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Abstract

A new framework for analyzing time series data called Time Series Data Mining
(TSDM) isintroduced. This framework adapts and innovates data mining concepts to
analyzing time series data. In particular, it creates a set of methods that revea hidden
temporal patterns that are characteristic and predictive of time series events. Traditional
time series analysis methods are limited by the requirement of stationarity of the time
series and normality and independence of the residuals. Because they attempt to
characterize and predict all time series observations, traditional time series analysis
methods are unable to identify complex (nonperiodic, nonlinear, irregular, and chaotic)
characteristics. TSDM methods overcome limitations of traditional time series analysis
techniques. A brief historical review of related fields, including a discussion of the
theoretical underpinnings for the TSDM framework, is made. The TSDM framework,
concepts, and methods are explained in detall and applied to real-world time series from

the engineering and financial domains.
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Chapter 1 Introduction

The Time Series Data Mining (TSDM) framework, introduced by this
dissertation, is a fundamental contribution to the fields of time series analysis and data
mining. Methods based on the TSDM framework are able to successfully characterize
and predict complex, nonperiodic, irregular, and chaotic time series. The TSDM methods
overcome limitations (including stationarity and linearity requirements) of traditional
time series analysis techniques by adapting data mining concepts for analyzing time
series. This chapter reviews the definition of a time series, introduces the key TSDM
concepts of events and hidden temporal patterns, and provides examples of problems the
TSDM framework addresses.

A time series X is “a sequence of observed data, usually ordered in time” [1, p. 1].

X ={x,t=1...,N}, (1.1)
where t is a time index, and N is the number of observations. Time series analysis is
fundamental to engineering, scientific, and business endeavors. Researchers study
systems as they evolve through time, hoping to discern their underlying principles and
develop models useful for predicting or controlling them. Time series analysis may be
applied to the prediction of welding droplet releases and stock market price fluctuations
[2, 3].

Traditional time series analysis methods such as the Box-Jenkins or
Autoregressive Integrated Moving Average (ARIMA) method can be used to model such
time series. However, the ARIMA method is limited by the requirement of stationarity of

the time series and normality and independence of the residuals [1, 4, 5]. The statistical
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characteristics of a stationary time series remain constant through time. Residuals are the
errors between the observed time series and the model generated by the ARIMA method.
The residuals must be uncorrelated and normally distributed.

For real-world time series such as welding droplet releases and stock market
prices, the conditions of time series stationarity and residual normality and independence
are not met. A severe drawback of the ARIMA approach is its inability to identify
complex characteristics. This limitation occurs because of the goal of characterizing all
time series observations, the necessity of time series stationarity, and the requirement of
residual normality and independence.

Data Mining [6, 7] is the analysis of data with the goal of uncovering hidden
patterns. Data Mining encompasses a set of methods that automate the scientific
discovery process. Its uniqueness is found in the types of problems addressed — those
with large data sets and complex, hidden relationships.

The new TSDM framework innovates data mining concepts for analyzing time
series data. In particular, this dissertation describes a set of methods that reveal hidden
patterns in time series data and overcome limitations of traditional time series analysis
techniques. The TSDM framework focuses on predicting events, which are important
occurrences. This allows the TSDM methods to predict nonstationary, nonperiodic,
irregular time series, including chaotic deterministic time series. The TSDM methods are
applicable to time series that appear stochastic, but occasionally (though not necessarily
periodically) contain distinct, but possibly hidden, patterns that are characteristic of the

desired events.
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It is commonly assumed that the ARIMA time series models developed with past
data will apply to future prediction. This is the stationarity assumption that models will
not need to vary through time. ARIMA models also assume that the system generating
the time seriesislinear, i.e., can be defined by linear differential or difference equations
[8]. Unfortunately, the systems generating the time series are not necessarily linear or
stationary.

In contrast, the TSDM framework and the methods built upon it can handle
nonlinear and nonstationary time series. This framework is most useful for predicting
eventsin atime series, which might include predicting when a droplet from a welder will
release, when a stock price will drop, or when an induction motor adjustable speed drive
system will fail. All these applications are well suited to this new framework and the
methods built upon it.

The novel TSDM framework has its underpinnings in severa fields. It builds
upon concepts from data mining [6, 7], time series analysis[1, 4, 5], adaptive signal
processing [9], wavelets [10-18], genetic algorithms [19-27], and chaos, nonlinear
dynamics, and dynamical systems [28-35]. From data mining comes the focus on
discovering hidden patterns. From time series analysis comes the theory for analyzing
linear, stationary time series. In the end, the limitations of traditional time series analysis
suggest the possibility of new methods. From adaptive signal processing comes the idea
of adaptively modifying afilter to better transform a signal. Thisis closely related to
wavelets. Building on concepts from both adaptive signal processing and wavelets, this
dissertation develops the idea of atemporal pattern. From genetic algorithms comes a

robust and easily applied optimization method [19]. From the study of chaos, nonlinear
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dynamics, and dynamical systems comes the theoretical justification of the method,

specifically Takens” Theorem [36] and Sauer * s extension [37].

1.1 Data Mining Analogy

An analogy to gold mining helps clarify the problem and introduces two key data
mining concepts. An analogy is the assumption that if two things are similar in one area,
they will be similar in others. The use of the term data mining implies an analogy with
gold mining. There are several parallels between the time series analysis problems
discussed in this dissertation and this analogy.

As gold mining is the search for nuggets of gold, so data mining is the search for
nuggets of information. In mining time series data, these nuggets are known as events. As
gold is hidden in the ground or under water, nuggets of information are hidden in data.
The first analogy is gained by comparing the definition of the gold nuggets with the
definition of information nuggets. To the inexperienced miner, gold is gold, but to a
veteran prospector, the size of the gold nuggets to be uncovered make a significant
difference in how the gold mining is approached. Individual prospectors use primarily
manual methods when looking for nuggets of gold that are ounces in weight [38].
Industrial mining companies may find it acceptable to look for gold at the molecular level
[39]. Likewise, if a prospector is seeking silver or oil, the mining processes are different.
This leads to the importance of clearly defining the nuggets of information that are
desired, i.e., time series data mining requires a clear definition of the events to be mined.
Without this clear definition of what is to be found, there is no way to know when either

the gold nuggets or the information nuggets have been discovered.
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The second analogy looks at how prospectors learn where to search for the gold
nuggets. Prospectors look for specific geological formations such as quartz and ironstone,
and structures such as banded iron formations [38]. They study where other prospectors
have had success. They learn not to dig aimlessly, but to look for clues that a particular
location might yield a gold strike. Similarly, it is necessary to define the formations that
point to nuggets of information (events). In the context of time series analysis these,
probably hidden, formations that identify an information strike are called temporal
patterns — temporal because of the time nature of the problem and patterns because of
their identifiable structure. Like gold prospectors, information prospectors understand
that the clues need not be perfect, rather the clues need only to contribute to the overall
effectiveness of the prediction.

The two analogies lead us to identify two key concepts and their associated
requirements for data mining time series. The first concept is that of an event, which is an
important occurrence. A clear definition of an event is required. The second concept is
that of a temporal pattern, which is a potentially hidden structure in a time series. The
temporal patterns are required to help predict events.

With the key TSDM concepts of events and temporal patterns defined, the next
section presents the types of problems addressable by the TSDM framework.

1.2 Problem Statement

Figure 1.1 illustrates a TSDM problem, where the horizontal axis represents time,

and the vertical axis observations. The diamonds show the time series observations. The

squares indicate observations that are deemed important — events. Although the following



Chapter 1 Introduction

examplesiillustrate events as single observations, events are not restricted to be just single
observations. The goal isto characterize and predict when important events will occur.
The time series events in Figure 1.1 are nonperiodic, irregular, and contaminated with

noise.

Xy

Aﬂ «Aﬁ Lalb,

Figure 1.1 — Synthetic Seismic Time Series

To make the time series more concrete, consider it a measure of seismic activity,
which is generated from a randomly occurring temporal pattern, synthetic earthquake,
and a contaminating noise signal The goal is to characterize when peak seismic activity
(earthquakes) occurs and then use the characterizations of the activity for prediction.

The next example of the type of problem the TSDM framework can solve is from
the engineering domain. Figure 1.2 illustrates a welding time series generated by a sensor

on awelding station. Welding joins two pieces of metal by forming a joint between them.
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Predicting when a droplet of metal will release from awelder allows the quality of the
metal joint to be monitored and controlled.

In Figure 1.2, the squares indicate the release of metal droplets. The diamonds are
the stickout length of the droplet measured in pixels. The problemisto predict the
releases using the stickout time series. Because of the irregular, chaotic, and noisy nature

of the droplet release, prediction is impossible using traditional time series methods.

A

Figure 1.2 — Welding Time Series

Another example problem that is addressed by the TSDM framework isthe
prediction of stock prices. For this problem, the goal isto find a trading-edge, whichisa
small advantage that allows greater than expected gains to be realized. The goal isto find
hidden temporal patterns that are on average predictive of alarger than normal increase in
the price of a stock. Figure 1.3 shows a time series generated by the daily open price and

volume of a stock. The bars show the volume of shares traded on a particular day. The
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diamonds show the daily open price. The goal is to find hidden patterns in the daily open

price and volume time series that provide the desired trading-edge.

Xt
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Figure 1.3 — Stock Daily Open Price and VVolume Time Series

Now that examples of the types of problems addressable by the TSDM framework

have been presented, the next section outlines the rest of the dissertation.

1.3 Dissertation Outline

The dissertation is divided into nine chapters. Chapter 2 reviews several of the
constituent technologies underlying this research including time series analysis, data
mining, and genetic algorithms. Additionally, Chapter 2 presents the theoretical
background for the TSDM framework, reviewing Takens’ Theorem.

Chapter 3 elaborates on the key TSDM concepts of events, temporal patterns,
temporal pattern clusters, phase spaces and time-delay embeddings, augmented phase

spaces, objective functions, and optimization.
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Chapter 4 establishes the fundamental TSDM method for characterizing and
predicting time series events. Chapter 5 clarifies the TSDM framework by analyzing a
sequence of example time series. In Chapter 6, extensions of the TSDM method
including data mining multiple time series and nonstationary temporal pattern time series
are presented.

Chapters 7 and 8 discuss experimental results. Chapter 7 presents results from
predicting droplet releases from awelder. In Chapter 8, the experimental results from
analyzing stock market open price changes are presented. The last chapter summarizes

the dissertation and discusses future work.
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Chapter 2 Historical Review

This chapter reviews the constituent fields underlying the Time Series Data
Mining (TSDM) research. TSDM innovates concepts from time series analysis, chaos
and nonlinear dynamics, data mining, and genetic algorithms. From time series analysis
comes the theory for analyzing linear, stationary time series [1, 4, 5]. From dynamical
systems comes the theoretical justification for the Time Series Data Mining (TSDM)
methods, specifically Takens” Theorem [36] and Sauer = s extension [37]. From data
mining comes the focus on discovering hidden relationships and patterns [6, 7, 40-44].

From genetic algorithms comes a robust and easily applied optimization method [19, 27].

2.1 ARIMA Time Series Analysis
The Box-Jenkins [4] or Autoregressive Integrated Moving Average (ARIMA) [1,
5] methodology involves finding solutions to the difference equation
¢, (B)@, (B")x =5+6,(B)8,(B")a, [5,p. 570]. (2.1)

e The nonseasonal autoregressive operator ¢y(B) of order p models low-order
feedback responses.

e The seasonal autoregressive operator ¢o(B") of order P models feedback
responses that occur periodically at seasonal intervals. For example, given a time
series of monthly data, this operator would be used to model a regressive effect
that occurs every January.

e The nonseasonal moving average operator &y(B) of order g models low-order

weighted average responses.
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e The seasonal moving average operator HQ(BL) of order Q models seasonal
weighted average responses.

e Theterms %, &, and o are the time series, a sequence of random shocks, and a
constant, respectively.

The orders of the operator are selected ad hoc, and the parameters are calculated
from the time series data using optimization methods such as maximum likelihood [4, pp.
208-209,274-281] and least squares [4, pp. 265-267]. The ARIMA method is limited by
the requirement of stationarity and invertibility of the time series [5, p. 488], i.e., the
system generating the time series must be time invariant and stable. Additionally, the
residuals, the differences between the time series and the ARIMA model, must be
independent and distributed normally [5, p. 183-193]. Although integrative (filtering)
techniques can be useful for converting nonstationary time series into stationary ones, it
Is not always possible to meet all of the requirements.

This review of ARIMA time series modeling examines each of the terms given in
(2.1), discusses the methods for identifying the orders of the various operators, and
details the various statistical methods available to test the model’s adequacy. Finally, this
section discusses the integrative techniques that allow some nonstationary time series to
be transformed into stationary ones.

The ARIMA model is best presented in terms of the following operators [4, p. 8,
5, p. 568]. The backshift operator B shifts the index of a time series observation
backwards, e.g., Bz =z_,, and B“z = z_, . The nonseasonal or first difference operator,

V =1-B, provides a compact way of describing the first difference. The seasonal
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operator V| is useful for taking the difference between two periodic or seasonal time
series observations. It is defined as V, =1-B".

Having introduced the basic operator notation, the more complex operators
presented in (2.1) can be discussed. The first operator from (2.1) is the nonseasonal
autoregressive operator ¢y(B) [4, p. 9, 5, p. 570], also called the “Green’s function” [1, p.
78]. This operator captures the systems dynamical response to a; — the sequence of
random shocks — and previous values of the time series [1, pp. 78-85]. The second
operator is the nonseasonal moving average operator 6y(B) [5, p. 570]. It is a weighted
moving average of the random shocks a, .

The third operator is the seasonal autoregressive operator gp(B"). It is used to
model seasonal regressive effects. For example, if the time series represents the monthly
sales in a toy store, it is not hard to imagine a large increase in sales just before
Christmas. This seasonal autoregressive operator is used to model these seasonal effects.
The fourth operator is the seasonal moving average operator 6o(B"). It also is useful in
modeling seasonal effects, but instead of regressive effects, it provides a weighted
average of the seasonal random shocks. The constant & = ug, (B) @, (B), where u is the
mean of the modeled stationary time series [5, p. 571].

Bowerman [5, pp. 571] suggests three steps to determine the ARIMA model for a
particular time series.

1. Should the constant ¢ should be included?
2. Which of the operators ¢y(B), ¢r(B"), 6,(B), and 6o(B") are needed?

3. What order should each selected operator have?
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The dshould be included if

H2)Ne2) 2.2)
(o}

where u(Z) is the mean of the time series, c(Z) is the number of time series
observations, and o, is the standard deviation of the time series. Two statistical
functions, the sample autocorrelation function (SAC) and sample partial autocorrelation
function (SPAC), are used to determine the inclusion and order of the operators. The
process for determining the inclusion and orders of the operators is somewhat involved
and well explained in [5, pp. 572-574]. Its essence is to examine the shape of the SAC
and SPAC. The procedure looks for these functions to “die down” or “cut off” after a
certain number of lags. Determining whether the SAC or SPAC is dying down or cutting
off requires expert judgment.

After the operators have been selected and their orders determined, the
coefficients of the operators are estimated using a training time series. The coefficients
are estimated using a least squares [4, pp. 265-267] or maximum likelihood method [4,
pp. 208-209, 274-281].

Diagnostic checking of the overall ARIMA model is done by examining the
residuals [5, p. 496]. The first diagnostic check is to calculate the Ljung-Box statistic.
Typically, the model is rejected when the « corresponding to the Ljung-Box statistic is
less than 0.05. For non-rejected models, the residual sample autocorrelation function

(RSAC) and residual sample partial autocorrelation function (RSPAC) should have

absolute t statistic values greater than two [5, p. 496]. For rejected models, the RSAC and
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RSPAC can be used to suggest appropriate changes to enhance the adequacy of the
models.

“Classic Box-Jenkins models describe stationary time series [5, p. 437].”
However, several integrative or filtering methods transform nonstationary time series into
stationary ones. The simplest nonstationary time series to make stationary is a linear
trend, which is nonstationary because its mean varies through time. The nonseasonal

operator V or seasonal operator V, is applied to remove the linear trend.
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Figure 2.1 — Exponential Growth Time Series

A slightly more complex transformation is required for an exponential trend. One
method takes the logarithm of the time series and applies the appropriate nonseasonal or
seasonal operator to the resulting linear trend time series. Alternatively, the A* change

transform may be used, where

T
w

A® = (2.3)

d
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The transform is applied as follows:

7 =A% =Sy =X Xa (2.4)
B X1

Figure 2.1 shows a time series with exponential growth. Figure 2.2 illustrates the

transformed time series.
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Figure 2.2 — Filtered Exponential Growth Time Series

For time series with nonstationary variances, there are two possible solutions. The
first isto replace the time series with the square or some other appropriate root of the
time series. Second, the time series may be replaced by its logarithm [5, pp. 266-270].

Given an adequate model, future time series values may be predicted using (2.1).
An error confidence range may also be provided.

This section has reviewed the ARIMA or Box-Jenkins time series analysis method.
The three references cited here [1, 4, 5] are excellent sources for further study of this

topic. Asdiscussed in this section, optimization methods are needed to find the
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parameters for the ARIMA model. Similarly, optimization is a necessary component of
the Time Series Data Mining (TSDM) framework. The next section presents the genetic

algorithm optimization method used in TSDM.

2.2 Genetic Algorithms

A genetic algorithm is a stochastic optimization method based on the evolutionary
process of natural selection. Although a genetic algorithm does not guarantee a global
optimum, it is known to be effective in optimizing non-linear functions [19, pp. 106-120].
TSDM requires an optimization method to find optimizers for the objective functions.
Genetic algorithm optimization is selected for this purpose because of its effectiveness
and ease of adaptation to the objective functions posed by the TSDM framework.

This section briefly discusses the key concepts and operators used by a binary
genetic algorithm [19, pp. 59-88, 22, pp. 25-48, 23, pp. 33-44, 24, pp. 42-65]. The genetic
algorithm process also is discussed. The four major operators are selection, crossover,
mutation, and reinsertion. The fifth operator, inversion, is used infrequently. The
concepts of genetic algorithms are fitness or objective function, chromosome, fitness of a
chromosome, population, and generation.

The fitness function is the function to be optimized, such as

f (x)=-x*+10x+10000. (2.5)
A chromosome is a finite sequence of 0’s and 1’s that encode the independent variables
appearing in the fitness function. For equation (2.5), the chromosomes represent values of
x. Given an eight-bit chromosome and a two’s complement encoding, the values of x for

several chromosomes are given in Table 2.1.
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Chromosome X f(x), fitness

10000000 -128 -7664
00000000 0 10000
01111111 127 -4859
11111100 -4 9944

Table 2.1 — Chromosome Fitness Values

The fitness is the value assigned to a chromosome by the fitness function. The
population is the set of all chromosomes in a particular generation, e.g., the four
chromosomes in Table 2.1 form a population. A generation is an iteration of applying the
genetic algorithm operators.

