUESTION_HUMAN > Why is Control need Humans, has you call them ? 
ANSWER_CONTROL > Wait ! Wait…! Time are lending me…;  
Death needs time like a Junkie… needs Junk. 
QUESTION_HUMAN > And what does Death need time for ? 
ANSWER_CONTROL > The answer is so simple ! Death needs time for 
what it kills to grow in ! […]”, 
 
in Dead City Radio, William S. Burroughs / John Cale , 1990. 
 
 

Imagine a “machine” where there is no pre-commitment to any particular 
representational scheme: the desired behaviour is distributed and roughly specified 
simultaneously among many parts, but there is minimal specification of the mechanism 
required to generate that behaviour, i.e. the global behaviour evolves from the many 
relations of multiple simple  behaviours . A machine that lives to and from/with Synergy. 
An artificial super-organism that avoids specific constraints and emerges within 
multiple low-level implicit bio -inspired mechanisms. 

 
The emergence of complex behaviour in any system consisting of interacting simple 

elements is among the most fascinating phenomena of our world. Examples can be found in 
almost every field of today’s scientific interest, ranging from coherent pattern formation in 
physical and chemical systems, to the motion of swarms of animals in biology, and the 
behaviour of social groups. In the life and social sciences, one is usually convinced that the 
evolution of social systems is determined by numerous factors, difficult to grasp, such as 
cultural, sociological, economic, political, ecological, etc. However, in recent years, the 
development of the interdisciplinary fields “science of complexity”, along with “artif icial 
life” (aLife), has lead to the insight, that complex dynamic processes may also result from 
simple interactions. Moreover, at a certain level of abstraction, one can also find many 
common features between complex structures in very different fields.  

Francis Heylighen, mentor of the Principia Cybernetic Project, an international 
organization (PCP, http://pespmc1.vub.ac.be/) points precisely to this paradigm shift, with a 
remarkable historical perspective, namely in what concerns the view within  the social 
sciences, using biology as a metaphor, and more recently those from complexity science. In 
“The Global Superorganism: an Evolutionary-Cybernetic Model of the Emerging Network 
Society” (Journal of Social and Evolutionary Systems, 2001) he writes: 

 

                                                                 
Π http://alfa.ist.utl.pt/~cvrm/staff/vramos 
⊕ in ARCHITOPIA Book / Catalogue, Art, Architecture and Science, J.L. Maubant and L. 
Moura (Eds.), pp. 25-57, Ministério da Ciência e Tecnologia, Feb. 2002. 
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On the right, a synthetic test image composed by small squares of different sizes, but 
perceived by us (humans) as a big cross, probably due to our inner perceptual grouping 
Gestalt laws (Wertheimer, 1910). On the left, the perceived cross by an artificial ant colony as 
a function of the spatial distribution of pheromone (Swarm Cognitive Map), at T=1000 
(Ramos, 1998-2000). 

 
[…] It is an old idea that society is in a number of respects similar to an organism, a 

living system with its cells, metabolic circuits and systems. As an example, the army 
functions like an immune system, protecting the organism from invaders, while the 
government functions like the brain, steering the whole and making decisions. In this 
metaphor, different organizations or institutions play the role of organs, each fulfilling its 
particular function in keeping the system alive, an idea that can be traced back at least as far 
as Aristotle, being a major inspiration for the founding fathers of sociology, such as Comte, 
Durkheim and especially Spencer […] 

 
Then at this point, Heylighen stresses the importance of recognizing the underlying 

component of complexity in nature, a bottom-up view common to the field of Artificial Life: 
 
[…] The organismic view of society has much less appeal to contemporary theorists. 

Their models of society are much more interactive, open-ended, and non-deterministic than 
those of earlier sociologists, and they have learned to recognize the intrinsic complexity and 
unpredictability of society. The static, centralized, hierarchical structure with its rigid division 
of labor that seems to underlie the older organismic models appears poorly suited for 
understanding the intricacies of our fast-evolving society. Moreover, a vision of society where 
individuals are merely little cells subordinated to a collective system has unpleasant 
connotations to the totalitarian states created in the last century. As a result, the organismic 
model is at present generally discredited in sociology […] 

 
Similarly, biology has traditionally started at the top, viewing a living organism as a 

complex biochemical machine, and has worked analytically down from there through the 
hierarchy of biological organization – decomposing a living organism into organs, tissues, 
cells, organelles, and finally molecules – in its pursuit of the mechanisms of life. Analysis 
means ‘the separation of an intellectual or substantial whole into constituents for individual 
study’ (that is, by top-down reductionist approaches). By composing our individual 
understandings of the dissected component parts of living organisms, traditional biology has 
provided us with a broad picture of the mechanics of life on Earth.  

In the meantime, however, new scientific developments have done away with rigid, 
mechanistic views of organisms (Heylighen). As pointed by Langton, there is more to life 
than mechanics – there is also dynamics. Life depends critically on principles of dynamical 
self-organization that have remained largely untouched by traditional analytic methods. There 
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is a simple explanation for this – these self-organized dynamics are fundamentally non-linear 
phenomena, and non-linear phenomena in general depend critically on the interactions 
between parts: they necessarily disappear when parts are treated in isolation from one another, 
which is the basis for any analytic method. Rather, non-linear phenomena are most 
appropriately treated by a synthetic approach, where synthesis means “the combining of 
separate elements or substances to form a coherent whole’. In non-linear systems, the parts 
must be treated in each other’s presence, rather than independently from one another, because 
they behave very differently in each other’s presence than we would expect from a study of 
the parts in isolation. As suggested by Langton, the key concept in aLife is emergent 
behaviour. Natural life emerges out of the organised interactions of a great number of 
nonliving molecules, with no global controller responsible for the behaviour of every part. 
Rather, every part is a behaviour itself, and life is the behaviour that emerges from out of all 
of the local interactions among individual behaviours. It is this bottom-up, distributed local 
determination that aLife employs in its primary methodological approach to the generation of 
lifelike behaviours. Of course, there is no universally agreed definition of life. The concept 
covers a cluster of properties, most of which are themselves philosophically problematic: self-
organization, emergence, autonomy, growth, development, reproduction, evolution, 
adaptation, responsiveness, and metabolism. Scientists differ about the relative importance of 
these properties, although it is generally agreed that the possession of most (not necessarily 
all) of them suffices for something to be regarded as alive. One common concept however is 
shared by all: complex behaviour can emerge from a system consisting of interacting simple 
elements. Once more, Heylighen stresses biology as an example :  

