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Abstract 

A new framework for analyzing time series data called Time Series Data Mining 

(TSDM) is introduced. This framework adapts and innovates data mining concepts to 

analyzing time series data. In particular, it creates a set of methods that reveal hidden 

temporal patterns that are characteristic and predictive of time series events. Traditional 

time series analysis methods are limited by the requirement of stationarity of the time 

series and normality and independence of the residuals. Because they attempt to 

characterize and predict all time series observations, traditional time series analysis 

methods are unable to identify complex (nonperiodic, nonlinear, irregular, and chaotic) 

characteristics. TSDM methods overcome limitations of traditional time series analysis 

techniques. A brief historical review of related fields, including a discussion of the 

theoretical underpinnings for the TSDM framework, is made. The TSDM framework, 

concepts, and methods are explained in detail and applied to real-world time series from 

the engineering and financial domains. 
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Chapter 1 Introduction 

 The Time Series Data Mining (TSDM) framework, introduced by this 

dissertation, is a fundamental contribution to the fields of time series analysis and data 

mining. Methods based on the TSDM framework are able to successfully characterize 

and predict complex, nonperiodic, irregular, and chaotic time series. The TSDM methods 

overcome limitations (including stationarity and linearity requirements) of traditional 

time series analysis techniques by adapting data mining concepts for analyzing time 

series. This chapter reviews the definition of a time series, introduces the key TSDM 

concepts of events and hidden temporal patterns, and provides examples of problems the 

TSDM framework addresses. 

A time series X is “a sequence of observed data, usually ordered in time” [1, p. 1]. 

 { }, 1, ,tX x t N= = � , (1.1) 

where t is a time index, and N is the number of observations. Time series analysis is 

fundamental to engineering, scientific, and business endeavors. Researchers study 

systems as they evolve through time, hoping to discern their underlying principles and 

develop models useful for predicting or controlling them. Time series analysis may be 

applied to the prediction of welding droplet releases and stock market price fluctuations 

[2, 3]. 

Traditional time series analysis methods such as the Box-Jenkins or 

Autoregressive Integrated Moving Average (ARIMA) method can be used to model such 

time series. However, the ARIMA method is limited by the requirement of stationarity of 

the time series and normality and independence of the residuals [1, 4, 5]. The statistical 
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characteristics of a stationary time series remain constant through time. Residuals are the 

errors between the observed time series and the model generated by the ARIMA method. 

The residuals must be uncorrelated and normally distributed.  

For real-world time series such as welding droplet releases and stock market 

prices, the conditions of time series stationarity and residual normality and independence 

are not met. A severe drawback of the ARIMA approach is its inability to identify 

complex characteristics. This limitation occurs because of the goal of characterizing all 

time series observations, the necessity of time series stationarity, and the requirement of 

residual normality and independence. 

Data Mining [6, 7] is the analysis of data with the goal of uncovering hidden 

patterns. Data Mining encompasses a set of methods that automate the scientific 

discovery process. Its uniqueness is found in the types of problems addressed – those 

with large data sets and complex, hidden relationships. 

The new TSDM framework innovates data mining concepts for analyzing time 

series data. In particular, this dissertation describes a set of methods that reveal hidden 

patterns in time series data and overcome limitations of traditional time series analysis 

techniques. The TSDM framework focuses on predicting events, which are important 

occurrences. This allows the TSDM methods to predict nonstationary, nonperiodic, 

irregular time series, including chaotic deterministic time series. The TSDM methods are 

applicable to time series that appear stochastic, but occasionally (though not necessarily 

periodically) contain distinct, but possibly hidden, patterns that are characteristic of the 

desired events. 
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It is commonly assumed that the ARIMA time series models developed with past 

data will apply to future prediction. This is the stationarity assumption that models will 

not need to vary through time. ARIMA models also assume that the system generating 

the time series is linear, i.e., can be defined by linear differential or difference equations 

[8]. Unfortunately, the systems generating the time series are not necessarily linear or 

stationary. 

In contrast, the TSDM framework and the methods built upon it can handle 

nonlinear and nonstationary time series. This framework is most useful for predicting 

events in a time series, which might include predicting when a droplet from a welder will 

release, when a stock price will drop, or when an induction motor adjustable speed drive 

system will fail. All these applications are well suited to this new framework and the 

methods built upon it. 

 The novel TSDM framework has its underpinnings in several fields. It builds 

upon concepts from data mining [6, 7], time series analysis [1, 4, 5], adaptive signal 

processing [9], wavelets [10-18], genetic algorithms [19-27], and chaos, nonlinear 

dynamics, and dynamical systems [28-35]. From data mining comes the focus on 

discovering hidden patterns. From time series analysis comes the theory for analyzing 

linear, stationary time series. In the end, the limitations of traditional time series analysis 

suggest the possibility of new methods. From adaptive signal processing comes the idea 

of adaptively modifying a filter to better transform a signal. This is closely related to 

wavelets. Building on concepts from both adaptive signal processing and wavelets, this 

dissertation develops the idea of a temporal pattern. From genetic algorithms comes a 

robust and easily applied optimization method [19]. From the study of chaos, nonlinear 
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dynamics, and dynamical systems comes the theoretical justification of the method, 

specifically Takens’ Theorem [36] and Sauer's extension [37]. 

1.1 Data Mining Analogy 

 An analogy to gold mining helps clarify the problem and introduces two key data 

mining concepts. An analogy is the assumption that if two things are similar in one area, 

they will be similar in others. The use of the term data mining implies an analogy with 

gold mining. There are several parallels between the time series analysis problems 

discussed in this dissertation and this analogy. 

As gold mining is the search for nuggets of gold, so data mining is the search for 

nuggets of information. In mining time series data, these nuggets are known as events. As 

gold is hidden in the ground or under water, nuggets of information are hidden in data. 

The first analogy is gained by comparing the definition of the gold nuggets with the 

definition of information nuggets. To the inexperienced miner, gold is gold, but to a 

veteran prospector, the size of the gold nuggets to be uncovered make a significant 

difference in how the gold mining is approached. Individual prospectors use primarily 

manual methods when looking for nuggets of gold that are ounces in weight [38]. 

Industrial mining companies may find it acceptable to look for gold at the molecular level 

[39]. Likewise, if a prospector is seeking silver or oil, the mining processes are different. 

This leads to the importance of clearly defining the nuggets of information that are 

desired, i.e., time series data mining requires a clear definition of the events to be mined. 

Without this clear definition of what is to be found, there is no way to know when either 

the gold nuggets or the information nuggets have been discovered. 
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The second analogy looks at how prospectors learn where to search for the gold 

nuggets. Prospectors look for specific geological formations such as quartz and ironstone, 

and structures such as banded iron formations [38]. They study where other prospectors 

have had success. They learn not to dig aimlessly, but to look for clues that a particular 

location might yield a gold strike. Similarly, it is necessary to define the formations that 

point to nuggets of information (events). In the context of time series analysis these, 

probably hidden, formations that identify an information strike are called temporal 

patterns – temporal because of the time nature of the problem and patterns because of 

their identifiable structure. Like gold prospectors, information prospectors understand 

that the clues need not be perfect, rather the clues need only to contribute to the overall 

effectiveness of the prediction. 

The two analogies lead us to identify two key concepts and their associated 

requirements for data mining time series. The first concept is that of an event, which is an 

important occurrence. A clear definition of an event is required. The second concept is 

that of a temporal pattern, which is a potentially hidden structure in a time series. The 

temporal patterns are required to help predict events. 

With the key TSDM concepts of events and temporal patterns defined, the next 

section presents the types of problems addressable by the TSDM framework. 

1.2 Problem Statement 

 Figure 1.1 illustrates a TSDM problem, where the horizontal axis represents time, 

and the vertical axis observations. The diamonds show the time series observations. The 

squares indicate observations that are deemed important – events. Although the following 
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examples illustrate events as single observations, events are not restricted to be just single 

observations. The goal is to characterize and predict when important events will occur. 

The time series events in Figure 1.1 are nonperiodic, irregular, and contaminated with 

noise. 
 

Figure 1.1 – Synthetic Seismic Time Series 

To make the time series more concrete, consider it a measure of seismic activity, 

which is generated from a randomly occurring temporal pattern, synthetic earthquake, 

and a contaminating noise signal The goal is to characterize when peak seismic activity 

(earthquakes) occurs and then use the characterizations of the activity for prediction. 

The next example of the type of problem the TSDM framework can solve is from 

the engineering domain. Figure 1.2 illustrates a welding time series generated by a sensor 

on a welding station. Welding joins two pieces of metal by forming a joint between them. 

t

x t
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Predicting when a droplet of metal will release from a welder allows the quality of the 

metal joint to be monitored and controlled.  

In Figure 1.2, the squares indicate the release of metal droplets. The diamonds are 

the stickout length of the droplet measured in pixels. The problem is to predict the 

releases using the stickout time series. Because of the irregular, chaotic, and noisy nature 

of the droplet release, prediction is impossible using traditional time series methods. 

Figure 1.2 – Welding Time Series 

Another example problem that is addressed by the TSDM framework is the 

prediction of stock prices. For this problem, the goal is to find a trading-edge, which is a 

small advantage that allows greater than expected gains to be realized. The goal is to find 

hidden temporal patterns that are on average predictive of a larger than normal increase in 

the price of a stock. Figure 1.3 shows a time series generated by the daily open price and 

volume of a stock. The bars show the volume of shares traded on a particular day. The 

t

x t
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diamonds show the daily open price. The goal is to find hidden patterns in the daily open 

price and volume time series that provide the desired trading-edge. 
 

Figure 1.3 – Stock Daily Open Price and Volume Time Series 

 Now that examples of the types of problems addressable by the TSDM framework 

have been presented, the next section outlines the rest of the dissertation. 

1.3 Dissertation Outline 

 The dissertation is divided into nine chapters. Chapter 2 reviews several of the 

constituent technologies underlying this research including time series analysis, data 

mining, and genetic algorithms. Additionally, Chapter 2 presents the theoretical 

background for the TSDM framework, reviewing Takens’ Theorem. 

 Chapter 3 elaborates on the key TSDM concepts of events, temporal patterns, 

temporal pattern clusters, phase spaces and time-delay embeddings, augmented phase 

spaces, objective functions, and optimization. 

t

x t
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Chapter 4 establishes the fundamental TSDM method for characterizing and 

predicting time series events. Chapter 5 clarifies the TSDM framework by analyzing a 

sequence of example time series. In Chapter 6, extensions of the TSDM method 

including data mining multiple time series and nonstationary temporal pattern time series 

are presented. 

 Chapters 7 and 8 discuss experimental results. Chapter 7 presents results from 

predicting droplet releases from a welder. In Chapter 8, the experimental results from 

analyzing stock market open price changes are presented. The last chapter summarizes 

the dissertation and discusses future work. 
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Chapter 2 Historical Review 

 This chapter reviews the constituent fields underlying the Time Series Data 

Mining (TSDM) research. TSDM innovates concepts from time series analysis, chaos 

and nonlinear dynamics, data mining, and genetic algorithms. From time series analysis 

comes the theory for analyzing linear, stationary time series [1, 4, 5]. From dynamical 

systems comes the theoretical justification for the Time Series Data Mining (TSDM) 

methods, specifically Takens’ Theorem [36] and Sauer's extension [37]. From data 

mining comes the focus on discovering hidden relationships and patterns [6, 7, 40-44]. 

From genetic algorithms comes a robust and easily applied optimization method [19, 27]. 

2.1 ARIMA Time Series Analysis 

The Box-Jenkins [4] or Autoregressive Integrated Moving Average (ARIMA) [1, 

5] methodology involves finding solutions to the difference equation  

 ( ) ( ) ( ) ( )L L
p P t q Q tB B x B B aφ φ δ θ θ= +  [5, p. 570]. (2.1) 

• The nonseasonal autoregressive operator φp(B) of order p models low-order 

feedback responses. 

• The seasonal autoregressive operator φP(BL) of order P models feedback 

responses that occur periodically at seasonal intervals. For example, given a time 

series of monthly data, this operator would be used to model a regressive effect 

that occurs every January. 

• The nonseasonal moving average operator θq(B) of order q models low-order 

weighted average responses. 
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• The seasonal moving average operator θQ(BL) of order Q models seasonal 

weighted average responses. 

• The terms xt , at, and δ are the time series, a sequence of random shocks, and a 

constant, respectively. 

The orders of the operator are selected ad hoc, and the parameters are calculated 

from the time series data using optimization methods such as maximum likelihood [4, pp. 

208-209,274-281] and least squares [4, pp. 265-267]. The ARIMA method is limited by 

the requirement of stationarity and invertibility of the time series [5, p. 488], i.e., the 

system generating the time series must be time invariant and stable. Additionally, the 

residuals, the differences between the time series and the ARIMA model, must be 

independent and distributed normally [5, p. 183-193]. Although integrative (filtering) 

techniques can be useful for converting nonstationary time series into stationary ones, it 

is not always possible to meet all of the requirements. 

 This review of ARIMA time series modeling examines each of the terms given in 

(2.1), discusses the methods for identifying the orders of the various operators, and 

details the various statistical methods available to test the model’s adequacy. Finally, this 

section discusses the integrative techniques that allow some nonstationary time series to 

be transformed into stationary ones. 

The ARIMA model is best presented in terms of the following operators [4, p. 8, 

5, p. 568]. The backshift operator B shifts the index of a time series observation 

backwards, e.g., 1t tBz z −= , and k
t t kB z z −= . The nonseasonal or first difference operator, 

1 B∇ = − , provides a compact way of describing the first difference. The seasonal 
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operator L∇  is useful for taking the difference between two periodic or seasonal time 

series observations. It is defined as 1 L
L B∇ = − . 

Having introduced the basic operator notation, the more complex operators 

presented in (2.1) can be discussed. The first operator from (2.1) is the nonseasonal 

autoregressive operator φp(B) [4, p. 9, 5, p. 570], also called the “Green’s function” [1, p. 

78]. This operator captures the systems dynamical response to at – the sequence of 

random shocks – and previous values of the time series [1, pp. 78-85]. The second 

operator is the nonseasonal moving average operator θq(B) [5, p. 570]. It is a weighted 

moving average of the random shocks ta . 

The third operator is the seasonal autoregressive operator φP(BL). It is used to 

model seasonal regressive effects. For example, if the time series represents the monthly 

sales in a toy store, it is not hard to imagine a large increase in sales just before 

Christmas. This seasonal autoregressive operator is used to model these seasonal effects. 

The fourth operator is the seasonal moving average operator θQ(BL). It also is useful in 

modeling seasonal effects, but instead of regressive effects, it provides a weighted 

average of the seasonal random shocks. The constant ( ) ( )p PB Bδ µφ φ= , where µ is the 

mean of the modeled stationary time series [5, p. 571].  

 Bowerman [5, pp. 571] suggests three steps to determine the ARIMA model for a 

particular time series.  

1. Should the constant δ should be included? 

2. Which of the operators φp(B),  φP(BL), θq(B), and θQ(BL) are needed? 

3. What order should each selected operator have? 
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The δ should be included if 

 
( ) ( )

2
z

Z c Zµ
σ

> , (2.2) 

where ( )Zµ  is the mean of the time series, ( )c Z  is the number of time series 

observations, and zσ  is the standard deviation of the time series. Two statistical 

functions, the sample autocorrelation function (SAC) and sample partial autocorrelation 

function (SPAC), are used to determine the inclusion and order of the operators. The 

process for determining the inclusion and orders of the operators is somewhat involved 

and well explained in [5, pp. 572-574]. Its essence is to examine the shape of the SAC 

and SPAC. The procedure looks for these functions to “die down” or “cut off” after a 

certain number of lags. Determining whether the SAC or SPAC is dying down or cutting 

off requires expert judgment. 

 After the operators have been selected and their orders determined, the 

coefficients of the operators are estimated using a training time series. The coefficients 

are estimated using a least squares [4, pp. 265-267] or maximum likelihood method [4, 

pp. 208-209, 274-281]. 

 Diagnostic checking of the overall ARIMA model is done by examining the 

residuals [5, p. 496]. The first diagnostic check is to calculate the Ljung-Box statistic. 

Typically, the model is rejected when the α corresponding to the Ljung-Box statistic is 

less than 0.05. For non-rejected models, the residual sample autocorrelation function 

(RSAC) and residual sample partial autocorrelation function (RSPAC) should have 

absolute t statistic values greater than two [5, p. 496]. For rejected models, the RSAC and 
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RSPAC can be used to suggest appropriate changes to enhance the adequacy of the 

models. 

 “Classic Box-Jenkins models describe stationary time series [5, p. 437].” 

However, several integrative or filtering methods transform nonstationary time series into 

stationary ones. The simplest nonstationary time series to make stationary is a linear 

trend, which is nonstationary because its mean varies through time. The nonseasonal 

operator ∇  or seasonal operator L∇  is applied to remove the linear trend. 