The most common genetic algorithm process is defined as follows. Alternative
genetic algorithm processes may reorder the operators.

Initialization

while stopping criteria are not met

Selection
Crossover
Mutation
Reinsertion

The initialization step creates, usually randomly, a set of chromosomes, asin
Table 2.1. There are many possible stopping criteria, e.g., halting after a fixed number of
generations (iterations) or when fitness values of all chromosomes are equivalent.

The selection process chooses chromosomes from the population based on fitness.

One selection process is based on aroulette wheel. The roulette wheel selection process
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gives each chromosome a portion of the roulette wheel based on the chromosome’s
fitness. The roulette wheel is spun, and the winning chromosome is placed in the mating
or crossover population. Usually the individuals are selected with replacement, meaning
any chromosome can win on any spin of the roulette wheel.

The second type of selection is based on a tournament. In the tournament, n
chromosomes — usually two — are selected at random, normally without replacement.
They compete based on fitness, and the winner is placed in the mating or crossover
population. This process is repeated until there are no individuals left. The whole
tournament process is run n times, where n is the number of chromosomes in each round
of the tournament. The output of the selection process is a mating population, which is
usually the same size as the original population.

Given the initial population from Table 2.1, a tournament without replacement is

demonstrated in Table 2.2. The crossover population is formed from the winners.

Tournament Round  Competitor 1 Competitor 2 Winner

1 1 10000000 (-7664) 01111111 (-4859) 01111111
1 2 00000000 (10000) 11111100 (9944) 00000000
2 1 01111111 (-4859) 11111100 (9944) 11111100
2 2 00000000 (10000) 10000000 (-7664) 00000000

Table 2.2 — Tournament Selection Example

Crossover is the process that mixes the chromosomes in a manner similar to
sexual reproduction. Two chromosomes are selected from the mating population without
replacement. The crossover operator combines the encoded binary format of the parent

chromosomes to create offspring chromosomes. A random crossover locus is chosen, and
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the parent chromosomes are split at the locus. The tails of the chromosomes are swapped,
yielding new chromosomes that share the genetic material from their parents. Figure 2.3
shows the crossover process.

crossover |OCUN crossover locus

[ hed, \| @, | [ hed, | \[ @ |

[ head, tail, | [ Thead, | tail, |

crossover |Ocu\

[ hed, \| @, |

| head , tail, |

Figure 2.3 — Chromosome Crossover

A variation on the crossover process includes using afixed rather than random
locus and/or using a crossover probability that the selected pair will not be mated.
Continuing the example, the crossover processis illustrated in Table 2.3, where T

isthe crossover locus.

Mating Pair ~ Parent 1 Parent 2 Offspringl  Offspring 1
1 11111T100 00000 T 000 00000100 11111000
2 000700000 011711111 00011111 01100000

Table 2.3 — Crossover Process Example

The mutation operator randomly changes the bits of the chromosomes. The
mutation probability is usualy set in the range of 0.1 to 0.01%. For the running example,

the mutation process is shown in Table 2.4, where only one bit is mutated.
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Preemutation  Post-mutation

00000100 00000100
11111000 111 01000
00011111 00011111

01100000 01100000

Table 2.4 — Crossover Process Example

The reinsertion or elitism operator selects the top n chromosomes to bypass the
selection, crossover, and mutation operations. By applying elitism, the top individuals
pass directly from one generation to the next unmodified. This operator is used to ensure
that the most fit individuals are not lost due to the stochastic nature of the selection and
CroSSOVer processes.

For the example, no reinsertion is used. The next generation with fitness values is
presented in Table 2.5. A comparison of Table 2.1 and Table 2.5 show that better
solutions have evolved through the genetic algorithm process.

Chromosome  x f(x), fitness

00000100 4 10024
11101000 -24 9184
00011111 31 9349
01100000 96 1744

Table 2.5 — Resulting Genetic Algorithm Population

In summary, a genetic algorithm is a stochastic, global optimization method based
on the evolutionary theory of survival of the fittest. The genetic algorithm applies four

operators (selection, crossover, mutation, and reinsertion) to search for objective function
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optimizers. The use of an optimization method will form a key component of the TSDM
framework, specifically in finding the hidden temporal patterns introduced in Chapter 1.
The next section presents the theoretical justification for searching for these hidden

temporal patterns.

2.3 Theoretical Underpinnings of Time Series Data Mining

This section shows how Takens’ Theorem provides the theoretical justification for
the TSDM framework. Takens proved, with certain limitations, that the state space of an
unknown system can be reconstructed [36, 37].

Theorem (Takens) [36]: Let the state space M of a system be Q dimensional,
@:M — M be a map that describes the dynamics of the system, and y:M — R bea
twice continuously differentiable function, which represents the observation of a single

state variable. The map @, :M — R*?", defined by

(9.y)

D,y (X)=(Y(X), Y(@ (X)), Y(9*2 (X)) (2.6)
Is an embedding. An embedding is a homeomorphic mapping from one topological space
to another [45, pp. 679-680], where a homeomorphic map is continuous, bijective (one-
to-one and onto), and its inverse is continuous [45, pp. 1280].

If the embedding is performed correctly, Takens” Theorem guarantees that the
reconstructed dynamics are topologically identical to the true dynamics of the system.
Therefore, the dynamical invariants also are identical [46]. Hence, given a time series X,

a state space topologically equivalent to the original state space can be reconstructed by a

process called time-delay embedding [28, 37].
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The difficulty in the time-delay embedding process is in estimating Q, the original
state space dimension. Fortunately, as shown in [2, 3, 28, 46], useful information can be
extracted from the reconstructed state space even if its dimension is less than 2Q+1.

This dissertation uses Takens” Theorem to provide the strong theoretical
justification for reconstructing state spaces using time-delay embedding. The dynamics of
the reconstructed state spaces can contain the same topological information as the
original state space. Therefore, characterizations and predictions based on the
reconstructed state space can be as valid as those that could be performed on the original
state space. This is true even for chaotic dynamics, which are discussed in the next

section.

2.4 Chaotic Time Series

The most interesting time series presented in this dissertation may be classified as
chaotic. (See Chapters 7 and 8.) This section provides a definition and discussion of
chaotic time series.

“Chaos comprises a class of signals intermediate between regular sinusoidal or
quasiperiodic motions and unpredictable, truly stochastic behavior [28, p. 11].” A
working definition of a chaotic time series is one generated by a nonlinear, deterministic
process highly sensitive to initial conditions that has a broadband frequency spectrum
[28].

The language for describing chaotic time series comes from dynamical systems
theory, which studies the trajectories described by flows (differential equations) and maps

(difference equations), and nonlinear dynamics, an interdisciplinary field that applies
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dynamical systems theory in numerous scientific fields [30]. The key concept for
describing chaotic time series is a chaotic attractor.

Let M be a manifold (a smooth geometric space such as a line, smooth surface or
solid [30, p. 10]), f :M — M be a map, and

S={%:1%€S f"(x)eSVnlcM (2.7)

be an invariant set. A positively invariant set is one where n>0. A closed invariant set
Ac M isan attracting set, if there exists a neighborhood U of A such that U is a
positively invariant set, and f"(x) > AVxe U. A dense orbit is a trajectory that passes
arbitrarily close to every point in the set [30]. An attractor is defined as an attracting set
that contains a dense orbit. Figure 2.4 illustrates the concept of an attractor with the

arrows representing state trajectories.

Figure 2.4 - Attractor

Thus, a chaotic time series is defined as one generated by observing a state
variable’s trajectory on a map with a chaotic attractor. Since a chaotic time series is
deterministic, it is predictable. However, since it is highly dependent on initial conditions,
the prediction horizon is very short. The TSDM framework provides methods that use

Takens’ Theorem to exploit the short-term predictability of chaotic time series. The next
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section presents data mining, which leads to the idea of searching in the short time

horizon where chaotic time series are predictable.

2.5 Data Mining

Weiss and Indurkhya define data mining as “the search for valuable information
in large volumes of data. Predictive data mining is a search for very strong patterns in big
data that can generalize to accurate future decisions [7].” Similarly, Cabena, et al., define
it as “the process of extracting previously unknown, valid, and actionable information
from large databases and then using the information to make crucial business decisions
[43].”

Data mining evolved from several fields, including machine learning, statistics,
and database design [7]. It uses techniques such as clustering, association rules,
visualization, decision trees, nonlinear regression, and probabilistic graphical dependency
models to identify novel, hidden, and useful structures in large databases [6, 7].

Others who have applied data mining concepts to finding patterns in time series
include Berndt and Clifford [47], Keogh [48-50], and Rosenstein and Cohen [51]. Berndt
and Clifford use a dynamic time warping technique taken from speech recognition. Their
approach uses a dynamic programming method for aligning the time series and a
predefined set of templates.

Rosenstein and Cohen [51] also use a predefined set of templates to match a time
series generated from robot sensors. Instead of using the dynamic programming methods
as in [47], they employ the time-delay embedding process to match their predefined

templates.



Chapter 2 Historical Review 25

Similarly, Keogh represents the templates using piecewise linear segmentations.
“Local features such as peaks, troughs, and plateaus are defined using a
prior distribution on expected deformations from a basic template [48].” Keogh’s
approach uses a probabilistic method for matching the known templates to the time series
data.

The TSDM framework, initially introduced by Povinelli and Feng in [3], differs
fundamentally from these approaches. The approach advanced in [47-51] requires a
priori knowledge of the types of structures or temporal patterns to be discovered and
represents these temporal patterns as a set of templates. Their [47-51] use of predefined
templates completely prevents the achievement of the basic data mining goal of
discovering useful, novel, and hidden temporal patterns.

The next chapter introduces the key TSDM concepts, which allow the TSDM
methods to overcome the limitations of traditional time series methods and the more
recent approaches of Berndt and Clifford [47], Keogh [48-50], and Rosenstein and Cohen

[51].
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Chapter 3 Some Concepts in Time Series Data Mining

Chapter 1 presented two of the important conceptsin Time Series Data Mining
(TSDM), i.e., events and temporal patterns. In this chapter, these concepts are explained
in further detail. Other fundamental TSDM concepts such as event characterization
function, temporal pattern cluster, time-delay embedding, phase space, augmented phase
space, objective function, and optimization are defined and explained. The chapter also

provides examples of each concept.

3.1 Events

In atime series, an event is an important occurrence. The definition of an event is
dependent on the TSDM goal. In a seismic time series, an earthquake is defined as an
event. Other examples of eventsinclude sharp rises or falls of a stock price or the release

of adroplet of metal from awelder.
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Figure 3.1 — Synthetic Seismic Time Series with Events
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3.1.1 Event Example — Synthetic Earthquakes
Figure 3.1 shows a synthetic example time series, which is useful for explaining
events. Let
X ={x,t=1...,N} (3.1)
be a synthetic time series representing seismic data, where N =100. The diamonds show
the values of observations at particular time indices. The squares indicate observations

that are deemed important — events.
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Figure 3.2 — Welding Time Series
3.1.2 Event Example — Metal Droplet Release

Figure 3.2 shows a welding time series. Let
X ={x,t=400,...,600} (3.2)
be a time series of metal droplet stickout lengths. The diamonds in Figure 3.2 are the
stickout lengths measured in pixels. Let

Y ={y,,t =400,...,600! (3.3)
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be a binary (1 for an event, O for a nonevent) time series of droplet releases. In Figure 3.2,

the squares indicate when y, =1, i.e., when a droplet of metal has released.
3.1.3 Event Example — Spikes in Stock Open Price

Let X ={x,t=1...,126} bethe daily open price of astock for a six-month
period asillustrated by Figure 3.3. For this time series, the goal isto find a trading-edge,
which is a small advantage that allows greater than expected gains to be realized. The
stock will be bought at the open of the first day and sold at the open of the second day.
The goal isto pick buy-and-sell-days that will, on average, have greater than expected
price increases. Thus, the events, highlighted as squares in Figure 3.3, are those days

when the price increases more than 5%.

t

Figure 3.3 — Stock Daily Open Price Time Series
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3.2 Temporal Pattern and Temporal Pattern Cluster

The next important concept within the TSDM framework is the temporal pattern.
A temporal pattern is a hidden structure in a time series that is characteristic and
predictive of events. The temporal pattern p isarea vector of length Q. The temporal
pattern will be represented as a point in aQ dimensional rea metric space, i.e., pe R°.

The vector sense of p isillustrated in Figure 3.4, which shows the synthetic
seismic time series without any contaminating noise. The hidden temporal pattern p that
IS characteristic of the events is highlighted with gray squares. Since the contaminating
noise has been removed, the temporal pattern perfectly matches the sequence of time

series observations before an event.
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Figure 3.4 — Synthetic Seismic Time Series without Contaminating Noise with
Temporal Pattern and Events

Figure 3.5 shows the synthetic seismic time series with contaminating noise.

Because of the noise, the temporal pattern does not perfectly match the time series
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observations that precede events. To overcome this limitation, atemporal pattern cluster

is defined as the set of all points within ¢ of the temporal pattern.
P={aeR%:d(p,a)< 6}, (3.4)

where d is the distance or metric defined on the space. This defines a hypersphere of

dimension Q, radius 8, and center p.
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Figure 3.5 — Synthetic Seismic Time Series with Temporal Pattern and
Events

The observations {X_q_y; -+~ X_or+ %_.» %} formasequence that can be
compared to atemporal pattern, where x, represents the current observation, and
X _(qper-++1 X2r1 %, PasSt observations. Let 7 >0 be apostive integer. If t represents the
present time index, then t —7 isatime index in the past, and t+ 7 isatimeindex in the
future. Using this notation, time is partitioned into three categories. past, present, and
future. Temporal patterns and events are placed into different time categories. Temporal

patterns occur in the past and complete in the present. Events occur in the future.
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The next section presents the concept of a phase space, which allows sequences of

time series to be easily compared to temporal patterns.

3.3 Phase Space and Time-Delay Embedding

A reconstructed phase space [28, 35, 52], called simply phase space here, isa Q-
dimensional metric space into which atime series is embedded. As discussed in Chapter
2, Takens showed that if Q islarge enough, the phase space is homeomorphic to the state
space that generated the time series [36]. The time-delayed embedding of atime series
maps a set of Q time series observations taken from X onto x, , where x, is avector or

T

point in the phase space. Specifically, x, = (XHQ&)T,- o %o X X))

Figure 3.6 — Constant Value Phase Space

For example, given a constant value time series X ={x =c,t=1...,N}, wherec

Is a constant, the phase space has a single point asillustrated by Figure 3.6. Figure 3.7
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shows a two-dimensional phase space that results from the time-delayed embedding of
the synthetic seismic time series presented in Figure 3.1. The temporal pattern and
temporal pattern cluster also areillustrated. For this time-delayed embedding, 7 =1.

Every pair of adjacent observations in the original time series forms a single point in this

phase space.
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Figure 3.7 — Synthetic Seismic Phase Space

Figure 3.8 shows the two-dimensional phase space of the welding time series
presented by Figure 3.2, and Figure 3.9 shows the two-dimensional phase space of the

stock time series presented by Figure 3.3. Note that 7 =1for both embeddings.
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Figure 3.9 — Stock Daily Open Price Phase Space
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To determine how well a temporal pattern or a phase space point characterizes an
event requires the concept of an event characterization function as introduced in the next

section.

3.4 Event Characterization Function

To link a temporal pattern (past and present) with an event (future) the “gold” or
event characterization function g(t) is introduced. The event characterization function
represents the value of future “eventness” for the current time index. It is, to use an
analogy, a measure of how much gold is at the end of the rainbow (temporal pattern). The
event characterization function is defined a priori and is created to address the specific
TSDM goal. The event characterization function is defined such that its value at t
correlates highly with the occurrence of an event at some specified time in the future, i.e.,
the event characterization function is causal when applying the TSDM method to
prediction problems. Non-causal event characterization functions are useful when
applying the TSDM method to system identification problems.

For the time series illustrated in Figure 3.1, the goal is to predict occurrences of
synthetic earthquakes. One possible event characterization function to address this goal is
g(t)=x.,, which captures the goal of characterizing synthetic earthquakes one-step in
the future.

Alternatively, predicting an event three time-steps ahead requires the event
characterization function g(t)=x_,. A more complex event characterization function

that would predict an event occurring one, two, or three time-steps ahead is

g(t): max{)(t+l’)(t+2’xt+3}' (35)
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In Figure 3.2, the TSDM goal is to predict the droplet releases using the stickout
time series. Specifically, the objective is to generate one time-step predictions of when
metal droplets will release from a welder. In the previous event characterization functions
g(t) was defined in terms of x; — the same time series that contains the temporal patterns.
However, in this example, the temporal patterns are discovered in a different time series
from the one containing the events. Thus, the event characterization function is
g(t)=Yy,,, where Y is defined by (3.3).

In Figure 3.3, the goal is to decide if the stock should be purchased today and sold

tomorrow. The event characterization function that achieves this goal is

g(t)=22"% (3.6)
X,

which assigns the percentage change in the stock price for the next day to the current time

index.

3.5 Augmented Phase Space

The concept of an augmented phase space follows from the definitions of the
event characterization function and the phase space. The augmented phase space is a Q+1
dimensional space formed by extending the phase space with g(-) as the extra

dimension. Every augmented phase space point is a vector < x,, g(t) >e R°*.
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Figure 3.10 — Synthetic Seismic Augmented Phase Space

Figure 3.10, a stem-and-leaf plot, shows the augmented phase space for the
synthetic seismic time series. The height of the leaf represents the significance of g(-)
for that time index. From this plot, the required temporal pattern and temporal pattern

cluster are easlly identified.

Figure 3.11 — Welding Augmented Phase Space
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Figure 3.12 — Stock Daily Open Price Augmented Phase Space

Figure 3.11 and 3.12 show the augmented phase spaces for the welding time
series and the Stock Daily Open Price, respectively. In both of these plots the desired
temporal patterns and temporal pattern clusters are hidden. Appropriate filtering and
higher order augmented phase spaces are required to allow the hidden temporal patterns
in these time series to be identified. These techniques are discussed in Chapter 6.

| dentifying the optimal temporal pattern cluster in the augmented phase space

requires the formulation of an objective function, which is discussed in the next section.

3.6 Objective Function

The next concept is the TSDM objective function, which represents the efficacy
of atemporal pattern cluster to characterize events. The objective function f maps a
temporal pattern cluster P onto the real line, which provides an ordering to temporal
pattern clusters according to their ability to characterize events. The objective function is

constructed in such a manner that its optimizer P* meets the TSDM goal.
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Figure 3.13 — Synthetic Seismic Augmented Phase Space with Highlighted Temporal
Pattern Clusters

Figure 3.13 illustrates the requirement of the TSDM objective function. The
temporal pattern cluster P, is obviously the best temporal pattern cluster for identifying
events, while the temporal pattern cluster P, is not. The objective function must map the
temporal pattern clusterssuchthat f (R)> f (R,).

