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Abstract tive model for adaptive learning for noisy data streamshwit
T itical chall wpicall iated with mi modest resource consumption. The model takes a form of
wo critical challenges ltypically assoclated with min- weighted ensemble, whose member classifiers and their

Ny data streams are concept drift and data contlamlna— weights are adaptively updated. For a learnable concept, th
tion. To address these challenges, we seek learning tech-

) ; class of a sample conditionally follows a Bernoulli distrib
nigues and models that are robust to noise and can adapt to

h i timelv fashion. W h the st " ™tion. Our method assigns classifier weights in a way that
changes in imely fashion. We approach the sr€am-mining ., mizes the training data likelihood with the learned dis
problem using a statistical estimation framework, and pro-

L . tribution. This weighting scheme has theoretical guamante
pose a fast and robust discriminative model for learning

; ) - of adaptability, and can also boost a collection of weak-clas
noisy data streams. We build an ensemble of classifiers to b Y

. , . S e sifiers into a strong ensemble. Weak classifiers are desirabl
achieve timely adaptation by weighting classifiers in a way because they learn faster and consume less resources.
that maximizes the likelihood of the data. We further em- The adaptive weighting scheme distinguishes our ap-
ploy robust statistical techniques to alleviate the problef proach from previous work using ensemble methods for
noise sensitivity. Experimental results on both syntteetit

real-life data sets demonstrate the effectiveness of this n daFa stream learning, such as the work in [4] a_md_ [5]. In [4],
. uniform votes are taken among members, while in [5], clas-
model learning approach.

sifier votes are weighted proportionally to their estimated
. accuracy. As shown in the experiment section, our approach
1. Introduction outperforms both methods, For ease of references in our
comparative study, we name them ‘Bagging’ and ‘Weighted
Bagging, respectively. (The name “ bagging” derives from
their analogy to traditional bagging ensembles.)

Our outlier detection differs from previous off-line ap-

There is much current research interest in continuous
mining of data streams. Applications involving stream data
abound and include network traffic monitoring, credit card

fraud detection and stock market trend analysis. Practical . g
situations pose three fundamental issues to be addressed. Proaches which assume an unchanging data model. The
truth is that outliers are directly defined by the current-con

Adaptation Issue. Unlike traditional learning tasks O e .
where data is stationary, the concept generating a datacept, so the outlier identifying strategy needs to be matlifie

stream drifts with time due to changes in the environment. v_vhenever_the.cqncept drifts_, away. In our approqch, the out-
These changes cause the model learned from old data obscl'—er detection is .|ntegrated into the model learning, sd tha
lete, and model updating is necessary. they mu“tually remfprc% each pthgr. . .
Robustness Issue. The noise problem is more severe The fas_t_and_ light” learning is ach|eve_d _by_ boosting
for stream data mining, because it is difficult to distinguis weak_ classifiers into strong ensembles_. Th|s s illustrgte b
noise from changes caused by concept drift. If an algorithm learning strong ensembles of small decision trees, eath wit

is too eager to adapt to concept changes, it may overfit noise/€"Y few nodes.

by falsefully interpreting it as data from a new concept. If 2. Adaptation to Concept Drift

it is too conservative and slow to adapt, it may overlook

important changes. Ensemble weighting is the key to fast adaptation. Here
Performance Issue. To assure on-line responses with we show that this problem can be formulated as a statistical

limited resources, continuous mining should be “fast and optimization problem solvable by logistic regression.

light”, that is: (1) learning should be done very fast, prefe We first look at how an ensemble is constructed and
ably in one pass of the data; and (2) algorithms should makemaintained. The data stream is simply partitioned into kmal
light demands on memory resources. blocks of fixed size, then classifiers are learned from blocks

To address these issues, we propose a novel discriminaThe most recenk classifiers comprise the ensemble, and



old classifiers retire sequentially by age. A separate set of3. Robustnessto Outliers
training examples are prepared for classifier weighting by
sampling the training data streams. When sufficient train-
ing data is collected for classifier learning and ensemble
weighting, the following steps are conducted: (1) learn a
new classifier from the training block; (2) replace the otdes
classifier in the ensemble with this newly learned; and then
(3) weigh the ensemble.