Figure 2.1 – Exponential Growth Time Series 

A slightly more complex transformation is required for an exponential trend. One 

method takes the logarithm of the time series and applies the appropriate nonseasonal or 

seasonal operator to the resulting linear trend time series. Alternatively, the ∆% change 

transform may be used, where 

 % 1 B

B

−
∆ = . (2.3) 
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The transform is applied as follows: 

 % 1

1

1 t t
t t t

t

x xB
z x x

B x
−

−

−−
= ∆ = = . (2.4) 

Figure 2.1 shows a time series with exponential growth. Figure 2.2 illustrates the 

transformed time series. 
 

Figure 2.2 – Filtered Exponential Growth Time Series 

For time series with nonstationary variances, there are two possible solutions. The 

first is to replace the time series with the square or some other appropriate root of the 

time series. Second, the time series may be replaced by its logarithm [5, pp. 266-270]. 

Given an adequate model, future time series values may be predicted using (2.1). 

An error confidence range may also be provided. 

This section has reviewed the ARIMA or Box-Jenkins time series analysis method. 

The three references cited here [1, 4, 5] are excellent sources for further study of this 

topic. As discussed in this section, optimization methods are needed to find the 
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parameters for the ARIMA model. Similarly, optimization is a necessary component of 

the Time Series Data Mining (TSDM) framework. The next section presents the genetic 

algorithm optimization method used in TSDM. 

2.2 Genetic Algorithms 

A genetic algorithm is a stochastic optimization method based on the evolutionary 

process of natural selection. Although a genetic algorithm does not guarantee a global 

optimum, it is known to be effective in optimizing non-linear functions [19, pp. 106-120]. 

TSDM requires an optimization method to find optimizers for the objective functions. 

Genetic algorithm optimization is selected for this purpose because of its effectiveness 

and ease of adaptation to the objective functions posed by the TSDM framework. 

This section briefly discusses the key concepts and operators used by a binary 

genetic algorithm [19, pp. 59-88, 22, pp. 25-48, 23, pp. 33-44, 24, pp. 42-65]. The genetic 

algorithm process also is discussed. The four major operators are selection, crossover, 

mutation, and reinsertion. The fifth operator, inversion, is used infrequently. The 

concepts of genetic algorithms are fitness or objective function, chromosome, fitness of a 

chromosome, population, and generation. 

The fitness function is the function to be optimized, such as 

 ( ) 2 10 10000f x x x= − + + . (2.5) 

A chromosome is a finite sequence of 0’s and 1’s that encode the independent variables 

appearing in the fitness function. For equation (2.5), the chromosomes represent values of 

x. Given an eight-bit chromosome and a two’s complement encoding, the values of x for 

several chromosomes are given in Table 2.1. 
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Chromosome x f(x), fitness 

10000000 -128 -7664 

00000000 0 10000 

01111111 127 -4859 

11111100 -4 9944 

Table 2.1 – Chromosome Fitness Values 

The fitness is the value assigned to a chromosome by the fitness function. The 

population is the set of all chromosomes in a particular generation, e.g., the four 

chromosomes in Table 2.1 form a population. A generation is an iteration of applying the 

genetic algorithm operators. 

The most common genetic algorithm process is defined as follows. Alternative 

genetic algorithm processes may reorder the operators. 

Initialization 

while stopping criteria are not met 

 Selection 

 Crossover 

 Mutation 

Reinsertion 

The initialization step creates, usually randomly, a set of chromosomes, as in 

Table 2.1. There are many possible stopping criteria, e.g., halting after a fixed number of 

generations (iterations) or when fitness values of all chromosomes are equivalent. 

The selection process chooses chromosomes from the population based on fitness. 

One selection process is based on a roulette wheel. The roulette wheel selection process 
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gives each chromosome a portion of the roulette wheel based on the chromosome’s 

fitness. The roulette wheel is spun, and the winning chromosome is placed in the mating 

or crossover population. Usually the individuals are selected with replacement, meaning 

any chromosome can win on any spin of the roulette wheel. 

The second type of selection is based on a tournament. In the tournament, n 

chromosomes – usually two – are selected at random, normally without replacement. 

They compete based on fitness, and the winner is placed in the mating or crossover 

population. This process is repeated until there are no individuals left. The whole 

tournament process is run n times, where n is the number of chromosomes in each round 

of the tournament. The output of the selection process is a mating population, which is 

usually the same size as the original population. 

Given the initial population from Table 2.1, a tournament without replacement is 

demonstrated in Table 2.2. The crossover population is formed from the winners. 

Tournament Round Competitor 1 Competitor 2 Winner 

1 1 10000000 (-7664) 01111111 (-4859) 01111111 

1 2 00000000 (10000) 11111100 (9944) 00000000 

2 1 01111111 (-4859) 11111100 (9944) 11111100 

2 2 00000000 (10000) 10000000 (-7664) 00000000 

Table 2.2 – Tournament Selection Example 

Crossover is the process that mixes the chromosomes in a manner similar to 

sexual reproduction. Two chromosomes are selected from the mating population without 

replacement. The crossover operator combines the encoded binary format of the parent 

chromosomes to create offspring chromosomes. A random crossover locus is chosen, and 
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the parent chromosomes are split at the locus. The tails of the chromosomes are swapped, 

yielding new chromosomes that share the genetic material from their parents. Figure 2.3 

shows the crossover process. 

head 1 tail 1 

head 2 tail 2 

crossover locus 

head 1 tail 1 

head 2 tail 2 

crossover locus 

head 1 

tail 1 head 2 

tail 2 

crossover locus 

 

Figure 2.3 – Chromosome Crossover 

 A variation on the crossover process includes using a fixed rather than random 

locus and/or using a crossover probability that the selected pair will not be mated. 

Continuing the example, the crossover process is illustrated in Table 2.3, where ↑  

is the crossover locus. 

Mating Pair Parent 1 Parent 2 Offspring 1 Offspring 1 

1 11111 100↑  00000 000↑  00000100 11111000 

2 000 00000↑  011 11111↑  00011111 01100000 

Table 2.3 – Crossover Process Example 

The mutation operator randomly changes the bits of the chromosomes. The 

mutation probability is usually set in the range of 0.1 to 0.01%. For the running example, 

the mutation process is shown in Table 2.4, where only one bit is mutated. 
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Pre-mutation Post-mutation 

00000100 00000100 

11111000 111 01000 

00011111 00011111 

01100000 01100000 

Table 2.4 – Crossover Process Example 

The reinsertion or elitism operator selects the top n chromosomes to bypass the 

selection, crossover, and mutation operations. By applying elitism, the top individuals 

pass directly from one generation to the next unmodified. This operator is used to ensure 

that the most fit individuals are not lost due to the stochastic nature of the selection and 

crossover processes. 

For the example, no reinsertion is used. The next generation with fitness values is 

presented in Table 2.5. A comparison of Table 2.1 and Table 2.5 show that better 

solutions have evolved through the genetic algorithm process. 

Chromosome x f(x), fitness 

00000100 4 10024 

11101000 -24 9184 

00011111 31 9349 

01100000 96 1744 

Table 2.5 – Resulting Genetic Algorithm Population 

In summary, a genetic algorithm is a stochastic, global optimization method based 

on the evolutionary theory of survival of the fittest. The genetic algorithm applies four 

operators (selection, crossover, mutation, and reinsertion) to search for objective function 
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optimizers. The use of an optimization method will form a key component of the TSDM 

framework, specifically in finding the hidden temporal patterns introduced in Chapter 1. 

The next section presents the theoretical justification for searching for these hidden 

temporal patterns. 

2.3 Theoretical Underpinnings of Time Series Data Mining 

This section shows how Takens’ Theorem provides the theoretical justification for 

the TSDM framework. Takens proved, with certain limitations, that the state space of an 

unknown system can be reconstructed [36, 37]. 

Theorem (Takens) [36]: Let the state space M of a system be Q dimensional, 

: M Mϕ →  be a map that describes the dynamics of the system, and :y M →
�

 be a 

twice continuously differentiable function, which represents the observation of a single 

state variable. The map ( )
2 1

, : Q
y Mϕ

+Φ → � , defined by 

 ( ) ( ) ( ) ( )( ) ( )( )( )2
, , , , Q
y x y x y x y xϕ ϕ ϕΦ = � , (2.6) 

is an embedding. An embedding is a homeomorphic mapping from one topological space 

to another [45, pp. 679-680], where a homeomorphic map is continuous, bijective (one-

to-one and onto), and its inverse is continuous [45, pp. 1280]. 

If the embedding is performed correctly, Takens’ Theorem guarantees that the 

reconstructed dynamics are topologically identical to the true dynamics of the system. 

Therefore, the dynamical invariants also are identical [46]. Hence, given a time series X, 

a state space topologically equivalent to the original state space can be reconstructed by a 

process called time-delay embedding [28, 37]. 
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The difficulty in the time-delay embedding process is in estimating Q, the original 

state space dimension. Fortunately, as shown in [2, 3, 28, 46], useful information can be 

extracted from the reconstructed state space even if its dimension is less than 2 1Q + . 

This dissertation uses Takens’ Theorem to provide the strong theoretical 

justification for reconstructing state spaces using time-delay embedding. The dynamics of 

the reconstructed state spaces can contain the same topological information as the 

original state space. Therefore, characterizations and predictions based on the 

reconstructed state space can be as valid as those that could be performed on the original 

state space. This is true even for chaotic dynamics, which are discussed in the next 

section. 

2.4 Chaotic Time Series 

The most interesting time series presented in this dissertation may be classified as 

chaotic. (See Chapters 7 and 8.) This section provides a definition and discussion of 

chaotic time series. 

“Chaos comprises a class of signals intermediate between regular sinusoidal or 

quasiperiodic motions and unpredictable, truly stochastic behavior [28, p. 11].” A 

working definition of a chaotic time series is one generated by a nonlinear, deterministic 

process highly sensitive to initial conditions that has a broadband frequency spectrum 

[28]. 

The language for describing chaotic time series comes from dynamical systems 

theory, which studies the trajectories described by flows (differential equations) and maps 

(difference equations), and nonlinear dynamics, an interdisciplinary field that applies 



Chapter 2 Historical Review 23 

 

dynamical systems theory in numerous scientific fields [30]. The key concept for 

describing chaotic time series is a chaotic attractor. 

Let M be a manifold (a smooth geometric space such as a line, smooth surface or 

solid [30, p. 10]), :f M M→  be a map, and 

 ( ){ }0 0 0: , ,nS x x S f x S n M= ∈ ∈ ∀ ⊂  (2.7) 

be an invariant set. A positively invariant set is one where 0n ≥ . A closed invariant set 

A M⊂  is an attracting set, if there exists a neighborhood U of A such that U is a 

positively invariant set, and ( ) .nf x A x U→ ∀ ∈  A dense orbit is a trajectory that passes 

arbitrarily close to every point in the set [30]. An attractor is defined as an attracting set 

that contains a dense orbit. Figure 2.4 illustrates the concept of an attractor with the 

arrows representing state trajectories. 
 

Figure 2.4 - Attractor 

Thus, a chaotic time series is defined as one generated by observing a state 

variable’s trajectory on a map with a chaotic attractor. Since a chaotic time series is 

deterministic, it is predictable. However, since it is highly dependent on initial conditions, 

the prediction horizon is very short. The TSDM framework provides methods that use 

Takens’ Theorem to exploit the short-term predictability of chaotic time series. The next 

A
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section presents data mining, which leads to the idea of searching in the short time 

horizon where chaotic time series are predictable. 

2.5 Data Mining 

Weiss and Indurkhya define data mining as “the search for valuable information 

in large volumes of data. Predictive data mining is a search for very strong patterns in big 

data that can generalize to accurate future decisions [7].” Similarly, Cabena, et al., define 

it as “the process of extracting previously unknown, valid, and actionable information 

from large databases and then using the information to make crucial business decisions 

[43].” 

Data mining evolved from several fields, including machine learning, statistics, 

and database design [7]. It uses techniques such as clustering, association rules, 

visualization, decision trees, nonlinear regression, and probabilistic graphical dependency 

models to identify novel, hidden, and useful structures in large databases [6, 7]. 

 Others who have applied data mining concepts to finding patterns in time series 

include Berndt and Clifford [47], Keogh [48-50], and Rosenstein and Cohen [51]. Berndt 

and Clifford use a dynamic time warping technique taken from speech recognition. Their 

approach uses a dynamic programming method for aligning the time series and a 

predefined set of templates. 

 Rosenstein and Cohen [51] also use a predefined set of templates to match a time 

series generated from robot sensors. Instead of using the dynamic programming methods 

as in [47], they employ the time-delay embedding process to match their predefined 

templates. 
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 Similarly, Keogh represents the templates using piecewise linear segmentations. 

“Local features such as peaks, troughs, and plateaus are defined using a 

prior distribution on expected deformations from a basic template [48].” Keogh’s 

approach uses a probabilistic method for matching the known templates to the time series 

data. 

 The TSDM framework, initially introduced by Povinelli and Feng in [3], differs 

fundamentally from these approaches. The approach advanced in [47-51] requires a 

priori knowledge of the types of structures or temporal patterns to be discovered and 

represents these temporal patterns as a set of templates. Their [47-51] use of predefined 

templates completely prevents the achievement of the basic data mining goal of 

discovering useful, novel, and hidden temporal patterns. 

 The next chapter introduces the key TSDM concepts, which allow the TSDM 

methods to overcome the limitations of traditional time series methods and the more 

recent approaches of Berndt and Clifford [47], Keogh [48-50], and Rosenstein and Cohen 

[51]. 
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Chapter 3 Some Concepts in Time Series Data Mining 

Chapter 1 presented two of the important concepts in Time Series Data Mining 

(TSDM), i.e., events and temporal patterns. In this chapter, these concepts are explained 

in further detail. Other fundamental TSDM concepts such as event characterization 

function, temporal pattern cluster, time-delay embedding, phase space, augmented phase 

space, objective function, and optimization are defined and explained. The chapter also 

provides examples of each concept. 

3.1 Events 

In a time series, an event is an important occurrence. The definition of an event is 

dependent on the TSDM goal. In a seismic time series, an earthquake is defined as an 

event. Other examples of events include sharp rises or falls of a stock price or the release 

of a droplet of metal from a welder. 
 

Figure 3.1 – Synthetic Seismic Time Series with Events 
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3.1.1 Event Example – Synthetic Earthquakes 

Figure 3.1 shows a synthetic example time series, which is useful for explaining 

events. Let 

 { }, 1, ,tX x t N= = �  (3.1) 

be a synthetic time series representing seismic data, where 100N = . The diamonds show 

the values of observations at particular time indices. The squares indicate observations 

that are deemed important – events. 
 

Figure 3.2 – Welding Time Series  

3.1.2 Event Example – Metal Droplet Release 

 Figure 3.2 shows a welding time series. Let  

 { }, 400, ,600tX x t= = �  (3.2) 

be a time series of metal droplet stickout lengths. The diamonds in Figure 3.2 are the 

stickout lengths measured in pixels. Let 

 { }, 400, ,600tY y t= = �  (3.3) 
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be a binary (1 for an event, 0 for a nonevent) time series of droplet releases. In Figure 3.2, 

the squares indicate when 1ty = , i.e., when a droplet of metal has released. 

3.1.3 Event Example – Spikes in Stock Open Price 

Let { }, 1, ,126tX x t= = �  be the daily open price of a stock for a six-month 

period as illustrated by Figure 3.3. For this time series, the goal is to find a trading-edge, 

which is a small advantage that allows greater than expected gains to be realized. The 

stock will be bought at the open of the first day and sold at the open of the second day. 

The goal is to pick buy-and-sell-days that will, on average, have greater than expected 

price increases. Thus, the events, highlighted as squares in Figure 3.3, are those days 

when the price increases more than 5%. 
 

Figure 3.3 – Stock Daily Open Price Time Series 
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3.2 Temporal Pattern and Temporal Pattern Cluster 

 The next important concept within the TSDM framework is the temporal pattern. 

A temporal pattern is a hidden structure in a time series that is characteristic and 

predictive of events. The temporal pattern p is a real vector of length Q. The temporal 

pattern will be represented as a point in a Q dimensional real metric space, i.e., Q∈p
�

. 

 The vector sense of p is illustrated in Figure 3.4, which shows the synthetic 

seismic time series without any contaminating noise. The hidden temporal pattern p that 

is characteristic of the events is highlighted with gray squares. Since the contaminating 

noise has been removed, the temporal pattern perfectly matches the sequence of time 

series observations before an event. 

Figure 3.4 – Synthetic Seismic Time Series without Contaminating Noise with 
Temporal Pattern and Events 

Figure 3.5 shows the synthetic seismic time series with contaminating noise. 

Because of the noise, the temporal pattern does not perfectly match the time series 
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observations that precede events. To overcome this limitation, a temporal pattern cluster 

is defined as the set of all points within δ of the temporal pattern. 

