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Causal reasoning plays an essential role in both informal and formal human decision-making.
Causality itself as well as human understanding of causality is imprecise, sometimes
necessarily so. A common sense understanding of the world tells us that we have to deal with
imprecision, uncertainty and imperfect knowledge. A difficulty is striking a good balance be-
tween precise formalism and commonsense imprecise reality. An algorithmic method of
accommodating imprecision in causality is needed. Today, data mining holds the promise of
extracting unsuspected information from very large databases. However, the most common
data mining rule forms do not express a causal relationship. Without understanding the
underlying causality, a naïve use of data mining rules can lead to undesirable actions.

1. Introduction

Causal reasoning occupies a central position in human reasoning. It plays an essen-
tial role in human decision-making. Considerable effort has been spent examining
causation. Philosophers, mathematicians, computer scientists, cognitive scientists,
psychologists, and others have explored causation beginning at least three thousand
years ago with the Greeks.

Whether causality can be recognized at all has long been a theoretical speculation
of scientists and philosophers. At the same time, in our daily lives, causality is not a
speculation; we operate on the commonsense belief that causality exists.

Causal relationships exist in the commonsense world. If an automobile fails to
stop at a red light and there is an accident, it can be said that the failure to stop was
the accident’s cause. However, failing to stop at a red light is not a certain cause of a
fatal accident; sometimes no accident of any kind occurs. So, at least some
knowledge of some causal effects is imprecise. Perhaps, complete knowledge of all
possible factors might lead to a crisp description of whether a causal effect will
occur. However, in our commonsense world, it is unlikely that all possible factors
can be known. What is more, there appears to be inherent limits on what can be
crisply known. None-the-less, we need to deal with common sense cause and effects.

Our common sense understanding has to deal with imprecision, uncertainty and
imperfect knowledge. This is also the case for scientific world knowledge. An
algorithmic way is needed to deal with causal imprecision. Models accommodating
imprecision are needed. These models may be symbolic or graphic. Striking a good
balance between precise formalism and commonsense imprecise reality is difficult.



1.1. Data  Mining,  Introduction

Data mining is an advanced tool for managing large masses of data. It analyzes data
previously collected. It is secondary analysis. Secondary analysis precludes the possi-
bility of experimentally varying the data to identify causal relationships.

There are several different data mining products. The most common are either
conditional rules or association rules. Conditional rules are most often drawn from
induced trees while association rules are most often learned from tabular data. Of
these, the most common data mining product is association rules; for example:

Customers who Customers who
buy milk buy strawberries and whipped cream

also tend to buy bread also tend to buy cake

Figure 1. Examples of association rules. Rules can associate as many elements as desired. (Rule quality
measures exist but are not shown.)

At first glance, association rules seem to imply a causal or cause-effect relation-
ship. That is: A customer’s purchase of bread   causes   the customer to also buy milk.
In fact, all that is discovered is the existence of a statistical relationship between the
items. The nature of the relationship is not specified. We do not know whether the
presence of an item or sets of items causes the presence of another item or set of
items; or the converse, or some other phenomenon causes them to occur together.

When typically developed, association rules do not necessarily describe causality.
Also, the strength of causal dependency, if any, may be very different from a respec-
tive association value. All that can be said is that associations describe the strength
of joint co-occurrences. Sometimes, the relationship might be causal; for example, if
someone eats salty peanuts and then drinks beer, there is probably a causal relation-
ship. On the other hand, it is unlikely that a crowing rooster causes the sun to rise.

1 . 2 . Naive  Association Rules  Can  Lead  To Bad Decisions

One of the reasons why association rules are used is to aid in making retail decisions.
However, simple association rules may lead to errors. It is common for a food store
to put one item on sale and then to raise the price of another item whose purchase is
assumed to be associated. This may work if the items are truly associated; but it is
problematic if association rules are blindly followed [9].

Example: At a particular store, customers buy:
• hamburger 33% of the time
• hot dogs 33% of the time
• both hamburger and hot dogs 33% of the time
• sauerkraut* only if hot dogs are also purchased

                                                
* Sauerkraut is a form of pickled cabbage. Some people enjoy sauerkraut as a garnish with sausages

such as hot dogs. However, it is rarely consumed as a garnish with hamburger. For more about
sauerkraut, see: http://www.sauerkraut.com/



This would produce the transaction matrix:

      hamburger   hot dog   sauerkraut
t1      1          1           1
t2      1          0           0
t3      0          1           1

This would lead to the associations:
• (hamburger, hot dog) = 0.5
• (hamburger, sauerkraut) = 0.5
• (hot dog, sauerkraut) = 1.0

If the merchant:

• Reduced price of hamburger (as a sale item)

• Raised price of sauerkraut to compensate (as the rule hamburger, sauerkraut has a reasonably
high confidence.

• The offset pricing compensation would not work as the sales of sauerkraut would not increase with
the sales of hamburger. Most likely, the sales of hot dogs (and consequently, sauerkraut) would
likely decrease as buyers would substitute hamburger for hot dogs.

2. Causality

Centuries ago, in their quest to unravel the future, mystics aspired to decipher the
cries of birds, the patterns of the stars and the garbled utterances of oracles. Kings and
generals would offer rewards for the information soothsayers furnished. Today,
though predictive methods are different from those of the ancient world, the
knowledge that dependency recognition attempts to provide is highly valued. From
weather reports to stock market prediction, and from medical prognoses to social
forecasting, superior insights about the shape of things to come are prized [3].