For simplicity, we consider a two-class classification set-
ting. The training data for ensemble weighting is repre-
sented as

Regression is adaptive because it always tries to fit the
data from the current concept, but can potentially overfit
outliers. We integrate the following outlier detectionhec
nique into the model learning.

We define outliers as samples with a small likelihood un-
der a given data model. The goal of learning is to compute
a model that best fits the bulk of the data, that is, the inliers
Since we do not know the outliers, we use the EM approach
discussed in the next section.

Previously we have described a training data set as

(X, Y) ={(xi,yi);i=1,---,N} {(x4,¥i),i = 1,---, N}, or (X,)). This is anincomplete
data set, as the outlier information is missing.cémplete
x; is a vector-valued sample attribute, apnde {0, 1} is the data set is a triplet
sample class label. An ensemble of classifiers is denoted in (X, ),2)

a vector form as
where Z={z, -, 2n}

f= e T
(A1), -+ fie () is a hidden variable that distinguishes the outliers froen th

where eacly,(x) is a classifier function producing a value inliers. z; = 1if (x;,y;) is an outlier,z; = 0 otherwise.
for the belief on a class. The individual classifiers in the This Z is not observable and needs to be inferred. Affer

ensemble may be weak or out-of-date. It is the goal of our is inferred,(X', ) can be partitioned into an inlier set

discriminative modelM to make the ensemble strong by X _ _

) ; i . , ={(X,¥zi)xi € X,y; €V,2,=0
weighted voting. Classifier weights are model parameters, (X0, Vo) = {(xi, vi, ) vi €V }
denoted as T and an outlier set

W = (wlv"'»wK)

. . . . e X, = iy Yiy i)y Xi Xvi aizl
wherewy, is the weight associated with classifigr. The (X, Vo) = {(xi, i, 2) i € X,ys €V, 2 }
model M also specifies a weighted voting scheme: The samples iftXo, Vo), which all come from one under-

wl . f lying distribution, and are used to fit the model parameters.
To infer the outlier indicatorZ, we introduce a new
Because the ensemble predicti@ﬁ' . f is a continuous model parametek. It is a threshold value of sample likeli-
value, yet the class labg) to be decided is discrete, a stan- hood. Thatis,
dard approach is to assume thatconditionally follows a 2 = neg( log p(ys|xi; £, w) — )\) 3

Bernoulli distribution parameterized by a latent score ) )
where neg) returnsl for a negative value, O otherwise.

yilxis f’TW ~ Ber(q(n;)) ) This )\, together withf (classifier functions) and’ (clas-

m=wf sifier weights) discussed earlier, constitutes the coraglet
whereq(n;) is the logit transformation of;;: of parameters of our Qiscriminative mod#t, which has a

() 2 logit(n:) eni four tuple representatioM (x; £, w, A).

q(n:) = logit(n;) = : .
1+em 4. Model Learning
Eq.1 states thay; follows a Bernoulli distribution with The goal of model learning is to compute the optimal

parametey, thus the posterior likelihood is values of parameteresr and )\, so that the discriminative

o w1 ol model M gives the best fit on the dafet’, ). The prob-
p(yz‘x“f_’ “T) a1 =) o (2)_ ~lem is thus an optimization problem. The score function
The above description leads to optimizing classifier to be maximized involves two parts: (i) the log-likelihood

weights using logistic regression. Logistic regression is term for the in|ier5(‘)('0, yo)’ and (ii) a pena|ty term for the
well-established regression method, widely used in tradi- outliers(Xy, V).

tional areas when the regressors are continuous and the re- Egch inlier sampléx;, y;) € (Xo, Vo) is assumed to be
sponses are discrete [3]. In our problem, given a data seldrawn from an independent identical distribution beloggin
(X,Y) and an ensemblg the logistic regression technique  to a probability family characterized by parametersde-
optimizes the classifier weights by maximizing the likeli- noted by a density functiop((x, y); f, w). The problem is

hood of the data. The optimization problem has a closed-to find the values ofv that maximizes the log-likelihood of
form solution which can be computed quickly. (Xo, Vo) in the probability family:
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Figure 1. Adaptability comparison of the ensemble meth-
ods on data with three abrupt shifts.

log p((Xo,Yo)If, W)

A parametric model for outlier distribution is not avail-
able. We use instead a non-parametric statistics:

e [(Xs, Vo)l

This term penalizes having too many outliers. The opti-
mization problem is then formalized as:
(w, A)"

arg (I?va;% (log p((Xo,Yo)If, w)
e [[(Xs, Vo)) @

The score function to be maximized is not differentiable

because of the non-parametric penalty term. We have to rey
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Figure 2. Adaptability comparison of the ensemble meth-
ods on data with three abrupt shifts mixed with small shifts.