 ( ){ }: , δ= ∈ ≤
� QP a d ap , (3.4) 

where d is the distance or metric defined on the space. This defines a hypersphere of 

dimension Q, radius δ, and center p. 

 Figure 3.5 – Synthetic Seismic Time Series with Temporal Pattern and 
Events 

The observations ( ){ }21 , , , ,t t tt Qx x x xτ ττ − −− − �  form a sequence that can be 

compared to a temporal pattern, where tx  represents the current observation, and 

( ) 21 , , ,t tt Qx x xτ ττ − −− − �  past observations. Let 0τ >  be a positive integer. If t represents the 

present time index, then t τ−  is a time index in the past, and t τ+  is a time index in the 

future. Using this notation, time is partitioned into three categories: past, present, and 

future. Temporal patterns and events are placed into different time categories. Temporal 

patterns occur in the past and complete in the present. Events occur in the future. 
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The next section presents the concept of a phase space, which allows sequences of 

time series to be easily compared to temporal patterns. 

3.3 Phase Space and Time-Delay Embedding 

A reconstructed phase space [28, 35, 52], called simply phase space here, is a Q-

dimensional metric space into which a time series is embedded. As discussed in Chapter 

2, Takens showed that if Q is large enough, the phase space is homeomorphic to the state 

space that generated the time series [36]. The time-delayed embedding of a time series 

maps a set of Q time series observations taken from X onto tx , where tx  is a vector or 

point in the phase space. Specifically, ( )( )21 , , , ,
T

t t t tt Qx x x xτ ττ − −− −=x � . 
 

Figure 3.6 – Constant Value Phase Space 

For example, given a constant value time series { }, 1, ,tX x c t N= = = � , where c 

is a constant, the phase space has a single point as illustrated by Figure 3.6. Figure 3.7 
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shows a two-dimensional phase space that results from the time-delayed embedding of 

the synthetic seismic time series presented in Figure 3.1. The temporal pattern and 

temporal pattern cluster also are illustrated. For this time-delayed embedding, 1τ = . 

Every pair of adjacent observations in the original time series forms a single point in this 

phase space. 
 

Figure 3.7 – Synthetic Seismic Phase Space 

 Figure 3.8 shows the two-dimensional phase space of the welding time series 

presented by Figure 3.2, and Figure 3.9 shows the two-dimensional phase space of the 

stock time series presented by Figure 3.3. Note that 1τ = for both embeddings. 
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Figure 3.8 – Welding Phase Space  

 

Figure 3.9 – Stock Daily Open Price Phase Space 
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To determine how well a temporal pattern or a phase space point characterizes an 

event requires the concept of an event characterization function as introduced in the next 

section. 

3.4 Event Characterization Function 

To link a temporal pattern (past and present) with an event (future) the “gold” or 

event characterization function g(t) is introduced. The event characterization function 

represents the value of future “eventness” for the current time index. It is, to use an 

analogy, a measure of how much gold is at the end of the rainbow (temporal pattern). The 

event characterization function is defined a priori and is created to address the specific 

TSDM goal. The event characterization function is defined such that its value at t 

correlates highly with the occurrence of an event at some specified time in the future, i.e., 

the event characterization function is causal when applying the TSDM method to 

prediction problems. Non-causal event characterization functions are useful when 

applying the TSDM method to system identification problems. 

For the time series illustrated in Figure 3.1, the goal is to predict occurrences of 

synthetic earthquakes. One possible event characterization function to address this goal is 

( ) 1tg t x += , which captures the goal of characterizing synthetic earthquakes one-step in 

the future. 

Alternatively, predicting an event three time-steps ahead requires the event 

characterization function ( ) 3tg t x += . A more complex event characterization function 

that would predict an event occurring one, two, or three time-steps ahead is 

 ( ) { }1 2 3max , ,t t tg t x x x+ + += . (3.5) 
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In Figure 3.2, the TSDM goal is to predict the droplet releases using the stickout 

time series. Specifically, the objective is to generate one time-step predictions of when 

metal droplets will release from a welder. In the previous event characterization functions 

g(t) was defined in terms of xt – the same time series that contains the temporal patterns. 

However, in this example, the temporal patterns are discovered in a different time series 

from the one containing the events. Thus, the event characterization function is 

( ) 1tg t y += , where Y  is defined by (3.3).  

In Figure 3.3, the goal is to decide if the stock should be purchased today and sold 

tomorrow. The event characterization function that achieves this goal is 

 ( ) 1t t

t

x x
g t

x
+ −

= , (3.6) 

which assigns the percentage change in the stock price for the next day to the current time 

index. 

3.5 Augmented Phase Space 

The concept of an augmented phase space follows from the definitions of the 

event characterization function and the phase space. The augmented phase space is a Q+1 

dimensional space formed by extending the phase space with ( )g ⋅  as the extra 

dimension. Every augmented phase space point is a vector 1, ( ) Q
t g t +< >∈x

�
. 
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Figure 3.10 – Synthetic Seismic Augmented Phase Space 

Figure 3.10, a stem-and-leaf plot, shows the augmented phase space for the 

synthetic seismic time series. The height of the leaf represents the significance of ( )g ⋅  

for that time index. From this plot, the required temporal pattern and temporal pattern 

cluster are easily identified. 
 

Figure 3.11 – Welding Augmented Phase Space 
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Figure 3.12 – Stock Daily Open Price Augmented Phase Space 

Figure 3.11 and 3.12 show the augmented phase spaces for the welding time 

series and the Stock Daily Open Price, respectively. In both of these plots the desired 

temporal patterns and temporal pattern clusters are hidden. Appropriate filtering and 

higher order augmented phase spaces are required to allow the hidden temporal patterns 

in these time series to be identified. These techniques are discussed in Chapter 6. 

Identifying the optimal temporal pattern cluster in the augmented phase space 

requires the formulation of an objective function, which is discussed in the next section. 

3.6 Objective Function 

The next concept is the TSDM objective function, which represents the efficacy 

of a temporal pattern cluster to characterize events. The objective function f maps a 

temporal pattern cluster P onto the real line, which provides an ordering to temporal 

pattern clusters according to their ability to characterize events. The objective function is 

constructed in such a manner that its optimizer *P  meets the TSDM goal. 
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Figure 3.13 – Synthetic Seismic Augmented Phase Space with Highlighted Temporal 
Pattern Clusters 

Figure 3.13 illustrates the requirement of the TSDM objective function. The 

temporal pattern cluster 1P  is obviously the best temporal pattern cluster for identifying 

events, while the temporal pattern cluster 2P  is not. The objective function must map the 

temporal pattern clusters such that ( ) ( )1 2f P f P> . 

The form of the objective functions is application dependent, and several different 

objective functions may achieve the same TSDM goal. Before presenting example 

objective functions, several definitions are required. 

 The index set Λ  is the set of all time indices t of phase space points. 

 ( ){ }: 1 1, ,t t Q NτΛ = = − + � , (3.7) 

where ( )1Q τ−  is the largest embedding time-delay, and N is the number of observations 

in the time series. The index set M is the set of all time indices t when xt is within the 

temporal pattern cluster, i.e. 

 { }: ,tM t P t= ∈ ∈ Λx . (3.8) 
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Similarly, M
�

, the complement of M, is the set of all time indices t when xt is outside the 

temporal pattern cluster. 

The average value of g, also called the average eventness, of the phase space 

points within the temporal pattern cluster P is 

 
( )

( )1
M

t M

g t
c M

µ
∈

= ∑ , (3.9) 

where ( )c M  is the cardinality of M. The average eventness of the phase space points not 

in P is 

 ( ) ( )1
M

t M

g t
c M

µ
∈

= ∑�

�

� . (3.10) 

Consequently, the average eventness of all phase space points is given by 

 
( )

( )1
X

t

g t
c

µ
∈Λ

=
Λ ∑ . (3.11) 

The corresponding variances are 

 
( )

( )( )22 1
M M

t M

g t
c M

σ µ
∈

= −∑ , (3.12) 

 ( ) ( )( )22 1
M M

t M

g t
c M

σ µ
∈

= −∑� �

�

� , and (3.13) 

 
( )

( )( )22 1
X X

t

g t
c

σ µ
∈Λ

= −
Λ ∑ . (3.14) 

 Using these definitions, several examples of objective functions are defined 

below. The first objective function is the t test for the difference between two 

independent means [53, 54]. 
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 ( )

( ) ( )
22

M M

M M

f P

c M c M

µ µ

σσ

−
=

+

�

�

�

, (3.15) 

where P is a temporal pattern cluster. This objective function is useful for identifying 

temporal pattern clusters that are statistically significant and have a high average 

eventness. 

 The next example objective function orders temporal pattern clusters according to 

their ability to characterize time series observations with high eventness and characterize 

at least a minimum number of events. The objective function 

 ( )
( ) ( )

( ) ( )
( )0 0

if

-   otherwise

M

M

c M c

f P c M
g g

c

µ β

µ
β

Λ ≥
=  + Λ

, (3.16) 

where β  is the desired minimum percentage cardinality of the temporal pattern cluster, 

and 0g  is the minimum eventness of the phase space points, i.e. 

 ( ){ }0 min :g g t t= ∈ Λ . (3.17) 

The parameter β in the linear barrier function in (3.16) is chosen so that c(M) is 

non-trivial, i.e., the neighborhood around p includes some percentage of the total phase 

space points. If 0β = , then ( ) 0c M =  or ( ) ( ) ,g i g j i j M= ∀ ∈ , i.e., the eventness 

value of all points in the temporal pattern cluster are identical. If 0β = , the temporal 

pattern cluster will be maximal when it contains only one point in the phase space – the 

point with the highest eventness. If there are many points with the highest eventness, the 

optimal temporal pattern cluster may contain several of these points. When 0β = , (3.16) 

is still defined, because ( ) ( ) 0c M c Λ ≥  is always true. 
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 The next objective function is useful when the TSDM goal requires that every 

event is predicted, e.g., the best solution to the welding problem will predict every droplet 

release. With this goal in mind, the objective function must capture the accuracy with 

which a temporal pattern cluster predicts all events. Since it may be impossible for a 

single temporal pattern cluster to perfectly predict all events, a collection 
�

of temporal 

pattern clusters is used for this objective function. The objective function ( )f �  is the 

ratio of correct predictions to all predictions, i.e. 

 ( ) p n

p n p n

t t
f

t t f f

+
=

+ + +
�

, (3.18) 

where pt  (true positive), nt  (true negative), pf  (false positive), and nf  (false negative) 

are respectively defined as 

 ( ){ }( ): 1p t i t it c P P g t= ∃ ∈ ∋ ∈ ∧ =x x� , (3.19) 

 ( ){ }( ): 0p t i t if c P P g t= ∃ ∈ ∋ ∈ ∧ =x x� , (3.20) 

 ( ){ }( ): 0n t t i it c P P g t= ∉ ∀ ∈ ∧ =x x � , and (3.21) 

 ( ){ }( ): 1n t t i if c P P g t= ∉ ∀ ∈ ∧ =x x �  (3.22) 

This objective function would be used to achieve maximum event characterization 

and prediction accuracy for binary ( )g t (1 for an event, 0 for a nonevent) as with the 

welding time series shown in Figure 3.2. 

3.7 Optimization 

The key concept of the TSDM framework is to find optimal temporal pattern 

clusters that characterize and predict events. Thus, an optimization algorithm represented 

by 
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 ( )
,

max
δ

f P
p

 (3.23) 

is necessary. 
 

 Figure 3.14 – Synthetic Seismic Phase Space with Alternative Temporal 
Pattern Clusters 

 Since different temporal pattern clusters may contain the same phase space points, 

as illustrated in Figure 3.14, a bias may be placed on δ, the radius of the temporal pattern 

cluster hypersphere. Three possible biases are minimize, maximize, or moderate . The 

choice of the bias is based on the types of prediction errors to be minimized. To minimize 

the false positive prediction errors, the error of classifying a non-event as an event,  is 

minimized subject to f(P) remaining constant. This will cause the temporal pattern cluster 

to have as small a coverage as possible while not changing the value of the objective 

function. To minimize the false negative prediction errors, the error of classifying an 

event as a non-event,  is maximized subject to f(P) remaining constant. This will cause 
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the temporal pattern cluster to have as large a coverage as possible while not changing 

the value of the objective function. A moderating bias would balance between the false 

positives and false negatives. 

Thus, an optimization formulation for (3.15) and (3.16), is ( )max f P  subject to 

minδ  such that minimizing δ does not change the value of f(P). This formulation places 

a minimization bias on δ. An optimization formulation for (3.18) is ( )max f
�

 subject to 

( )min c
�

 and imin iPδ ∀ ∈
�

 such that minimizing c( � ) and δi does not change the value 

of f(P). This formulation searches for a minimal set of temporal pattern clusters that is a 

maximizer of the objective function, and each temporal pattern cluster has a minimal 

radius. 

3.8 Summary of Concepts in Time Series Data Mining 

To review, some the key concepts of TSDM follow. An event is defined as an 

important occurrence in time. The associated event characterization function g(t), defined 

a priori, represents the value of future eventness for the current time index. Defined as a 

vector of length Q or equivalently as a point in a Q-dimensional space, a temporal pattern 

is a hidden structure in a time series that is characteristic and predictive of events. 

A phase space is a Q-dimensional real metric space into which the time series is 

embedded. The augmented phase space is defined as a Q+1 dimensional space formed by 

extending the phase space with the additional dimension of ( )g ⋅ . The objective function 

represents a value or fitness of a temporal pattern cluster or a collection of temporal 

pattern clusters. Finding optimal temporal pattern clusters that characterize and predict 

events is the key of the TSDM framework. 



Chapter 3  Some Concepts in Time Series Data Mining 44 

 

With the concepts of the TSDM framework defined, the next chapter formulates 

the TSDM method that searches for a single optimal temporal pattern cluster in a single 

dimensional time series. 



  45 

 

Chapter 4 Fundamental Time Series Data Mining Method 

This chapter details the fundamental Time Series Data Mining (TSDM) method. 

After reviewing the problem statement, the TSDM method will be discussed. The chapter 

presents a method based on an electrical field for moderating the temporal pattern cluster 

threshold δ. Statistical tests for temporal pattern cluster significance are discussed as a 

means for validating the results. The chapter also presents an adaptation of a genetic 

algorithm to the TSDM framework. Extensions and variations of the TSDM method are 

presented in Chapter 6. 

The key to the TSDM method is that it forgoes the need to characterize time 

series observations at all time indices for the advantages of being able to identify the 

optimal local temporal pattern clusters for predicting important events. This allows 

prediction of complex real-world time series using small-dimensional phase spaces. 

4.1 Time Series Data Mining Method 

The first step in applying the TSDM method is to define the TSDM goal, which is 

specific to each application, but may be stated generally as follows. Given an observed 

time series 

 { }, 1, ,tX x t N= = � , (4.1) 

the goal is to find hidden temporal patterns that are characteristic of events in X, where 

events are specified in the context of the TSDM goal. Likewise, given a testing time 

series 

 { }, , ,tY x t R S N R S= = < <� , (4.2) 

the goal is to use the hidden temporal patterns discovered in X to predict events in Y. 
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Figure 4.1 – Block Diagram of TSDM Method 

Figure 4.1 presents a block diagram of the TSDM method. Given a TSDM goal, 

an observed time series to be characterized, and a testing time series to be predicted, the 

steps in the TSDM method are: 

I. Training Stage (Batch Process) 

1. Frame the TSDM goal in terms of the event characterization function, 

objective function, and optimization formulation. 
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c. Define the optimization formulation, including the independent 

variables over which the value of the objective function will be 

optimized and the constraints on the objective function. 

2. Determine Q, i.e., the dimension of the phase space and the length of the 

temporal pattern. 

3. Transform the observed time series into the phase space using the time-

delayed embedding process. 

4. Associate with each time index in the phase space an eventness 

represented by the event characterization function. Form the augmented 

phase space. 

5. In the augmented phase space, search for the optimal temporal pattern 

cluster, which best characterizes the events. 

6. Evaluate training stage results. Repeat training stage as necessary. 

II. Testing Stage (Real Time or Batch Process) 

1. Embed the testing time series into the phase space. 

2. Use the optimal temporal pattern cluster for predicting events. 

3. Evaluate testing stage results. 

With the TSDM method defined, the next section presents an example to further 

clarify the method’s mechanisms. 
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4.2 TSDM Example 

This section applies the TSDM method to the synthetic seismic time series as 

illustrated in Figure 4.2. The TSDM goal is to characterize and predict the “earthquakes”, 

i.e., the large spikes. 

4.2.1 TSDM Training Step 1 – Frame the TSDM Goal in Terms of 
TSDM Concepts 

The first step in the TSDM method is to frame the data mining goal in terms of 

the event characterization, objective function, and optimization formulation. Since the 

goal is to characterize the synthetic earthquakes, the event characterization function is 

( ) 1tg t x += , which allows prediction one time-step in the future. 

