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Abstract

Two critical challenges typically associated with min-
ing data streams are concept drift and data contamina-
tion. To address these challenges, we seek learning tech-
niques and models that are robust to noise and can adapt to
changes in timely fashion. We approach the stream-mining
problem using a statistical estimation framework, and pro-
pose a fast and robust discriminative model for learning
noisy data streams. We build an ensemble of classifiers to
achieve timely adaptation by weighting classifiers in a way
that maximizes the likelihood of the data. We further em-
ploy robust statistical techniques to alleviate the problem of
noise sensitivity. Experimental results on both syntheticand
real-life data sets demonstrate the effectiveness of this new
model learning approach.

1. Introduction

There is much current research interest in continuous
mining of data streams. Applications involving stream data
abound and include network traffic monitoring, credit card
fraud detection and stock market trend analysis. Practical
situations pose three fundamental issues to be addressed.

Adaptation Issue. Unlike traditional learning tasks
where data is stationary, the concept generating a data
stream drifts with time due to changes in the environment.
These changes cause the model learned from old data obso-
lete, and model updating is necessary.

Robustness Issue. The noise problem is more severe
for stream data mining, because it is difficult to distinguish
noise from changes caused by concept drift. If an algorithm
is too eager to adapt to concept changes, it may overfit noise
by falsefully interpreting it as data from a new concept. If
it is too conservative and slow to adapt, it may overlook
important changes.

Performance Issue. To assure on-line responses with
limited resources, continuous mining should be “fast and
light”, that is: (1) learning should be done very fast, prefer-
ably in one pass of the data; and (2) algorithms should make
light demands on memory resources.

To address these issues, we propose a novel discrimina-

tive model for adaptive learning for noisy data streams, with
modest resource consumption. The model takes a form of
a weighted ensemble, whose member classifiers and their
weights are adaptively updated. For a learnable concept, the
class of a sample conditionally follows a Bernoulli distribu-
tion. Our method assigns classifier weights in a way that
maximizes the training data likelihood with the learned dis-
tribution. This weighting scheme has theoretical guarantee
of adaptability, and can also boost a collection of weak clas-
sifiers into a strong ensemble. Weak classifiers are desirable
because they learn faster and consume less resources.

The adaptive weighting scheme distinguishes our ap-
proach from previous work using ensemble methods for
data stream learning, such as the work in [4] and [5]. In [4],
uniform votes are taken among members, while in [5], clas-
sifier votes are weighted proportionally to their estimated
accuracy. As shown in the experiment section, our approach
outperforms both methods, For ease of references in our
comparative study, we name them ‘Bagging’ and ‘Weighted
Bagging, respectively. (The name “ bagging” derives from
their analogy to traditional bagging ensembles.)

Our outlier detection differs from previous off-line ap-
proaches which assume an unchanging data model. The
truth is that outliers are directly defined by the current con-
cept, so the outlier identifying strategy needs to be modified
whenever the concept drifts away. In our approach, the out-
lier detection is integrated into the model learning, so that
they mutually reinforce each other.

The “fast and light” learning is achieved by boosting
weak classifiers into strong ensembles. This is illustrate by
learning strong ensembles of small decision trees, each with
very few nodes.

2. Adaptation to Concept Drift

Ensemble weighting is the key to fast adaptation. Here
we show that this problem can be formulated as a statistical
optimization problem solvable by logistic regression.

We first look at how an ensemble is constructed and
maintained. The data stream is simply partitioned into small
blocks of fixed size, then classifiers are learned from blocks.
The most recentK classifiers comprise the ensemble, and



old classifiers retire sequentially by age. A separate set of
training examples are prepared for classifier weighting by
sampling the training data streams. When sufficient train-
ing data is collected for classifier learning and ensemble
weighting, the following steps are conducted: (1) learn a
new classifier from the training block; (2) replace the oldest
classifier in the ensemble with this newly learned; and then
(3) weigh the ensemble.

For simplicity, we consider a two-class classification set-
ting. The training data for ensemble weighting is repre-
sented as

(X ,Y) = {(xi, yi); i = 1, · · · , N}

xi is a vector-valued sample attribute, andyi ∈ {0, 1} is the
sample class label. An ensemble of classifiers is denoted in
a vector form as

f = (f1(x), · · · , fK(x))T

where eachfk(x) is a classifier function producing a value
for the belief on a class. The individual classifiers in the
ensemble may be weak or out-of-date. It is the goal of our
discriminative modelM to make the ensemble strong by
weighted voting. Classifier weights are model parameters,
denoted as

w = (w1, · · · , wK)T

wherewk is the weight associated with classifierfk. The
modelM also specifies a weighted voting scheme:

w
T · f

Because the ensemble predictionw
T · f is a continuous

value, yet the class labelyi to be decided is discrete, a stan-
dard approach is to assume thatyi conditionally follows a
Bernoulli distribution parameterized by a latent scoreηi:

yi|xi; f ,w ∼ Ber(q(ηi))
ηi = w

T · f
(1)

whereq(ηi) is the logit transformation ofηi:

q(ηi) , logit(ηi) =
eηi

1 + eηi

Eq.1 states thatyi follows a Bernoulli distribution with
parameterq, thus the posterior likelihood is

p(yi|xi; f ,w) = qyi(1 − q)1−yi (2)