 
[…] when studying living systems, biologists no longer focus nowadays on the static 

structures of their anatomy, but on the multitude of interacting processes that allow the 
organism to adapt to an ever changing environment. Recently, the variety of ideas and 
methods that is commonly grouped under the head of the sciences of complexity , has led to 
understanding that artificial organisms can be self-organizing, adaptive systems. Most 
processes in such systems are decentralized, non-deterministic and in constant flux. They 
thrive on noise, chaos and creativity. Their collective intelligence emerges out of the free 
interactions between individually autonomous components […] 

 
In fact, as I see it, those processes should be viewed as behaving like a swarm. Rather 

than take living things apart, Artificial Life attempts to put living things together within a 
bottom-up approach, that is, beyond life-as-we-know-it into the realm of life-as-it-could-be 
(Langton), generating lifelike behaviour, and focusing on the problem of creating behaviour 
generators, inspired on the nature itself, even if the results (what emerges from the process) 
have no analogues in the natural world. The key insight into the natural method of behaviour 
generation is gained by noting that nature is fundamentally parallel. This is reflected in the 
“architecture” of natural living organisms, which consist of many millions of parts, each one 
of which has its own behavioural repertoire. As we know, living systems are highly 
distributed and quite massively parallel. 

The so-called nouvelle  Artificial Intelligence (AI) and aLife are each concerned with 
the application of computers to the study of complex, natural phenomena. Apart from 
traditional and symbolic hard-specific top-down AI in the sixties and seventies, both are 
nowadays concerned with generating complex behaviour, in a bottom-up manner, turning 
their attention from the mechanics of phenomena to the logic of it. The first computational 
approach to the generation of lifelike behaviour was due to the mathematician John Von 
Neumann. In the words of his colleague Arthur W. Burks, Von Neumann was interested in the 
general question: 

 
[…] What kind of logical organization is sufficient for an automaton to reproduce 

itself ? This question is not precise and admits to trivial versions as well as interesting ones. 
Von Neumann had the familiar natural phenomenon of self-reproduction in mind when he 
posed it, but he was trying to simulate the self-reproduction of a natural system at the level of 
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genetics and biochemistry. He wished to abstract from the natural self-reproduction problem 
its logical form […] 

 
This approach is probably the first to capture the essence of Artificial Life (replace, 

for instance, references to ’self-reproduction’ in the above with references to any other 
biological phenomena). From this “kinematic model” of Von Neumann, a genuine self-
reproduction mechanism implemented in the sixties, Stan Ulam suggested an appropriate 
formalism where the logical form of the process is completely distinguish from the material 
counterpart, which has come to be know as a Cellular Automata (CA). In brief, a CA consists 
of a regular lattice of (many) finite automata , which are the simplest formal models of 
machines. A finite automata can be in only one of a finite number of states at any given time, 
and its transition between states from one time-step to the next are governed by a state-
transition table : given a certain input and a certain internal state, the state-transition table 
specifies the state to be adopted by the finite automata at the next time step. In a CA, the 
necessary input is derived from the states of the automata at neighbouring lattice-points. Thus 
the state of an cellular automata at time t+1 is a function of the states of the automata itself 
and its immediate neighbours at time t. All the finite automata in the lattice (group of cells) 
obey the same transition-table (rule table) and every cell changes his state at the same instant, 
time-step after time-step. CA’s are a good example of the kind of computational paradigm 
sought after by Artificial Life: bottom-up, parallel, local determination of behaviour with 
minimal specification, and emerging complex phenomena from simple rules.  

In order to study any natural phenomena, scientists are turning to a separation. A need 
to separate the notion of a formal specification of a machine (any that will reproduce the 
phenomena itself) – that is, a specification of the logical structure of the machine – from the 
notion of a formal specification of a machines’s behaviour – that is, a specification of 
transitions that the machine will undergo. In general, we cannot derive behaviours from 
structure, nor can we derive structure from behaviours. So instead, in order to determine the 
behaviour of some machines and coupled phenomena, there is no recourse but to run them 
and see how they behave. This has consequences for the methods by which we (or nature) go 
about generating behaviour generators themselves, and from which any evolutionary and 
adaptive process seems to be essential. As an illustration, the most salient characteristic of 
living systems, from the behaviour generation point of view, is the genotype/phenotype 
distinction. The distinction is essentially one between a specification of machinery – the 
genotype – and the behaviour of that machinery – the phenotype. 

The genotype is the complete set of genetic instructions encoded in the linear 
sequence of nucleotide bases that makes an organism’s DNA. The phenotype is the physical 
organism itself – the structures that emerge in space and time as the result of the interpretation 
of the genotype on a particular environment. The process by which the phenotype develops 
through time under the direction of the genotype is called morphogenesis. Simulation plays an 
essential role in the study of morphogenesis. This was anticipated as early as 1952 by Turing, 
who wrote: 
 
[…] The difficulties are such that one cannot hope to have any very embracing theory of such 
processes, beyond the statement of equations. It might be possible, however, to treat a few 
particular cases in detail with the aid of a digital computer. This method has the advantage 
that it is not so necessary to make simplifying assumptions as it is when doing a more 
theoretical type of analysis […] 
 
What is notable is that these 1952 Turing words appears to have already the embedded 
features that characterise bottom-up approaches, in detriment of other kinds of approaches 
strictly reductionist (e.g. top-down). As an aside evidence, note the last Turing words on this 
sentence: it is not so necessary to make simplifying assumptions as it is when doing a more 
theoretical type of analysis […]. Visualisation itself, of simulation results facilitates their 
interpretation, and is used as a method for evaluating models. Lacking a formal measure of 
what makes two patterns or forms (such as trees) look alike (task that is, as we known, mainly 
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related to the idea of perception), we rely on visual inspection comparing the models with the 
reality. Important however in these models, is that the natural and synthetic pigmentation 
patterns differ in details, yet we perceive them as fairly similar or familiar. 

In morphogenesis, the individual genetic instructions are called genes and consist of 
short stretches of DNA. These instructions are executed (expressed) when their DNA 
sequence is used as a template for transcription. One may consider the genotype as a largely 
unordered ‘bag’ of instructions (a rule table, an alphabet, a group of primitives), each one of 
which is essentially the specification for a machine of some sort – passive or active. When 
instantiated, each such machine will enter into ongoing logical mechanisms, consisting 
largely of local interactions between other such machines. Each such instruction will be 
executed when its own triggering conditions are met and will have specific, local effects on 
structures in other cells (their neighbors). Furthermore, each such instruction will operate 
within the context of all the other instructions that have been – or are being – executed.  