Figure 4.2 – Synthetic Seismic Time Series (Observed) 

Since the temporal patterns that characterize the events are to be statistically 

different from other temporal patterns, the objective function is 
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 ( )

( ) ( )
22

M M

M M

f P

c M c M

µ µ

σσ

−
=

+

�

�

�

, (4.3) 

which orders temporal pattern clusters according to their ability to statistically 

differentiate between events and non-events. 

The optimization formulation is to ( )max f P  subject to ( )min b P  such that 

minimizing b(P) does not change the value of f(P). This optimization formulation will 

identify the most statistically significant temporal pattern cluster with a moderate radius. 

The function b determines a moderate δ based on an electrical field with each phase 

space point having a unit charge. The function b measures the cumulative force applied 

on the surface of the temporal pattern cluster. The details of b are provided later in this 

chapter. 

4.2.2 TSDM Training Step 2 – Determine Temporal Pattern Length 

The length of the temporal pattern Q, which is also the dimension of the phase 

space, is chosen ad hoc. Recall that Takens’ Theorem proves that if 2 1Q m= + , where m 

is the original state space dimension, the reconstructed phase space is guaranteed to be 

topologically equivalent to the original state space, but Takens’ Theorem provides no 

mechanism for determining m. Using the principle of parsimony, temporal patterns with 

small Q are examined first. For this example, 2Q = , which allows a graphical 

presentation of the phase space. 

4.2.3 TSDM Training Step 3 – Create Phase Space 

For this example, Figure 4.3 illustrates the phase space. 
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Figure 4.3 – Synthetic Seismic Phase Space (Observed) 

The time series X is embedded into the phase space using the time-delay 

embedding process where each pair of sequential points (xt-1, xt) in X generates a two-

dimensional phase space point. If the phase space were three-dimensional, every triplet of 

sequential points (xt-2, xt-1, xt) could be selected to form the phase space. The Manhattan 

or l1 distance is chosen as the metric for this phase space.  

4.2.4 TSDM Training Step 4 – Form Augmented Phase Space 

The next step is to form the augmented phase space by extending the phase space 

with the ( )g ⋅  dimension as illustrated by Figure 4.4, a stem-and-leaf plot. The vertical 

lines represent the dimension g associated with the pairs of (xt-1, xt). The next step will 

find an optimal cluster of leaves with high eventness. 
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Figure 4.4 – Synthetic Seismic Augmented Phase Space (Observed) 

4.2.5 TSDM Training Step 5 – Search for Optimal Temporal Pattern 
Cluster 

A genetic algorithm searches for the optimal temporal pattern cluster, where a 

temporal pattern cluster P is a hypersphere with a center defined by a temporal pattern p 

and a radius δ. In Figure 4.5, the temporal pattern cluster found by the genetic algorithm 

is highlighted in the phase space. By comparing Figure 4.4 and Figure 4.5, it is obvious 

that the optimal temporal pattern cluster is identified. The “circle” P (recall the phase 

space distance is Manhattan) in Figure 4.5 has its center at p with radius δ.  

In Figure 4.6, the temporal pattern and events are highlighted on the time series. 

The  is not present in this view, but the relationship between the time series observations 

matched by the temporal pattern cluster and the event observation is obvious. 

It is clear from Figures 4.4, 4.5, and 4.6 that the TSDM training stage has been 

successful. The process of evaluating the training stage results is explained later in this 

chapter. Next, the testing stage applies the temporal pattern cluster P to the testing time 

series. 
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Figure 4.5 – Synthetic Seismic Phase Space with Temporal Pattern Cluster 
(Observed) 

 

Figure 4.6 – Synthetic Seismic Time Series with Temporal Patterns and Events 
Highlighted (Observed) 
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Figure 4.7 – Synthetic Seismic Time Series (Testing) 

 

Figure 4.8 – Synthetic Seismic Phase Space (Testing) 
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4.2.6 TSDM Testing Step 1 – Create Phase Space 

The testing time series Y, which is shown in Figure 4.7, is the nonstationary, non-

periodic continuation of the observed time series. The time series Y is embedded into the 

phase space as shown in Figure 4.8 using the time-delay embedding process performed in 

the training stage. 

4.2.7 TSDM Testing Step 2 – Predict Events 

The last step in the TSDM method is to predict events by applying the discovered 

temporal pattern cluster to the testing phase space. For this example, Figure 4.9 clearly 

illustrates the accuracy of the temporal pattern in predicting events. The pair of connected 

gray squares that match sequences of time series observations before events is the 

temporal pattern. The black squares indicate predicted events. 

Figure 4.9 – Synthetic Seismic Time Series with Temporal Patterns and Events 
Highlighted (Testing) 
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 This section has presented an example application of the TSDM method to the 

synthetic seismic time series. The next section describes in detail the function b used in 

this example to find a moderate δ. 

4.3 Repulsion Function for Moderating δ 

The optimization formulation in the previous section was to ( )max f P  subject to 

( )min b P  such that minimizing b(P) does not change the value of f(P). This section 

explains the repulsion function b, which is based on the concept of an electrical field. 
 

Figure 4.10 – Repulsion Force Illustration 

The minimizer of b is a temporal pattern cluster with a moderate δ. More 

precisely, * * *
min maxbδ δ δ≤ ≤ , where *

minδ  is the radius of *
minP  (the optimal temporal pattern 

cluster with the smallest radius); *
bδ  is the radius of *

bP  (the optimal temporal pattern 

cluster with the smallest ( )b P ); and *
maxδ  is the radius of *

maxP  (the temporal pattern 

cluster with the largest radius), where * * *
min max, ,bP P P ∈

�
, the collection of optimal 

temporal pattern clusters that all contain the same phase space points. The function b 

represents a repulsion force on the surface of the hypersphere defined by a temporal 

P 
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pattern cluster P. The points in the phase space are treated like fixed electrons that exert a 

force on the nearest point on the surface of the hypersphere as illustrated in Figure 4.10 

Several intermediate results are needed to define b. Recall the set of all time 

indices of phase space points ( ){ }: 1 1, ,t t Q NτΛ = = − + � . The vector 

  ,  = − ∈ Λt t tv x p  (4.4) 

is the vector from the center of the hypersphere to each phase space point. The distances 

to the surface of the hypersphere are 

 ,δ= − ∈Λt t ph tv , (4.5) 

using the p norm of the phase space. The 

 
1

,  t p
t

m t
h

= ∈Λ  (4.6) 

is the force magnitude of the tth phase space point. The force  
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 (4.7) 

is the tth phase space point’s force on the hypersphere surface. 

Finally,  

 ( )
1

  
Q

N

t t t
t t M t Mp

b P m m
τ −= ∈ ∈

= + −∑ ∑ ∑f
�

 (4.8) 

is the magnitude of the sum of all forces added to the absolute value of the difference 

between the sum of the force magnitudes inside the temporal pattern cluster and the sum 

of the force magnitudes outside the temporal pattern cluster. The minimizer of b is both 

the minimizer of the overall force and the minimizer of the difference between the forces 
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inside and outside the temporal pattern cluster. The *
bδ  has a value between the *

minδ  and 

*
maxδ . 

 The next section discusses the tests used for evaluating the statistical significance 

of the temporal pattern clusters. 

4.4 Statistical Tests for Temporal Pattern Cluster Significance 

Two statistical tests are used to verify that the TSDM goal is met. Recall that the 

goal was to find hidden temporal patterns that are characteristic of events in the observed 

time series and predictive of events in the testing time series. 

The first statistical test is the runs test. The runs test measures whether a binary 

sequence is random [54, pp. 135-149]. A binary sequence is formed by assigning a 0 to 

time series observations classified as non-events and a 1 to those classified as events. 

Sorting the binary sequence according to associated eventnesses of the binary sequence 

forms the test sequence. For large sample sizes 
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where r the number of runs of the same element in a sequence, 0n  is the number of 

occurrences of a 0, and 1n  is the number of occurrences of a 1. 



Chapter 4  Fundamental Time Series Data Mining Method 58 

 

The test hypothesis is: 

H0:  The set of eventnesses associated with the temporal pattern 

cluster P ( ){ }:g t t M∈  is not different from the set of 

eventnesses not associated with the temporal pattern cluster P 

( ){ }:g t t M∈
�

. 

Ha:  The sets ( ){ }:g t t M∈  and ( ){ }:g t t M∈
�

 are different. 

The complementary error function and a two-tailed normal distribution are used 

to find the probability value α associated with z. The probability values are typically 

much better than 0.01α = , where α is the probability of making a Type I error. A Type I 

error is when the null hypothesis is incorrectly rejected [53, pp. 274-276, 54, p. 16]. 

The second statistical test is the z test for two independent samples [53, pp. 336–

338, 54, pp. 153–174]. 

 
( )

2 2
X Y

X Y

X Y
z

n n

σ σ

−
=

+

, (4.10) 

where X  is the mean of X, Y  is the mean of Y, Xσ  is the standard deviation of X, Yσ  is 

the standard deviation of Y, Xn  is the number of elements in X, and Yn  is the number of 

elements in Y. As with the runs test, the probability values are typically much better than 

0.01α = . 
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The test hypothesis is: 

H0:  The mean of the eventnesses ( ){ }:g t t M∈  associated with the 

temporal pattern cluster P is not greater than the mean of the 

eventnesses ( ){ }:g t t M∈
�

 not associated with the temporal 

pattern cluster P. 

Ha:  The mean of ( ){ }:g t t M∈  is greater than the mean of 

( ){ }:g t t M∈
�

. 

A single-tailed distribution is used. The next section discusses the adaptation of the 

genetic algorithm for the TSDM method. 

4.5 Optimization Method – Genetic Algorithm 

In Chapter 2, a review of the basic genetic algorithm was provided. Here the basic 

genetic algorithm is adapted to the TSDM framework. These adaptations include an 

initial Monte Carlo search and hashing of fitness values. Additionally, the multi-objective 

optimization capabilities of the tournament genetic algorithm are discussed. 

The basic genetic algorithm presented in Chapter 2 is modified as follows. 

Create an elite population 

Randomly generate large population (n times normal population size) 

Calculate fitness 

Select the top 1/n of the population to continue 

While all fitnesses have not converged 

 Selection 

 Crossover 
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 Mutation 

Reinsertion 

Initializing the genetic algorithm with the results of a Monte Carlo search has 

been found to help the optimization’s rate of convergence and in finding a good 

optimum. 

 The hashing modification reduces the computation time of the genetic algorithm 

by 50%. This modification is discussed in detail in [20]. Profiling the computation time 

of the genetic algorithm reveals that most of the computation time is used evaluating the 

fitness function. Because the diversity of the chromosomes diminishes as the population 

evolves, the fitness values of the best individuals are frequently recalculated. Efficiently 

storing fitness values in a hash table dramatically improves genetic algorithm 

performance [20]. 

The objective function ( )max f P  subject to ( )min b P  such that minimizing b(δ) 

does not change the value of f(P), presents two separate optimization objectives. The two 

optimization objectives could be reduced to a single objective problem using a barrier 

function, or the tournament genetic algorithm could then be applied directly. The second 

method is applied because the different objectives have different priorities. The primary 

objective is to ( )maximize f P . The secondary objective is to ( )minimize b P  such that 

minimizing b(δ) does not change the value of f(P). The primary TSDM goal of finding an 

optimal temporal pattern cluster should never be compromised to achieve a better 

temporal pattern cluster shape. 

This is accomplished with a tournament tiebreaker system. The chromosomes 

compete on the primary objective of finding optimal temporal pattern clusters. If, in the 
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tournament, two chromosomes have the same primary objective function value, the 

winner is determined by a tiebreaker, where the tiebreaker is the secondary optimization 

objective. 

This chapter presented the TSDM method and through an example showed how 

hidden temporal patterns can be identified. Additionally, the repulsion force function, 

statistical characterization of the temporal pattern cluster, and adaptation of the genetic 

algorithm were discussed. The next chapter further illustrates the method through a series 

of examples. 

 

 



  62 

 

Chapter 5 Basic and Explanatory Examples 

This chapter presents four examples that help elicit the capabilities and limitations 

of the TSDM method while clarifying its mechanisms. The first example characterizes 

the maximal values of a constant frequency sinusoid. The second example applies the 

TSDM method to a uniform density stochastic time series. The third uses a combination 

of a sinusoid and uniform density noise to illustrate the TSDM method’s capabilities with 

noisy time series. The fourth example is the synthetic seismic time series. 

5.1 Sinusoidal Time Series 

The first observed time series, ( ){ }sin , 1, ,tX x t t Nω= = = � , where 8ω π=  

and 100N = , is illustrated in Figure 5.1. For this time series, the TSDM goal is to predict 

the maximal points of the time series. To achieve this objective, the event 

characterization function is ( ) 1tg t x += , which will be used for all remaining examples. 

The objective function (described in Chapter 3) is 

 ( )
( ) ( )

( ) ( )
( )0 0

if

-   otherwise

M

M

c M c

f P c M
g g

c

µ β

µ
β

Λ ≥
=  + Λ

, (5.1) 

where 0.05β = . This objective function is useful for finding temporal pattern clusters 

with a high average eventness, where β  is the desired minimum percentage cardinality 

of the temporal pattern cluster. The optimization formulation is ( )max f P  subject to 

( )min b δ  such that minimizing b(δ) does not change the value of f(P). The function b is 

described in Chapter 4. 
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Figure 5.1 – Sinusoidal Time Series (Observed) 

 

Figure 5.2 – Sinusoidal Phase Space (Observed) 
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Figure 5.2 presents the training stage phase space with an l2 distance metric. Since 

the time series varies sinusoidally, it embeds to an ellipse. Figure 5.3 illustrates the 

augmented phase space, which further shows the elliptical nature of the phase space 

points. 
 

Figure 5.3 – Sinusoidal Augmented Phase Space (Observed) 

The tournament genetic algorithm search parameters are presented in Table 5.1. 

The random search multiplier specifies the size of the Monte Carlo search used to create 

the initial genetic algorithm population. The population size is the number of 

chromosomes in the genetic algorithm population. The elite count specifies the number of 

chromosomes that bypass the selection, mating, and mutation steps. The gene length is 

the number of bits used to represent each dimension of the search space. For a 2Q = , the 

chromosome is formed from three genes. The first gene is the xt-1 dimension, the second 

gene is the xt dimension, and the third is the threshold δ. Hence, the chromosome will 

have a length of 3 (genes) x 8 (gene length) = 24 (bits). The tournament size specifies the 

number of chromosomes that will participate in one round of the tournament selection 

-1 -0.5 0 0.5 1
-1

0

1
-1

0

1

x
t - 1

x
t

g



Chapter 5  Basic and Explanatory Examples 65 

 

process. The mutation rate specifies the likelihood a particular bit in a chromosome will 

be mutated. The convergence criterion with a range of [ ]0,1  is used to decide when to 

halt the genetic algorithm. The convergence criterion is the minimum ratio of the worst 

chromosome’s fitness to the best chromosome’s fitness. When the ratio is equal to or 

greater than the convergence criterion, the genetic algorithm is halted. 

Parameter Value 

Random search multiplier 1 

Population size 100 

Elite count 1 

Gene length 8 

Tournament size 2 

Mutation rate 0.2% 

Convergence criteria 1 

Table 5.1 – Genetic Algorithm Parameters for Sinusoidal Time Series 

Result Value 

Temporal pattern, p [0.57 1.0] 

Threshold, δ  0.25 

Cluster cardinality, ( )c M  7 

Cluster mean eventness, Mµ  1.0 

Cluster standard deviation eventness, Mσ  0.0 

Non-cluster cardinality, ( )c M
�

 91 

Non-cluster mean eventness, 
M

µ �  -0.056 

Non-cluster standard deviation eventness, 
M

σ �  0.69 
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Result Value 

zr -9.5 

αr 3.0x10-21 

zm 15 

αm 5.2x10-49 

Table 5.2 – Sinusoidal Results (Observed) 

The search results are shown in Table 5.2. The first two results, temporal pattern 

and threshold, define the temporal pattern cluster. The cluster cardinality is the count of 

phase space points in the temporal pattern cluster. The cluster mean eventness is the 

average value of g for each phase space point in the cluster. The cluster standard 

deviation eventness is the standard deviation of g for the phase space points in the cluster. 

The non-cluster cardinality is the number of phase space points not in the 

temporal pattern cluster. The non-cluster mean eventness is the average value of g for 

each phase space point not in the temporal pattern cluster. The non-cluster standard 

deviation eventness is the standard deviation of g for the phase space points not in the 

temporal pattern cluster. 

The last four results describe the statistical significance of the temporal pattern 

cluster using the runs test and the z test for two independent samples, which were 

discussed in Chapter 4. The runs test uses a 0.01 probability of Type I error (α = 0.01). 