Democritus, the Greek philosopher, once said: “Everything existing in the uni-
verse is the fruit of chance and necessity.” Both randomness and causation are in the
world. Democritus used a poppy example. Whether the poppy seed lands on fertile
soil or on a barren rock is chance. If it takes root, however, it will grow into a
poppy, not a geranium or a Siberian Husky [5].

Beyond computational complexity and holistic knowledge issues, there appear to
be inherent limits on whether causality can be determined. For more detail see [7];
briefly, some are:
• Quantum physics
• Impossibility of complete knowledge
• Gödel’s theorem
• Turing’s halting problem
• Chaos Theory
• Space-Time
• Arithmetic Indeterminism



It may well be that a precise, crisp and complete knowledge of causal events is
uncertain. On the other hand, we have a commonsense belief that causal effects exist.
If models tolerant of imprecision could be developed, it would be useful. Perhaps, the
tools found in soft computing may be useful.

3. Recognizing  Causality  Basics

A common approach to recognizing causal relationships is by manipulating variables
by experimentation. However, non-experimental or observational data is the most
likely to be available for data mining analysis. How to accomplish causal discouvery
in purely observational data is not solved.

Real world events are often affected by a large number of potential factors. For
example, with plant growth, many factors such as temperature, chemicals in the soil,
types of creatures present, etc., can all affect plant growth. What is unknown is what
causal factors will or will not be present in the data; and, how many of the under-
lying causal relationships can be discouvered among observational data.

An important part of data mining is understanding whether there is a relationship
between data items. Sometimes, data items may occur in pairs but may not have a
deterministic relationship; for example, a grocery store shopper may buy both bread
and milk at the same time. Most of the time, the milk purchase is not caused by the
bread purchase; nor is the bread purchase caused by the milk purchase.

Alternatively, if someone buys strawberries, this may causally affect the
purchase of whipped cream. Some people who buy strawberries want whipped cream
with them; of these, the desire for the whipped cream varies. So, there is a
conditional primary effect (whipped cream purchase) variably modified by a secondary
effect (desire). How to represent all of this is open.

A largely unexplored aspect of mined rules is how to determine when one event
causes another. Given that α and β are variables and there appears to be a statistical
covariability between α and β, is this covariability a causal relation? More generally,
when is any multi-element relationship causal? Differentiation between covariability
and causality is difficult.

Some problems with discouvering causality include:
• Adequately defining a causal relation
• Representing possible causal relations
• Computing causal strengths
• Missing attributes that have a causal effect
• Distinguishing between association and causal values

• Inferring causes and effects from a representation.



Complicating causal recognition are the many cases of false causal recognition.
For example, a coach may win a game when wearing a particular pair of socks, then
always wear the same socks to games.

Beyond data mining, causality is a fundamentally interesting area for workers in
intelligent machine based systems. It is an area where interest waxes and wanes; in
part because of definitional and complexity difficulties. The decline in computational
interest in cognitive science also plays a part. Activities in both philosophy and psy-
chology [2] overlap and illuminate computationally focused work. Often, the work in
psychology is more interested in how people perceive causality as opposed to
whether causality actually exists. Work in psychology and linguistics [4] [6] show
that categories are often linked to causal descriptions. For the most part, work in
intelligent computer systems has been relatively uninterested in grounding based on
human perceptions of categories and causality.

4. Problems With Using Probability

There has been significant work in using various forms of Bayesian networks for
causal discovery. A Bayesian network is a combination of a probability distribution
and a structural model that is a directed acyclic graph where the nodes represent the
variables (attributes) and the edges represent probabilistic dependence. In a causal
Bayesian network the predecessors of a node are interpreted as directly causing the
variable associated with a node. However, Bayesian networks can be computationally
expensive. Inferring complete causal Bayesian networks is essentially impossible in
large-scale data mining with thousands of variables.

Restricted algorithms [1] have been suggested that might be useful for causal
discovery in market basket data. However, the restrictions on the data and the
assumptions made about the relationships are overly limiting. For more detail see
[8]; briefly, some are:
• Discrete or continuous data must be reduced to binary values
• There is no missing data
• Causal relationships are not cyclic, either directly or indirectly

5. Epilogue

Causality occupies a central position in human commonsense reasoning. In par-
ticular, it plays an essential role in common sense human decision-making by pro-
viding a basis for choosing an action that is likely to lead to a desired result. In our
daily lives, we make the commonsense observation that causality exists. Carrying
this commonsense observation further, the concern is how to computationally
recognize a causal relationship.



Data mining holds the promise of extracting unsuspected information from very
large databases. Methods have been developed to build rules. In many ways, the inter-
est in rules is that they offer the promise (or illusion) of causal, or at least, predictive
relationships. However, the most common form of data mining rules (association)
only calculates a joint occurrence frequency, not a causal strength. A fundamental
question is determining whether or not recognizing an association can lead to recog-
nizing a causal relationship. A related question is how to determine when causality
can be said to be stronger or weaker.

Causality is a central concept in many branches of science and philosophy. In a
way, the term “causality” is like “truth” -- a word with many meanings and facets.
Some definitions are extremely precise but often unusable for commonsense
reasoning. Some involve reasoning style’s that may be supported by soft computing.

A deep question is when anything can be said to cause anything else. And if it
does, what is the nature of the causality? There is a strong motivation to attempt
causality discouvery in association rules. The research concern is how to best ap-
proach the recognition of causality or non-causality. Or, if there is any way to rec-
ognize causality as long as association rules are the result of secondary analysis?
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