The phenotype, then, consists of the structures and dynamics that emerge through 
time in the course of the execution of the parallel, distributed computation controlled by this 
genetic bag of instructions. Since genes interactions with one another are highly non-linear, 
the phenotype is a non-linear function of the genotype. As mentioned briefly above, the 
distinction between linear and non-linear systems is fundamental, and provides excellent 
insight into why the principles underlying the dynamics of life (or many other natural 
phenomena) should be so hard to find and understand. The simplest way to state the 
distinction is to say that linear systems are those for which the behaviour of the whole is just 
the sum of the behaviour of its parts, while for non-linear systems, the behaviour of the whole 
is more than the sum of its parts. Linear systems are those which obey the principle of 
superposition. We can break up complicated linear systems into simpler constituents parts, 
and analyse these parts independently. Once we have reached an understanding of the parts in 
isolation, we can achieve a full understanding of the whole system by composing our 
understandings of the isolated parts. This is the key feature of linear systems: by studying the 
parts in isolation we can learn everything we need to know about the complete system. 
Nature, however, is generally non-linear, where this type of approach is often impossible. 
Non-linear systems do not obey the principle of superposition. Even if we could break such 
systems up into simpler constituents parts, and even if we could reach a complete 
understanding of the parts in isolation, we would not be able to compose our understandings 
of the individual parts into an understanding of the whole system. The key feature of non-
linear systems is that their primary behaviours of interest are properties of the interactions 
between parts, rather than being properties of the parts themselves, and these interaction-
based properties necessarily disappear when the parts are studied independently. Analysis has 
not proved anywhere near as effective when applied to non-linear systems: the non-linear 
system must be treated as a whole. A different approach to the study of non-linear systems 
involves the inverse of analysis: synthesis. Rather than start with the behaviour of interest and 
attempting to analyse it into its constituent parts, we should start with constituent parts and 
put them together in the attempt to synthesize the behaviour of interest. Life, in the same way, 
is a property of form, not matter, a result of organization and re-organization of matter rather 
than something that inheres in the matter itself. Neither nucleotides nor amino acids nor any 
other carbon-chain molecule is alive – yet put them together in the right way, and the dynamic 
that emerges out of their interactions is what we call life. It is effects, not things, upon which 
life is based – life is a kind of behaviour, not a kind of stuff – and as such, it is constituted of 
simpler behaviours, not simpler stuff. Behaviours themselves can constitute the fundamental 
parts of non-linear systems – virtual parts, which depend on non-linear interactions between 
physical parts for their very existence. Isolate the physical parts and the virtual parts cease to 
exist. It is the virtual parts of living systems that Artificial Life is after, and synthesis is its 
primary methodological tool. 

Computers, provide (and should be viewed as) as an important laboratory tool for the 
study of life and many natural phenomena, as an alternative devoted exclusively to the 
incubation of information structures. The advantage of working with information structures is 
that information has no intrinsic size. The computer is the tool for the manipulation of 
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information, whether that manipulation is a consequence of our actions or a consequence of 
the actions of the information structure themselves. Computers themselves will not be alive, 
rather they will support informational universes within which dynamic populations of 
informational ‘molecules’ (or memes, as proposed by Dawkins, as the cultural information 
genes, or vehicles, within one specific society) engage in informational ‘biochemistry’. This 
view of computers as workstations for performing scientific experiments within artificial 
universes is fairly new, but is rapidly becoming accepted as a legitimate, even necessary, way 
of pursuing science. In the days before computers, scientists worked primarily with systems 
whose defining equations could be solved analytically, and ignored those whose defining 
equations could not. This was the case, for instance, in many analytical systems trying to 
explain how the global weather changes, or trying to forecast the behaviour of a fire 
propagating in a specific terrain. As we now know, global weather is a chaotic non-linear 
system, where a flap of a butterfly wing in Peking can develop a huge storm in New York, 
few days later. In the absence of analytical possible solutions, the equations would have to be 
integrated over and over again, essentially simulating the time behaviour of the system. 
Without computers to handle the mundane details of these calculations, such an undertaking 
was unthinkable except for the simplest cases. Given these mundane calculations to 
computers, the realm of numerical simulation is opened up for exploration. ‘Exploration’ is an 
appropriate term for the process, because the numerical simulation of systems allows one to  
explore the system’s behaviour under a wide range of parameter settings and initial 
conditions. The heuristic value of this experimentation cannot be overestimated. One often 
gains tremendous insight for the essential dynamics of a system by observing its behaviour 
under a wide range of initial conditions. Moreover, computers are beginning to provide 
scientists with a new paradigm for modeling the world. When dealing with essentially 
unsolvable governing equations, the primary reason for producing a formal mathematical 
model (the hope of reaching an analytic solution by symbolic manipulation) is lost. It has 
become possible, for example, to model turbulent flow in a fluid by simulating the motions of 
its constituent particles – not just approximating changes in concentrations of particles at 
particular points, but actually computing their motions exactly. The same is true for 
understanding and modeling people in overcrowded soccer stadiums, or for instance, in 
gaining insight on how traffic jams emerge, from very simple inner rules. Again, the best way 
to tackle it, is to look at the whole process, synthesizing which basic and simple logical rules 
(generally independent from the phenomena itself) govern the multitude of parts, emerging a 
global and complex behaviour. What is essential in these types of systems, is not the parts and 
their intrinsic natures (at least strictly), but namely their relationships (among themselves and 
with their environment). 

Within this same context, let us return again to the genotype/phenotype distinction 
and on the possibility of the development of a behavioural phenotype. One paradigmatic 
model is the one of Craig Reynolds, who in 1987 has implemented a simulation of flocking 
behaviour. Now, if we think for a moment, none type of analytical differential equations was 
been able to tackle (or model) this type of natural phenomena. In the Reynolds model, 
however – which is meant to be a general platform for studying the qualitatively similar 
phenomena of flocking, herding and schooling – one has a large collection of autonomous but 
interacting objects (which Reynolds refer as Boids), inhabiting a common simulated 
environment. 