The form of the objective functions is application dependent, and severa different
objective functions may achieve the same TSDM goal. Before presenting example
objective functions, several definitions are required.

Theindex set A isthe set of all timeindicest of phase space points.

A={t:t=(Q-1)7+1...,N}, (3.7)
where (Q-1)7 isthe largest embedding time-delay, and N is the number of observations
in the time series. The index set M isthe set of al time indices t when x; is within the
temporal pattern cluster, i.e.

M={t:x e P,te A}. (3.8)
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Similarly, M , the complement of M, is the set of &l time indices t when x; is outside the
temporal pattern cluster.
The average value of g, also called the average eventness, of the phase space

points within the temporal pattern cluster P is

ty =——3g(t), (39)

o
—~

<
~—
ﬁ\'
<

where c(M ) isthe cardinality of M. The average eventness of the phase space points not

inPis

1

Consequently, the average eventness of all phase space pointsis given by

iy =ﬁ;g(t)- (311)
The corresponding variances are
o} = C(iﬂ PACICRN (3.12)
o} = c(tﬁ DICORTEE (3.13
o2 :ﬁm(g(t)—ﬂx . (3.14)

Using these definitions, several examples of objective functions are defined
below. The first objective function isthet test for the difference between two

independent means [53, 54].
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(3.15)

where P is a temporal pattern cluster. This objective function is useful for identifying
temporal pattern clusters that are statistically significant and have a high average
eventness.

The next example objective function orders temporal pattern clusters according to
their ability to characterize time series observations with high eventness and characterize

at least a minimum number of events. The objective function

iy if o(M)/c(A)2
f (P) B (IUM - go) ﬂc((:l(\/lA))

where S is the desired minimum percentage cardinality of the temporal pattern cluster,

, (3.16)

+ g, otherwise

and g, is the minimum eventness of the phase space points, i.e.
g, =min{g(t):te A}. (3.17)

The parameter S in the linear barrier function in (3.16) is chosen so that c(M) is
non-trivial, i.e., the neighborhood around p includes some percentage of the total phase
space points. If f=0,then c(M)=0 or g(i)=g(j) Vi, je M, i.e., the eventness
value of all points in the temporal pattern cluster are identical. If g =0, the temporal
pattern cluster will be maximal when it contains only one point in the phase space — the
point with the highest eventness. If there are many points with the highest eventness, the
optimal temporal pattern cluster may contain several of these points. When =0, (3.16)

is still defined, because ¢(M)/c(A)=0 is always true.
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The next objective function is useful when the TSDM goal requires that every
event is predicted, e.g., the best solution to the welding problem will predict every droplet
release. With this goal in mind, the objective function must capture the accuracy with
which atemporal pattern cluster predicts all events. Since it may be impossible for a
single temporal pattern cluster to perfectly predict all events, a collection C of temporal
pattern clusters is used for this objective function. The objective function f (C) isthe

ratio of correct predictions to all predictions, i.e.

t o+t
= e , (3.18)
to+t, +f +f

F(C)

where t, (true positive), t (true negative), f, (fase positive), and f, (false negative)

are respectively defined as
t,=c({x,:IReC3x,e RAg(t)=1}), (3.19)
f,=c({x,:FReCax,e RAg(t)=0}), (3.20)
t =c({X,:x, ¢ PYPe CAg(t)=0}), and (3.21)
f =c({x.:x, g PYReCAg(t)=1}) (3.22)

This objective function would be used to achieve maximum event characterization
and prediction accuracy for binary g(t) (1 for an event, O for a nonevent) as with the

welding time series shown in Figure 3.2.
3.7 Optimization
The key concept of the TSDM framework is to find optimal temporal pattern

clusters that characterize and predict events. Thus, an optimization algorithm represented

by
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max f(P) (3.23)
P,
IS necessary.
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Figure 3.14 — Synthetic Seismic Phase Space with Alternative Temporal
Pattern Clusters

Since different temporal pattern clusters may contain the same phase space points,
asillustrated in Figure 3.14, a bias may be placed on ¢, the radius of the temporal pattern
cluster hypersphere. Three possible biases are minimize, maximize, or moderate 6. The
choice of the bias is based on the types of prediction errorsto be minimized. To minimize
the false positive prediction errors, the error of classifying a non-event as an event, J is
minimized subject to f(P) remaining constant. This will cause the temporal pattern cluster
to have as small a coverage as possible while not changing the value of the objective
function. To minimize the false negative prediction errors, the error of classifying an

event as anon-event, ¢ is maximized subject to f(P) remaining constant. This will cause
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the temporal pattern cluster to have as large a coverage as possible while not changing
the value of the objective function. A moderating bias would balance between the false
positives and false negatives.

Thus, an optimization formulation for (3.15) and (3.16), is max f (P) subject to
mind such that minimizing 6 does not change the value of f(P). This formulation places
aminimization bias on 6. An optimization formulation for (3.18) is max f (C) subject to
minc(C) and ming, VR e C such that minimizing ¢(C) and & does not change the value
of f(P). Thisformulation searches for a minimal set of temporal pattern clustersthat isa
maximizer of the objective function, and each temporal pattern cluster has a minimal

radius.

3.8 Summary of Conceptsin Time Series Data Mining

To review, some the key concepts of TSDM follow. An event is defined as an
important occurrence in time. The associated event characterization function g(t), defined
a priori, represents the value of future eventness for the current time index. Defined as a
vector of length Q or equivalently as a point in a Q-dimensional space, atemporal pattern
is a hidden structure in a time series that is characteristic and predictive of events.

A phase space is a Q-dimensional real metric space into which the time seriesis
embedded. The augmented phase space is defined as a Q+1 dimensional space formed by
extending the phase space with the additional dimension of g(-) . The objective function
represents a value or fitness of atemporal pattern cluster or a collection of temporal
pattern clusters. Finding optimal temporal pattern clustersthat characterize and predict

eventsis the key of the TSDM framework.
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With the concepts of the TSDM framework defined, the next chapter formulates
the TSDM method that searches for a single optimal temporal pattern cluster in asingle

dimensional time series.
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Chapter 4 Fundamental Time Series Data Mining M ethod

This chapter details the fundamental Time Series Data Mining (TSDM) method.
After reviewing the problem statement, the TSDM method will be discussed. The chapter
presents a method based on an electrical field for moderating the temporal pattern cluster
threshold o. Statistical tests for temporal pattern cluster significance are discussed as a
means for validating the results. The chapter also presents an adaptation of a genetic
algorithm to the TSDM framework. Extensions and variations of the TSDM method are
presented in Chapter 6.

The key to the TSDM method isthat it forgoes the need to characterize time
series observations at al time indices for the advantages of being able to identify the
optimal local temporal pattern clusters for predicting important events. This allows

prediction of complex real-world time series using small-dimensional phase spaces.

4.1 Time Series Data Mining Method
Thefirst step in applying the TSDM method isto define the TSDM goal, which is
specific to each application, but may be stated generally as follows. Given an observed
time series
X ={x,t=1...,N}, (4.1)

the goal is to find hidden temporal patterns that are characteristic of eventsin X, where
events are specified in the context of the TSDM goal. Likewise, given atesting time
series

Y={x,t=R,...,S§} N<R<S, (4.2

the goal is to use the hidden temporal patterns discovered in X to predict eventsin Y.
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Figure 4.1 — Block Diagram of TSDM Method

Figure 4.1 presents a block diagram of the TSDM method. Given a TSDM goadl,
an observed time series to be characterized, and a testing time series to be predicted, the
stepsin the TSDM method are:

l. Training Stage (Batch Process)
1. Framethe TSDM goal interms of the event characterization function,
objective function, and optimization formulation.
a. Define the event characterization function g.

b. Define the objective function f.
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6.

c. Define the optimization formulation, including the independent
variables over which the value of the objective function will be
optimized and the constraints on the objective function.

Determine Q, i.e., the dimension of the phase space and the length of the
temporal pattern.

Transform the observed time series into the phase space using the time-
delayed embedding process.

Associate with each time index in the phase space an eventness
represented by the event characterization function. Form the augmented
phase space.

In the augmented phase space, search for the optimal temporal pattern
cluster, which best characterizes the events.

Evaluate training stage results. Repeat training stage as necessary.

I. Testing Stage (Real Time or Batch Process)

1.

2.

3.

Embed the testing time series into the phase space.
Use the optimal temporal pattern cluster for predicting events.

Evaluate testing stage results.

With the TSDM method defined, the next section presents an example to further

clarify the method’s mechanisms.
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4.2 TSDM Example
This section applies the TSDM method to the synthetic seismic time series as
illustrated in Figure 4.2. The TSDM goal is to characterize and predict the “earthquakes”,

I.e., the large spikes.

4.2.1 TSDM Training Step 1 — Frame the TSDM Goal in Terms of
TSDM Concepts

The first step in the TSDM method is to frame the data mining goal in terms of
the event characterization, objective function, and optimization formulation. Since the
goal is to characterize the synthetic earthquakes, the event characterization function is

g(t)=x,,, which allows prediction one time-step in the future.
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Figure 4.2 — Synthetic Seismic Time Series (Observed)

Since the temporal patterns that characterize the events are to be statistically

different from other temporal patterns, the objective function is
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(4.3)

which orders temporal pattern clusters according to their ability to statistically
differentiate between events and non-events.

The optimization formulation is to max f (P) subject to minb(P) such that
minimizing b(P) does not change the value of f(P). This optimization formulation will
identify the most statistically significant temporal pattern cluster with a moderate radius.
The function b determines a moderate ¢ based on an electrical field with each phase
space point having a unit charge. The function b measures the cumulative force applied
on the surface of the temporal pattern cluster. The details of b are provided later in this

chapter.

4.2.2 TSDM Training Step 2 — Determine Temporal Pattern Length

The length of the temporal pattern Q, which is also the dimension of the phase
space, is chosen ad hoc. Recall that Takens” Theorem proves that if Q =2m+1, where m
Is the original state space dimension, the reconstructed phase space is guaranteed to be
topologically equivalent to the original state space, but Takens” Theorem provides no
mechanism for determining m. Using the principle of parsimony, temporal patterns with
small Q are examined first. For this example, Q= 2, which allows a graphical

presentation of the phase space.

4.2.3 TSDM Training Step 3 — Create Phase Space

For this example, Figure 4.3 illustrates the phase space.
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Figure 4.3 — Synthetic Seismic Phase Space (Observed)

The time series X is embedded into the phase space using the time-delay
embedding process where each pair of sequentia points (x.1, X) in X generates a two-
dimensional phase space point. If the phase space were three-dimensional, every triplet of
sequential points (X2, -1, X;) could be selected to form the phase space. The Manhattan

or |; distance is chosen as the metric for this phase space.

4.2.4 TSDM Training Step 4 — Form Augmented Phase Space

The next step is to form the augmented phase space by extending the phase space
with the g(-) dimension asillustrated by Figure 4.4, a stem-and-leaf plot. The vertical
lines represent the dimension g associated with the pairs of (x.1, %). The next step will

find an optimal cluster of leaves with high eventness.
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Figure 4.4 — Synthetic Seismic Augmented Phase Space (Observed)

4.2.5 TSDM Training Step 5 — Search for Optimal Temporal Pattern
Cluster

A genetic algorithm searches for the optimal temporal pattern cluster, where a
temporal pattern cluster P is a hypersphere with a center defined by a temporal pattern p
and a radius ¢. In Figure 4.5, the temporal pattern cluster found by the genetic algorithm
Is highlighted in the phase space. By comparing Figure 4.4 and Figure 4.5, it is obvious
that the optimal temporal pattern cluster is identified. The “circle” P (recall the phase
space distance is Manhattan) in Figure 4.5 has its center at p with radius 0.

In Figure 4.6, the temporal pattern and events are highlighted on the time series.
The ¢ is not present in this view, but the relationship between the time series observations
matched by the temporal pattern cluster and the event observation is obvious.

It is clear from Figures 4.4, 4.5, and 4.6 that the TSDM training stage has been
successful. The process of evaluating the training stage results is explained later in this
chapter. Next, the testing stage applies the temporal pattern cluster P to the testing time

series.
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Figure 4.5 — Synthetic Seismic Phase Space with Temporal Pattern Cluster
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Figure 4.6 — Synthetic Seismic Time Series with Temporal Patterns and Events
Highlighted (Observed)
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Figure 4.7 — Synthetic Seismic Time Series (Testing)
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Figure 4.8 — Synthetic Seismic Phase Space (Testing)
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4.2.6 TSDM Testing Step 1 — Create Phase Space

The testing time series'Y, which is shown in Figure 4.7, is the nonstationary, non-
periodic continuation of the observed time series. The time series Y is embedded into the
phase space as shown in Figure 4.8 using the time-delay embedding process performed in
the training stage.
4.2.7 TSDM Testing Step 2 — Predict Events

The last step inthe TSDM method is to predict events by applying the discovered
temporal pattern cluster to the testing phase space. For this example, Figure 4.9 clearly
illustrates the accuracy of the temporal pattern in predicting events. The pair of connected
gray squares that match sequences of time series observations before eventsis the

temporal pattern. The black squares indicate predicted events.
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Figure 4.9 — Synthetic Seismic Time Series with Temporal Patterns and Events
Highlighted (Testing)
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This section has presented an example application of the TSDM method to the
synthetic seismic time series. The next section describes in detail the function b used in

this example to find a moderate o.

4.3 Repulsion Function for Moderating &
The optimization formulation in the previous section wasto max f (P) subject to
minb(P) such that minimizing b(P) does not change the value of f(P). This section

explains the repulsion function b, which is based on the concept of an electrical field.

Figure 4.10 — Repulsion Force Illustration

The minimizer of b isatemporal pattern cluster with a moderate 6. More

precisely, 8. <&, <6,

max ?

where &, istheradius of P,

) (the optimal temporal pattern
cluster with the smallest radius); &, istheradiusof P, (the optimal temporal pattern
cluster with the smallest b(P)); andé.__, istheradiusof P, (thetemporal pattern

P,P_ e, thecollection of optimal

in? " b " max

cluster with the largest radius), where P,
temporal pattern clustersthat all contain the same phase space points. The function b

represents a repulsion force on the surface of the hypersphere defined by a temporal
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pattern cluster P. The points in the phase space are treated like fixed electrons that exert a
force on the nearest point on the surface of the hypersphere as illustrated in Figure 4.10
Several intermediate results are needed to define b. Recall the set of all time
indices of phase space points A={t:t=(Q-1)z+1,...,N}. The vector
V, =X, —p,te A (4.4)
Is the vector from the center of the hypersphere to each phase space point. The distances

to the surface of the hypersphere are
h=[6-|v,|.te A, (4.5)
using the p norm of the phase space. The

n}:%,teA (4.6)

is the force magnitude of the tth phase space point. The force
m-—t ifh<d
[vill,

f, = t=7gs..,N (4.7)

VAR
-m—— ifh >4
[vill,

Is the tth phase space point’s force on the hypersphere surface.

Finally,

N
Y|+

t=tg4

b(P)=

Zm—Zm‘ (4.8)

teM teM

p

is the magnitude of the sum of all forces added to the absolute value of the difference
between the sum of the force magnitudes inside the temporal pattern cluster and the sum
of the force magnitudes outside the temporal pattern cluster. The minimizer of b is both

the minimizer of the overall force and the minimizer of the difference between the forces
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inside and outside the temporal pattern cluster. The §, has avaue between the &, and
S -

The next section discusses the tests used for evaluating the statistical significance

of the temporal pattern clusters.

4.4 Satistical Tests for Temporal Pattern Cluster Significance

Two statistical tests are used to verify that the TSDM goal is met. Recall that the
goal wasto find hidden temporal patterns that are characteristic of events in the observed
time series and predictive of events in the testing time series.

Thefirst gtatistical test isthe runstest. The runs test measures whether a binary
sequence is random [54, pp. 135-149]. A binary sequence is formed by assigning a0 to
time series observations classified as non-events and a 1 to those classified as events.
Sorting the binary sequence according to associated eventnesses of the binary sequence
forms the test sequence. For large sample sizes

r— |:2n°nl + 1]
n, +n,
‘s \/Znonl(Znonl —n,—n,) (49

(no + nl)z(no +n _1)

where r the number of runs of the same element in a sequence, n, is the number of

occurrences of a0, and n, isthe number of occurrences of a 1.
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The test hypothesis is:

Ho: The set of eventnesses associated with the temporal pattern
cluster P {g(t):te M} is not different from the set of
eventnesses not associated with the temporal pattern cluster P
{o(t):te M}.

Ha:  Thesets {g(t):te M} and {g(t):te M} are different.

The complementary error function and a two-tailed normal distribution are used
to find the probability value o associated with z The probability values are typically
much better than or =0.01, where « is the probability of making a Type | error. A Type |
error is when the null hypothesis is incorrectly rejected [53, pp. 274-276, 54, p. 16].

The second statistical test is the ztest for two independent samples [53, pp. 336—

338, 54, pp. 153-174].

7= 2 ) (4.10)

where X is the mean of X, Y is the mean of Y, o, is the standard deviation of X, o, is
the standard deviation of Y, n, is the number of elements in X, and n, is the number of
elements in Y. As with the runs test, the probability values are typically much better than

o =0.01.
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The test hypothesisis:

Ho:  The mean of the eventnesses {g(t):te M} associated with the
temporal pattern cluster P is not greater than the mean of the
eventnesses {g(t):te M} not associated with the temporal
pattern cluster P.

Ha:  Themeanof {g(t):te M} isgreater than the mean of
{g(t):te M}.

A single-tailed distribution is used. The next section discusses the adaptation of the

genetic algorithm for the TSDM method.

4.5 Optimization Method — Genetic Algorithm
In Chapter 2, areview of the basic genetic algorithm was provided. Here the basic
genetic algorithm is adapted to the TSDM framework. These adaptations include an
initial Monte Carlo search and hashing of fitness values. Additionally, the multi-objective
optimization capabilities of the tournament genetic algorithm are discussed.
The basic genetic algorithm presented in Chapter 2 is modified as follows.
Create an €lite population
Randomly generate large population (n times normal population size)
Calculate fitness
Select the top 1/n of the population to continue
While all fitnesses have not converged
Selection

Crossover
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Mutation
Reinsertion

Initializing the genetic algorithm with the results of a Monte Carlo search has
been found to help the optimization’s rate of convergence and in finding a good
optimum.

The hashing modification reduces the computation time of the genetic algorithm
by 50%. This modification is discussed in detail in [20]. Profiling the computation time
of the genetic algorithm reveals that most of the computation time is used evaluating the
fitness function. Because the diversity of the chromosomes diminishes as the population
evolves, the fitness values of the best individuals are frequently recalculated. Efficiently
storing fitness values in a hash table dramatically improves genetic algorithm
performance [20].