The 213.0x10 0.01rα −= <  means the null hypothesis can be rejected for the observed 

time series results. 

The second statistical test is the z test for two independent samples. The two 

populations are the eventness of the points in the temporal pattern cluster and the 
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eventness of the points not in the temporal pattern cluster. The z test uses a 0.01 

probability of Type I error (α = 0.01). Again, 495.2x10 0.01mα −= <  shows that the null 

hypothesis can be rejected for the observed time series temporal pattern cluster. 

Figure 5.4 – Sinusoidal Phase Space with Temporal Pattern Cluster (Observed) 

Figure 5.4 highlights the temporal pattern [0.57 1.0]=p  with threshold 0.25δ =  

in the phase space. By comparing the temporal pattern cluster seen in Figure 5.4 to the 

augmented phase space in Figure 5.3, it is obvious that the best temporal pattern cluster is 

identified. When the temporal pattern cluster matches a subsequence of the time series, 

the next time series observation is a maximal value of the sinusoid. 

In the testing stage, the temporal pattern cluster is used to predict events. The 

testing stage time series ( ){ }sin , , ,tY x t t S Rω= = = � , where 8ω π= , 101S = , and 

200R = , is shown in Figure 5.5. 
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Figure 5.5 – Sinusoidal Time Series (Testing) 

Since the testing time series is identical to the observed time series except for a 

time shift, the phase space and augmented phase spaces are identical to Figure 5.2 and 

Figure 5.3, respectively. 

Result Value 

Cluster cardinality, ( )c M  6 

Cluster mean eventness, Mµ  1.0 

Cluster standard deviation eventness, Mσ  0.0 

Non-cluster cardinality, ( )c M
�

 92 

Non-cluster mean eventness, 
M

µ �  -0.061 

Non-cluster standard deviation eventness, 
M

σ �  0.68 

zr -9.4 

αr 5.4x10-21 
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Result Value 

zm 15 

αm 2.0x10-51 

Table 5.3 – Sinusoidal Results (Testing) 

 

Figure 5.6 – Sinusoidal Time Series with Predictions (Testing) 

The testing stage demonstrates that the TSDM goal of predicting all maximal 

values in the sinusoid is met, as illustrated in Table 5.3 and Figure 5.6. The patterns 

discovered in the training phase and applied in the testing phase are statistically 

significant according to the αr and αm statistics. The null hypothesis can be rejected in 

both cases. 

The data mining nature of the TSDM method is clearly demonstrated by this 

example. The temporal pattern cluster characterizes the sequences that lead to the 
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observations with the highest eventness. The next example applies the TSDM method to 

a noise time series. 

5.2 Noise Time Series 

A random variable x with a uniform density function generates the second 

example time series, where 

 ( )
1 0 1

0 otherwise

≤ ≤= 


x
f x  (5.2) 

is the density function [55, p. 75]. The time series ( ){ }, 1, ,100tX x t t= = =x �  is 

illustrated in Figure 5.7. 

Figure 5.7 – Noise Time Series (Observed) 

For this time series, the TSDM goal is to find a temporal pattern that is 

characteristic and predictive of time series observations that have high values. Because 
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the time series is a random sequence, the expectation is that any temporal pattern cluster 

discovered in the training phase will not be predictive in the testing phase. 

Figure 5.8 – Noise Phase Space (Observed) 

Figure 5.9 – Noise Augmented Phase Space (Observed) 
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The event characterization, objective function, and optimization formulation are 

the same as in the previous section. Figure 5.8 presents the Euclidean phase space. Since 

the time series varies randomly in a uniform manner over the range [0,1], it embeds to an 

evenly scattered pattern. Figure 5.9 shows the augmented phase space, which further 

illustrates the scattered nature of the embedded time series. 

The search parameters are described previously in Table 5.1. The training stage 

results are shown in Table 5.4. 

Result Value 

Temporal pattern, p [0.72 0.97] 

Threshold, δ  0.21 

Cluster cardinality, ( )c M  5 

Cluster mean eventness, Mµ  0.78 

Cluster standard deviation eventness, Mσ  0.20 

Non-cluster cardinality, ( )c M
�

 93 

Non-cluster mean eventness, 
M

µ �  0.48 

Non-cluster standard deviation eventness, 
M

σ �  0.28 

zr -0.54 

αr 5.9x10-1 

zm 3.1 

αm 8.2x10-4 

Table 5.4 – Noise Results (Observed) 

Finding a statistically significant temporal pattern in random noise is 

counterintuitive. However, the TSDM method found a temporal pattern cluster containing 
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five phase space points with a mean eventness greater than the mean eventness of phase 

space points not contained in the temporal pattern cluster. According to αm = 8.2x10-4, 

the null hypothesis may be rejected, i.e., the two sets are statistically different. However, 

according to the runs statistical test αr = 5.9x10-1, the two sets cannot be said to be 

statistically different. This means that there is some evidence that the temporal pattern is 

statistically significant. Figure 5.10 highlights the temporal pattern [0.72 0.97]=p  with 

threshold 0.21δ =  illustrated in the phase space. 

Figure 5.10 – Noise Phase Space with Temporal Pattern Cluster (Observed) 

The testing stage time series ( ){ }, 101, , 200tX x t t= = =x � , which is a 

continuation of the training stage time series, is illustrated in Figure 5.11. The testing 

time series is transformed into the phase space as shown in Figure 5.12, and the 

augmented phase space is seen in Figure 5.13. 
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Figure 5.11 – Noise Time Series (Testing) 

 

Figure 5.12 – Noise Phase Space (Testing) 
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Figure 5.13 – Noise Augmented Phase Space (Testing) 

Table 5.5 shows the statistical characterization of the testing stage results. 

Result Value 

Cluster cardinality, ( )c M  8 

Cluster mean eventness, Mµ  0.36 

Cluster standard deviation eventness, Mσ  0.28 

Non-cluster cardinality, ( )c M
�

 90 

Non-cluster mean eventness, 
M

µ �  0.49 

Non-cluster standard deviation eventness, 
M

σ �  0.30 

zr -0.48 

αr 6.3x10-1 

zm -1.3 

αm 9.1x10-1 

Table 5.5 – Noise Results (Testing) 
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The temporal pattern cluster discovered in the training stage and applied in the 

testing stage is not statistically significant as seen by the αr and αm statistics. The null 

hypothesis cannot be rejected. This is illustrated in Figure 5.14, which shows the 

predictions made by the testing stage. 
 

Figure 5.14 – Noise Time Series with Predictions (Testing) 

In this example, the TSDM method cannot find temporal pattern clusters that are 

both characteristic and predictive of events in a noise time series. Figure 5.14 along with 

the results from Table 5.5, show that the TSDM goal of finding a temporal pattern cluster 

that is predictive of time series observations whose mean value is greater than the mean 
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Although according to one statistical measure, the training stage results were 
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predicting events in the testing stage. However, the next section shows that a sinusoidal 

contaminated with noise is still predictable. 

5.3 Sinusoidal with Noise Time Series 

A sinusoid combined with a random variable x (5.2) is illustrated by Figure 5.15, 

where, { }sin( 8) 1 5 ( ), 1, ,100tX x t t tπ= = + =x � . 
 

Figure 5.15 - Sinusoidal with Noise Time Series (Observed) 

To further characterize this time series, the signal-to-noise-ratio (SNR) is 

measured and determined analytically. The theoretical SNR is the ratio of the signal 

variance to the noise variance. This would be the measured SNR for an ergodic time 

series as the length of the time series approached infinity. The variance of the random 

variable [55, p. 107] x is 
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The variance of the sinusoid is 

 
16

16 2

0
0

1 1 1 1
sin ( 8) 0 sin

16 2 16 4 4 2

t t
t dt

π ππ
π

  − = − =  
  ∫ , (5.4) 

making the theoretical SNR 7.5 ( 8.8dB). The measured variance of the noise is 0.069 

and of the sinusoid is 0.51, making the measured SNR 7.4 (8.7dB) for the finite length 

observed time series. 

For this time series, the TSDM goal is to predict the maximal values of the time 

series. The objective function, event characterization function, and optimization 

formulation remain the same as in the two previous sections. 

Figure 5.16 - Sinusoidal with Noise Phase Space (Observed) 

Figure 5.16 presents the Euclidean phase space. Since the time series is composed 
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scattered ellipse. Figure 5.16 shows exactly this type of pattern. Figure 5.17 shows the 

augmented phase space, which further illustrates the scattered elliptical nature of the 

embedded time series. 

Figure 5.17 - Sinusoidal with Noise Augmented Phase Space (Observed) 

The genetic algorithm search parameters are described previously in Table 5.1. 

The training stage results are shown in Table 5.6. 

Result Value 

Temporal pattern  [1.1 1.8] 

Threshold 0.46 

Cluster cardinality 9 

Cluster mean eventness 1.5 

Cluster standard deviation eventness 0.36 

Not cluster cardinality 89 

Not cluster mean eventness 0.41 

Not cluster standard deviation eventness 0.72 
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Result Value 

zr -3.3 

αr 8.8x10-4 

zm 7.7 

αm 5.1x10-15 

Table 5.6 - Sinusoidal with Noise Results (Observed) 

According to both statistical tests, the training results are statistically significant. 

Figure 5.18 highlights the temporal pattern [1.1 1.8]=p  with threshold 0.46δ =  in the 

phase space. Comparing the temporal pattern cluster seen in Figure 5.18 to the 

augmented phase space in Figure 5.17 demonstrates that the TSDM method found a good 

temporal pattern cluster. 

Figure 5.18 - Sinusoidal with Noise Phase Space with Temporal Pattern Cluster 
(Observed) 
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Figure 5.19 illustrates the testing stage time series, which is a continuation of the 

observed time series. The measured variance of the noise is 0.084 and of the sinusoid is 

0.50, yielding a measured SNR is 6.0 (7.8dB). Figure 5.20 and Figure 5.21 illustrate the 

phase space and the augmented phase space, respectively. 

Figure 5.19 - Sinusoidal with Noise Time Series (Testing) 
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Figure 5.20 - Sinusoidal with Noise Phase Space (Testing) 

 

Figure 5.21 - Sinusoidal with Noise Augmented Phase Space (Testing) 
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Result Value 

Cluster cardinality 8 

Cluster mean eventness 1.4 

Cluster standard deviation eventness 0.47 

Not cluster cardinality 90 

Not cluster mean eventness 0.41 

Not cluster standard deviation eventness 0.76 

zr -0.48 

αs 6.3x10-1 

zm 5.3 

αm 6.1x10-8 

Table 5.7 - Sinusoidal with Noise Results (Testing) 

The patterns discovered in the training phase and applied in the testing phase are 

statistically significant as seen by the αm statistic, but not the αr statistic. The cluster 

mean eventness also is greater than the non-cluster mean eventness. Therefore, even 

though one of the statistical tests is not significant, the TSDM method was able to find a 

significant temporal pattern cluster (although because of the noise not every maximal 

point is accurately predicted). 

This is illustrated in Figure 5.22, which shows the predictions and error range 

when the temporal pattern cluster is applied to the testing time series. 
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Figure 5.22 - Sinusoidal with Noise Time Series with Predictions (Testing) 

This example further reveals the data mining nature of the TSDM method. The 

temporal pattern cluster does not characterize the whole time series or every highest 

value; rather it characterizes a sequence that leads to an observation with high eventness. 

The next section provides a further example of the TSDM methods capabilities. 

5.4 Synthetic Seismic Time Series 

This example analyzes in detail the previously presented synthetic seismic time 

series, which is generated from a randomly occurring temporal pattern, synthetic 

earthquake, and a contaminating noise signal. The noise is defined by (5.2). 

The observed time series is illustrated in Figure 5.23. The measured variance of 

the contaminating noise is 3.3x10-3 and of the temporal pattern with synthetic earthquake 

is 1.3. Without the synthetic earthquake, the variance of the temporal pattern is 0.10. The 

measured SNR is 396 (26.0dB) for the temporal pattern and synthetic earthquake and 

30.2 (14.8dB) for the temporal pattern without the synthetic earthquake. 
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Figure 5.23 – Synthetic Seismic Time Series (Observed) 

 The TSDM goal for this time series is to characterize the synthetic earthquakes 

one time-step ahead. To capture this goal, the event characterization function is 

( ) 1tg t x += , and the objective function is 

 ( )
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This objective function is useful for identifying temporal pattern clusters that are 

statistically significant and have a high average eventness. The optimization formulation 

is ( )max f P  subject to ( )min b P  such that minimizing b(δ) does not change the value 

of f(P). 

Composed of a temporal pattern, synthetic earthquake, and noise, the time series 

embeds to a set of small clusters in the phase space as illustrated in Figure 5.24. Figure 
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5.25 shows the augmented phase space, which clearly indicates the different eventness 

values associated with the small clusters of phase space points. 
 

Figure 5.24 – Synthetic Seismic Phase Space (Observed) 

 

Figure 5.25 – Synthetic Seismic Augmented Phase Space (Observed) 
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The search parameters are presented in Table 5.1. The training stage results are 

shown in Table 5.8. 

Result Value 

Temporal pattern, p [0.92 0.51] 

Threshold, δ  0.37 

Cluster cardinality, ( )c M  7 

Cluster mean eventness, Mµ  4.8 

Cluster standard deviation eventness, Mσ  0.058 

Non-cluster cardinality, ( )c M
�

 91 

Non-cluster mean eventness, 
M

µ �  0.50 

Non-cluster standard deviation eventness, 
M

σ �  0.33 

zr -9.5 

αr 3.0x10-21 

zm 104 

αm 0 

Table 5.8 – Synthetic Seismic Results (Observed) 

The discovered temporal pattern cluster is statistically significant by both 

statistical tests. Figure 5.26 illustrates the temporal pattern [0.92 0.51]=p  with threshold 

0.37δ =  in the phase space. A comparison of Figure 5.25 and Figure 5.26 demonstrates 

that the training stage found the best temporal pattern cluster, i.e., when a sequence of 

time series observations match the temporal pattern cluster, the next observation is a 

synthetic earthquake. 
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Figure 5.26 – Synthetic Seismic Phase Space with Temporal Pattern Cluster 
(Observed) 

The synthetic seismic testing time series, a continuation of the observed time 

series, is illustrated in Figure 5.27. The measured variance of the noise is 3.5x10-3 and of 

the temporal pattern with synthetic earthquake is 1.9. The measured variance of the 

temporal pattern without synthetic earthquake is 0.10. The measured SNR is 536 (27dB) 

for the temporal pattern with synthetic earthquake, and 29.0 (14.6dB) for the temporal 

pattern without synthetic earthquake. 
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Figure 5.27 – Synthetic Seismic Time Series (Testing) 

The testing time series is transformed into the phase space as shown in Figure 

5.28. The augmented phase space for the testing time series is seen in Figure 5.29. 

Figure 5.28 – Synthetic Seismic Phase Space (Testing) 
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Figure 5.29 – Synthetic Seismic Augmented Phase Space (Testing) 

The testing stage results presented in Table 5.9 are statistically significant as seen 

by the αr and αm statistics. 

Result Value 

Cluster cardinality, ( )c M  11 

Cluster mean eventness, Mµ  4.8 

Cluster standard deviation eventness, Mσ  0.056 

Non-cluster cardinality, ( )c M
�

 87 

Non-cluster mean eventness, 
M

µ �  0.53 

Non-cluster standard deviation eventness, 
M

σ �  0.33 

zr -9.6 

αr 8.5x10-22 

zm 107 

αm 0 

Table 5.9 – Synthetic Seismic Results (Testing) 
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Figure 5.30 – Synthetic Seismic Phase Space with Temporal Pattern Cluster 
(Testing) 

 

Figure 5.31 – Synthetic Seismic Time Series with Predictions (Testing) 
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Figure 5.30 highlights the temporal pattern cluster in the testing phase space. 

Figure 5.31 clearly illustrates the prediction accuracy of the testing stage by highlighting 

the predictions and error range on the testing time series. This example further reveals the 

strength of the TSDM method – its ability to predict events. 

In this chapter, the TSDM method has been applied successfully to the sinusoidal, 

random noise, sinusoidal with noise, and synthetic seismic example time series. Each 

example time series highlighted the capabilities of the TSDM method. The sinusoidal 

time series highlighted the event-capturing capability of the TSDM method. With the 

sinusoidal time series, each peak point in the time series was characterized and predicted 

as an event. The noise time series showed that the method correctly determined that there 

are no temporal patterns in random noise. The sinusoidal with noise time series showed 

that the method, although affected by noise, can still predict maximal values. 

The synthetic seismic time series demonstrates the full power of the TSDM 

method. The time series is the composite of a temporal pattern, a synthetic earthquake 

that occur non-periodically, and contaminating noise. With this time series, the method 

accurately characterized and predicted all of the events. 