The modeler can specify the manner in which the individual Boids will respond to 
local events or conditions. The global behaviour of the aggregate of Boids is strictly an 
emergent phenomena, where none of the rules for the individual Boids depends on global 
information, and the only updating of the global state is done on the basis of individual Boids 
responding to local conditions. Note that, the underlying system nature is similar in many 
ways to a Cellular Automata , mentioned earlier. Again, each Boid  (cell for the CA) in the 
aggregate shares the same behavioural ‘tendencies’: 
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·To maintain a minimum distance from other objects in the environment, including other 
Boids, 
·To match velocities with Boids in its neighbourhood, and 
·To move towards the perceived centre of mass of the Boids in its neighbourhood. 
 
These are the only rules governing the behaviour of the aggregate. These rules, then, 
constitute the generalized genotype of the Boids system. What is amazing, is that they say 
nothing about structure, or growth and development, or even about birds nature, but they 
determine the behaviour of a set of interacting autonomous objects, out of which very natural 
motion emerges. With the right settings for the parameters of the system, a collection of Boids 
released at random positions within a volume will collect into a dynamic flock, which flies 
around environmental obstacles in a very fluid and natural manner, occasionally breaking up 
into sub-flocks as the flock flows around both sides of an obstacle. Once broken up into sub- 
flocks, the sub-flocks reorganize around their own, now distinct and isolated centre of mass, 
only to re-emerge into a single flock again when both (or more) sub-flocks emerge at the fair 
side of the obstacle and each sub-flock feels anew the mass of the other sub-flock. 
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The flocking behaviour itself constitutes the generalized phenotype of the Boids 
system. It bears the same relation to the genotype as an organism’s morphological phenotype 
bears to its molecular genotype. The same distinction, between the specification of machinery 
and the behaviour of machinery is evident. Through development (or time), local rules 
governing simple non-linear interactions at the lowest level of complexity emerge global 
behaviours and structures at the highest level of complexity. Finally, Artificial Life (as a truly 
interdisciplinary scientific field) may be viewed as an attempt to understand high-level 
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behaviour from low-level rules, for example, on how the simple interactions between ants and 
their environment lead to complex trail-following behaviour. But by far more important than 
studying ants itself, is to study how they organize themselves, through out a simple adaptive 
mechanism that seems to be present in many natural phenomena of our world. An 
understanding of such relationships in particular bio-inspired systems can suggest novel 
solutions to complex real-world problems such as disease prevention, pattern recognition, 
stock-market prediction, or data mining on the Internet (to name up a few). 
One of the most well-know examples is the area of Evolutionary Computation. In the spirit of 
Von Neumann, John Holland has attempted to abstract the logical form of the natural process 
of biological evolution in what is currently known as the Genetic Algorithm (GA). In the GA, 
a genotype is represented as a character string that encodes a potential solution to a problem. 
For instance, the character string (chromosome) might encode the weight matrix of a neural 
network, or the rule table of any Cellular Automata, or in its simplest way, any pseudo-
solution to any specific problem. These character strings are rendered as phenotypes via a 
problem-specific interpreter, which constructs, for example, the artificial neural network or 
the cellular automata machine specified by each genotype, evaluates its performance in the 
problem domain, and provides it with a specific fitness value. From this point the GA 
implements an artificial selection by making more copies of the character strings representing 
the better performing phenotypes. The GA generates variant genotypes by applying genetic 
operators to these character strings. The genetic operators typically consist of reproduction, 
cross-over, and mutation, with occasional usage of inversion and duplication. What is 
interesting is that “poor” individuals along several generations, often encode in parts of their 
genotypes, the key for the best solutions (artificial individuals) to become better. The best GA 
solution, is in some sense a product of the GA collective change of information, a product of 
the whole, being diversity a key aspect in the process, and a way for the artificial algorithm to 
balance his own exploration/exploitation duality character on the fitness landscape (space of 
possible solutions). Such evolutionary approaches are being applied to tasks such as 
optimisation, search procedures, classification, and adaptation, among others. 

As the computational strategies mentioned above, Complex dynamic systems in 
general show interesting and desirable behaviours as flexibility (in vision or speech 
understanding tasks, the brain is able to cope with incorrect, ambiguous or distorted 
information, or even to deal with unforeseen or new situations without showing abrupt 
performance breakdown) or versatibility quoting Dorigo and Colorni, robustness (keep 
functioning even when some parts are locally damaged - Damásio ), and they operate in a 
massively parallel fashion. As we know, systems of this kind abound in nature. A vivid 
example is provided by the behaviour of a society of termites (Courtouis). And, as a key 
feature, complex dynamical systems show and provide emergent properties. Again, this means 
that the behaviour of the system as a whole can no longer be viewed as a simple superposition 
of the individual behaviours of its elements, but rather as a side effect of their collective 
behaviour. Contained in this notion is the idea that properties are not a priory predictable 
from the structure of the local interactions and that they are of functional significance. The 
computation to be performed is contained in the dynamics of the system, which in turn is 
determined by the nature of the local interactions between the many elements. 

Many of the dynamical computation systems that have been developed today find 
also their equivalent in nature, and all of them show, directly or not, important emergent 
properties (among other lifelike features). A non-extensive list of possible paradigmatic 
examples include, Genetic Algorithms, Memetic Algorithms, Spin Glass Models, 
Connectionist Architectures and Artificial Neural Networks, Reaction-Diffusion systems, Self -
Organizing Maps, Simulated Annealing methods, Artificial Imunne systems, Cellular 
Automata , L-Systems, Gradient Vector Flow and Snakes, Differential Evolution, 
Correlational Opponent Processing and Particle Swarm Optimization. 
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As an example, biological metaphors offer insight into many aspects of computer 
viruses and can inspire defences against them. That is the case with some applications of 
Immunological Computation, and Artificial Immune Systems. The immune system is highly 
distributed, highly adaptive, maintains a memory of past encounters, is self-organising in his 
own nature and has the ability to continually learn about new encounters. From a 
computational viewpoint, the immune system has much to offer by way of inspiration. 
Detection of specific patterns in large databases is one possible application. Autonomous alert 
collision systems, in route management for airplanes is another.  