The objective function max f (P) subject to minb(P) such that minimizing b(J)
does not change the value of f(P), presents two separate optimization objectives. The two
optimization objectives could be reduced to a single objective problem using a barrier
function, or the tournament genetic algorithm could then be applied directly. The second
method is applied because the different objectives have different priorities. The primary
objective is to maximize f (P). The secondary objective is to minimize b(P) such that
minimizing b(J) does not change the value of f(P). The primary TSDM goal of finding an
optimal temporal pattern cluster should never be compromised to achieve a better
temporal pattern cluster shape.

This is accomplished with a tournament tiebreaker system. The chromosomes

compete on the primary objective of finding optimal temporal pattern clusters. If, in the
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tournament, two chromosomes have the same primary objective function value, the
winner is determined by a tiebreaker, where the tiebreaker is the secondary optimization
objective.

This chapter presented the TSDM method and through an example showed how
hidden temporal patterns can be identified. Additionaly, the repulsion force function,
statistical characterization of the temporal pattern cluster, and adaptation of the genetic
algorithm were discussed. The next chapter further illustrates the method through a series

of examples.
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Chapter 5 Basic and Explanatory Examples

This chapter presents four examples that help elicit the capabilities and limitations
of the TSDM method while clarifying its mechanisms. The first example characterizes
the maximal values of a constant frequency sinusoid. The second example applies the
TSDM method to a uniform density stochastic time series. The third uses a combination
of a sinusoid and uniform density noise to illustrate the TSDM method’s capabilities with

noisy time series. The fourth example is the synthetic seismic time series.

5.1 Sinusoidal Time Series

The first observed time series, X ={x =sin(at),t=1,...,N}, where ®=7/8
and N =100, is illustrated in Figure 5.1. For this time series, the TSDM goal is to predict
the maximal points of the time series. To achieve this objective, the event
characterization function is g(t) = X, , which will be used for all remaining examples.

The objective function (described in Chapter 3) is

iy if o(M)/c(A)2
f (P) B (IUM - go) ﬂc((:l(\/lA))

where B =0.05. This objective function is useful for finding temporal pattern clusters

; (5.1)

+ g, otherwise

with a high average eventness, where £ is the desired minimum percentage cardinality
of the temporal pattern cluster. The optimization formulation is max f (P) subject to
minb(J) such that minimizing b(J) does not change the value of f(P). The function b is

described in Chapter 4.
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Figure 5.1 — Sinusoidal Time Series (Observed)
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Figure 5.2 — Sinusoidal Phase Space (Observed)



Chapter 5 Basic and Explanatory Examples 64

Figure 5.2 presents the training stage phase space with an |, distance metric. Since
the time series varies sinusoidally, it embeds to an ellipse. Figure 5.3 illustrates the
augmented phase space, which further shows the elliptical nature of the phase space

points.

Figure 5.3 — Sinusoidal Augmented Phase Space (Observed)

The tournament genetic algorithm search parameters are presented in Table 5.1.
The random search multiplier specifies the size of the Monte Carlo search used to create
the initial genetic algorithm population. The population size is the number of
chromosomes in the genetic algorithm population. The elite count specifies the number of
chromosomes that bypass the selection, mating, and mutation steps. The gene length is
the number of bits used to represent each dimension of the search space. For a Q= 2, the
chromosome is formed from three genes. The first gene is the x..; dimension, the second
geneisthe x dimension, and the third is the threshold 6. Hence, the chromosome will
have a length of 3 (genes) x 8 (gene length) = 24 (bits). The tournament size specifiesthe

number of chromosomes that will participate in one round of the tournament selection
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process. The mutation rate specifies the likelihood a particular bit in a chromosome will

be mutated. The convergence criterion with a range of [0,1] is used to decide when to

halt the genetic algorithm. The convergence criterion is the minimum ratio of the worst

chromosome’s fitness to the best chromosome’s fitness. When the ratio is equal to or

greater than the convergence criterion, the genetic algorithm is halted.

Parameter

Value

Random search multiplier 1

Population size 100
Elite count 1
Gene length 8
Tournament size 2
Mutation rate 0.2%
Convergence criteria 1

Table 5.1 — Genetic Algorithm Parameters for Sinusoidal Time Series

Result

Value

Temporal pattern, p

Threshold, 6

Cluster cardinality, c(M)

Cluster mean eventness, u,,

Cluster standard deviation eventness, o,,
Non-cluster cardinality, ¢(M )
Non-cluster mean eventness,

Non-cluster standard deviation eventness, o,;

[0.57 1.0]

0.25

1.0
0.0

91
-0.056

0.69
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Result Vaue

A -9.5

o 3.0x10?%

Zm 15
5.2x10*

Table 5.2 — Sinusoidal Results (Observed)

The search results are shown in Table 5.2. The first two results, temporal pattern
and threshold, define the temporal pattern cluster. The cluster cardinality is the count of
phase space points in the temporal pattern cluster. The cluster mean eventnessis the
average value of g for each phase space point in the cluster. The cluster standard
deviation eventness is the standard deviation of g for the phase space pointsin the cluster.

The non-cluster cardinality is the number of phase space points not in the
temporal pattern cluster. The non-cluster mean eventness is the average value of g for
each phase space point not in the temporal pattern cluster. The non-cluster standard
deviation eventness is the standard deviation of g for the phase space points not in the
temporal pattern cluster.

The last four results describe the statistical significance of the temporal pattern
cluster using the runs test and the ztest for two independent samples, which were
discussed in Chapter 4. The runstest uses a0.01 probability of Type | error (o = 0.01).
The ¢, =3.0x10"* < 0.01 means the null hypothesis can be rejected for the observed
time series results.

The second statistical test is the z test for two independent samples. The two

populations are the eventness of the points in the temporal pattern cluster and the
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eventness of the points not in the temporal pattern cluster. The ztest uses a 0.01
probability of Type | error (o= 0.01). Again, ¢, =5.2x10* < 0.01 shows that the null

hypothesis can be rejected for the observed time series temporal pattern cluster.
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Figure 5.4 — Sinusoidal Phase Space with Temporal Pattern Cluster (Observed)

Figure 5.4 highlights the temporal pattern p =[0.57 1.0] with threshold 6 =0.25
in the phase space. By comparing the temporal pattern cluster seen in Figure 5.4 to the
augmented phase space in Figure 5.3, it is obvious that the best temporal pattern cluster is
identified. When the temporal pattern cluster matches a subsequence of the time series,
the next time series observation is a maximal value of the sinusoid.

In the testing stage, the temporal pattern cluster is used to predict events. The
testing stage time series Y ={x =sin(awt),t=S,...,R}, where o =7/8, S=101, and

R=200, isshown in Figure 5.5.
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15 ¢

-1.5 -

Figure 5.5 — Sinusoidal Time Series (Testing)

Since the testing time seriesis identical to the observed time series except for a

time shift, the phase space and augmented phase spaces are identical to Figure 5.2 and

Figure 5.3, respectively.

Result

Vaue

Cluster cardinality, c(M)

Cluster mean eventness, u,,

Cluster standard deviation eventness, o,,
Non-cluster cardinality, ¢(M )

Non-cluster mean eventness,

Non-cluster standard deviation eventness, o,;
z

O

1.0
0.0

92
-0.061
0.68
-9.4

5.4x10%!



Chapter 5 Basic and Explanatory Examples

69

Result Vaue
Zm 15
2.0x10™>*

Table 5.3 — Sinusoidal Results (Testing)
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Figure 5.6 — Sinusoidal Time Series with Predictions (Testing)

The testing stage demonstrates that the TSDM goal of predicting all maximal
values in the sinusoid is met, asillustrated in Table 5.3 and Figure 5.6. The patterns
discovered in the training phase and applied in the testing phase are statistically
significant according to the ¢ and o, statistics. The null hypothesis can be rejected in
both cases.

The data mining nature of the TSDM method is clearly demonstrated by this

example. The temporal pattern cluster characterizes the sequences that lead to the
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observations with the highest eventness. The next example applies the TSDM method to

anoise time series.

5.2 Noise Time Series

A random variable x with a uniform density function generates the second

example time series, where

1 0<x<1
f(x)= . (5.2)
0 otherwise

is the density function [55, p. 75]. The time series X ={x, =x(t),t=1...,100} is

illustrated in Figure 5.7.
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1.0 + o

0.8 + { o '

Xt 06 1 T s ﬁ’

0 10 20 30 40 5t0 60 70 80 90 100

Figure 5.7 — Noise Time Series (Observed)

For thistime series, the TSDM goal isto find atemporal pattern that is

characteristic and predictive of time series observations that have high values. Because
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the time series is a random sequence, the expectation isthat any temporal pattern cluster

discovered in the training phase will not be predictive in the testing phase.
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Figure 5.9 — Noise Augmented Phase Space (Observed)
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The event characterization, objective function, and optimization formulation are
the same as in the previous section. Figure 5.8 presents the Euclidean phase space. Since
the time series varies randomly in a uniform manner over the range [0,1], it embedsto an
evenly scattered pattern. Figure 5.9 shows the augmented phase space, which further
illustrates the scattered nature of the embedded time series.

The search parameters are described previously in Table 5.1. The training stage

results are shown in Table 5.4.

Result Value
Tempora pattern, p [0.72 0.97]
Threshold, & 0.21
Cluster cardindlity, c(M) 5

Cluster mean eventness, u,, 0.78
Cluster standard deviation eventness, o,, 0.20
Non-cluster cardinality, ¢(M ) 93
Non-cluster mean eventness, 0.48

Non-cluster standard deviation eventness, o,;  0.28

A -0.54

o 5.9x10™

Zm 31
8.2x10"

Table 5.4 — Noise Results (Observed)

Finding a statistically significant temporal pattern in random noise is

counterintuitive. However, the TSDM method found a temporal pattern cluster containing
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five phase space points with a mean eventness greater than the mean eventness of phase
space points not contained in the temporal pattern cluster. According to o, = 8.2x10°,
the null hypothesis may be rejected, i.e., the two sets are statistically different. However,
according to the runs statistical test ¢ = 5.9x10™, the two sets cannot be said to be
statistically different. This means that there is some evidence that the temporal pattern is
statistically significant. Figure 5.10 highlights the temporal pattern p =[0.72 0.97] with

threshold ¢ = 0.21 illustrated in the phase space.
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Figure 5.10 — Noise Phase Space with Temporal Pattern Cluster (Observed)
The testing stage time series X ={x =x(t),t=101...,200} , whichisa
continuation of the training stage time series, isillustrated in Figure 5.11. The testing
time series is transformed into the phase space as shown in Figure 5.12, and the

augmented phase space is seen in Figure 5.13.
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Figure 5.11 — Noise Time Series (Testing)
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Figure 5.12 — Noise Phase Space (Testing)
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0.6

Figure 5.13 — Noise Augmented Phase Space (Testing)

Table 5.5 shows the statistical characterization of the testing stage results.

Result Value
Cluster cardindlity, c(M) 8
Cluster mean eventness, u,, 0.36
Cluster standard deviation eventness, o,, 0.28
Non-cluster cardinality, ¢(M ) 90
Non-cluster mean eventness, 0.49
Non-cluster standard deviation eventness, o,  0.30
Z -0.48
o 6.3x10™
Zm -1.3
9.1x10™

Table 5.5 — Noise Results (Testing)
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The temporal pattern cluster discovered in the training stage and applied in the
testing stage is not statistically significant as seen by the o and o, statistics. The null

hypothesis cannot be rejected. Thisisillustrated in Figure 5.14, which shows the

s

— sandard error
+  prediction

IRN U

110 120 130 140 150 160 170 180 190 200
t

predictions made by the testing stage.

Figure 5.14 — Noise Time Series with Predictions (Testing)

In this example, the TSDM method cannot find temporal pattern clusters that are
both characteristic and predictive of events in a noise time series. Figure 5.14 along with
the results from Table 5.5, show that the TSDM goa of finding atemporal pattern cluster
that is predictive of time series observations whose mean value is greater than the mean
value of the not predicted observations has not been met.

Although according to one statistical measure, the training stage results were

significant in their ability to characterize events, these results did not carry over to
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predicting events in the testing stage. However, the next section shows that a sinusoidal

contaminated with noise is till predictable.

5.3 Sinusoidal with Noise Time Series
A sinusoid combined with arandom variable x (5.2) isillustrated by Figure 5.15,

where, X ={x =sin(tz/8)+1/5x(t),t=1...,100} .
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Figure5.15 - Sinusoidal with Noise Time Series (Observed)

To further characterize thistime series, the signal-to-noise-ratio (SNR) is
measured and determined analytically. The theoretical SNR is the ratio of the signal
variance to the noise variance. This would be the measured SNR for an ergodic time
series as the length of the time series approached infinity. The variance of the random

variable [55, p. 107] x is

xPdx=—. (5.3)
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The variance of the sinusoid is

16
ijmsjnz(t;z/e;)dt—o:i 7 _Lgn(E)) 21, (5.4)
16 or\16 4>\ 4 )}, 2

making the theoretical SNR 7.5 ( 8.8dB). The measured variance of the noise is 0.069
and of the sinusoid is 0.51, making the measured SNR 7.4 (8.7dB) for the finite length
observed time series.

For this time series, the TSDM goal isto predict the maximal values of the time
series. The objective function, event characterization function, and optimization

formulation remain the same as in the two previous sections.
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Figure 5.16 - Sinusoidal with Noise Phase Space (Observed)

Figure 5.16 presents the Euclidean phase space. Since the time series is composed

of a sinusoid and a uniform density random variable, the embedding is expected to be a
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scattered ellipse. Figure 5.16 shows exactly thistype of pattern. Figure 5.17 showsthe

augmented phase space, which further illustrates the scattered elliptical nature of the

embedded time series.

Figure 5.17 - Sinusoidal with Noise Augmented Phase Space (Observed)

The genetic algorithm search parameters are described previously in Table 5.1.

The training stage results are shown in Table 5.6.

Result

Vaue

Temporal pattern

Threshold

Cluster cardinality

Cluster mean eventness

Cluster standard deviation eventness
Not cluster cardinality

Not cluster mean eventness

Not cluster standard deviation eventness

[1.11.8]
0.46

9

15
0.36

89

0.41

0.72
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Result Vaue

Z -3.3

o 8.8x10™
Zm 7.7

Ofm 5.1x10™

Table 5.6 - Sinusoidal with Noise Results (Observed)
According to both statistical tests, the training results are statistically significant.
Figure 5.18 highlights the temporal pattern p =[1.1 1.8] with threshold § =0.46 inthe
phase space. Comparing the temporal pattern cluster seen in Figure 5.18 to the
augmented phase space in Figure 5.17 demonstrates that the TSDM method found a good

temporal pattern cluster.
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Figure 5.18 - Sinusoidal with Noise Phase Space with Temporal Pattern Cluster
(Observed)
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Figure 5.19 illustrates the testing stage time series, which is a continuation of the
observed time series. The measured variance of the noise is 0.084 and of the sinusoid is
0.50, yielding a measured SNR is6.0 (7.8dB). Figure 5.20 and Figure 5.21 illustrate the

phase space and the augmented phase space, respectively.
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Figure5.19 - Sinusoidal with Noise Time Series (Testing)
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Figure5.21 - Sinusoidal with Noise Augmented Phase Space (Testing)
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Result Value
Cluster cardinality 8
Cluster mean eventness 14
Cluster standard deviation eventness 0.47
Not cluster cardinality 90
Not cluster mean eventness 041

Not cluster standard deviation eventness  0.76

Z -0.48
o5 6.3x10™"
Zm 5.3

Ofm 6.1x10°

Table 5.7 - Sinusoidal with Noise Results (Testing)

The patterns discovered in the training phase and applied in the testing phase are
statistically significant as seen by the or, statistic, but not the o statistic. The cluster
mean eventness also is greater than the non-cluster mean eventness. Therefore, even
though one of the statistical testsis not significant, the TSDM method was able to find a
significant temporal pattern cluster (although because of the noise not every maximal
point is accurately predicted).

Thisisillustrated in Figure 5.22, which shows the predictions and error range

when the temporal pattern cluster is applied to the testing time series.
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Figure 5.22 - Sinusoidal with Noise Time Serieswith Predictions (T esting)

This example further reveals the data mining nature of the TSDM method. The
temporal pattern cluster does not characterize the whole time series or every highest
value; rather it characterizes a sequence that leads to an observation with high eventness.

The next section provides a further example of the TSDM methods capabilities.

5.4 Synthetic Seismic Time Series

This example analyzes in detail the previously presented synthetic seismic time
series, which is generated from a randomly occurring temporal pattern, synthetic
earthquake, and a contaminating noise signal. The noise is defined by (5.2).

The observed time seriesisillustrated in Figure 5.23. The measured variance of
the contaminating noise is 3.3x10° and of the temporal pattern with synthetic earthquake
IS 1.3. Without the synthetic earthquake, the variance of the temporal patternis0.10. The
measured SNR is 396 (26.0dB) for the temporal pattern and synthetic earthquake and

30.2 (14.8dB) for the temporal pattern without the synthetic earthquake.
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Figure 5.23 — Synthetic Seismic Time Series (Observed)

The TSDM goal for thistime seriesis to characterize the synthetic earthquakes
one time-step ahead. To capture this goal, the event characterization function is

g(t) = x,,, and the objective function is

(5.5)

This objective function is useful for identifying temporal pattern clustersthat are
statistically significant and have a high average eventness. The optimization formulation
is max f (P) subject to minb(P) such that minimizing b(¢6) does not change the value
of f(P).

Composed of atemporal pattern, synthetic earthquake, and noise, the time series

embeds to a set of small clustersin the phase space asillustrated in Figure 5.24. Figure
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5.25 shows the augmented phase space, which clearly indicates the different eventness

values associated with the small clusters of phase space points.

5,,

®

Figure 5.25 — Synthetic Seismic Augmented Phase Space (Observed)
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The search parameters are presented in Table 5.1. The training stage results are

shown in Table 5.8.