The above description leads to optimizing classifier
weights using logistic regression. Logistic regression isa
well-established regression method, widely used in tradi-
tional areas when the regressors are continuous and the re-
sponses are discrete [3]. In our problem, given a data set
(X ,Y) and an ensemblef , the logistic regression technique
optimizes the classifier weights by maximizing the likeli-
hood of the data. The optimization problem has a closed-
form solution which can be computed quickly.

3. Robustness to Outliers
Regression is adaptive because it always tries to fit the

data from the current concept, but can potentially overfit
outliers. We integrate the following outlier detection tech-
nique into the model learning.

We define outliers as samples with a small likelihood un-
der a given data model. The goal of learning is to compute
a model that best fits the bulk of the data, that is, the inliers.
Since we do not know the outliers, we use the EM approach
discussed in the next section.

Previously we have described a training data set as
{(xi, yi), i = 1, · · · , N}, or (X ,Y). This is anincomplete
data set, as the outlier information is missing. Acomplete
data set is a triplet

(X ,Y,Z)

where Z = {z1, · · · , zN}

is a hidden variable that distinguishes the outliers from the
inliers. zi = 1 if (xi, yi) is an outlier,zi = 0 otherwise.
ThisZ is not observable and needs to be inferred. AfterZ
is inferred,(X ,Y) can be partitioned into an inlier set

(X0,Y0) = {(xi, yi, zi),xi ∈ X , yi ∈ Y, zi = 0}

and an outlier set

(Xφ,Yφ) = {(xi, yi, zi),xi ∈ X , yi ∈ Y, zi = 1}

The samples in(X0,Y0), which all come from one under-
lying distribution, and are used to fit the model parameters.

To infer the outlier indicatorZ, we introduce a new
model parameterλ. It is a threshold value of sample likeli-
hood. That is,

zi = neg
(

log p(yi|xi; f ,w) − λ
)

(3)

where neg() returns1 for a negative value, 0 otherwise.
Thisλ, together withf (classifier functions) andw (clas-

sifier weights) discussed earlier, constitutes the complete set
of parameters of our discriminative modelM, which has a
four tuple representationM(x; f ,w, λ).

4. Model Learning
The goal of model learning is to compute the optimal

values of parametersw and λ, so that the discriminative
modelM gives the best fit on the data(X ,Y). The prob-
lem is thus an optimization problem. The score function
to be maximized involves two parts: (i) the log-likelihood
term for the inliers(X0,Y0), and (ii) a penalty term for the
outliers(Xφ,Yφ).

Each inlier sample(xi, yi) ∈ (X0,Y0) is assumed to be
drawn from an independent identical distribution belonging
to a probability family characterized by parametersw, de-
noted by a density functionp((x, y); f ,w). The problem is
to find the values ofw that maximizes the log-likelihood of
(X0,Y0) in the probability family:



 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  20  40  60  80  100  120  140  160

Ac
cu

ra
cy

Data Blocks

Robust Logistic Regression
Weighted Bagging

Bagging

Figure 1. Adaptability comparison of the ensemble meth-
ods on data with three abrupt shifts.

log p((X0,Y0)|f ,w)

A parametric model for outlier distribution is not avail-
able. We use instead a non-parametric statistics:

e · ‖(Xφ,Yφ)‖

This term penalizes having too many outliers. The opti-
mization problem is then formalized as:

(w, λ)∗ = arg max
(w,λ)

(

log p((X0,Y0)|f ,w)

−e · ‖(Xφ,Yφ)‖
)

(4)

The score function to be maximized is not differentiable
because of the non-parametric penalty term. We have to re-
sort to a more elaborate technique based on the Expectation-
Maximization (EM) [1] algorithm to solve the problem.

The EM is a general method for maximizing data likeli-
hood in problems where data is incomplete. The algorithm
iteratively performs an Expectation-Step (E-Step) followed
by an Maximization-Step (M-Step). In our case,

1. E-Step: to impute / infer the outlier indicatorZ based
on the current model parameters(w, λ), as in Eq.3.

2. M-Step: to compute new values for(w, λ) that maxi-
mize the score function in Eq.4 with currentZ. This
step is actually a Maximum Likelihood Estimation
(MLE) problem.