An important feature in many of these dynamical computational systems is that of 
interaction (e.g. competition-cooperation duality). Cooperation involves a collection of agents 
– global behaviours, if we strictly follow Langton words - that interact by communicating 
information, or hints (usually concerning regions to avoid or likely to contain solutions) to 
each other while solving a problem. This duality interaction can also be found in the well-
known Prisoner Dilemma game theory problem, into which many Evolutionary Computation 
approaches are being used. The information exchanged may be incorrect at times and should 
alter the behaviour of the agents receiving it, yet, what emerges at the end is an robust rule in 
the pool of rules, which is cooperative. Another example of cooperative problem solving is 
the use of the Genetic Algorithm to find states of high fitness in some abstract space. In a 
Genetic Algorithm, members of a population of states exchange pieces of themselves or 
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mutate to create new populations, often containing states of higher fitness. In Artificial Neural 
Networks, we can also find similar features, where the output of one neuron affects the 
behaviour (or state – under the light of Cellular Automata  theory) of the neuron receiving it, 
and so on. Reporting to the real nature and quoting Damásio, we are barely beginning to 
address the fact that interactions among many non-contiguous brain regions probably yield 
highly complex biological states that are vastly more than the sum of their parts. It is 
important, however, to point out that the brain and mind are not a monolith: they have 
multiple structural levels, and the highest of those levels creates instruments or artefacts that 
allow for the observation of the other levels. 

 

MOVING ON TO THE IMPLICIT 
 
Evolutionary Computation, whether in the form of Genetic algorithms, Genetic 

Programming, or Evolution Strategies, has been largely successful in solving a great variety 
of problems in many scientific areas. This is in part due to the fact that for these types of 
applications, an appropriate fitness evaluation is possible to code, and depending on the 
problem is a relatively simple task, that is, a performance of each solution in the population 
can be measured. Even if Artificial Life has made a strong rupture with the more traditional 
symbolic AI, by implementing non-analytical bottom-up approaches, yet and for some 
algorithmic paradigms like Evolutionary Computation, there is still a need for a high-level 
specification of purpose (or intention), a target, in order to evaluate and select solutions found 
so far in each generation. However, in some real-world implementations where these 
evaluations are hard to formalize by any group of equations, being it in the form of multiple 
coded constraints, specific grammars, confidence intervals or as normally by any multi-
objective evaluation function, the successful and coherent application of Genetic Algorithms 
are jeopardize, remaining the strategy a pure random process. This is the case, in many, if not 
all the recent implementations of synthetic evolutionary art, or generative art and architecture. 
As we know, defining any aesthetic criteria is difficult, being the translation from these to an 
automatic set of mathematical selection rules, probably even more difficult or impossible  
(since, among other aspects, the relation of the art work in formation and the artist can be seen 
as a process of co-evolution). In the absence of any mathematical function that can map 
coherently the relations of, for instance, form into aesthetical value, the final result will 
always be a random guided-tour of some sub-space of possible and hypothetical novel 
solutions, not different in many aspects, to a trial and error basic process, submitted to any 
specific conceptual search space. This is mainly a problem of representation, since any 
attitude to implement those aesthetical fitness functions, mapping genotypes into the 
“usefulness” of the hypothetical novel forms, can be as dangerous as the objective and 
analytical evaluation of any final art work. This high-level mapping attitude is in itself a 
compression method, where the diversity of any conceptual world and the nature of its several 
dimensions are reduced to some aspects. Luis Borges words on these matters are wise: the 
only true map of the world, is the world itself. 

There is however one way to avoid those mathematical mappings. That is of using the 
human observer or “artist”, as an “aesthetical mapping machine”, connected in real-time to 
the artificial evolutionary process. The first computer-graphics program where the idea was 
introduced was due to Karl Sims (1991). This program uses genetic algorithms to generate 
new images, or patterns, from pre-existing images. Unlike most GA systems, the selection of 
the “fittest” examples is not automatic, but is done by the programmer. That is, the human 
being selects the images which are aesthetically pleasing, or otherwise interesting, and these 
are used to breed the next generation, being the whole an interactive graphics environment. 
Although interesting in many fields, this type of Evolutionary Computation is however 
dependent on the human observer, and on his attitude, since the measuring of any pool of 
pseudo-solutions (e.g., art works in formation), at any given generation, must be evaluated 
and ranked by the artist looking to the monitor. For instance, there are several Genetic 
Algorithms, that work under this line, helping to find criminals. In order to search optimally 
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all the combinatorial nature of the human faces, the victim points out to the GA, some aspects 
and features of the face of the criminal, evaluating and ranking different evolutionary 
proposals, generation after generation, being the final result a robot-drawing of that criminal 
(or at least, similar to him). In the context of artificia l art, this conceptual framework has 
recently being followed, but still, the human-computer interaction, determines a final art 
work, which is far from being purely a result from an autonomous process, being the 
computational paradigm just a tool to achieve any artistic purpose, as a pencil still his for any 
drawing artist.  

Even if those methodological approaches are interesting, there is still a profound gap 
on the understanding of other mechanisms that can have a crucial role on the sciences of the 
artif icial, and predominantly on the nature of morphogenesis. As an example, for the past ten 
years or so, aLife research debates intensively the basic characters of those non-linear 
mappings between genotypes and phenotypes. What are, for instance, the necessary alphabets 
and their local relationships, which can promote and emerge spatial organization at the higher 
levels of complexity in any system? What parts and elementary mechanisms are essential, in 
order to have the system behaving as a usefulness, creative and autonomous whole? In order 
to find a truly innate artificial emergent life (a research field that could have an enormous 
impact on the synthetic computational art and architecture, itself), we must thus, study and 
find other approaches, which can be coupled or not with the existing aLife systems. 

As a researcher in all the computational paradigms briefly described above, I believe 
that there are three crucial aspects in order to create truly low-level mechanisms that could 
autonomously emerge novel aesthetical patterns. The first aspect to discuss, is on the nature 
of autonomy itself, that is, on the nature of any autonomous mechanisms embedded in any 
artificial organism. Rather specifying high-level constraints, even if minimally at each 
chromosome fitness evaluation, we should take the opposite way, that is, to allow for any 
organism an implicit nature of those emerged characters. We must follow the bottom-up 
methodological design, till the end. The second is on the role of intrinsic co-evolution 
between parts of the artificial system, on how it can be implemented, and on his intrinsic 
scientific properties. By doing this, we allow the system to connect into any and possible 
unsupervised realm. However, and for the sake of simplicity, I will not discuss these 
properties on here. Finally the third aspect is related to the nature of self-organization, a 
concept that links back to autonomy and emergence. 