Result

Vaue

Tempora pattern, p

Threshold, 6

Cluster cardinality, c(M)

Cluster mean eventness, u,,

Cluster standard deviation eventness, o,,
Non-cluster cardinality, ¢(M )
Non-cluster mean eventness,

Non-cluster standard deviation eventness, o,;

Z

O

Zm

[0.92 0.51]
0.37

7

4.8
0.058

91

0.50
0.33
9.5
3.0x10%
104

0

Table 5.8 — Synthetic Seismic Results (Observed)

The discovered temporal pattern cluster is statistically significant by both

statistical tests. Figure 5.26 illustrates the temporal pattern p =[0.92 0.51] with threshold

0 =0.37 inthe phase space. A comparison of Figure 5.25 and Figure 5.26 demonstrates

that the training stage found the best temporal pattern cluster, i.e., when a sequence of

time series observations match the temporal pattern cluster, the next observationisa

synthetic earthquake.
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Figure 5.26 — Synthetic Seismic Phase Space with Temporal Pattern Cluster
(Observed)

The synthetic seismic testing time series, a continuation of the observed time
series, isillustrated in Figure 5.27. The measured variance of the noise is 3.5x10 and of
the temporal pattern with synthetic earthquake is 1.9. The measured variance of the
temporal pattern without synthetic earthquake is 0.10. The measured SNR is 536 (27dB)
for the temporal pattern with synthetic earthquake, and 29.0 (14.6dB) for the temporal

pattern without synthetic earthquake.
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Figure 5.27 — Synthetic Seismic Time Series (Testing)

The testing time series is transformed into the phase space as shown in Figure
5.28. The augmented phase space for the testing time series is seen in Figure 5.29.

5,,

8

Figure 5.28 — Synthetic Seismic Phase Space (Testing)
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Figure 5.29 — Synthetic Seismic Augmented Phase Space (Testing)

The testing stage results presented in Table 5.9 are statistically significant as seen

by the o and o, statistics.

Result Value
Cluster cardindlity, c(M) 11
Cluster mean eventness, u,, 4.8
Cluster standard deviation eventness, o,, 0.056
Non-cluster cardinality, ¢(M ) 87
Non-cluster mean eventness, 0.53

Non-cluster standard deviation eventness, o,;  0.33

Z -9.6
o 8.5x10%
Zm 107

0

Table 5.9 — Synthetic Seismic Results (Testing)
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Figure 5.30 — Synthetic Seismic Phase Space with Temporal Pattern Cluster
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Figure 5.31 — Synthetic Seismic Time Series with Predictions (Testing)
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Figure 5.30 highlights the temporal pattern cluster in the testing phase space.
Figure 5.31 clearly illustrates the prediction accuracy of the testing stage by highlighting
the predictions and error range on the testing time series. This example further reveals the
strength of the TSDM method - its ability to predict events.

In this chapter, the TSDM method has been applied successfully to the sinusoidal,
random noise, sinusoidal with noise, and synthetic seismic example time series. Each
example time series highlighted the capabilities of the TSDM method. The sinusoidal
time series highlighted the event-capturing capability of the TSDM method. With the
sinusoidal time series, each peak point in the time series was characterized and predicted
as an event. The noise time series showed that the method correctly determined that there
are no temporal patterns in random noise. The sinusoidal with noise time series showed
that the method, although affected by noise, can still predict maximal values.

The synthetic seismic time series demonstrates the full power of the TSDM
method. The time series is the composite of a temporal pattern, a synthetic earthquake
that occur non-periodically, and contaminating noise. With this time series, the method
accurately characterized and predicted all of the events.

Chapter 6 presents several extensions to the TSDM method, including variations
that search for temporal patterns in multi-dimensional time series and find multiple
temporal pattern clusters. In Chapters 7 and 8, the TSDM method is applied to real world

problems.
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Chapter 6 Extended Time Series Data Mining M ethods

This chapter presents three extensions to the Time Series Data Mining (TSDM)
method. The first variation extends the TSDM method to multi-dimensional time series
by adapting the time-delay embedding process. For simplicity, it is called the TSDM-M/x
(Time Series Data Mining multi-dimensional time series) method. The second TSDM
extension searches for multiple temporal pattern clusters. It is called the Time Series Data
Mining multiple temporal pattern (TSDM-x/M) method, where the x may be either S or
M depending on the dimensionality of the time series.

Additionaly, this chapter discusses aternative clustering methods and temporal
pattern stationarity. In Chapter 4, the TSDM method employed a temporal pattern cluster
that was formed with a hypersphere in a Manhattan phase space. By changing the
distance metric associated with the phase space, alternative cluster shapes are achieved.

Nonstationary temporal patterns are addressed with two techniques. The first is by
applying the integrative techniques from the ARIMA method to transform nonstationary
temporal pattern clustersinto stationary ones. The second is through an extension to the
TSDM method, called the Time Series Data Mining evolving (TSDMe) method.

The chapter concludes with a discussion of diagnostics for improving TSDM

results.
6.1 Multiple Time Series (TSDM-M/x)

This section discusses the TSDM-M/x method [2], which allows data from
multiple sensors to be fused. The TSDM method is adapted by modifying the time-delay

embedding process to incorporate observations from each dimension of a multi-
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dimensional time series. Intuitively, additional sensors on a system will provide
additional information assuming they are not sensing the same state variable. Therefore,
the time series generated by these sensors will provide a richer set of observations from
which to form the reconstructed phase space. This has been shown experimentally by
Povinelli and Feng [2].

The multi-dimensional time series
X={%,t=1...,N} (6.1)
Is a sequence of N vector observations, where X is an n-dimensional vector. This

collection of observed time series may be represented as a matrix

X X X
X = )fz XZ X2 (6.2)
Nho L%, X0 In
The corresponding multi-dimensional testing time series Y takes the form
={X,t .S} N<R<S,or (6.3)
X
72 (6.4)
Xn R+1 Xn S

Since the vector time series is n-dimensional, the dimension of the phase space is
n-Q. As with the TSDM method, a metric d is defined on the phase space. The observed
time series are embedded into the phase space yielding phase space points or (n-Q)x1

phase space vectors

:(Xmo pyrre ’XT—T'XT)T'tEA’ (6.5)
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where A={t:t=(Q-1)7+1...,N}. Likewise, the collection of testing time seriesis
embedded yielding y:. The dimensionality of the phase space and modified embedding

process are adaptations of the TSDM method required to yield the TSDM-M/x method.

Evaluate training

i stage results i

: ! Define g, f, and i
Deflneo'la'ISDM »  optimization Search
9 formulation [P phase space

. for optimal | !

4 Select Q [—»| Embedtime tgr;fgrrr?' i

Observed multi- ; seriesinto | " Guse ||
dimensiondl  ——ip{ Normalize [—{ Phase space i
time series ! |

i Testing Stage |

Testing multi- Embed time Fredic
dimensional  ——» Normdlize| | seriesinto | ———» 00 |
time series | phase space i

Asillustrated in Figure 6.1, a normalization step may be added to force each

dimension of the multi-dimensional time series to have the same range. Normalization

does not change the topology of the phase space, but mapping each time series onto the

same range alows the use of similar search step sizes for each phase space dimension.

This normalization assists the optimization routines. The normalization constant used in

the training stage is retained for use in predicting events in the testing stage.

The next section present a variation of the TSDM method that searches for

multiple temporal pattern clusters.

Figure 6.1 — Block Diagram of TSDM-M/x Method
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6.2 Multiple Temporal Patterns (TSDM-x/M)
The TSDM method finds a single hyperspherical temporal pattern cluster. The
temporal patterns to be characterized may not conform to a hyperspherical shape or may

consist of multiple digoint regions, as shown in Figure 6.2.

>l a
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e Low Event Vaue
3 |
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e
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Figure 6.2 — Multiple Temporal Pattern Cluster Phase Space

The triangles have high eventness values and the dots have low eventness values.
However, there is not a single hypersphere that can contain all the high eventness phase
space points and exclude all of the low eventness ones. Two temporal pattern clusters are
needed. A new method for finding a collection of temporal pattern clusters also is needed.

In order to find a collection of temporal patterns, the objective function is
modified to include the phase space points within each of the temporal pattern clusters

Pe(C,i=12,.... The example objective function given by (3.15) is extended to yield
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f(C)= ”2“”_”“”2 , (6.6)
Ou_y %
c(M) c¢(M)
where the index set M is defined more generadly, i.e.
M={t:x, e P,te A}, (6.7)

where Re C,i=12,.... Smilarly, M , the complement of M, isthe set of al time indices

t when x;isnot inany P e C. This objective function is useful for identifying temporal

pattern clustersthat are statistically significant and have a high average eventness.
Another example objective function, the ratio of correct predictions to all

predictions,

t o+t
= e (6.8)
to+t, +f +f

f(C)
was first defined in (3.18) and requires no modification to work in the TSDM-x/M
method.

The optimization formulation

max f (C) (6.9)

may be used, but it may lead to the following set of temporal pattern clustersillustrated in

Figure 6.3. A simpler and therefore more preferable solution isillustrated in Figure 6.4.
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Figure 6.3 — Multiple Cluster Solution With Too Many Temporal Pattern Clusters
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Figure 6.4 — Multiple Cluster Solution
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To achieve the preferred solution the optimization formulation is max f (C)
subject to min c(C) such that minimizing c(C) does not change the value of f (C). A
bias also may be placed on the &5 yielding the optimization formulation max f (C)
subject to min c(C) such that minimizing c(C) does not change the value of f (C) and
min é, VP e C such that minimizing 6, VR € C does not change the value of c(C). These
staged optimizations are resolved through the genetic algorithm tournament tiebreaker
system introduced in Chapter 4.

Given a TSDM goal, a target observed time series to be characterized, and a
testing time series to be predicted, the steps in the TSDM-x/M method are essentially the
same as the steps in the TSDM method. The modifications are that a range of phase space
dimensions is chosen, and the search processes is iterative. The steps of the TSDM-x/M
method are given below.

l. Training Stage (Batch Process)
1. Frame the TSDM goal in terms of the event characterization function,
objective function, and optimization formulation.

a. Define the event characterization function, g.

b. Define the objective function, f.

c. Define the optimization formulation, including the independent
variables over which the value of the objective function will be
optimized and the constraints on the objective function.

d. Define the criteria to accept a temporal pattern cluster.

2. Determine the range of Q’s, i.e., the dimension of the phase space and the

length of the temporal pattern.
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3. Embed the observed time series into the phase space using the time-
delayed embedding process.

4. Associate with each time index in the phase space an eventness
represented by the event characterization function. Form the augmented
phase space.

5. Search for the optimal temporal pattern cluster in the augmented phase
space using the following algorithm.

If the temporal pattern cluster meets the criteria set in 1.d then,
repeat step 5 after removing the clustered phase space points
from the phase space.

elsaif the range of Q is not exceeded, increment Q and goto step 2

else goto step 6

6. Evauate training stage results. Repeat training stage as necessary.

. Testing Stage (Real Time or Batch Process)

1. Embed the testing time series into the phase spaces.

2. Apply the temporal pattern clustersto predict events.

3. Evauatetesting stage results.

This section presented an extension of the TSDM method that allows multiple
temporal pattern clustersto be discovered. The next section presents a set of techniques

that allow more complicated temporal pattern clustersto be identified.
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6.3 Other Useful TSDM Techniques

This section presents three techniques that are useful in the process of identifying
optimal temporal pattern clusters. The first isa method for changing the temporal pattern
cluster shape by employing different phase space metrics. The next two techniques are

useful for time series with nonstationary temporal pattern clusters.

6.3.1 Clustering Technique

The phase space metric used in the synthetic seismic time series example from
Chapter 4 was the Manhattan or |, distance. Obvioudly, thisis not the only applicable
metric. With aternative metrics, the shape of the temporal pattern cluster can be changed.
The |, norms provide a simple mechanism for changing the temporal pattern cluster shape

without increasing the search space dimensionality. The |, norm is defined as

I, {iw) (56, p. 29] (6.10)

Figure 6.5 illustrates five different norms: lgs, l1, 12, |3, and ... The temporal

pattern cluster is located in a two-dimensional space at (0,0) with § =1.
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Figure 6.5 — Cluster Shapes of Unit Radius for Various I, Norms

When the |,, Euclidean, norm is used the cluster is a circle. Using the I; and |.. norms, the
temporal pattern cluster is a square. These alternative cluster shapes are incorporated into
the method by simply defining the phase space using the desired |, norm. The next

section presents a technique for identifying nonstationary temporal pattern clusters.

6.3.2 Filtering Technique

In Chapter 2, ARIMA time series analysis was discussed. ARIMA modeling
requires that the time series be stationary. TSDM'’s requirement is less stringent. Only the
temporal pattern cluster must be stationary, i.e., the phase space points characteristic of
events must remain within the temporal pattern cluster. In Chapter 2, a set of filters were
presented that could transform linear and exponential trend time series, which are

nonstationary, into stationary ones. These same filters also are useful for transforming
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time series with nonstationary temporal pattern clustersinto time series with stationary
temporal pattern clusters.

The following example shows how a nonstationary time series can be made
stationary and the appearance of a nonstationary time series in the phase space and
augmented phase space. The observed time series X ={x, =.02t,t =1,...,100} is

illustrated in Figure 6.6.
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Figure 6.6 — Linearly Increasing Time Series (Observed)

The TSDM goal isto characterize and predict all observations. Thusly, the event
characterization function is g(t) = X, . The corresponding objective function (described
in Chapter 3) is

y if c(M)/c(A)= B
F(P)= c(M)

where f =0.05. The optimization formulation is max f (P) subject to min¢ .

, (6.11)

+ g, oOtherwise
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Figure 6.7 presents the Euclidean phase space, and Figure 6.8 illustrates the
augmented phase space. Since the time series has alinearly increasing value, it embeds as
aline in both spaces. The linear feature of the phase space points indicates

nonstationarity.

2.50

Figure 6.7 — Linearly Increasing Phase Space (Observed)
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Figure 6.8 — Linearly Increasing Augmented Phase Space (Observed)

The genetic algorithm search parameters are presented in Table 6.1.

Parameter Vaue

Random search multiplier 1

Population size 20
Elite count 1
Gene length 8
Tournament size 2
Mutation rate 0.2%
Convergence criteria 1

Table 6.1 — Genetic Algorithm Parameters for Linearly Increasing Time Series
The training stage results are shown in Figure 6.9, which demonstrates that the
temporal pattern cluster does not capture the linearly increasing nature of the time series.

This will become more evident in the testing stage of the TSDM method.
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Figure 6.9 — Linearly Increasing Phase Space with Temporal Pattern Cluster
(Observed)
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Figure 6.10 — Linearly Increasing Time Series (Testing)

The testing time seriesisillustrated in Figure 6.10.
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Figure 6.11 highlights the temporal pattern cluster in the phase space. Obviousdly,
asillustrated by Figure 6.11, the desired TSDM goal is not met, which is reinforced by
Figure 6.12. The cause of the prediction failure is the lack of temporal pattern
stationarity, not necessarily because of time series nonstationarity. The resolution to the
problem of temporal pattern nonstationarity is achieved by applying the filtering
techniques discussed in Chapter 2. Applying the first difference filter to the observed
time series X yields Z ={z =.02,t =2,...,100} , which is a constant-value time series.
The problem is now trivial.

Although some time series may be made stationary through filtering techniques,
these methods will not convert al nonstationary time series into stationary ones. The next
section presents a method for analyzing time series with quasi-stationary temporal pattern

clusters.

6.3.3 Non-filtering Techniques

Although stationarity usually describes the statistical characteristics of a
stochastic time series [55, pp. 297-298], this dissertation introduces a more general
definition. When applied to a deterministic time series, stationarity indicates that the
periodicity, if the time seriesis periodic, and range of the time series are constant. When
applied to chaotic time series, stationarity indicates that the attractors remain constant
through time. Chaotic time series whose underlying attractors evolve through time are
classified as nonstationary chaotic time series.

Beyond filtering to extract nonstationary temporal patterns, there are two TSDM
methods presented in this section that address quasi-stationary temporal patterns, i.e.,

temporal patterns that are characteristic and predictive of events for alimited time
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window. They are called the Time Series Data Mining evolving temporal pattern
(TSDMe) methods. These methods are useful for analyzing time series generated by
adaptive systems such as financial markets with feedback characteristics that counteract
systemic predictions.

The first method (TSDMe;) uses a fixed training window and a fixed prediction
window. The second method (TSDMe;,) uses a fixed training window and a single period
prediction window. The TSDMe methods differ from the other TSDM methods in how
the observed and testing time series are formed.

The TSDMe; method divides the time series into equally sized sets
X;={x,t=(j-1)N+1L..., jN}, where N is the number of observations in a subset of X,
and j isthe index of the subset. The time series X; is used in the training stage. The time
series X, isused in the testing stage. The length of the time window N is determined
experimentally such that the temporal patterns clusters remain quasi-stationary between
any two adjacent time windows.

The TSDMe, method creates the overlapping observed time series as follows:

X, ={x,t=j,..., j+N}. (6.12)
The testing time series is formed from a single observation as follows:
Y, ={x,t=j+N+1}. (6.13)
With these changes in the formation of the observed and testing time series, any of the
TSDM methods may be applied.
The last section in this chapter presents a set of cases with which to diagnose and

adjust the TSDM method.
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6.4 Evaluating Results and Adjusting Parameters

In the training stage of the TSDM methods, there is an evaluate training stage
results step, which is an ad hoc evaluation of the intermediate and final results of the
TSDM method. The evaluation may include visualization of the phase space and
augmented phase space and review of the statistical results. Based on the ad hoc
evaluation, the parameters of the method may be adjusted, alternative TSDM methods
selected, and/or appropriate TSDM techniques applied. This section discusses ad hoc
evaluation techniques, what issues they might discover, and possible solutions.

By parsimony, the simplest characterization of events possible isdesired, i.e., as
small adimensional phase space as possible and as few temporal pattern clusters as
required. The first evaluation technique is to visualize, if possible, the phase space and
augmented phase space, which alows human insight to identify clustering problems. The
cases that may be identified and their potential solutions are listed below.

Case 1: One cluster isidentifiable, but not discovered by the TSDM method.

Potential Solution A: Select alternative phase space metric.

Potential Solution B: Increase genetic algorithm population size.

Potential Solution C: Increase genetic algorithm chromosome length.

Potential Solution D: Increase genetic algorithm mutation rate.

Potential Solution E: Use aternative objective function.

Case 2: Multiple clusters are visualized, but not discovered by the TSDM method.

Potential Solution A: Use TSDM-x/M method.

Case 3: No clusters are visualized.

Potential Solution A: Try higher dimensional phase space.
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Potential Solution B: Use TSDM-x/M method.
Case 4: Phase space points cluster into aline.

Potential Solution A: Apply filtering techniques.

The second evaluation technique is to review the statistical characteristics of the
resulting temporal pattern cluster(s). These statistics include the ¢(M ), ¢(M), u,, ,
Ou. Mg, Oy, Uy, 0, and om. The cases that may be identified and their potential
solutions are listed below.

Case 5: The cluster cardinality c(M ) istoo large or small while using the objective

function described in (4.3).

Potential Solution A: Use the objective function described in (3.16).

Case 6: The cluster cardinality c(M ) istoo large or small while using the objective

function described in (3.16).

Potential Solution A: Adjust the 3 as appropriate.

Case 7: Either or both the or and om, do not alow the null hypothesis to be rejected.

Potential Solution A: The null hypothesis holds. No temporal patterns exist in the

time series.