Due to space limitation, we refer the readers to a full
version of this work ([2]) for detailed model computation.

5. Experiments and Discussions
On both synthetic and real-life data, our robust regres-

sion method is shown to be superior to the previously men-
tioned approaches:Bagging[4] andWeighted Bagging[5].
The base learner we have used is the C4.5 decision tree.

The synthetic data consists of points in a 3-dimension
unit cube: x =< x1, x2, x3 >, xi ∈ [0, 1], i = 0, 1, 2.
Two classes are separated by a sphere inside the cube. Con-
cept drift is simulated by moving the center of the sphere
between adjacent blocks with a step of±δ. The value of
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Figure 2. Adaptability comparison of the ensemble meth-
ods on data with three abrupt shifts mixed with small shifts.

δ controls the level of shifts. In our setting, we consider a
concept shift small ifδ is around0.02, and relatively large
if δ around0.1. To study robustness, we insert noise by ran-
domly flipping the class labels with a certain probability.

The real-life application is to build a weighted ensemble
to detect fraudulent credit card transactions. Concept drift
is simulated by sorting transactions by transaction amount.

Detailed data descriptions are given in [2].

Evaluation of Adaptation We have two sets of exper-
iments, both have large changes, withδ = 0.1, occur-
ring at block 40, 80 and 120. In one setting, data re-
mains stationary between these changing points, while in
the other, small shifts are mixed between the abrupt ones,
with δ ∈ (0.005, 0.03). Noise level is10%.

As shown in Fig.1 and Fig.2, the robust regression model
always gives the best performance. The two bagging en-
sembles are seriously impaired at the concept changing
points, but the robust regression is able to catch up with
the new concept quickly.

Robustness in the Presence of Outliers Fig. 3 shows the
ensemble performance for different noise levels. We see
that the robust regression is always the most accurate, and
it also gives the least performance drops when noise in-
creases.

To better understand why the robust regression method
is less impacted by outliers, we record the outliers in blocks
0-59 in the experiments shown in Fig.2. Outliers consist
mostly of noisy samples and samples from a newly emerged
concept. As shown in Fig.4, true noise dominates the iden-
tified outliers. Even at block 40 where a large concept drift
occurs and a bit more samples reflecting the new concept
are falsefully reported as outliers, still more true noisy sam-
ples are detected.

Discussions on Performance Issue Robust regression
ensembles can build strong ensembles from boost weak
classifiers, i.e., decision trees with a few terminal nodes (8,
16, or 32). Actually, as shown in Fig.5, robust regression
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Figure 3. Robustness comparison of the ensembles.
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Figure 4. In the outliers detected, the normalized ratio of
(1) true noisy samples (the upper bar), vs. (2) samples from
an emerging concept (the lower bar). The bars correspond
to blocks 0-59 in the experiments shown in Fig.2

ensembles of smaller trees are comparable or even better
than the two bagging ensembles of larger trees, even full-
sized trees.

In terms of computation time, we verify that robust re-
gression is compatible to the other two methods. Running
over 40 blocks with full-grown trees, learning and evalua-
tion time totals a 138 seconds for unweighted bagging, 163
seconds for weighted bagging, and 199 seconds for robust
regression. If small decision trees are used instead, logistic
regression learning can further be sped up, and yet perform
better than the other two methods with full grown trees.

Experiments on Real Life Data We study the ensemble
performance using different block size (1k–4k), and base
classifiers of different size. Fig.6 shows the results obtained
for block size 1k and base models having at most 16 ter-
minal nodes. Results of other experiments are similar. The
curve shows fewer and smaller drops in accuracy for the
robust regression. These drops occur when the transaction
amount jumps.

6. Summary and Future Work
We propose an adaptive and robust model learning

method that is highly adaptive to concept changes and is
robust to noise. The model produces a weighted ensem-

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

8 16 32 fullsize

Av
er

ag
e 

Ac
cu

ra
cy

# terminal nodes of base decision trees in ensembles

Robust Logistic Regression
Weighted Bagging

Bagging

Figure 5. Comparison of the ensemble methods with clas-
sifiers of different size.
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Figure 6. Performance of the ensembles on credit card
data. Base trees have no more than 16 terminal nodes.

ble. Classifier weighting is computed by logistic regression,
which ensures good adaptability. This weighting scheme is
also capable to boost weak classifiers, thus achieving the
goal of fast and light learning. Outlier detection is further
integrated into the model learning, which leads to the ro-
bustness of the resulting ensemble.
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