The first aspect of autonomy involves behaviour mediated, in part, by inner 
mechanisms shaped by any artificial organism past experience. These mechanisms may, but 
need not, include explicit representations of current or future states. However, the important 
distinction is between a response wholly dependent on the current environmental state (given 
the or iginal, “innate”, bodily mechanisms), and one largely influenced by the creature’s 
experience. The more a creature’s past experience differs from that of other creatures, the 
more “individual” its behaviour will appear. The second aspect of autonomy, relates to know 
into what extend the controlling mechanisms were self-generated rather than externally 
imposed. That is, a distinction between behaviour which emerges as a result of self-
organizing processes, and behaviour which was deliberately prefigured in the design of that 
organism, or organisms. This concerns for instance those behaviours that emerge, from an 
initial list of simple rules concerning locally interacting units, but it was neither specifically 
mentioned in those rules, nor foreseen when they were written. As an example, this is case of 
Boids. Ethnologists, aLife workers, and situated roboticists (e.g., Inman Harvey), all assume 
that increasingly complex hierarchical behaviour can arise in this sort of way. The more levels 
in the hierarchy (layers of complexity, as I like to call them), the less direct the influence of 
environmental stimuli will be – and the greater the behavioural autonomy. Even if, all started 
(or can be started, as I believe), from a simple set of environmental stimuli. A primordial soup 
of implicit characters. An intrinsic and kaleidoscopically genotype. 

For all these reasons and within all these paradigms, we must focus our study and 
implement computational features that underlie the collective and the distributed, the flexib le 
and the versatile, the massively parallel and the dynamical. Finally we should research those 
systems that rely on synergy, cooperation and co-evolution, with or without embodied 
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evolutionary computation. One prominent example, are Artificial Ant Systems, a research area 
to which I humble contribute since 1998. In “Godel, Escher, Bach”, Douglas Hofstadter 
explores the difference between an ant colony as a whole and the individual that composes it. 
According to Hofstadter, the behaviour of the whole colony is far more sophisticated and of 
very different character than the behaviour of the individual ants. A colony’s collective 
behaviour exceeds the sum of its individual member’s actions (so-called emergence) and is 
most easily observed when studying their foraging activity. Most species of ants forage 
collectively using chemical recruitment strategies, designated by pheromone trails, to lead 
their fellow nest-mates to food sources.  

This analogy with the way that real and natural ant colonies work and migrate, has 
suggested the definition in 1991/92 of a new computational paradigm, which is called the Ant 
System (Dorigo / Colorni). In these studies (again) there is no pre-commitment to any 
particular representational scheme: the desired behaviour is specified, but there is minimal 
specification of the mechanism required to generate that behaviour, i.e. global behaviour 
evolves from the many relations of multiple simple behaviours. Since then several studies 
were conducted to apply this recent paradigm – or analogous ones - in real case problems, 
with successful results. In short, the new heuristic has the following desirable characteristics: 
(1) It is versatile , in that it can be applied to similar versions of the same problem; (2) It is 
Robust. It can be applied with only minimal changes to other problems (e.g. combinatorial 
optimisation problems such as the quadratic assignment problem - QAP, travelling salesman 
problem - TSP, or the job-shop scheduling problem - JSP);…and (3) It is a population based 
approach. This last property is interesting since it allows the exploitation of positive feedback 
as a search mechanism (the collective behaviour that emerges is a form of autocatalytic 
“snow ball”  - that reinforces itself - behaviour, where the more the ants follow a trail, the 
more attractive that trail becomes for being followed). It also makes the system amenable to 
parallel implementations (though, only the intrinsically parallel and distributed nature of these 
systems are generally considered). 

One typical case of interest is that of perception. I have explored the application of 
Artificial Ant Systems into Pattern Recognition problems, namely to the sub-problem of 
image segmentation, i.e., to find homogeneous regions in any digital image, in order to extract 
and classify them. The application of these heuristics onto image segmentation looks very 
promising, since segmentation can be looked as a clustering and combinatorial problem, and 
the grey level image itself as a topographic map (where the image is the ant colony 
playground). Then, the distribution of the pheromone (a volatile and chemical substance) 
represents the memory of the recent history of the swarm, and in a sense it contain 
information which the individual ants are unable to hold or transmit. In this artificial system, 
there is no direct communication between the organisms but a type of indirect communication 
through the pheromonal field. In fact, ants are not allowed to have any memory and the 
individual’s spatial knowledge is restricted to local information about the whole colony 
pheromone density. Particularly interesting for the present task (i.e. trying to evolve 
perceptive capabilities), is the fact that self-organisation of ants into a swarm and the self-
organisation of neurones into a brain-like structure are similar in many respects (Chialvo, 
Millonas). Swarms of social insects construct trails and networks of regular traffic via a 
process of pheromone laying and following. These patterns constitute what is known in brain 
science as a cognitive map. The main differences lies in the fact that insects write their spatial 
memories in the environment, while the mammalian cognitive map lies inside the brain, a fact 
that also constitutes an important advantage in the present model. As mentioned by Chialvo, 
this analogy can be more than a poetic image, and can be further justified by a direct 
comparison with the neural processes associated with the construction of cognitive maps in 
the hippocampus. Wilson, for instance, forecasted the eventual appearance of what he called 
“a stochastic theory of mass behaviour” and asserted that “the reconstruction of mass 
behaviours from the behaviours of single colony members is the central problem of insect 
socio-biology”. He forecasted that our understanding of individual insect behaviour together 
with the sophistication with which we will able to analyse their collective interaction would 
advance to the point were we would one day posses a detailed, even quantitative, 
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understanding of how individual “probability matrices” would lead to mass action at the level 
of the colony. By replacing colony members with neurones, mass behaviours or colony by 
brain behaviour, and insect socio-biology with brain science the above paragraph could 
describe the paradigm shifts in the last twenty-five years of progress in the brain sciences. 

Perception is also an important conceptual element in what can be related to 
autonomy. Probably a third criterion of autonomy (not listed earlier) links to the extend to 
which a system’s inner directing mechanisms can be reflected upon, and/or selectively 
modified, by the individual concerned. One way in which a system can adapt its own 
processes, selecting the most fruitful modifications, is to use an evolutionary strategy such as 
the genetic algorithms mentioned above. It may be that something broadly similar goes on in 
human minds. But the mutations and selections carried out by GAs are modelled on biological 
evolution, not conscious reflection and self-modification. And it is conscious deliberation 
which many people assume to be the root of human autonomy. Thus, it is primarily on 
perception and inner recognition that the system must rely.  