Potential Solution B: Use the TSDM-x/M method to find multiple temporal

patterns.

Potential Solution C: Use a larger training time series.

Potential Solution D: Use the TSDMe; or TSDMe, methods to see if the temporal

patterns may be quasi-stationary.

Potential Solution E: Adjust the cluster shape by using an alternative p-norm.
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This section presented seven cases where the resulting temporal pattern clusters
did not achieve the desired TSDM goal and potential solutions for each of these cases.
Thisis not an exhaustive list of treatments to improve the TSDM results, but a
representative sample of the most common adjustments needed.

This chapter has presented extensions to the TSDM method for finding multiple
temporal patterns and analyzing multi-dimensional time series. It has also presented a set
of techniques for dealing with nonstationary temporal pattern clusters. It concluded with
a set of diagnostic cases and their potential resolutions. The next two chapters will apply

these extended TSDM methods to real-world applications.
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Chapter 7 Engineering Applications

This chapter introduces a set of real-world time series gathered from sensors on a
welding station. The problem isto predict when a droplet of metal will release from a
welder. The welding process joins two pieces of metal into one by making a joint
between them. A current arc is created between the welder and the metal to be joined.
Wireis pushed out of the welder. The tip of the wire melts, forming a metal droplet that
elongates (sticks out) until it releases. The goal is to predict the moment when a droplet
will release, which will allow the quality of the joint to be improved. Because of the
irregular, chaotic, and event nature of the droplet release, prediction isimpossible using

traditional time series methods.

wire

+——— welder

curent arc

droplet

metal to be joined
Figure7.1- Welder
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Samples of the four welding time series are presented in Figure 7.2 and Figure
7.3. Obvioudly, they are noisy and nonstationary. Sensors on the welding station generate
three of the time series. The first is the stickout of the droplet measured in pixels by an
electronic camera. It is sampled at 1kHz and comprised of approximately 5,000
observations. The second time series is the voltage measured in decivolts from the welder
to the metal to be joined. Thethird is the current measured in amperes. The voltage and
current time series are sampled at 5kHz, synchronized to each other, and each comprised
of approximately 35,000 observations. The fourth time series indicates the release of the
metal droplets. Thistime series was created after the sensor data was collected using a
process at INEEL (Idaho National Engineering & Environmental Laboratory), which also
provided the data. It is synchronized with the stickout time series and comprised of
approximately 5,000 observations. The release time series indicates the events with a one

indicating an event and a zero indicating a non-event.
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Figure 7.3 — Voltage and Current Time Series

This chapter is organized into six sections. This first section discusses the four

time series that comprise the data set and provides an overview of the chapter. The



Chapter 7 Engineering Applications 116

second section characterizes and predicts the release events using the stickout time series.
The third section characterizes and predicts events in an adjusted release time series. The
fourth section presents and resolves a time series synchronization problem. As noted
above, two of the sensors sampled at approximately 5kHz, while the other sensor
sampled at approximately 1kHz. The problem is complicated further because the ratio of
the sampling rates is not exactly 5:1. In the fifth section, the TSDM-M/M method is

applied to data from all three sensors.

7.1 Release Prediction Using Single Stickout Time Series

This section presents the results of applying the TSDM-S/M method to
characterizing and predicting droplet releases using the stickout time series. This
application of the TSDM-S/M method does not require the synchronization of the

stickout and release time series with the current and voltage time series to be resolved.

195 +
190 +
185
180
175
170 -
165 -
160 +
155 +
150 +
145 444+ttt

H o o Lo o Lo A
NN T SO A N

Xt (pixels)

0 o o o £ Mo
N SR AN G SR
t

Figure 7.4 — Stickout Time Series (Observed)
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The observed stickout time series X consists of the 2,492 equally sampled
observations, at t = 175 through 2,666. Figure 7.4 illustrates all observations, while
Figure 7.2 provides a detailed view of a sample of the time series.

Besides the obvious nonperiodic oscillations, the stickout time series exhibits a
large-scale trend. As discussed in Chapter 6, removing trends helps the method find the
necessary temporal patterns. A first difference filter could be applied, but that would
introduce a new synchronization problem between the release and stickout time series.
Instead, a simple recalibration rule is used to removing the trend. When thereis a 10-
pixel drop between two consecutive observations, the second observation is recalibrated
to zero. Figure 7.5 and Figure 7.6 illustrate that the trend in stickout time series has been

removed.

Xt (pixels)
H
a1

Figure 7.5 — Recalibrated Stickout Time Series (Observed)
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Figure 7.6 — Recalibrated Stickout and Release Time Series (Observed)

Instead of being contained within the stickout time series, the events are captured
inthe release time series Y, asillustrated in Figure 7.6. The release time series is defined
as abinary sequence, where the ones indicate a release (event) and the zeros a non-
release (non-event). The release usually occurs after a stickout value reaches alocal peak
and drops 10 pixels or more. However, a study of Figure 7.6 shows there are severa
times when this does not occur. In this section, the release time series will be used
unatered. In the next section, the release series will be recalculated to more correctly
match the stickout length minimums.

Now that the observed time series have been presented, the TSDM goal is restated
in terms of the objective and event characterization functions. The TSDM-S/M method
requires two objective functions. The first objective function describes the objective for

the final result. Introduced in Chapter 3,
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£.(C) t (7.1)

t,+t,+f,+f

has an optimal value when every event is correctly predicted. Thevaues t .t , f ,and f,

n1 p1
are described in Table 7.1.

Actualy anevent  Actually a non-event

Categorized as an event True positive, t, False postive, f,

Categorized as a non-event False negetive, f, True negétive, t,

Table 7.1 — Event Categorization

The second objective function,

f(P)=—", (7.2)

called the positive accuracy, defines how well each P e C,i =1,2,... isat avoiding false
positives. It is used as the objective for the intermediate steps in the TSDM-S/M training
stage.

The optimization formulation for the whole training stage is max f (C) subject to
minc(C) and minb(4,) VPR € C . The optimization formulation for the intermediate steps
is max f (P) subject to minb(J).

Figure 7.7 presents an illustrative phase space, where the Manhattan or |, distance
metric is employed. The phase space points are similar to the linearly increasing phase

space points, but the increase repeats instead of continuing to grow.
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Figure 7.7 — Recalibrated Stickout Phase Space (Observed)

Figure 7.8 clearly shows the complexity of the augmented phase space. The
events are not separable from the non-events using a two-dimensional phase space.
Hence, the TSDM-S/M method, which finds multiple temporal clusters of varying

dimensionality, is applied.
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Figure 7.8 — Stickout and Release Augmented Phase Space (Observed)

The augmented phase space is searched using a tournament genetic algorithm.

The two sets of search parameters are presented in Table 7.2.

Parameter Set 1 Set 2
Random search multiplier 10 10
Population size 30 30
Elite count 1 1
Gene length 8 8
Tournament size 2 2
Mutation rate 0.05% 0%
Convergence criteria 0.65 0.5

Table 7.2 — Genetic Algorithm Parameters for Recalibrated Stickout and Release
Time Series

The results of the search are shown in Table 7.3.
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Result

Vaue

Temporal pattern cluster count, c(C)
Temporal pattern cluster dimensions

Clusters cardinality, c(M)

Clusters mean eventness, u,,

Clusters standard deviation eventness, o,,
Non-clusters cardinality, ¢(M )

Non-clusters mean eventness,
Non-clusters standard deviation eventness, o,;
z

O

Zm

Ofm

True positives, t,

False positives, f,

True negatives, t,
False negatives, f,
Accuracy, f,(C)

Positive accuracy, f,(C)

14
1~14
142
0.71
0.45
2,349
0.023

0.15

18
2.4x10°"
101

41

2296

53
96.23%

71.13%

Table 7.3 — Recalibrated Stickout and Release Results (Observed)

Fourteen temporal pattern clusters form the temporal pattern cluster collection

employed to identify events. This collection contains temporal pattern clusters that vary

in dimension from 1 to 14. The runs and z tests with ¢ = 0 and o, = 2.4x107 show that
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the two sets, clustered and non-clustered, are statisticaly different. However, for this
problem the goal is to accurately predict droplet releases. The more meaningful statistics
are the true/false positives/negatives. The statistics for accuracy indicate that 96.23% of
the release observations are correctly characterized. The positive accuracy indicates that
71.13% of the release observations categorized as events are events.

The testing time seriesis shown in Figure 7.9 and Figure 7.10. The recalibrated
stickout and release time series are shown in Figure 7.11 and Figure 7.12. The testing
time series is transformed into the phase space asillustrated in Figure 7.13. The

augmented phase space for the testing time seriesis seen in Figure 7.14.
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Figure 7.9 — Stickout Time Series (Testing)
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Figure 7.11 — Recalibrated Stickout Time Series (Testing)
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Figure 7.13 — Recalibrated Stickout Phase Space (Testing)
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Figure 7.14 — Recalibrated Stickout and Release Augmented Phase Space (Testing)

The results of applying the temporal pattern cluster collection to the testing time

seriesisseenin Table 7.4.

Result

Vaue

Clusters cardinality, c(M)

Clusters mean eventness, u,,

Clusters standard deviation eventness, o,,

Non-clusters cardinality, ¢(M )

Non-clusters mean eventness, /.

Non-clusters standard deviation eventness, o;

Z

O

Zm

Om

True positives, t,

136
0.74
0.44
2,356
0.022

0.15

19
4.0x10°"®

100
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Result Value
False positives, f, 36
True negatives, t, 2,303
False negatives, f, 53
Accuracy, f,(C) 96.43%
Positive accuracy, f,(C) 73.53%

Table 7.4 — Recalibrated Stickout and Release Results (Testing)

As with the training stage results, the testing stage results are statistically
significant as seen by both the runs and ztests. The ¢ is zero, and the o4, is 4.0x107%.
More importantly, the prediction accuracy is 96.43%, and the positive accuracy is
73.53%. These results are better than those found in the characterization phase. This is

significant, especially considering that the data set provider deems the stickout

measurements as “not too reliable”.

7.2 Adjusted Release Characterization and Prediction Using Stickout

This section presents results using an adjusted release time series rather than the

one computed using the INEEL process. As seen in Figure 7.6, the release time series

does not always correspond with the stickout data. It also does not correspond with the

voltage time series presented later in the chapter. The adjusted release time series is

created using a simple rule — a release has occurred after a ten-pixel drop in the stickout

time series. This rule is identifying events a posteriori, while the TSDM method is

predicting events a priori. A sample of the adjusted release time series is shown in Figure

7.15.
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Figure 7.16 — Recalibrated Stickout and Adjusted Release Augmented Phase Space
(Observed)

The TSDM goal, primary objective function, event characterization, and

optimization formulation remain the same. An alternative secondary objective function,
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fg(P)—{_(f” +t,) ift, =0n fp:o’ 73

t, - @+ f+t+f) - f, otherwise
is introduced, which maximizes the number of true positives while penalizing any false
positives.
The augmented phase space, illustrated by Figure 7.16, while still complex, is
more orderly than the unadjusted release augmented phase space shown in Figure 7.8.
Five different sets of genetic algorithms parameters are used to find the temporal
pattern clusters. For all sets, the elite count was one, the gene length was eight, and the

tournament size was two. The other parameters are listed in Table 7.5.

Random Secondary
Search Population Mutation Convergence  objective
multiplier size rate criteria function
Setl 10 30 0.2% 1 f,(P)
Set 2 1 100 0.2% 1 f,(P)
Set 3 1 100 0.02% 1 f,(P)
Set 4 10 30 0% 0.5 f,(P)
Set 5 10 30 0.05% 0.65 f,(P)
Set 6 10 30 0.05% 0.5 f,(P)

Table 7.5 — Genetic Algorithm Parameters for Recalibrated Stickout and Adjusted
Release Time Series

The training stage results are shown in Table 7.6.

Result Value
Temporal pattern cluster count, c(C) 67
Temporal pattern cluster dimensions 1~14

Clusters cardindlity, c(M) 138
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Result

Vaue

Clusters mean eventness, u,,

Clusters standard deviation eventness, o,,
Non-clusters cardinality, ¢(M )
Non-clusters mean eventness,
Non-clusters standard deviation eventness, o;
z

O

Zm

Ofm

True positives, t,

False positives, f,

True negatives, t,

False negatives, f,

Accuracy, f,(C)

Positive accuracy, f,(C)

0.81
0.39
2,353
0.017

0.13

24
2.9x10™"#
112

26

2,313

40
97.35%

81.16%

Table 7.6 — Recalibrated Stickout and Adjusted Release Results (Observed)

Sixty-seven temporal pattern clusters form the temporal pattern cluster collection

used to identify the events. The statitical testswith ¢, =0 and ¢, = 2.9x10"** show that

the two sets, clustered and non-clustered, are statistically different. The accuracy statistic

indicates that 97.35% (vs. 96.23% using the unadjusted release time series) of the release

observations are correctly characterized. The positive accuracy indicates that 81.16% (vs.
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71.13% using the unadjusted release time series) of the release observations categorized
as events are events.
The testing stage time seriesis shown in Figure 7.17. The augmented phase space

for the testing time seriesisillustrated in Figure 7.18.
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Figure 7.18 — Recalibrated Stickout and Adjusted Release Augmented Phase Space
(Testing)
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The testing stage results are presented in Table 7.7.

Result Vaue
Clusters cardindlity, c(M) 161
Clusters mean eventness, u,, 0.70
Clusters standard deviation eventness, o,, 0.46
Non-clusters cardinality, ¢(M ) 2,331
Non-clusters mean eventness, 0.017

Non-clusters standard deviation eventness, o,  0.13

Z -49

lo7 0

Zm 19

O 1.63x107°
True positives, t, 113

False positives, f, 48

True negatives, t, 2,291
False negatives, f, 40
Accuracy, f,(C) 96.47%
Positive accuracy, f,(C) 70.19%

Table 7.7 — Recalibrated Stickout and Adjusted Stickout Results (Testing)

Aswith the training stage results, the testing stage results are statisticaly

significant as seen by both the runs and z tests. The ¢, =0, and the ¢, =1.63x10™. The

prediction accuracy is 96.47% (vs. 96.43% with the unadjusted release time series) and

the positive accuracy is 70.19% (vs. 73.53% with the unadjusted release time series).



Chapter 7 Engineering Applications 133

According to the total prediction accuracy, the recalibrated stickout and adjusted stickout
results are better. Whereas according to the positive prediction accuracy, the unadjusted

release time series results are better.

7.3 Stickout, Release, Current and Voltage Synchronization

The last two sections focused on using the stickout time series temporal patterns
for characterization and prediction of droplet releases. The TSDM-S/M method has
yielded excellent results. The next step isto use the current and voltage time series to
help characterize and predict droplet releases. Unfortunately, the stickout and release
time series are not synchronized with the current and voltage time series. This leaves two
problems to be solved. The first isto synchronize the four time series. The second isto
compensate for the different sampling rates.

The synchronization is done by matching the first and last voltage peaks with the
first and last droplet releases. For the voltage time series, these observations are 973 and
25764. For the droplet release time series, these observations are 187 and 5151.

Recall that the stickout and release time series sampling rate was reported to be
1kHz and the current and voltage sampling-rate was reported to be 5kHz. If these
sampling rates are perfectly calibrated, the 1kHz time series could be up-sample to the
5kHz rate by interpolating four additional points for each observation or down-sampling
the S5kHz time series by averaging five observations into one observation. However, when
thisis done, the time series lose synchronization.

The initial synchronization was done using the first voltage spike and the first

droplet release. Using the reported five-to-one sampling ratio and the last droplet release
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observation of 5151, the last voltage spike should be observation 25,793. It is actually
observation 25,764, which is determined by visualizing the data. The true sampling rates
are not exactly in a 5:1 ratio.

The problem is solved using Matlab’s interpl [57, pp5.9-5.11] function with the
cubic spline option. This function allows conversion between arbitrary sampling rates by
providing the initial time series with its sampling times and by specifying a vector with
the desired sampling times. The function performs interpolation using a cubic spline. It
may be used for either up-sampling or down-sampling. Both the up-sampling to 5kHz
and down sampling to 1kHz time series were generated by appropriately mapping the

first and last synchronization observations onto each other.

7.4 Adjusted Release Characterization and Prediction Using Stickout,
\oltage, and Current

With the synchronization problem solved, the TSDM-M/M method is applied to
the voltage, current, and stickout time series to characterize and predict droplet releases.
The adjusted release time series is used as the indicator of events. The time series are
normalized to the range [0,1], using the transformation

_ X=min(X)
"~ max (X —min(X))

(7.4)

A sample of the observed time series is shown in Figure 7.19.
The TSDM goal, primary objective function, event characterization, and

optimization formulation remain the same. An alternative secondary objective function,

f,(P)= M (7.5)
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also is used.
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Figure 7.19 — Recalibrated Stickout, Current, Voltage, and Adjusted Release Time
Series (Observed)

Because the smallest phase space that can be formed using al the time seriesis
three-dimensional, and the corresponding augmented phase space is four-dimensional,
graphical illustrations are not possible. Nonetheless, these spaces are formed and
searched using a tournament genetic algorithm. The set of genetic algorithm search
parametersis presented in Table 7.5. Three different sets of genetic algorithm parameters
were used to find al the temporal pattern clusters. For al parameter sets, the elite count
was one, the gene length was eight, the tournament size was two, and mutation rate was

0.2%. The other parameters by set are listed in Table 7.8.
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Random Secondary

Search Population  Convergence  objective

multiplier  size criteria function
Set 1 10 30 0.75 f,(P)
Set 2 1 30 1 f,(P)
Set 3 1 10 1 f,(P)

Table 7.8 — Genetic Algorithm Parameters for Recalibrated Stickout, Current,
Voltage, and Adjusted Release Time Series

The training stage results are shown in Table 7.9.

Result Vaue
Temporal pattern cluster count, c(C) 62
Temporal pattern cluster dimensions 3~15
Clusters cardindlity, c(M) 117
Clusters mean eventness, u,, 0.89
Clusters standard deviation eventness, o,, 0.32
Non-clusters cardinality, ¢(M ) 2,374
Non-clusters mean eventness, 0.020

Non-clusters standard deviation eventness, o; 0.14

Z -49

o 0

Zm 30

O 7.1x10™°
True positives, t, 104

False positives, f, 13

True negatives, t, 2,326
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Result Vaue
False negatives, f, 48
Accuracy, f,(C) 97.55%
Positive accuracy, f,(C) 88.89%
Table 7.9 — Recalibrated Stickout, Current, Voltage, and Adjusted Release Results
(Observed)
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Figure 7.20 — Recalibrated Stickout, Current, Voltage, and Adjusted Release Time
Series (Testing)

Sixty-two temporal pattern clusters form the collection of temporal pattern
clusters used to identify the events. This collection contains temporal pattern clusters that
vary in dimension from 3 to 15. The runs and z tests with &, =0 and ¢, = 7.1x10™*
show that the two sets, clustered and non-clustered, are statistically different. The

accuracy statistic indicates that 97.55% (vs. 97.35% using just the stickout and the
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adjusted release time series and vs. 96.23% using the stickout and unadjusted release time
series) of the release observations are correctly characterized. The positive accuracy
indicates that 88.89% (vs. 81.16% using just the stickout and the adjusted release time
series and vs. 71.13% using the stickout and unadjusted release time series) of the release
observations categorized as events are events.