Chapter 6 presents several extensions to the TSDM method, including variations 

that search for temporal patterns in multi-dimensional time series and find multiple 

temporal pattern clusters. In Chapters 7 and 8, the TSDM method is applied to real world 

problems. 
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Chapter 6 Extended Time Series Data Mining Methods 

 This chapter presents three extensions to the Time Series Data Mining (TSDM) 

method. The first variation extends the TSDM method to multi-dimensional time series 

by adapting the time-delay embedding process. For simplicity, it is called the TSDM-M/x 

(Time Series Data Mining multi-dimensional time series) method. The second TSDM 

extension searches for multiple temporal pattern clusters. It is called the Time Series Data 

Mining multiple temporal pattern (TSDM-x/M) method, where the x may be either S or 

M depending on the dimensionality of the time series. 

Additionally, this chapter discusses alternative clustering methods and temporal 

pattern stationarity. In Chapter 4, the TSDM method employed a temporal pattern cluster 

that was formed with a hypersphere in a Manhattan phase space. By changing the 

distance metric associated with the phase space, alternative cluster shapes are achieved. 

Nonstationary temporal patterns are addressed with two techniques. The first is by 

applying the integrative techniques from the ARIMA method to transform nonstationary 

temporal pattern clusters into stationary ones. The second is through an extension to the 

TSDM method, called the Time Series Data Mining evolving (TSDMe) method. 

The chapter concludes with a discussion of diagnostics for improving TSDM 

results. 

6.1 Multiple Time Series (TSDM-M/x) 

This section discusses the TSDM-M/x method [2], which allows data from 

multiple sensors to be fused. The TSDM method is adapted by modifying the time-delay 

embedding process to incorporate observations from each dimension of a multi-
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dimensional time series. Intuitively, additional sensors on a system will provide 

additional information assuming they are not sensing the same state variable. Therefore, 

the time series generated by these sensors will provide a richer set of observations from 

which to form the reconstructed phase space. This has been shown experimentally by 

Povinelli and Feng [2]. 

The multi-dimensional time series 

 { }, 1, ,= =
� �

tx t NX  (6.1) 

is a sequence of N vector observations, where 
�

tx  is an n-dimensional vector. This 

collection of observed time series may be represented as a matrix 
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X . (6.2) 

The corresponding multi-dimensional testing time series Y takes the form 

 { }, , ,= = < <
� �

tx t R S N R SY , or (6.3) 
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n n nR R S

x x x

x x x

x x x

Y . (6.4) 

Since the vector time series is n-dimensional, the dimension of the phase space is 

n·Q. As with the TSDM method, a metric d is defined on the phase space. The observed 

time series are embedded into the phase space yielding phase space points or ( ) 1n Q⋅ ×  

phase space vectors 

 ( )( )1 , , , ,ττ −− −= ∈ Λ
	 	 	
 TT T T

t t tt Qx x x tx , (6.5) 
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where ( ){ }: 1 1, ,t t Q NτΛ = = − + � . Likewise, the collection of testing time series is 

embedded yielding yt. The dimensionality of the phase space and modified embedding 

process are adaptations of the TSDM method required to yield the TSDM-M/x method. 
 

Figure 6.1 – Block Diagram of TSDM-M/x Method  

 As illustrated in Figure 6.1, a normalization step may be added to force each 

dimension of the multi-dimensional time series to have the same range. Normalization 

does not change the topology of the phase space, but mapping each time series onto the 

same range allows the use of similar search step sizes for each phase space dimension. 

This normalization assists the optimization routines. The normalization constant used in 

the training stage is retained for use in predicting events in the testing stage. 

 The next section present a variation of the TSDM method that searches for 

multiple temporal pattern clusters. 
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6.2 Multiple Temporal Patterns (TSDM-x/M) 

The TSDM method finds a single hyperspherical temporal pattern cluster. The 

temporal patterns to be characterized may not conform to a hyperspherical shape or may 

consist of multiple disjoint regions, as shown in Figure 6.2. 

Figure 6.2 – Multiple Temporal Pattern Cluster Phase Space 

 The triangles have high eventness values and the dots have low eventness values. 

However, there is not a single hypersphere that can contain all the high eventness phase 

space points and exclude all of the low eventness ones. Two temporal pattern clusters are 

needed. A new method for finding a collection of temporal pattern clusters also is needed. 

In order to find a collection of temporal patterns, the objective function is 

modified to include the phase space points within each of the temporal pattern clusters 
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. The example objective function given by (3.15) is extended to yield  
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 ( )

( ) ( )
22

M M

M M

f

c M c M

µ µ

σσ

−
=

+

�
�

�

�
, (6.6) 

where the index set M  is defined more generally, i.e. 

 { }: ,t iM t P t= ∈ ∈ Λx , (6.7) 

where , 1, 2,iP i∈ = ��
. Similarly, M

�
, the complement of M, is the set of all time indices 

t when xt is not in any iP ∈
�

. This objective function is useful for identifying temporal 

pattern clusters that are statistically significant and have a high average eventness. 

 Another example objective function, the ratio of correct predictions to all 

predictions,  

 ( ) p n

p n p n

t t
f

t t f f

+
=

+ + +
�

 (6.8) 

was first defined in (3.18) and requires no modification to work in the TSDM-x/M 

method. 

The optimization formulation  

 ( )max
iP

f �  (6.9) 

may be used, but it may lead to the following set of temporal pattern clusters illustrated in 

Figure 6.3. A simpler and therefore more preferable solution is illustrated in Figure 6.4. 
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Figure 6.3 – Multiple Cluster Solution With Too Many Temporal Pattern Clusters 

 

Figure 6.4 – Multiple Cluster Solution 
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To achieve the preferred solution the optimization formulation is ( )max f
�

 

subject to ( )min c
�

 such that minimizing ( )c
�

 does not change the value of ( )f
�

. A 

bias also may be placed on the δ’s yielding the optimization formulation ( )max f
�

 

subject to ( )min c
�

 such that minimizing ( )c
�

 does not change the value of ( )f
�

 and 

min i iPδ ∀ ∈
�

such that minimizing δ ∀ ∈i iP
�

 does not change the value of ( )c
�

. These 

staged optimizations are resolved through the genetic algorithm tournament tiebreaker 

system introduced in Chapter 4. 

Given a TSDM goal, a target observed time series to be characterized, and a 

testing time series to be predicted, the steps in the TSDM-x/M method are essentially the 

same as the steps in the TSDM method. The modifications are that a range of phase space 

dimensions is chosen, and the search processes is iterative. The steps of the TSDM-x/M 

method are given below. 

I. Training Stage (Batch Process) 

1. Frame the TSDM goal in terms of the event characterization function, 

objective function, and optimization formulation. 

a. Define the event characterization function, g. 

b. Define the objective function, f. 

c. Define the optimization formulation, including the independent 

variables over which the value of the objective function will be 

optimized and the constraints on the objective function. 

d. Define the criteria to accept a temporal pattern cluster. 

2. Determine the range of Q’s, i.e., the dimension of the phase space and the 

length of the temporal pattern. 
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3. Embed the observed time series into the phase space using the time-

delayed embedding process. 

4. Associate with each time index in the phase space an eventness 

represented by the event characterization function. Form the augmented 

phase space. 

5. Search for the optimal temporal pattern cluster in the augmented phase 

space using the following algorithm. 

if the temporal pattern cluster meets the criteria set in 1.d then, 

repeat step 5 after removing the clustered phase space points 

from the phase space.  

elseif the range of Q is not exceeded, increment Q and goto step 2  

else goto step 6 

6. Evaluate training stage results. Repeat training stage as necessary. 

II. Testing Stage (Real Time or Batch Process) 

1. Embed the testing time series into the phase spaces. 

2. Apply the temporal pattern clusters to predict events. 

3. Evaluate testing stage results. 

This section presented an extension of the TSDM method that allows multiple 

temporal pattern clusters to be discovered. The next section presents a set of techniques 

that allow more complicated temporal pattern clusters to be identified. 
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6.3 Other Useful TSDM Techniques 

This section presents three techniques that are useful in the process of identifying 

optimal temporal pattern clusters. The first is a method for changing the temporal pattern 

cluster shape by employing different phase space metrics. The next two techniques are 

useful for time series with nonstationary temporal pattern clusters. 

6.3.1 Clustering Technique 

The phase space metric used in the synthetic seismic time series example from 

Chapter 4 was the Manhattan or l1 distance. Obviously, this is not the only applicable 

metric. With alternative metrics, the shape of the temporal pattern cluster can be changed. 

The lp norms provide a simple mechanism for changing the temporal pattern cluster shape 

without increasing the search space dimensionality. The lp norm is defined as 

 
pn

i

p

ip
x

/1

1









= ∑

=

x  [56, p. 29].  (6.10) 

Figure 6.5 illustrates five different norms: l0.5, l1, l2, l3, and l∞. The temporal 

pattern cluster is located in a two-dimensional space at (0,0) with 1δ = . 
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Figure 6.5 – Cluster Shapes of Unit Radius for Various lp Norms 

When the l2, Euclidean, norm is used the cluster is a circle. Using the l1 and l∞ norms, the 

temporal pattern cluster is a square. These alternative cluster shapes are incorporated into 

the method by simply defining the phase space using the desired lp norm. The next 

section presents a technique for identifying nonstationary temporal pattern clusters. 

6.3.2  Filtering Technique 

In Chapter 2, ARIMA time series analysis was discussed. ARIMA modeling 

requires that the time series be stationary. TSDM’s requirement is less stringent. Only the 

temporal pattern cluster must be stationary, i.e., the phase space points characteristic of 
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time series with nonstationary temporal pattern clusters into time series with stationary 

temporal pattern clusters. 

The following example shows how a nonstationary time series can be made 

stationary and the appearance of a nonstationary time series in the phase space and 

augmented phase space. The observed time series { }.02 , 1, ,100tX x t t= = = �  is 

illustrated in Figure 6.6. 
 

Figure 6.6 – Linearly Increasing Time Series (Observed) 

The TSDM goal is to characterize and predict all observations. Thusly, the event 

characterization function is ( ) 1tg t x += . The corresponding objective function (described 

in Chapter 3) is 
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M

M
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c
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µ
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Λ ≥
=  + Λ

, (6.11) 

where 0.05β = . The optimization formulation is ( )max f P  subject to minδ . 
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Figure 6.7 presents the Euclidean phase space, and Figure 6.8 illustrates the 

augmented phase space. Since the time series has a linearly increasing value, it embeds as 

a line in both spaces. The linear feature of the phase space points indicates 

nonstationarity. 
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Figure 6.7 – Linearly Increasing Phase Space (Observed) 
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Figure 6.8 – Linearly Increasing Augmented Phase Space (Observed) 

 

The genetic algorithm search parameters are presented in Table 6.1. 

Parameter Value 

Random search multiplier 1 

Population size 20 

Elite count 1 

Gene length 8 

Tournament size 2 

Mutation rate 0.2% 

Convergence criteria 1 

Table 6.1 – Genetic Algorithm Parameters for Linearly Increasing Time Series 

The training stage results are shown in Figure 6.9, which demonstrates that the 

temporal pattern cluster does not capture the linearly increasing nature of the time series. 

This will become more evident in the testing stage of the TSDM method. 



Chapter 6  Extended Time Series Data Mining Methods 106 

 

Figure 6.9 – Linearly Increasing Phase Space with Temporal Pattern Cluster 
(Observed) 

Figure 6.10 – Linearly Increasing Time Series (Testing) 

 The testing time series is illustrated in Figure 6.10. 
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Figure 6.11 – Linearly Increasing Phase Space with Temporal Pattern Cluster 
(Testing) 

 

 Figure 6.12 – Linearly Increasing Time Series with Predictions (Testing) 
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Figure 6.11 highlights the temporal pattern cluster in the phase space. Obviously, 

as illustrated by Figure 6.11, the desired TSDM goal is not met, which is reinforced by 

Figure 6.12. The cause of the prediction failure is the lack of temporal pattern 

stationarity, not necessarily because of time series nonstationarity. The resolution to the 

problem of temporal pattern nonstationarity is achieved by applying the filtering 

techniques discussed in Chapter 2. Applying the first difference filter to the observed 

time series X yields { }.02, 2, ,100tZ z t= = = � , which is a constant-value time series. 

The problem is now trivial. 

Although some time series may be made stationary through filtering techniques, 

these methods will not convert all nonstationary time series into stationary ones. The next 

section presents a method for analyzing time series with quasi-stationary temporal pattern 

clusters. 

6.3.3 Non-filtering Techniques 

Although stationarity usually describes the statistical characteristics of a 

stochastic time series [55, pp. 297-298], this dissertation introduces a more general 

definition. When applied to a deterministic time series, stationarity indicates that the 

periodicity, if the time series is periodic, and range of the time series are constant. When 

applied to chaotic time series, stationarity indicates that the attractors remain constant 

through time. Chaotic time series whose underlying attractors evolve through time are 

classified as nonstationary chaotic time series. 

 Beyond filtering to extract nonstationary temporal patterns, there are two TSDM 

methods presented in this section that address quasi-stationary temporal patterns, i.e., 

temporal patterns that are characteristic and predictive of events for a limited time 
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window. They are called the Time Series Data Mining evolving temporal pattern 

(TSDMe) methods. These methods are useful for analyzing time series generated by 

adaptive systems such as financial markets with feedback characteristics that counteract 

systemic predictions. 

The first method (TSDMe1) uses a fixed training window and a fixed prediction 

window. The second method (TSDMe2) uses a fixed training window and a single period 

prediction window. The TSDMe methods differ from the other TSDM methods in how 

the observed and testing time series are formed. 

The TSDMe1 method divides the time series into equally sized sets 

( ){ }, 1 1, ,j tX x t j N jN= = − + � , where N is the number of observations in a subset of X, 

and j is the index of the subset. The time series jX  is used in the training stage. The time 

series 1jX +  is used in the testing stage. The length of the time window N is determined 

experimentally such that the temporal patterns clusters remain quasi-stationary between 

any two adjacent time windows. 

The TSDMe2 method creates the overlapping observed time series as follows: 

 { }, , ,j tX x t j j N= = +� . (6.12) 

The testing time series is formed from a single observation as follows: 

 { }, 1j tY x t j N= = + + . (6.13) 

With these changes in the formation of the observed and testing time series, any of the 

TSDM methods may be applied. 

 The last section in this chapter presents a set of cases with which to diagnose and 

adjust the TSDM method. 
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6.4 Evaluating Results and Adjusting Parameters 

In the training stage of the TSDM methods, there is an evaluate training stage 

results step, which is an ad hoc evaluation of the intermediate and final results of the 

TSDM method. The evaluation may include visualization of the phase space and 

augmented phase space and review of the statistical results. Based on the ad hoc 

evaluation, the parameters of the method may be adjusted, alternative TSDM methods 

selected, and/or appropriate TSDM techniques applied. This section discusses ad hoc 

evaluation techniques, what issues they might discover, and possible solutions. 

By parsimony, the simplest characterization of events possible is desired, i.e., as 

small a dimensional phase space as possible and as few temporal pattern clusters as 

required. The first evaluation technique is to visualize, if possible, the phase space and 

augmented phase space, which allows human insight to identify clustering problems. The 

cases that may be identified and their potential solutions are listed below. 

Case 1: One cluster is identifiable, but not discovered by the TSDM method. 

Potential Solution A:  Select alternative phase space metric. 

Potential Solution B:  Increase genetic algorithm population size. 

Potential Solution C:  Increase genetic algorithm chromosome length. 

Potential Solution D:  Increase genetic algorithm mutation rate. 

Potential Solution E:  Use alternative objective function. 

Case 2: Multiple clusters are visualized, but not discovered by the TSDM method. 

Potential Solution A:  Use TSDM-x/M method. 

Case 3: No clusters are visualized. 

Potential Solution A:  Try higher dimensional phase space. 
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Potential Solution B:  Use TSDM-x/M method. 

Case 4: Phase space points cluster into a line. 

Potential Solution A:  Apply filtering techniques. 

The second evaluation technique is to review the statistical characteristics of the 

resulting temporal pattern cluster(s). These statistics include the ( )c M , ( )c M
�

, Mµ , 

Mσ ,  
M

µ � , 
M

σ � , Xµ , αr, and αm. The cases that may be identified and their potential 

solutions are listed below. 

Case 5: The cluster cardinality ( )c M  is too large or small while using the objective 

function described in (4.3). 

Potential Solution A:  Use the objective function described in (3.16). 

Case 6: The cluster cardinality ( )c M  is too large or small while using the objective 

function described in (3.16). 

Potential Solution A:  Adjust the β as appropriate. 

Case 7: Either or both the αr and αm do not allow the null hypothesis to be rejected. 

Potential Solution A:  The null hypothesis holds. No temporal patterns exist in the 

time series. 

Potential Solution B:  Use the TSDM-x/M method to find multiple temporal 

patterns. 

Potential Solution C:  Use a larger training time series. 