Moreover, perception itself, as a human feature is being modelled and analysed by 
Gestalt psychology and philosophical systems since, at least 1910 (Wertheimer). It is of much 
interest to follow that this kind of scientific works point out that perception is a product of a 
synergistic whole effect, i.e. the effect of perception is generated not so much by its 
individual elements (e.g. human neurones) as by their dynamic interrelation (collective 
behaviour) – phenomena that can be found easily in many computational paradigms briefly 
described above, or even in Neural Network computational models, where data generalisation, 
N dimensional matrix re-mapping, pattern classification or forecasting abilities are known to 
be possible. As putted by Limin Fu in his own words, the intelligence of a Neural Network 
emerges from the collective behaviour of neurones, each of which performs only very limited 
operations. Even though each individual neuron works slowly, they can still quickly find a 
solution by working in parallel. This fact can explain why humans can recognize a visual 
scene faster than a digital computer, while an individual brain cell responds much more 
slowly than a digital cell in a VLSI (Very Large Scale Integration) circuit. Also, this brain 
metaphor suggests how to build an intelligent system which can tolerate faults (fault 
tolerance) by distributing information redundantly. It would be easier to build a large system 
in which most of the components work correctly than to build a smaller system in which all 
components are perfect. Another feature exhibited by the brain is the associative type of 
memory. The brain naturally associates one thing with another. It can access information 
based on contents rather than on sequential addresses as in the normal digital computer. The 
associative, or content-addressable, memory accounts for fast information retrieval and 
permits partial or approximate matching. The brain seems to be good at managing fuzzy 
information because of the way its knowledge is represented. The key aspect is that artificial 
ant systems behave similarly. 

Typically these systems form a structure, configuration, or pattern of physical, 
biological, sociological, or psychological phenomena, so integrated as to constitute a 
functional unit with properties not derivable from its parts in summation (i.e. non-linear) – 
Gestalt in one word (Krippendorff) (the English word more similar is perhaps system, 
configuration or whole ). This synergetic view, derives from the holistic conviction that the 
whole is more than the sum of its parts and, since the energy in a whole cannot exceed the 
sum of the energies invested in each of its parts (e.g. first law of thermodynamics), that there 
must therefore be some quantity with respect to which the whole differs from the mere 
aggregate. This quantity is called synergy and in many aLife computational systems can be 
seen as their inherent emergent and autocatalytic properties (process well known in many 
Reinforcement Learning models, namely in Q-learning methods often used in autonomous-
agents design (Mitchell / Maes).  

Part of what we now see in these figures, was due to a model that has explored the 
application of these features into digital images, replacing the normal colony habitat, by grey 
levels, extending the capabilities of pheromone deposition into different situations, allowing a 
process of perceptual morphogenesis. In other words, from local and simple interactions to 
global and flexible adaptive perception. In those experiments, the emergence of network 
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pheromone trails, for instance, are the product of several simple and local interactions that 
can evolve to complex patterns, which in some sense translate a meta -behaviour of that 
swarm. Moreover, the translation of one kind of low-level structure of information (present in 
a large number) to one meta-level is minimal. Although that behaviour is specified (and 
somehow constrained), there is minimal specification of the mechanism required to generate 
that behaviour; global behaviour evolves from the many relations of multiple simple 
behaviours, without global coordination, and using indirect communication (through the 
environment). One abstract example is the notion, within a specified population, of common-
sense, being the meta-result a type of collective-conscience. Needless to say, that some 
features are acquired (through out the evolving relation with the habitat), being others inner 
components of each part. Though, what is interesting to note is that we do not need to specify 
them. Moreover, the present model shows important adaptive capabilities, as in the presence 
of sudden changes in the habitat. Even if the model is able to quickly adapts to one specific 
environment, evolving from one empty pheromonal field, habitat transitions point that, the 
whole system is able to have some memory from past environments (i.e. convergence is more 
difficult after learning and perceiving one habitat). This emerged feature of résistance, is 
somewhat present in many of the natural phenomena that we find today in our society. 
In short, the design of such systems must follow a conceptual flux, where autonomy, 
perception and synergy are the key-elements. My final words are exactly about synergy 
within ant systems, and on how this aLife scientific essay in the intersection can help building 
or suggest novel 2D patterns, or even 3D architectures, as we now see on these pages. 
Synergy (from the Greek word synergos), broadly defined, refers to combined or co-operative 
effects produced by two or more elements (parts or individuals). The definition is often 
associated with the quote “the whole is greater than the sum of its parts” (Aristotle , in 
Metaphysics), even if it is more accurate to say that the functional effects produced by wholes 
are different from what the parts can produce alone. Synergy is a ubiquitous phenomenon in 
nature and human societies alike. One well know example is provided by the emergence of 
self-organization in social insects, via direct (mandibular, antennation, chemical or visual 
contact, etc) or indirect interactions. The latter types are more subtle and defined by Grassé as 
stigmergy to explain task coordination and regulation in the context of nest reconstruction in 
Macrotermes termites. An example, could be provided by two individuals, who interact 
indirectly when one of them modifies the environment and the other responds to the new 
environment at a later time. In other words, stigmergy could be defined as a typical case of 
environmental synergy. Grassé showed that the coordination and regulation of building 
activities do not depend on the workers themselves but are mainly achieved by the nest 
structure: a stimula ting configuration triggers the response of a termite worker, transforming 
the configuration into another configuration that may trigger in turn another (possibly 
different) action performed by the same termite or any other worker in the colony. Another 
illustration of how stigmergy and self-organization can be combined into more subtle adaptive 
behaviors is recruitment in social insects. Self-organized trail laying by individual ants is a 
way of modifying the environment to communicate with nest mates that follow such trails. 
 It appears that task performance by some workers decreases the need for more task 
performance: for instance, nest cleaning by some workers reduces the need for nest cleaning. 
Therefore, nest mates communicate to other nest mates by modifying the environment 
(cleaning the nest), and nest mates respond to the modified environment (by not engaging in 
nest cleaning); that is stigmergy. 
In other words, perception and action only by themselves can evolve adaptive and flexible 
problem-solving mechanisms, or emerge communication among many parts. The whole and 
their relationships (that is, the next layer in complexity) emerges from the relationship of 
many parts, even if these latter are acting strictly within and according to any sub-level of 
basic and simple strategies, ad-infinitum repeated. Quoting Einstein , the system “should be 
made as simple as possible, but not simpler”. 
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On the rigth, a sequential clustering task of corpses performed by a real ant colony. 1500 
corpses are randomly located in a circular arena with radius = 25 cm, where Messor Sancta 
workers are present. The figure shows the initial state (a), 2 hours (b), 6 hours (c) and 26 
hours (d) after the beginning of the experiment. On the left, an artificial swarm evolving 
clusters of semantically similar data items (Ramos, 2001). 
 