The testing stage time seriesisillustrated in Figure 7.20 and resultsin Table 7.7.

Result Value
Clusters cardindlity, c(M) 117
Clusters mean eventness, u,, 0.67
Clusters standard deviation eventness, o,, 0.47
Non-clusters cardinality, ¢(M ) 2,375
Non-clusters mean eventness, 0.032

Non-clusters standard deviation eventness, o; 0.17

Z -49

O 0

Zm 14

O 2.1x10
True positives, t, 78

False positives, f, 39

True negatives, t, 2,300
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Result Value
False negatives, f, 75
Accuracy, f,(C) 95.42%
Positive accuracy, f,(C) 66.67%

Table 7.10 — Recalibrated Stickout, Current, Voltage, and Adjusted Release Results
(Testing)

Aswith the training stage, the testing stage results are statistically significant as
seen by both the runs and ztests. The ¢, =0 and «,, = 2.1x10™*. More importantly, the
prediction accuracy is 95.42% (vs. 96.47% using just the stickout and the adjusted release
time series and vs. 96.43% using the stickout and unadjusted release time series) and the
positive accuracy is66.67% (vs. 70.19% using just the stickout and the adjusted release
time series and vs. 73.53% using the stickout and unadjusted release time series).

The prediction results using the stickout, current, and voltage time series are not
as good as using just the stickout time series. There are two possible explanations for this.
Recall that the training stage results using all three time series were better than the
training results using just the stickout time series. In addition, the search space is be
higher dimensional and therefore sparser, because the multi-dimensional time series
embeds to a higher dimensional phase space. This suggests that the training stage over-fit
the temporal pattern clusters to the training stage observations, i.e., the temporal pattern
clusters discovered in the training stage are too specific to the training stage time series.
The second explanation is that the recalibration process has introduced noise causing the

testing resultsto be worse.
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7.5 Conclusion

Using from one to three time series generated from sensors on a welding station,
the problem of predicting when a droplet of metal will release from the welder was
solved with a high degree of accuracy — from 95.42% to 96.47% total prediction accuracy
and from 66.67% to 73.53% positive prediction accuracy. These results show that the
TSDM method could be used in a system to control and monitor the welding seam
thereby improving the quality of the weld.

The next chapter applies the TSDM methods to the financial domain.
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Chapter 8 Financial Applications of Time Series Data Mining

This chapter, organized into four sections, presents significant results found by
applying the Time Series Data Mining (TSDM) method to financial time series. The first
section discusses the definition of events for this application and the generation of the
time series. The second and third sections present the results of applying the TSDMe;-S/S
and TSDMe;-M/S methods to a financial time series. The final section applies the
TSDMe,-S/S method to a collection of time series.

In this chapter, the analyzed time series are neither synthetically generated as in
Chapter 5, nor measured from a physical system as in Chapter 7. Instead, they are created
by the dynamic interaction of millions of investors buying and selling securities through a
secondary equity market such as the New Y ork Stock Exchange (NY SE) or National
Association of Securities Dealers Automated Quotation (NASDAQ) market [58]. The
times series are measurements of the activity of a security, specifically a stock. The time
series are the daily open price, which is the price of the first trade, and the daily volume,
which is the total number of shares of the stock traded.

Before applying the TSDM framework to security price prediction, an explanation
of the underlying structure of security price behavior is required, i.e., the efficient market
hypothesis. The efficient market hypothesis is described using the expected return or fair
game model, which puts the efficient market hypothesis on firmer theoretical grounds
than using the random walk hypothesis [58, p. 210]. The expected value of a security is

E(R..|®)=[1+E(r,|®)IR [58 p.210], (8.1)
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where P, isthe price of asecurity at timet, r,,, isthe one-period percent rate of return for
the security during period t+1, and @, isthe information assumed to be fully reflected in
the security price at timet.

There are three forms of the efficient market hypothesis. The weak form assumes
@, isall security-market information, such as historical sequence of price, rates of return,
and trading volume data [58, p. 211]. The semistrong form assumes @, isall public
information, which is a super set of al security-market information, including earnings
and dividend announcements, price-to-earning ratios, and economic and political news
[58, p. 211]. The strong form assumes @, isall public and private information, also
including restricted data such as company insider information [58, p. 212].

The weak form of the efficient market hypothesis, which has been supported in
the literature, applies to the current chapter. The efficient market hypothesis is verified by
showing that security price time series show no autocorrelation and are random according
to the runstest. In addition, tests of trading rules have generally shown that the weak
form of the efficient market hypothesis holds [58, p. 213-215].

The TSDM goadl isto find a trading-edge, a small advantage that allows greater
than expected returns to be realized. If the weak form of the efficient market hypothesis
holds, the TSDM methods should not be able to find any temporal patterns that can be
exploited to achieve such atrading-edge. The TSDM goal isto find temporal pattern
clustersthat are, on average, characteristic and predictive of alarger than normal increase

in the price of a stock.
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8.1 ICN Time Series Using Open Price

This section presents the results of applying the TSDMe;-S/M method to
characterizing and predicting the change in the open price of ICN, aNASDAQ traded
stock. ICN is an international pharmaceutical company. Two periods, 1990 and 1991, are
analyzed. The first half of 1990 will be used as the observed time series and the second

half as the testing time series. The 1991 time series will be similarly divided.

xt (open pricein dollars)

$
'\>q>\/ ,\5\9

Figure 8.1 — ICN 1990H1 Daily Open Price Time Series (Observed)
8.1.1 ICN 1990 Time Series Using Open Price

The Figure 8.1 illustrates the observed time series X, which isthe ICN open price for
the first half of 1990 (1990H1). To identify temporal patterns that are both characteristic

%

and predictive of events, afilter is needed. The A™ filter converts the time seriesinto a
percentage change open price time series. The filtered time series has a more consistent

range, as seen in Figure 8.2, facilitating the discovery of temporal pattern clusters.
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Figure 8.2 — Filtered ICN 1990H1 Daily Open Price Time Series (Observed)
The TSDM goal of finding atrading-edge is restated in terms of TSDM concepts.
The objective function is
I if c(M)/c(A)2
f(P)= c(M
R (TN

where 8 =0.05. The event characterization function is g(t) = x_, , which alows for one-

, : 2
+ g, Otherwise (82)

step-ahead characterization and prediction. The optimization formulation is max f (P)
subject to minb(9d).

Figure 8.3 presents an illustrative phase space for the filtered ICN 1990H1 daily
open price time series with a Euclidean distance metric. Figure 8.4 shows the augmented
phase space.

The complexity of the embedding asillustrated in Figure 8.4. Clearly, the
identification of atemporal pattern cluster that separates events from non-events is not

possible. Thiswill not prevent the TSDM goal of finding a trading-edge, though. The
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goal isto find temporal pattern clusters that have higher objective function values and are

statistically different from the phase space points outside the temporal pattern clusters.
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Figure 8.4 — Augmented Phase Space of Filtered ICN 1990H1 Daily Open Price
(Observed)
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The genetic algorithm search parameters are presented in Table 8.1.

Parameter Values
Random search multiplier 10
Population size 30
Elite count 1
Gene length 6
Tournament size 2
Mutation rate 0%
Convergence criteria 1

Table 8.1 — Genetic Algorithm Parameters for Filtered ICN 1990H1 Daily Open
Price Time Series

The training stage results are shown in Table 8.2.

Result Set 1 Set 2 Set 3 g;mbi”ed
Temporal pattern cluster count, c(C) 1 1 1 3
Temporal pattern cluster dimensions 1 3 5 1,35
Clusters cardindlity, c(M) 8 10 7 19
Clusters mean eventness, u,, 5.43% 3.50% 6.49% 3.37%
Clusters standard deviation 8.70% 6.95% 1.47% 6.60%
eventness, o,,

Non-clusters cardinality, ¢(M ) 116 112 113 105
Non-clusters mean eventness, -0.56% -0.50% -0.61% -0.81
Non-clusters standard deviation 3.60% 3.92% 3.80% 3.43%
eventness, o,;

Z -4.58 -2.07 -1.88 -4.61
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Combined
Result Setl Set 2 Set 3 Set
o 4.71x10°  3.84x10° 6.02x102  3.95x10°
1.94 1.79 2.50 2.70

2y

5.30x10%  7.28x10% 1.26x10% 6.93x10°
Table 8.2 — Filtered ICN 1990H1 Daily Open Price Results (Observed)

In each case, the cluster mean eventness is greater than the non-cluster mean
eventness. However, because of the limited training set size, the probability of a Type |
error — incorrectly rejecting the null hypothesis that the two sets are the same — is higher
than in the previous chapters. By combining the sets, the statistical significance is
increased. This type of financial time series is nonstationary on all of the levels defined in
this dissertation: stochastic, deterministic, and chaotic. The patterns persist for a short
time period. This causes problems in achieving the desired 0.05 significance level.

The testing time series and the filtered testing time series are shown in Figure 8.5
and Figure 8.6, respectively. Figure 8.7 illustrates the testing phase space. The augmented

phase space is seen in Figure 8.8.
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Figure 8.5 — ICN 1990H2 Daily Open Price Time Series (Testing)
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Figure 8.6 — Filtered ICN 1990H2 Daily Open Price Time Series (Testing)
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The testing stage results are seen in Table 8.3.

Combined
Result Setl Set 2 Set 3 Set
Temporal pattern cluster count, c(C) 1 1 1 3
Temporal pattern cluster dimensions 1 3 5 1,3,5
Clusters cardinality, c(M) 13 16 12 32
Clusters mean eventness, u,, 4.16% 0.96% 1.95% 1.48%
Clusters standard deviation 9.58% 8.41% 9.64% 7.97%
eventness, o,,
Non-clusters cardinality, ¢(M ) 112 107 109 93
Non-clusters mean eventness, -0.56% -0.23% -0.30% -0.60%
Non-clusters standard deviation 4.80% .15 5.09% 4.48%
eventness, o;
Z -1.12 -1.95 -2.40 -3.45
o 2.62x10"  5.06x10° 1.65x10> 5.5x10™
Znm 1.75 0.55 0.78 1.40
O 8.02x10° 5.82x10" 4.25x10" 1.61x10™"

Table 8.3 — Filtered ICN 1990H2 Daily Open Price Results (Testing)

As with the training stage results, the average eventness values of time series

observations inside the temporal pattern clusters are greater than the average eventness of

the observations outside the temporal pattern clusters. However, for the same reasons

discussed previously — sample size and temporal pattern stationarity — the statistical

significance as shown by o is never less than 0.01. The TSDM goal is met in that a

trading-edge is identified, but it is not statistically significant.
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8.1.2 ICN 1991 Time Series Using Open Price
The same TSDM goal, objective function, event characterization function and
optimization formulation are applied to the 1991 open price time series. The observed
time series X, the open price for first half of 1991 (1991H1), isillustrated in Figure 8.9.
Figure 8.10 shows the filtered observed time series observations. Figure 8.11
presents an illustrative phase space, and Figure 8.12 an illustrative augmented phase
space. The tournament genetic algorithm search parameters are presented in Table 8.1.

The training stage results are shown in Table 8.4.
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Figure 8.9 — ICN 1991H1 Daily Open Price Time Series (Observed)
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Figure 8.11 — Filtered ICN 1991H1 Daily Open Price Phase Space (Observed)
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Figure 8.12 — Augmented Phase Space of Filtered ICN 1991H1 Daily Open Price

(Observed)

Combined
Result Set 1 Set 2 Set 3 Set
Temporal pattern cluster count, c(C) 1 1 1 3
Temporal pattern cluster dimensions 1 3 5 1,35
Clusters cardindlity, c(M) 7 8 6 19
Clusters mean eventness, u,, 4.62% 4.41% 5.49% 3.71%
Clusters standard deviation 3.59% 9.50 10.13% 6.65%
eventness, o,,
Non-clusters cardinality, c(M ) 116 113 113 104
Non-clusters mean eventness, 0.34% 0.36% 0.42% 0.01%
Non-clusters standard deviation 4.79% 4.29% 4.36% 4.21%
eventness, o,;
z -1.05 0.04 -2.39 -3.19
o 2.95x10"  9.65x10" 1.68x10° 1.43x10°
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Combined
Result Set 1 Set 2 Set 3 Set
Zm 2.99 1.197270 1.219608 2.336999

2.75x10°  2.31x10"  2.23x10"  1.94x10?
Table 8.4 — Filtered ICN 1991H1 Daily Open Price Results (Observed)

The training results show that a trading-edge can be found from the observed time
series. However, because of the small sample size, statistical significance is more
difficult to achieve. The testing stage time seriesisillustrated by Figure 8.13.
40 —+
35

30 -
25

X; (open pricein dollars)

Figure 8.13 — ICN 1991H2 Daily Open Price Time Series (Testing)

The filtered version of the testing time seriesis shown in Figure 8.14. Illustrative
phase and augmented phase spaces are shown in Figure 8.15 and Figure 8.16,

respectively. The training stage results are seen in Table 8.5.
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Figure 8.14 — Filtered ICN 1991H2 Daily Open Price Time Series (Testing)
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Figure 8.15 — Filtered ICN 1991H2 Daily Open Price Phase Space (Testing)
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Figure 8.16 — Augmented Phase Space of Filtered ICN 1991H2 Daily Open Price

(Testing)

Combined
Result Set 1 Set 2 Set 3 Set
Temporal pattern cluster count, c(C) 1 1 1 3
Temporal pattern cluster dimensions 1 3 5 1,35
Clusters cardindlity, c(M) 13 7 7 22
Clusters mean eventness, u,, 2.06% 0.46% 0.88% 0.41%
Clusters standard deviation 7.21% 5.06% 11.93% 8.04%
eventness, o,,
Non-clusters cardinality, ¢(M ) 113 117 115 104
Non-clusters mean eventness, 0.98% 1.2% 1.12% 1.23%
Non-clusters standard deviation 5.57% 5.81% 5.28% 5.16%
eventness, o;
z -0.65 0.69 -0.17 -1.66
o 5.18x10" 4.90x10" 8.65x10" 9.69x107
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Combined
Result Set 1 Set 2 Set 3 Set
Zm 0.52 -0.37 -0.05 -0.46

6.01x10"  7.09x10" 9.59x10" 6.47x10™
Table 8.5 — Filtered ICN 1991H2 Daily Open Price Results (Testing)

For this collection of testing stage results, Set 1 has a higher cluster mean
eventness than non-cluster mean eventness. Sets 2, 3, and combined do not. These results
are presented so they may be contrasted with those in the next section, which
incorporates the volume time series in predicting events. The next section demonstrates
that, for the same set of possible events, including the volume time series yields better

and more statistically significant temporal pattern clusters.

8.2 ICN Time Series Using Open Price and Volume

This section extends the results of applying the TSDM method to predicting the
change in the open price of ICN by including the volume time series in the analysis. As
with the previous section, this one is broken into two subsections each addressing 1990
and 1991 periods, respectively. Adding information in the form of a second time series

enables better characterization and prediction results.

8.2.1 ICN 1990 Time Series Using Open Price and Volume

Figure 8.17 illustrates the observed time series X, the first half of 1990 (1990H1)
open price and volume time series. The TSDM goal remains the same, as does the
representation in TSDM concepts. The search parameters are described in Table 8.1, and

the training stage results are shown in Table 8.6.
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Figure8.17 -ICN 1990H 1 Daily Open Price and Volume Time Series (Observed)

Result Set 1 Set 2 Set 3 (S:;mbined
Temporal pattern cluster count, c(C) 1 1 1 3
Temporal pattern cluster dimensions 2 6 10 2,6,10
Clusters cardindlity, c(M) 6 7 6 13
Clusters mean eventness, u,, 7.24% 4.85% 7.95% 5.09%
Clusters standard deviation 9.50% 7.68% 7.15% 7.27%
eventness, o,,

Non-clusters cardinality, c(M ) 118 115 114 111
Non-clusters mean eventness, -0.55% -0.48% -0.63% -0.79%
Non-clusters standard deviation 3.57% 3.92% 3.78% 3.38%
eventness, o,;

Z -2.46 -0.17 -0.40 -2.08

o 1.39x10° 8.65x10" 6.89x10" 3.73x10”
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Combined
Result Set 1 Set 2 Set 3 Set
Zm 2.00 1.82 2.92 2.88

454x10% 6.83x10% 3.53x10°  4.02x10°
Table 8.6 — ICN 1990H1 Daily Open Price and Volume Results (Observed)

In each case, the cluster mean eventness is greater than the non-cluster mean
eventness. A comparison to the same time period results from Table 8.2 shows that these
results are better for both the cluster mean eventness and the statistical measures. Four of
the statistical tests are significant to the 0.05 o level.

The testing stage time series is shown in Figure 8.18. The testing stage results are

seenin Table 8.7.
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Figure 8.18 — ICN 1990H2 Daily Open Price and Volume Time Series (Testing)

Combined
Result Set 1 Set 2 Set 3 Set
Temporal pattern cluster count, ¢(C) 1 1 1 3

Temporal pattern cluster dimensions 2 6 10 2,6,10
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Result Set 1 Set 2 Set 3 g;mbi”ed
Clusters cardindlity, c(M) 12 7 6 18
Clusters mean eventness, u,, 5.24% 3.14% 4.41% 3.27%
Clusters standard deviation 9.14% 10.67%  1257%  9.44%
eventness, o,,
Non-clusters cardinality, ¢(M ) 113 116 115 107
Non-clusters mean eventness, -0.63% -0.27% -0.31% -0.63%
Non-clusters standard deviation 4.84% 5.22% 5.09% 4.52%
eventness, o,;
Z -1.42 -0.18 -4.43 -2.87
0 1.57x10" 8.60x10" 9.44x10° 4.09x10°
Znm 2.19 0.84 0.91 1.72
2.84x10° 4.02x10" 3.61x10" 8.54x10°

Table 8.7 — ICN 1990H2 Daily Open Price and Volume Results (Testing)

Aswith the training stage, the testing stage results achieve the goal of finding a

trading-edge. The cluster mean eventness is greater than the non-cluster mean eventness.