0 controls the level of shifts. In our setting, we consider a

concept shift small it is around0.02, and relatively large

if § around0.1. To study robustness, we insert noise by ran-

domly flipping the class labels with a certain probability.
The real-life application is to build a weighted ensemble

to detect fraudulent credit card transactions. Conceft dri

is simulated by sorting transactions by transaction amount
Detailed data descriptions are given in [2].

Evaluation of Adaptation We have two sets of exper-
iments, both have large changes, with= 0.1, occur-
ring at block 40, 80 and 120. In one setting, data re-
mains stationary between these changing points, while in
he other, small shifts are mixed between the abrupt ones,

sortto a more elaborate technique based on the Expectationgii, 5 < (0.005, 0.03). Noise level isl0%.

Maximization (EM) [1] algorithm to solve the problem.

The EM is a general method for maximizing data likeli-
hood in problems where data is incomplete. The algorithm
iteratively performs an Expectation-Step-Step followed
by an Maximization-StepM-Step. In our case,

1. E-Step: to impute / infer the outlier indicat8rbased
on the current model parametésg, A), as in Eq.3.

2. M-Step: to compute new values fox, \) that maxi-
mize the score function in Eqg.4 with currefit This
step is actually a Maximum Likelihood Estimation
(MLE) problem.

Due to space limitation, we refer the readers to a full
version of this work ([2]) for detailed model computation.

5. Experiments and Discussions

On both synthetic and real-life data, our robust regres-
sion method is shown to be superior to the previously men-
tioned approached8agging[4] and Weighted Baggingpb].

The base learner we have used is the C4.5 decision tree.

The synthetic data consists of points in a 3-dimension
unit cube: x =< 1,290,253 >, x; € [0,1],7 = 0,1,2.

As shown in Fig.1 and Fig.2, the robust regression model
always gives the best performance. The two bagging en-
sembles are seriously impaired at the concept changing
points, but the robust regression is able to catch up with
the new concept quickly.

Robustnessin the Presence of Outliers Fig. 3 shows the
ensemble performance for different noise levels. We see
that the robust regression is always the most accurate, and
it also gives the least performance drops when noise in-
creases.

To better understand why the robust regression method
is less impacted by outliers, we record the outliers in bdock
0-59 in the experiments shown in Fig.2. Outliers consist
mostly of noisy samples and samples from a newly emerged
concept. As shown in Fig.4, true noise dominates the iden-
tified outliers. Even at block 40 where a large concept drift
occurs and a bit more samples reflecting the new concept
are falsefully reported as outliers, still more true noiayns
ples are detected.

Discussions on Performance Issue Robust regression

Two classes are separated by a sphere inside the cube. Comnsembles can build strong ensembles from boost weak

cept drift is simulated by moving the center of the sphere
between adjacent blocks with a step-bf. The value of

classifiers, i.e., decision trees with a few terminal no@es (
16, or 32). Actually, as shown in Fig.5, robust regression
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. Figure 5. Comparison of the ensemble methods with clas-
Figure 3. Robustness comparison of the ensembles. sifiers of different size.
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Figure 6. Performance of the ensembles on credit card

Figure 4. In the outliers detected, the normalized ratio of data. Base trees have no more than 16 terminal nodes.
(1) true noisy samples (the upper bar), vs. (2) samples from

an emerging concept (the lower bar). The bars correspond  ple. Classifier weighting is computed by logistic regressio

to blocks 0-59 in the experiments shown in Fig.2 which ensures good adaptability. This weighting scheme is
e§Iso capable to boost weak classifiers, thus achieving the
goal of fast and light learning. Outlier detection is furthe
integrated into the model learning, which leads to the ro-
bustness of the resulting ensemble.

ensembles of smaller trees are comparable or even bett
than the two bagging ensembles of larger trees, even full-
sized trees.

In terms of computation time, we verify that robust re-
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over 40 blocks with full-grown trees, learning and evalua- n\cR Teradata, and by the National Science Foundation
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