Division of labor is another paradigmatic phenomena of stigmergy. Simultaneous task 
performance (parallelism) by specialized workers is believed to be more efficient than 
sequentia l task performance by unspecialized workers. Parallelism avoids task switching, 
which costs energy and time. A key feature of division of labor is its plasticity. Division of 
labor is rarely rigid. The ratios of workers performing the different tasks that maintain the 
colony’s viability and reproductive success can vary in response to internal perturbations or 
external challenges.  

But by far more crucial to the design of any collective pattern artificial system, is how 
ants form piles of items such as dead bodies (corpses), larvae, or grains of sand. There again, 
stigmergy is at work: ants deposit items at initially random locations. When other ants 
perceive deposited items, they are stimulated to deposit items next to them, being this type of 
cemetery clustering organization and brood sorting a type of self-organization and adaptive 
behavior. Théraulaz and Bonabeau described for instance, a model of nest building in wasps, 
in which wasp-like agents are stimulated to deposit bricks when they encounter specific 
configurations of bricks: depositing a brick modifies the environment and hence the 
stimulatory field of other agents. These asynchronous automata (designed by an ensemble of  
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A swarm emerging global 3D patterns, from multiple local configuration stimulus. 
 
algorithms) move in a 3D discrete space and behave locally in space and time on a pure 
stimulus-response basis. There are other types of examples (e.g. prey collectively transport), 
yet stimergy is also present: ants change the perceived environment of other ants (their 
cognitive map, according to Chialvo and Millonas), and in every example, the environment 
serves as medium of communication.  

What all these examples have in common is that they show how stigmergy can easily 
be made operational. As mentioned by Bonabeau, that is a promising first step to design 
groups of artificial agents which solve problems: replacing coordination (and possible some 
hierarchy) through direct communications by indirect interactions is appealing if one wishes 
to design simple agents and reduce communication among agents. Another feature shared by 
several of the examples is incremental construction: for instance, termites make use of what 
other termites have constructed to contribute their own piece. In the context of optimization 
(though not used on the present works), incremental improvement is widely used: a new 
solution is constructed from previous solutions (see ACO paradigm, Dorigo et al). Finally, 
stigmergy is often associated with flexibility: when the environment changes because of an 
external perturbation, the insects respond appropriately to that perturbation, as if it were a 
modification of the environment caused by the colony’s activities. In other words, the colony 
can collectively respond to the perturbation with individuals exhibiting the same behavior. 
When it comes to artificial agents, this type of flexibility is priceless: it means that the agents 
can respond to a perturbation without being reprogrammed in its intrinsic features to deal with 
that particular instability. The system organizes itself in order to deal with new object classes 
(conceptual ideas translated to the computer in the form of basic 2D/3D forms), or even new 
sub-classes. This task can be performed in real time, and in robust ways due to system’s 
redundancy.  

Data and information clustering is one of those problems in which real ants can 
suggest very interesting heuristics for computer scientists, and it is in fact a classic strategy 
often used in Image and Signal Processing. For the past two years, I have been developing 
research on these areas. Many experiments are now under their way at the CVRM-IST Lab 
(for instance, real-time marble and granite image classification, image and data retrieval, etc), 
along with the application of Genetic Algorithms, Neural Networks, and many others (based 
strictly on natural computation paradigms) into many problems in Natural Resources 
Management, like forecasting water quality and control on river networks. Surprisingly, these 
studies can help us to understand how artificial stigmergic systems can be implemented in 
order to produce novel and autonomous patterns.  
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Jackson Pollock 

 
These algorithms mimic the inner stimuli response threshold functions of each 

organism composing the system, and in some sort, what happens in several species of ants, 
where workers have been reported to sort their larvae or form piles of corpses – literally 
cemeteries – to clean up their nests. Chrétien has performed experiments with the ant Lasius 
niger to study the organization of cemeteries. Other experiments include the ants Pheidole 
pallidula  reported by Denebourg, and many species actually organize a cemetery. If corpses, 
or more precisely, sufficiently large parts of corpses are randomly distributed in space at the 
beginning of the experiment, the workers form cemetery clusters within a few hours, 
following a behavior similar to aggregation. If the experimental arena is not sufficiently large, 
or if it contains spatial heterogeneities, the clusters will be formed along the edges of the 
arena or, more generally, following the heterogeneities. The basic mechanism underlying this 
type of aggregation phenomenon is an attraction between dead items mediated by the ant 
workers: small clusters of items grow by attracting workers to deposit more items. It is this 
positive and autocatalytic feedback that leads to the formation of larger an larger clusters. In 
this case, it is therefore the distribution of the clusters in the environment that plays the role of 
stigmergic variable. 

Finally, the simulated ecology of different stimuli response threshold organisms, 
triggered by the seeds of these stigmergic processes, whether in the form of 3D local 
configurations, or by the qualitative values of any conceptual data items, must not be 
overestimated. Above all, the behaviour that emerges from all these spatial-temporal 
relationships conduct us into the realm of what nature is about: dynamical patterns of 
complexity. Not chaotic or purely rendered at random, but at the edge of chaos (Langton), 
where creative and autonomous aLife survives. As reported recently by Nature magazine 
(Sept., 13, 2000), research suggests that the abstract works of artists such as Jackson Pollock 
are esthetically pleasing because they obey fractal rules similar to those found on the natural 
world. Pollock was known to have swung his paint back and forth like a pendulum, using a 
can on the end of a string with a hole punched in it. Researchers (Jensen) have found that if a 
swinging pendulum is hit with a hammer at just the right frequency (slightly less than the 
natural rhythm of the pendulum), its motion becomes chaotic and the paint traces out very 
convincing “fake Pollocks”. However, the artist had no idea of fractals or chaotic motion. 
This seems to be in line with the actual synthetically computational art, where there is a need 
to reference some kind of external artifact or mechanism, but nevertheless and as it appears, 
not those of the self whether they are conscious, unconscious, intuitive or not. Synthetically 
generative art, and above all, artificial systems of morphogenesis of any kind, should be much 
more about what scientists call “complexity”, and rely on nature as a physical generative 
force of ontological significance. Moving on to the implicit, rather on the specific. 
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