Potential Solution D:  Use the TSDMe1 or TSDMe2 methods to see if the temporal 

patterns may be quasi-stationary. 

Potential Solution E:  Adjust the cluster shape by using an alternative p-norm. 
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This section presented seven cases where the resulting temporal pattern clusters 

did not achieve the desired TSDM goal and potential solutions for each of these cases. 

This is not an exhaustive list of treatments to improve the TSDM results, but a 

representative sample of the most common adjustments needed. 

This chapter has presented extensions to the TSDM method for finding multiple 

temporal patterns and analyzing multi-dimensional time series. It has also presented a set 

of techniques for dealing with nonstationary temporal pattern clusters. It concluded with 

a set of diagnostic cases and their potential resolutions. The next two chapters will apply 

these extended TSDM methods to real-world applications. 
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Chapter 7 Engineering Applications 

This chapter introduces a set of real-world time series gathered from sensors on a 

welding station. The problem is to predict when a droplet of metal will release from a 

welder. The welding process joins two pieces of metal into one by making a joint 

between them. A current arc is created between the welder and the metal to be joined. 

Wire is pushed out of the welder. The tip of the wire melts, forming a metal droplet that 

elongates (sticks out) until it releases. The goal is to predict the moment when a droplet 

will release, which will allow the quality of the joint to be improved. Because of the 

irregular, chaotic, and event nature of the droplet release, prediction is impossible using 

traditional time series methods. 

Figure 7.1 - Welder 

current arc

metal to be joined

droplet

welder

wire

current arc

metal to be joined

droplet
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wire
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Samples of the four welding time series are presented in Figure 7.2 and Figure 

7.3. Obviously, they are noisy and nonstationary. Sensors on the welding station generate 

three of the time series. The first is the stickout of the droplet measured in pixels by an 

electronic camera. It is sampled at 1kHz and comprised of approximately 5,000 

observations. The second time series is the voltage measured in decivolts from the welder 

to the metal to be joined. The third is the current measured in amperes. The voltage and 

current time series are sampled at 5kHz, synchronized to each other, and each comprised 

of approximately 35,000 observations. The fourth time series indicates the release of the 

metal droplets. This time series was created after the sensor data was collected using a 

process at INEEL (Idaho National Engineering & Environmental Laboratory), which also 

provided the data. It is synchronized with the stickout time series and comprised of 

approximately 5,000 observations. The release time series indicates the events with a one 

indicating an event and a zero indicating a non-event. 
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Figure 7.2 – Stickout and Release Time Series 

 

Figure 7.3 – Voltage and Current Time Series 

This chapter is organized into six sections. This first section discusses the four 

time series that comprise the data set and provides an overview of the chapter. The 
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second section characterizes and predicts the release events using the stickout time series. 

The third section characterizes and predicts events in an adjusted release time series. The 

fourth section presents and resolves a time series synchronization problem. As noted 

above, two of the sensors sampled at approximately 5kHz, while the other sensor 

sampled at approximately 1kHz. The problem is complicated further because the ratio of 

the sampling rates is not exactly 5:1. In the fifth section, the TSDM-M/M method is 

applied to data from all three sensors. 

7.1 Release Prediction Using Single Stickout Time Series 

This section presents the results of applying the TSDM-S/M method to 

characterizing and predicting droplet releases using the stickout time series. This 

application of the TSDM-S/M method does not require the synchronization of the 

stickout and release time series with the current and voltage time series to be resolved. 
 

Figure 7.4 – Stickout Time Series (Observed) 
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The observed stickout time series X consists of the 2,492 equally sampled 

observations, at t = 175 through 2,666. Figure 7.4 illustrates all observations, while 

Figure 7.2 provides a detailed view of a sample of the time series. 

 Besides the obvious nonperiodic oscillations, the stickout time series exhibits a 

large-scale trend. As discussed in Chapter 6, removing trends helps the method find the 

necessary temporal patterns. A first difference filter could be applied, but that would 

introduce a new synchronization problem between the release and stickout time series. 

Instead, a simple recalibration rule is used to removing the trend. When there is a 10-

pixel drop between two consecutive observations, the second observation is recalibrated 

to zero. Figure 7.5 and Figure 7.6 illustrate that the trend in stickout time series has been 

removed. 
 

Figure 7.5 – Recalibrated Stickout Time Series (Observed) 
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Figure 7.6 – Recalibrated Stickout and Release Time Series (Observed) 

Instead of being contained within the stickout time series, the events are captured 

in the release time series Y, as illustrated in Figure 7.6. The release time series is defined 

as a binary sequence, where the ones indicate a release (event) and the zeros a non-

release (non-event). The release usually occurs after a stickout value reaches a local peak 

and drops 10 pixels or more. However, a study of Figure 7.6 shows there are several 

times when this does not occur. In this section, the release time series will be used 

unaltered. In the next section, the release series will be recalculated to more correctly 

match the stickout length minimums. 

Now that the observed time series have been presented, the TSDM goal is restated 
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 ( )1
p n

p n p n

t t
f

t t f f

+
=

+ + +
�

 (7.1) 

has an optimal value when every event is correctly predicted. The values , , , and p n p nt t f f  

are described in Table 7.1. 

 Actually an event Actually a non-event 

Categorized as an event True positive, pt  False positive, pf  

Categorized as a non-event False negative, nf  True negative, nt  

Table 7.1 – Event Categorization 

The second objective function, 

 ( )2
p

p p

t
f P

t f
=

+
, (7.2) 

called the positive accuracy, defines how well each , 1, 2,iP i∈ = �
�

 is at avoiding false 

positives. It is used as the objective for the intermediate steps in the TSDM-S/M training 

stage. 

The optimization formulation for the whole training stage is ( )max f
�

 subject to 

( )min c
�

 and ( )min i ib Pδ ∀ ∈
�

. The optimization formulation for the intermediate steps 

is ( )max f P  subject to ( )min b δ . 

Figure 7.7 presents an illustrative phase space, where the Manhattan or l1 distance 

metric is employed. The phase space points are similar to the linearly increasing phase 

space points, but the increase repeats instead of continuing to grow. 
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Figure 7.7 – Recalibrated Stickout Phase Space (Observed) 

Figure 7.8 clearly shows the complexity of the augmented phase space. The 

events are not separable from the non-events using a two-dimensional phase space. 
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Figure 7.8 – Stickout and Release Augmented Phase Space (Observed) 

The augmented phase space is searched using a tournament genetic algorithm. 

The two sets of search parameters are presented in Table 7.2. 

Parameter Set 1 Set 2 

Random search multiplier 10 10 

Population size 30 30 

Elite count 1 1 

Gene length 8 8 

Tournament size 2 2 

Mutation rate 0.05%  0% 

Convergence criteria 0.65 0.5 

Table 7.2 – Genetic Algorithm Parameters for Recalibrated Stickout and Release 
Time Series 

The results of the search are shown in Table 7.3. 
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Result Value 

Temporal pattern cluster count, ( )c
�

 14 

Temporal pattern cluster dimensions 1~14 

Clusters cardinality, ( )c M  142 

Clusters mean eventness, Mµ  0.71 

Clusters standard deviation eventness, Mσ  0.45 

Non-clusters cardinality, ( )c M�  2,349 

Non-clusters mean eventness, 
M

µ �  0.023 

Non-clusters standard deviation eventness, 
M

σ �  0.15 

zr -49 

αr 0 

zm 18 

αm 2.4x10-72 

True positives, pt  101 

False positives, pf  41 

True negatives, nt  2296 

False negatives, nf  53 

Accuracy, ( )1f
�

 96.23% 

Positive accuracy, ( )2f
�

 71.13% 

Table 7.3 – Recalibrated Stickout and Release Results (Observed) 

Fourteen temporal pattern clusters form the temporal pattern cluster collection 

employed to identify events. This collection contains temporal pattern clusters that vary 

in dimension from 1 to 14. The runs and z tests with αr = 0 and αm = 2.4x10-72 show that 
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the two sets, clustered and non-clustered, are statistically different. However, for this 

problem the goal is to accurately predict droplet releases. The more meaningful statistics 

are the true/false positives/negatives. The statistics for accuracy indicate that 96.23% of 

the release observations are correctly characterized. The positive accuracy indicates that 

71.13% of the release observations categorized as events are events. 

The testing time series is shown in Figure 7.9 and Figure 7.10. The recalibrated 

stickout and release time series are shown in Figure 7.11 and Figure 7.12. The testing 

time series is transformed into the phase space as illustrated in Figure 7.13. The 

augmented phase space for the testing time series is seen in Figure 7.14. 
 

Figure 7.9 – Stickout Time Series (Testing) 
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Figure 7.10 – Stickout Sample Time Series (Testing) 

 

Figure 7.11 – Recalibrated Stickout Time Series (Testing) 
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Figure 7.12 – Recalibrated Stickout and Release Time Series (Testing) 

 

Figure 7.13 – Recalibrated Stickout Phase Space (Testing) 
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Figure 7.14 – Recalibrated Stickout and Release Augmented Phase Space (Testing) 

The results of applying the temporal pattern cluster collection to the testing time 

series is seen in Table 7.4. 

Result Value 

Clusters cardinality, ( )c M  136 

Clusters mean eventness, Mµ  0.74 

Clusters standard deviation eventness, Mσ  0.44 

Non-clusters cardinality, ( )c M
�

 2,356 

Non-clusters mean eventness, 
M

µ �  0.022 

Non-clusters standard deviation eventness, 
M

σ �  0.15 

zr -49 

αr 0 

zm 19 

αm 4.0x10-78 

True positives, pt  100 
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Result Value 

False positives, pf  36 

True negatives, nt  2,303 

False negatives, nf  53 

Accuracy, ( )1f
�

 96.43% 

Positive accuracy, ( )2f
�

 73.53% 

Table 7.4 – Recalibrated Stickout and Release Results (Testing) 

As with the training stage results, the testing stage results are statistically 

significant as seen by both the runs and z tests. The αr is zero, and the αm is 4.0x10-78. 

More importantly, the prediction accuracy is 96.43%, and the positive accuracy is 

73.53%. These results are better than those found in the characterization phase. This is 

significant, especially considering that the data set provider deems the stickout 

measurements as “not too reliable”. 

7.2 Adjusted Release Characterization and Prediction Using Stickout 

This section presents results using an adjusted release time series rather than the 

one computed using the INEEL process. As seen in Figure 7.6, the release time series 

does not always correspond with the stickout data. It also does not correspond with the 

voltage time series presented later in the chapter. The adjusted release time series is 

created using a simple rule – a release has occurred after a ten-pixel drop in the stickout 

time series. This rule is identifying events a posteriori, while the TSDM method is 

predicting events a priori. A sample of the adjusted release time series is shown in Figure 

7.15. 
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Figure 7.15 – Recalibrated Stickout and Adjusted Release Time Series (Observed) 

 

Figure 7.16 – Recalibrated Stickout and Adjusted Release Augmented Phase Space 
(Observed) 
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 ( )
( )2

3

-   if 0  0

 -  ( ) otherwise
n n p p

p p p n n p

f t t f
f P

t t f t f f

 + = ∧ == 
+ + + ⋅

, (7.3) 

is introduced, which maximizes the number of true positives while penalizing any false 

positives. 

The augmented phase space, illustrated by Figure 7.16, while still complex, is 

more orderly than the unadjusted release augmented phase space shown in Figure 7.8. 

Five different sets of genetic algorithms parameters are used to find the temporal 

pattern clusters. For all sets, the elite count was one, the gene length was eight, and the 

tournament size was two. The other parameters are listed in Table 7.5. 
 

 

Random 
Search 

multiplier 
Population 

size 
Mutation 

rate 
Convergence 

criteria 

Secondary 
objective 
function 

Set 1 10 30 0.2% 1 ( )3f P  

Set 2 1 100 0.2% 1 ( )3f P  

Set 3 1 100 0.02% 1 ( )3f P  

Set 4 10 30 0% 0.5 ( )2f P  

Set 5 10 30 0.05% 0.65 ( )2f P  

Set 6 10 30 0.05% 0.5 ( )2f P  

Table 7.5 – Genetic Algorithm Parameters for Recalibrated Stickout and Adjusted 
Release Time Series 

The training stage results are shown in Table 7.6. 

Result Value 

Temporal pattern cluster count, ( )c
�

 67 

Temporal pattern cluster dimensions 1~14 

Clusters cardinality, ( )c M  138 
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Result Value 

Clusters mean eventness, Mµ  0.81 

Clusters standard deviation eventness, Mσ  0.39 

Non-clusters cardinality, ( )c M
�

 2,353 

Non-clusters mean eventness, 
M

µ �  0.017 

Non-clusters standard deviation eventness, 
M

σ �  0.13 

zr -49 

αr 0 

zm 24 

αm 2.9x10-124 

True positives, pt  112 

False positives, pf  26 

True negatives, nt  2,313 

False negatives, nf  40 

Accuracy, ( )1f
�

 97.35% 

Positive accuracy, ( )2f
�

 81.16% 

Table 7.6 – Recalibrated Stickout and Adjusted Release Results (Observed) 

Sixty-seven temporal pattern clusters form the temporal pattern cluster collection 

used to identify the events. The statistical tests with 0rα =  and -1242.9x10mα =  show that 

the two sets, clustered and non-clustered, are statistically different. The accuracy statistic 

indicates that 97.35% (vs. 96.23% using the unadjusted release time series) of the release 

observations are correctly characterized. The positive accuracy indicates that 81.16% (vs. 
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71.13% using the unadjusted release time series) of the release observations categorized 

as events are events. 

The testing stage time series is shown in Figure 7.17. The augmented phase space 

for the testing time series is illustrated in Figure 7.18. 

Figure 7.17 – Recalibrated Stickout and Adjusted Release Time Series (Testing) 

Figure 7.18 – Recalibrated Stickout and Adjusted Release Augmented Phase Space 
(Testing) 
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The testing stage results are presented in Table 7.7. 

Result Value 

Clusters cardinality, ( )c M  161 

Clusters mean eventness, Mµ  0.70 

Clusters standard deviation eventness, Mσ  0.46 

Non-clusters cardinality, ( )c M
�

 2,331 

Non-clusters mean eventness, 
M

µ �  0.017 

Non-clusters standard deviation eventness, 
M

σ �  0.13 

zr -49 

αr 0 

zm 19 

αm 1.63x10-79 

True positives, pt  113 

False positives, pf  48 

True negatives, nt  2,291 

False negatives, nf  40 

Accuracy, ( )1f
�

 96.47% 

Positive accuracy, ( )2f
�

 70.19% 

Table 7.7 – Recalibrated Stickout and Adjusted Stickout Results (Testing) 

As with the training stage results, the testing stage results are statistically 

significant as seen by both the runs and z tests. The 0rα = , and the -791.63 10m xα = . The 

prediction accuracy is 96.47% (vs. 96.43% with the unadjusted release time series) and 

the positive accuracy is 70.19% (vs. 73.53% with the unadjusted release time series). 
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According to the total prediction accuracy, the recalibrated stickout and adjusted stickout 

results are better. Whereas according to the positive prediction accuracy, the unadjusted 

release time series results are better. 

7.3 Stickout, Release, Current and Voltage Synchronization 

The last two sections focused on using the stickout time series temporal patterns 

for characterization and prediction of droplet releases. The TSDM-S/M method has 

yielded excellent results. The next step is to use the current and voltage time series to 

help characterize and predict droplet releases. Unfortunately, the stickout and release 

time series are not synchronized with the current and voltage time series. This leaves two 

problems to be solved. The first is to synchronize the four time series. The second is to 

compensate for the different sampling rates. 

The synchronization is done by matching the first and last voltage peaks with the 

first and last droplet releases. For the voltage time series, these observations are 973 and 

25764. For the droplet release time series, these observations are 187 and 5151. 

Recall that the stickout and release time series sampling rate was reported to be 

1kHz and the current and voltage sampling-rate was reported to be 5kHz. If these 

sampling rates are perfectly calibrated, the 1kHz time series could be up-sample to the 

5kHz rate by interpolating four additional points for each observation or down-sampling 

the 5kHz time series by averaging five observations into one observation. However, when 

this is done, the time series lose synchronization. 

The initial synchronization was done using the first voltage spike and the first 

droplet release. Using the reported five-to-one sampling ratio and the last droplet release 
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observation of 5151, the last voltage spike should be observation 25,793. It is actually 

observation 25,764, which is determined by visualizing the data. The true sampling rates 

are not exactly in a 5:1 ratio. 

The problem is solved using Matlab’s interp1 [57, pp5.9-5.11] function with the 

cubic spline option. This function allows conversion between arbitrary sampling rates by 

providing the initial time series with its sampling times and by specifying a vector with 

the desired sampling times. The function performs interpolation using a cubic spline. It 

may be used for either up-sampling or down-sampling. Both the up-sampling to 5kHz 

and down sampling to 1kHz time series were generated by appropriately mapping the 

first and last synchronization observations onto each other. 