A comparison to the same time period results from Table 8.3 reveals that these results are

better in both the cluster mean eventness and the statistical measures. Three of the

statistical tests are significant to the 0.05 o level.
8.2.2 ICN 1991 Time Series Using Open Price and Volume

Figure 8.19 illustrates the observed time series X, the first half of 1990 (1990H1)

open price and volume time series. The training stage results are shown in Table 8.8
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Figure8.19 -ICN 1991H1 Daily Open Price and Volume Time Series (Observed)

Combined
Result Set 1 Set 2 Set 3 Set
Temporal pattern cluster count, c(C) 1 1 1 3
Temporal pattern cluster dimensions 2 6 10 2,6,10
Clusters cardindlity, c(M) 7 7 6 12
Clusters mean eventness, u,, 5.76% 10.54%  9.88% 7.87%
Clusters standard deviation 4.98% 6.87% 7.92% 6.78%
eventness, o,
Non-clusters cardinality, ¢(M ) 116 114 113 111
Non-clusters mean eventness, 0.27% 0.02% 0.19% -0.20%
Non-clusters standard deviation 4.65% 3.99% 4.16% 3.85%
eventness, o;

Z -1.05 -5.35 -2.39 -4.52



Chapter 8 Financial Applications of Time Series Data Mining 162

Combined
Result Set 1 Set 2 Set 3 Set
o 2.95x107 8.91x10® 1.68x10° 6.15x10°
Zn 2.84 4.01 2.98 4.05

453x10° 6.16x10° 2.92x10° 5.07x10°
Table 8.8 — ICN 1991H1 Daily Open Price and Volume Results (Observed)

Again, the cluster mean eventness is greater than the non-cluster mean eventness
for each set, and the results are better than the same time period results from Table 8.4,
which used only the open price time series. All but one of the statistical tests are
significant to the 0.05 « level, and al but two are significant to the 0.005 « level. The

testing stage time series is shown in Figure 8.20, and the results are seen in Table 8.9.
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Figure 8.20 — ICN 1991H2 Daily Open Price and Volume Time Series (Testing)

Combined
Result Set 1 Set 2 Set 3 Set
Temporal pattern cluster count, c(C) 1 1 1 3

Temporal pattern cluster dimensions 2 6 10 2,6,10
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Result Set 1 Set 2 Set 3 g;mbi”ed
Clusters cardindlity, c(M) 9 6 4 15
Clusters mean eventness, u,, 5.14% 1.26% 6.40% 3.48%
Clusters standard deviation 7.98% 15.07% 11.91% 11.07%
eventness, o,,
Non-clusters cardinality, ¢(M ) 117 118 118 111
Non-clusters mean eventness, 0.78% 1.16% 0.92% 0.77%
Non-clusters standard deviation 5.45% 5.01% 5.46%  4.58%
eventness, o,;
A 0.89 -3.48 -1.12 -1.05
0 3.75x10"  5.08x10* 2.61x10" 2.95x10"
Zm 161 0.02 0.92 0.94
1.07x10"  9.87x10" 3.59x10" 3.48x10"

Table 8.9 — ICN 1991H2 Daily Open Price and Volume Results (Testing)

As with the characterization, the cluster mean eventness for each set is greater

than the non-cluster mean eventness. A comparison to the same time period results (from

Table 8.5) shows that these results are better in both the cluster mean eventness and the

statistical measures. Recall that, in Table 8.5, only one of the sets had a cluster mean

eventness that was greater than the non-cluster mean eventness. Here, al of the cluster

mean eventnesses are greater. However, as seen before, the statistical significances are

hampered by the limited sample size and temporal pattern stationarity.

In the next section, the ideas gained from analyzing the ICN time series are

applied. For the ICN time series, the section applied a temporal pattern discovered in a
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half-year’s worth of data to the next half-year’s worth of data. The next section will apply
a half-year’s worth of training to the next day’s prediction. The training stage is repeated

at each time-step.

8.3 DJI A Component Time Series

This section presents the results of applying the TSDMe,-S/M method to the 30
open daily price time series of the Dow Jones Industrial Average (DJIA) components
from January 2, 1990, through March 8, 1991, which allows approximately 200 testing

stages. The following stocks in Table 8.10 make up the DJIA during this period.

Ticker Company Name Ticker Company Name

AA Aluminum of America JNJ Johnson & Johnson

ALD AlliedSignal Inc. JPM J.P. Morgan

AXP American Express KO Coca-Cola

BA Boeing MCD McDonald’s

CAT Caterpillar MMM  Minnesota Mining & Manufacturing
CHV Chevron MO Philip Morris

DD DuPont MRK Merck

DIS Walt Disney PG Procter & Gamble

EK Eastman Kodak S Sears, Roebuck

GE General Electric T AT & T Corp.

GM General Motors TRV Travelers (Now part of Citigroup Inc.)
GT Goodyear Tire & Rubber UK Union Carbide

HWP Hewlett-Packard UTXx United Technologies

IBM International Business Machines ~ WMT Wal-Mart Stores

IP International Paper XON Exxon

Table 8.10 — Dow Jones Industrial Average Components (1/2/1990 — 3/8/1991)
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Rather than graphically present each of the 30 DJIA component stocks, Figure
8.21 illustrates the DJA. Aswith the ICN time series, a percentage filter is applied to

each DJIA component time series to facilitate finding temporal pattern clusters.
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Figure 8.21 — DJIA Daily Open Price Time Series

The TSDM goal isto find a trading-edge. The next section shows how this goal is

captured through TSDM concepts.
8.3.1 Training Stage

The objective function is

iy if o(M)/c(A)2 B
f (P) ) (IUM - go) ﬂc((:l(\/lA))

where 8 =0.05. The event characterization functionto is g(t) = x.,, , which allows for

; (83

+ g, oOtherwise

one-step-ahead characterization and prediction. The optimization formulation is

max f (P).
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Because of the large number of training processes — 5,970 — a graphical
presentation of each step is not made. Recall that the TSDMe, method uses a moving
training window and a single observation testing window. The training window is 100
observations.

The search parameters are presented in Table 8.11. The roulette selection genetic
algorithm was used.

Parameter Values

Random search multiplier 10

Population size 30
Elite count 1
Gene length 6
Mutation rate 0%
Convergence criteria 1

Table 8.11 — Genetic Algorithm Parameters for DJIA Component Time Series

Because of the large number of training and testing sets and because of the
trading-edge goal, the results presented are of a summary nature. The statistical training
results for each DJIA component are presented in Table 8.12. Of the 5,970 training
processes, the cluster mean eventness ( u,, ) was greater than total mean eventness (u, )
every time. For 69% of the temporal pattern clusters, the probability of a Type | error was
less than 5% based on the independent means statistical test. For 49% of the temporal
pattern clusters, the probability of a Type I error was less than 5% based on the runs

statistical test.
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Ticker Uy > Uy 0 < 0.05 o <0.05
AA 100% 82% 55%
ALD 100% 2% 52%
AXP 100% 71% 48%
BA 100% 70% 42%
CAT 100% 79% 48%
CHV 100% 54% 34%
DD 100% 42% 35%
DIS 100% 83% 25%
EK 100% 55% 18%
GE 100% 66% 81%
GM 100% 73% 49%
GT 100% 62% 44%
HWP 100% 55% 34%
IBM 100% 67% 24%
IP 100% 80% 78%
INJ 100% 89% 37%
JPM 100% 90% 14%
KO 100% 67% 87%
MCD 100% 62% 62%
MMM 100% 57% 75%
MO 100% 65% 29%
MRK 100% 59% 70%
PG 100% 76% 38%
S 100% 59% 86%
T 100% 66% 40%
TRV 100% 78% 63%
UK 100% 36% 66%
uTXx 100% 94% 46%
WMT 100% 73% 37%
XON 100% 75% 61%
Combined 100% 69% 49%

Table 8.12 — DJIA Component Results (Observed)
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8.3.2 Testing Stage Results

Using the 5,970 training processes, 471 events are predicted. The statistical
prediction results for each DJA component are presented in Table 8.13. The cluster
mean eventness ( u,, ) was greater than the non-cluster mean eventness (u,; ) 20 out of 30
times or 67% of the time. For 16.7% of the temporal pattern clusters, the probability of a
Type | error was less than 5% based on the independent means statistical test. For 3.3%
of the temporal pattern clusters, the probability of a Type | error was less than 5% based
on the runs statistical test. These low rates of statistical significance at the 5% « level

are typical for predictions of financial time series as seen from the previously presented

ICN results.
Ticker c(M) g, O c(M)  uy, O O o
AA 16 0.569% 1.652% 182 -0.013% 1.620% 1.78x10' 7.76x10*

ALD 14 0.438% 1.428% 184 -0.102% 1.851% 1.83x10" 9.91x10™
AXP 14 0.027% 2.058% 184 -0.023% 2.610% 9.32x10" 9.91x10™
BA 13 0.080% 2.044% 185 -0.030% 2.181% 8.52x10" 1.76x10"
CAT 26 -0.003% 1.817% 172 -0.098% 2.127% 8.08x10" 3.19x10"

CHV 16 0.057% 1.572% 182 0.061% 1.200% 9.92x10"  8.40x10™

DD 16 0.526% 1.946% 182 -0.045% 1.635% 2.55x10"  7.76x10"
DIS 20 -0.024% 1.488% 178 0.069% 2.069% 8.00x10" 9.87x10"
EK 14 -0.045% 1.879% 184 0.074% 1.998% 8.20x10"  2.66x10™
GE 16 0.094% 1.410% 182 0.000% 1.881% 8.04x10" 4.92x10™
GM 16 0.671% 2.090% 182 -0.149% 1.863% 1.29x10"  4.92x10™

GT 20 -0.962% 2.034% 178 -0.066% 2.549% 6.93x10° 9.87x10"
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Ticker c(M) g, O c(M)  uy O O o

HWP 13 -0.779% 1.881% 185 0.116% 2.664% 1.08x10" 1.76x10*
IBM 16 -1.079% 1.785% 182 0.175% 1.460% 6.32x10°  8.41x10*
P 16 1.197% 2525% 182 0.025% 1.587% 6.80x10° 2.09x10*
JNJ 13 0.665% 1.444% 185 0.160% 1.551% 2.25x10" 8.63x10*

JPM 11 1.420% 1.878% 187 0.040% 1.985% 1.82x10° 5.90x10"
KO 11 1.794% 3.396% 187 0.008% 1.807% 8.36x10° 2.18x10"
MCD 13 0.367% 1.753% 185 -0.013% 1.977% 4.54x10" 3.14x10"
MMM 16 0.238% 1.044% 182 0.043% 1.258% 4.82x10"  4.92x10™
MO 17 0.038% 1.820% 181 0.251% 1.641% 6.42x10" 1.80x10™

MRK 19 0.669%  1.163% 179 0.073% 1.580% 4.11x10° 7.10x10?

PG 13 0.174% 1.615% 185 0.047% 1.707% 7.85x10" 3.14x10"
S 14 1.449% 2.677% 184 -0.157% 1.938% 2.77x10° 9.28x10™
T 11 1.307% 1.797% 187 -0.193% 1.645% 6.88x10°  5.44x10”

TRV 21 1531% 2.449% 177 -0.147% 2.617% 3.21x10° 5.58x10™
UK 14 -0.449% 2.263% 184 0.041% 1.900% 4.30x10" 5.75x10™
UTXx 14 -0.289% 1.979% 184 -0.028% 1.828% 6.33x10"  2.66x10™
WMT 18 0.658%  1.950% 180 0.120% 2.458% 2.77x10" 5.79x10"
XON 20 0.077% 1.398% 178 0.090% 1.263% 9.68x10" 4.19x10"
All 471 0.313% 1.970% 5469 0.011% 1.919% 1.38x10° 6.76x10"

Top15 245 0.596% 1.966% 2,725 -0.020% 1.809% 2.27x10° 8.84x10°
Table 8.13 — DJIA Component Results (Testing)
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For the combined results — using all predictions — the mean cluster eventness is
greater than the non-cluster mean eventness. It also is statistically significant to the
0.005« level according to the independent means test. However, better results can be
achieved by predicting which temporal pattern clusters are more likely to yield accurate
predictions. This is done by defining

(¢, =0.05)+ (e, <0.05)

’ > . (8.4)

The «, is the average of the om < 0.05 and o < 0.05 from Table 8.12. The excess return,

He = Uy _IUM ) (85)
is the difference in the returns achieved by using the temporal pattern clusters and the
complement of the temporal pattern clusters. The ¢, has a 0.50 correlation with the

excess return. Figure 8.22 illustrates this.
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Figure 8.22 — «, vs. Excess Return
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The top 15 stocks are selected based on their ¢, The prediction results using the
portfolio formed from these top 15 DJIA components yields exceptional results. Using
the temporal pattern clusters for the top 15 stocks, 245 predictions are made. The cluster
mean eventness ( 4,, ) was greater than the non-cluster mean eventness (u,; ) 13 out of 15
times or 87% of the time. The average predicted event had a 0.596% increase in open
price. The average of the not predicted events was -0.020%. According to both statistical
tests, the results are statistically significant. Using the means test, thereisonly a
0.000227% chance of making a Type | error in rgjecting the null hypothesis that the
predicted events are the same as the not predicted observations. Using the runs test, there
Is a0.884% chance of making a Type | error.

The best way to understand the effectiveness of the TSDM method when applied
to financial time seriesis to show the trading results that can be achieved by applying the
temporal pattern clusters discovered above. An initia investment is made as follows: If a
temporal pattern cluster from any of the stocks in the portfolio predicts a high eventness,
the initial investment is made in that stock for one day. If there are temporal pattern
clusters for several stocks that indicate high eventness, the initial investment is split
equally among the stocks. If there are no temporal pattern clusters indicating high
eventness, then the initial investment is invested in a money market account with an
assumed 5% annual rate of return. The training process is rerun using the new 100 most
recent observation window. The following day, the initial investment principal plus
return isinvested according to the same rules. The process is repeated for the remaining

investment period.
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The results for the investment period of May 29, 1990 through March 8, 1991 are
shown in Table 8.14. This period is less than the total time frame (January 1, 1990,
through March 8, 1991) because the first part of the time series is used only for training.
The return of the DJA also is given, which is dightly different from the buy and hold

strategy for all DJIA components because the DJIA has a non-equal weighting among its

components.
Annualized
Portfolio Investment Method Return Return
All DJA components Temporal Pattern Cluster 30.98% 41.18%
Top 15 DJA components Temporal Pattern Cluster 67.771% 93.70%
DJA Buy and hold 2.95% 3.79%

All DJA components Not in Temporal Pattern Cluster 0.35% 0.45%
Top 15 DJA components Not in Temporal Pattern Cluster -2.94%  -3.74%
All DJA components Buy and hold 3.34% 4.29%

Top 15 DJA components Buy and hold 2.81% 3.60%
Table 8.14 — Trading Results

Aninitia investment of $10,000 made on May 29, 1990, in the top 15 DJA
component stocks using the TSDM method would have grown to $16,777 at the end of
March 8, 1991. One cavest to this result isthat it ignores trading costs [59]. The trading
cost is a percentage of the amount invested and includes both the buying and selling
transaction costs along with the spread between the bid and ask. The return of the top 15
DJA component portfolio using the temporal pattern cluster investment method is

reduced to 63.73% or 87.76% annualized when a trading cost rate of 0.01% applied. This
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level of trading cost would require investments in the $500,000 to $1,000,000 range and
access to trading systems that execute in between the bid and ask prices or have spreads
of 1/16th or less. A 0.2% trading cost applied to the same portfolio results would reduce
the return to 3.54% or 4.55% annualized.

In this chapter, the TSDM method was applied to financial time series. Using
temporal pattern clusters from single and multiple time series as a trading tool has yielded
significant results. Even with a complex, nonstationary time series like stock price and
volume, the TSDM method uncovers temporal patterns that are both characteristic and

predictive.
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Chapter 9 Conclusions and Future Efforts

Through the novel Time Series Data Mining (TSDM) framework and its
associated methods, this dissertation has made an original and fundamental contribution
to the fields of time series analysis and data mining. The key TSDM concepts of event,
event characterization function, temporal pattern, temporal pattern cluster, time-delay
embedding, phase space, augmented phase space, objective function, and optimization
were reviewed, setting up the framework from which to develop TSDM methods.

Chapters 4 and 6 developed TSDM methods to find optimal temporal pattern
clustersthat both characterize and predict time series events. TSDM methods were
created for discovering both single and multiple temporal pattern clustersin single and
multi-dimensional time series. Additionally, a set of filtering and time series windowing
techniques was adapted to alow prediction of nonstationary events.

This dissertation has demonstrated that methods based on the TSDM framework
successfully characterize and predict complex, nonperiodic, irregular, and chaotic time
series. Thiswas done, first, through a set of explanatory and basic examples that
demonstrated the TSDM process. TSDM methods were then successfully applied to
characterizing and predicting complex, nonstationary, chaotic time series events from
both the engineering and financial domains. Given a multi-dimensional time series
generated by sensors on awelding station, the TSDM framework was able to, with a high
degree of accuracy, characterize and predict metal droplet releases. In the financia
domain, the TSDM framework was able to generate a trading-edge by characterizing and

predicting stock price events.
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Future efforts will fall into three categories: theoretical, application, and
performance. Theoretical research will be conducted to determine the required dimension
of the reconstructed phase space given an arbitrary number of observable states. There
are many research applications for TSDM, including: high frequency financial event
prediction, incipient fault prediction in induction motor-drive systems, and
characterization of heart fibrillation. As the time series data sets grow larger, the
computational effort required to find hidden temporal patterns grows, requiring higher
performance implementations of the TSDM methods.

Asdiscussed in Chapter 2, Takens proved that a 2Q+1 dimensional phase space
formed using time-delay embedding is guaranteed to be an embedding of, i.e.,
topologically equivalent to, an original Q-dimensional state space. This theorem is based
on using one observable state to reconstruct the state space. Povinelli and Feng showed
experimentally in [2] that using multiple observable states can yield better results. The
unanswered theoretical question is: What phase space dimension is required for an
arbitrary number of observable states so that the phase space is topologically equivalent
to the original state space? It is obvious that when all Q states are observable, then the
reconstructed phase space need only be Q-dimensional. Future research efforts will
investigate the relationship between the number of observable states n and the required
phase space dimensionality when 1< n< Q.

One of the future application efforts will be to create a synergy between the
research of Demerdash and Bangura, which demonstrated the powerful abilities of the
Time-Stepping Coupled Finite Element-State Space (T SCFE-SS) method in predicting a

priori characteristic waveforms of healthy and faulty motor performance characteristics



Chapter 9 Conclusions and Future Efforts 176

[60-65], and the Time Series Data Mining (TSDM) framework presented in this
dissertation to characterizing and predicting incipient motor faults.

Improving computational performance will be addressed through two research
directions. One direction is to investigate alternative global optimization methods such as
interval branch and bound. A second parallel direction isto investigate distributed and
paralel implementations of the TSDM methods.

Through the creation of the novel TSDM framework and methods, which have
been validated on complex real-world time series, this dissertation has made a significant

contribution to the state of the art in the fields of time series analysis and data mining.
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