7.4 Adjusted Release Characterization and Prediction Using Stickout, 
Voltage, and Current 

With the synchronization problem solved, the TSDM-M/M method is applied to 

the voltage, current, and stickout time series to characterize and predict droplet releases. 

The adjusted release time series is used as the indicator of events. The time series are 

normalized to the range [0,1], using the transformation 

 
( )

( )( )
min

max min

X X
Z

X X

−
=

−
. (7.4) 

A sample of the observed time series is shown in Figure 7.19.  

The TSDM goal, primary objective function, event characterization, and 

optimization formulation remain the same. An alternative secondary objective function, 
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also is used. 

Figure 7.19 – Recalibrated Stickout, Current, Voltage, and Adjusted Release Time 
Series (Observed) 

Because the smallest phase space that can be formed using all the time series is 

three-dimensional, and the corresponding augmented phase space is four-dimensional, 

graphical illustrations are not possible. Nonetheless, these spaces are formed and 

searched using a tournament genetic algorithm. The set of genetic algorithm search 

parameters is presented in Table 7.5. Three different sets of genetic algorithm parameters 

were used to find all the temporal pattern clusters. For all parameter sets, the elite count 

was one, the gene length was eight, the tournament size was two, and mutation rate was 

0.2%. The other parameters by set are listed in Table 7.8. 
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Random 
Search 
multiplier 

Population 
size 

Convergence 
criteria 

Secondary 
objective 
function 

Set 1 10 30 0.75 ( )2f P  

Set 2 1 30 1 ( )3f P  

Set 3 1 10 1 ( )4f P  

Table 7.8 – Genetic Algorithm Parameters for Recalibrated Stickout, Current, 
Voltage, and Adjusted Release Time Series  

The training stage results are shown in Table 7.9. 

Result Value 

Temporal pattern cluster count, ( )c
�

 62 

Temporal pattern cluster dimensions 3~15 

Clusters cardinality, ( )c M  117 

Clusters mean eventness, Mµ  0.89 

Clusters standard deviation eventness, Mσ  0.32 

Non-clusters cardinality, ( )c M�  2,374 

Non-clusters mean eventness, 
M

µ �  0.020 

Non-clusters standard deviation eventness, 
M

σ �  0.14 

zr -49 

αr 0 

zm 30 

αm 7.1x10-193 

True positives, pt  104 

False positives, pf  13 

True negatives, nt  2,326 
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Result Value 

False negatives, nf  48 

Accuracy, ( )1f
�

 97.55% 

Positive accuracy, ( )2f
�

 88.89% 

Table 7.9 – Recalibrated Stickout, Current, Voltage, and Adjusted Release Results 
(Observed) 

 

Figure 7.20 – Recalibrated Stickout, Current, Voltage, and Adjusted Release Time 
Series (Testing) 
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show that the two sets, clustered and non-clustered, are statistically different. The 

accuracy statistic indicates that 97.55% (vs. 97.35% using just the stickout and the 
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adjusted release time series and vs. 96.23% using the stickout and unadjusted release time 

series) of the release observations are correctly characterized. The positive accuracy 

indicates that 88.89% (vs. 81.16% using just the stickout and the adjusted release time 

series and vs. 71.13% using the stickout and unadjusted release time series) of the release 

observations categorized as events are events. 

The testing stage time series is illustrated in Figure 7.20 and results in Table 7.7. 

Result Value 

Clusters cardinality, ( )c M  117 

Clusters mean eventness, Mµ  0.67 

Clusters standard deviation eventness, Mσ  0.47 

Non-clusters cardinality, ( )c M
�

 2,375 

Non-clusters mean eventness, 
M

µ �  0.032 

Non-clusters standard deviation eventness, 
M

σ �  0.17 

zr -49 

αr 0 

zm 14 

αm 2.1x10-47 

True positives, pt  78 

False positives, pf  39 

True negatives, nt  2,300 
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Result Value 

False negatives, nf  75 

Accuracy, ( )1f
�

 95.42% 

Positive accuracy, ( )2f
�

 66.67% 

Table 7.10 – Recalibrated Stickout, Current, Voltage, and Adjusted Release Results 
(Testing) 

As with the training stage, the testing stage results are statistically significant as 

seen by both the runs and z tests. The 0rα =  and 412.1x10mα −= . More importantly, the 

prediction accuracy is 95.42% (vs. 96.47% using just the stickout and the adjusted release 

time series and vs. 96.43% using the stickout and unadjusted release time series) and the 

positive accuracy is 66.67% (vs. 70.19% using just the stickout and the adjusted release 

time series and vs. 73.53% using the stickout and unadjusted release time series). 

The prediction results using the stickout, current, and voltage time series are not 

as good as using just the stickout time series. There are two possible explanations for this. 

Recall that the training stage results using all three time series were better than the 

training results using just the stickout time series. In addition, the search space is be 

higher dimensional and therefore sparser, because the multi-dimensional time series 

embeds to a higher dimensional phase space. This suggests that the training stage over-fit 

the temporal pattern clusters to the training stage observations, i.e., the temporal pattern 

clusters discovered in the training stage are too specific to the training stage time series. 

The second explanation is that the recalibration process has introduced noise causing the 

testing results to be worse. 
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7.5 Conclusion 

Using from one to three time series generated from sensors on a welding station, 

the problem of predicting when a droplet of metal will release from the welder was 

solved with a high degree of accuracy – from 95.42% to 96.47% total prediction accuracy 

and from 66.67% to 73.53% positive prediction accuracy. These results show that the 

TSDM method could be used in a system to control and monitor the welding seam 

thereby improving the quality of the weld. 

The next chapter applies the TSDM methods to the financial domain. 
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Chapter 8 Financial Applications of Time Series Data Mining 

This chapter, organized into four sections, presents significant results found by 

applying the Time Series Data Mining (TSDM) method to financial time series. The first 

section discusses the definition of events for this application and the generation of the 

time series. The second and third sections present the results of applying the TSDMe1-S/S 

and TSDMe1-M/S methods to a financial time series. The final section applies the 

TSDMe2-S/S method to a collection of time series. 

In this chapter, the analyzed time series are neither synthetically generated as in 

Chapter 5, nor measured from a physical system as in Chapter 7. Instead, they are created 

by the dynamic interaction of millions of investors buying and selling securities through a 

secondary equity market such as the New York Stock Exchange (NYSE) or National 

Association of Securities Dealers Automated Quotation (NASDAQ) market [58]. The 

times series are measurements of the activity of a security, specifically a stock. The time 

series are the daily open price, which is the price of the first trade, and the daily volume, 

which is the total number of shares of the stock traded. 

Before applying the TSDM framework to security price prediction, an explanation 

of the underlying structure of security price behavior is required, i.e., the efficient market 

hypothesis. The efficient market hypothesis is described using the expected return or fair 

game model, which puts the efficient market hypothesis on firmer theoretical grounds 

than using the random walk hypothesis [58, p. 210]. The expected value of a security is  

 ( ) ( )[ ]1 11t t t t tE P E r P+ +Φ = + Φ   [58, p. 210], (8.1) 
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where tP  is the price of a security at time t, 1tr +  is the one-period percent rate of return for 

the security during period t+1, and tΦ  is the information assumed to be fully reflected in 

the security price at time t. 

 There are three forms of the efficient market hypothesis. The weak form assumes 

tΦ  is all security-market information, such as historical sequence of price, rates of return, 

and trading volume data [58, p. 211]. The semistrong form assumes tΦ  is all public 

information, which is a super set of all security-market information, including earnings 

and dividend announcements, price-to-earning ratios, and economic and political news 

[58, p. 211]. The strong form assumes tΦ  is all public and private information, also 

including restricted data such as company insider information [58, p. 212]. 

The weak form of the efficient market hypothesis, which has been supported in 

the literature, applies to the current chapter. The efficient market hypothesis is verified by 

showing that security price time series show no autocorrelation and are random according 

to the runs test. In addition, tests of trading rules have generally shown that the weak 

form of the efficient market hypothesis holds [58, p. 213-215]. 

The TSDM goal is to find a trading-edge, a small advantage that allows greater 

than expected returns to be realized. If the weak form of the efficient market hypothesis 

holds, the TSDM methods should not be able to find any temporal patterns that can be 

exploited to achieve such a trading-edge. The TSDM goal is to find temporal pattern 

clusters that are, on average, characteristic and predictive of a larger than normal increase 

in the price of a stock. 
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8.1 ICN Time Series Using Open Price 

This section presents the results of applying the TSDMe1-S/M method to 

characterizing and predicting the change in the open price of ICN, a NASDAQ traded 

stock. ICN is an international pharmaceutical company. Two periods, 1990 and 1991, are 

analyzed. The first half of 1990 will be used as the observed time series and the second 

half as the testing time series. The 1991 time series will be similarly divided. 
 

Figure 8.1 – ICN 1990H1 Daily Open Price Time Series (Observed) 

8.1.1 ICN 1990 Time Series Using Open Price 

The Figure 8.1 illustrates the observed time series X, which is the ICN open price for 

the first half of 1990 (1990H1). To identify temporal patterns that are both characteristic 

and predictive of events, a filter is needed. The %∆ filter converts the time series into a 

percentage change open price time series. The filtered time series has a more consistent 

range, as seen in Figure 8.2, facilitating the discovery of temporal pattern clusters. 
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Figure 8.2 – Filtered ICN 1990H1 Daily Open Price Time Series (Observed) 

The TSDM goal of finding a trading-edge is restated in terms of TSDM concepts. 

The objective function is 

 ( )
( ) ( )

( ) ( )
( )0 0

if

-   otherwise

M

M

c M c

f P c M
g g

c

µ β

µ
β

Λ ≥
=  + Λ

, (8.2) 

where 0.05β = . The event characterization function is ( ) 1tg t x += , which allows for one-

step-ahead characterization and prediction. The optimization formulation is ( )max f P  

subject to ( )min b δ . 

Figure 8.3 presents an illustrative phase space for the filtered ICN 1990H1 daily 

open price time series with a Euclidean distance metric. Figure 8.4 shows the augmented 

phase space. 

The complexity of the embedding as illustrated in Figure 8.4. Clearly, the 

identification of a temporal pattern cluster that separates events from non-events is not 

possible. This will not prevent the TSDM goal of finding a trading-edge, though. The 
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goal is to find temporal pattern clusters that have higher objective function values and are 

statistically different from the phase space points outside the temporal pattern clusters. 
 

Figure 8.3 – Filtered ICN 1990H1 Daily Open Price Phase Space (Observed) 

Figure 8.4 – Augmented Phase Space of Filtered ICN 1990H1 Daily Open Price 
(Observed) 
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The genetic algorithm search parameters are presented in Table 8.1. 

Parameter Values 

Random search multiplier 10 

Population size 30 

Elite count 1 

Gene length 6 

Tournament size 2 

Mutation rate 0 %  

Convergence criteria 1 

Table 8.1 – Genetic Algorithm Parameters for Filtered ICN 1990H1 Daily Open 
Price Time Series 

The training stage results are shown in Table 8.2. 

Result Set 1 Set 2 Set 3 
Combined 
Set 

Temporal pattern cluster count, ( )c
�

 1 1 1 3 

Temporal pattern cluster dimensions 1 3 5 1,3,5 

Clusters cardinality, ( )c M  8 10 7 19 

Clusters mean eventness, Mµ  5.43% 3.50% 6.49% 3.37% 
 
Clusters standard deviation 
eventness, Mσ  

8.70% 6.95% 7.47% 6.60% 

Non-clusters cardinality, ( )c M�  116 112 113 105 

Non-clusters mean eventness, 
M

µ �  -0.56% -0.50% -0.61% -0.81 
 
Non-clusters standard deviation 
eventness, 

M
σ �  

3.60% 3.92% 3.80% 3.43% 

zr -4.58 -2.07 -1.88 -4.61 
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Result Set 1 Set 2 Set 3 
Combined 
Set 

αr 4.71x10-6 3.84x10-2 6.02x10-2 3.95x10-6 

zm 1.94 1.79 2.50 2.70 

αm 5.30x10-2 7.28x10-2 1.26x10-2 6.93x10-3 

Table 8.2 – Filtered ICN 1990H1 Daily Open Price Results (Observed) 

In each case, the cluster mean eventness is greater than the non-cluster mean 

eventness. However, because of the limited training set size, the probability of a Type I 

error – incorrectly rejecting the null hypothesis that the two sets are the same – is higher 

than in the previous chapters. By combining the sets, the statistical significance is 

increased. This type of financial time series is nonstationary on all of the levels defined in 

this dissertation: stochastic, deterministic, and chaotic. The patterns persist for a short 

time period. This causes problems in achieving the desired 0.05 significance level. 

The testing time series and the filtered testing time series are shown in Figure 8.5 

and Figure 8.6, respectively. Figure 8.7 illustrates the testing phase space. The augmented 

phase space is seen in Figure 8.8. 
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Figure 8.5 – ICN 1990H2 Daily Open Price Time Series (Testing) 

 

Figure 8.6 – Filtered ICN 1990H2 Daily Open Price Time Series (Testing) 
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Figure 8.7 – Filtered ICN 1990H2 Daily Open Price Phase Space (Testing) 

 

Figure 8.8 – Augmented Phase Space of Filtered ICN 1990H2 Daily Open Price 
(Testing) 
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The testing stage results are seen in Table 8.3. 

Result Set 1 Set 2 Set 3 
Combined 
Set 

Temporal pattern cluster count, ( )c
�

 1 1 1 3 

Temporal pattern cluster dimensions 1 3 5 1,3,5 

Clusters cardinality, ( )c M  13 16 12 32 

Clusters mean eventness, Mµ  4.16% 0.96% 1.95% 1.48% 
 
Clusters standard deviation 
eventness, Mσ  

9.58% 8.41% 9.64% 7.97% 

Non-clusters cardinality, ( )c M�  112 107 109 93 

Non-clusters mean eventness, 
M

µ �  -0.56% -0.23% -0.30% -0.60% 
 
Non-clusters standard deviation 
eventness, 

M
σ �  

4.80% 5.15 5.09% 4.48% 

zr -1.12 -1.95 -2.40 -3.45 

αr 2.62x10-1 5.06x10-2 1.65x10-2 5.5x10-4 

zm 1.75 0.55 0.78 1.40 

αm 8.02x10-2 5.82x10-1 4.25x10-1 1.61x10-1 

Table 8.3 – Filtered ICN 1990H2 Daily Open Price Results (Testing) 

As with the training stage results, the average eventness values of time series 

observations inside the temporal pattern clusters are greater than the average eventness of 

the observations outside the temporal pattern clusters. However, for the same reasons 

discussed previously – sample size and temporal pattern stationarity – the statistical 

significance as shown by α is never less than 0.01. The TSDM goal is met in that a 

trading-edge is identified, but it is not statistically significant. 
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8.1.2 ICN 1991 Time Series Using Open Price 

The same TSDM goal, objective function, event characterization function and 

optimization formulation are applied to the 1991 open price time series. The observed 

time series X, the open price for first half of 1991 (1991H1), is illustrated in Figure 8.9.  

Figure 8.10 shows the filtered observed time series observations. Figure 8.11 

presents an illustrative phase space, and Figure 8.12 an illustrative augmented phase 

space. The tournament genetic algorithm search parameters are presented in Table 8.1. 

The training stage results are shown in Table 8.4. 
 
 

Figure 8.9 – ICN 1991H1 Daily Open Price Time Series (Observed) 
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Figure 8.10 – Filtered ICN 1991H1 Daily Open Price Time Series (Observed) 

 

Figure 8.11 – Filtered ICN 1991H1 Daily Open Price Phase Space (Observed) 
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Figure 8.12 – Augmented Phase Space of Filtered ICN 1991H1 Daily Open Price 
(Observed) 

Result Set 1 Set 2 Set 3 
Combined 
Set 

Temporal pattern cluster count, ( )c
�

 1 1 1 3 

Temporal pattern cluster dimensions 1 3 5 1,3,5 

Clusters cardinality, ( )c M  7 8 6 19 

Clusters mean eventness, Mµ  4.62% 4.41% 5.49% 3.71% 
 
Clusters standard deviation 
eventness, Mσ  

3.59% 9.50 10.13% 6.65% 

Non-clusters cardinality, ( )c M�  116 113 113 104 

Non-clusters mean eventness, 
M

µ �  0.34% 0.36% 0.42% 0.01% 
 
Non-clusters standard deviation 
eventness, 

M
σ �  
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Result Set 1 Set 2 Set 3 
Combined 
Set 

zm 2.99 1.197270 1.219608 2.336999 

αm 2.75x10-3 2.31x10-1 2.23x10-1 1.94x10-2 

Table 8.4 – Filtered ICN 1991H1 Daily Open Price Results (Observed) 

The training results show that a trading-edge can be found from the observed time 

series. However, because of the small sample size, statistical significance is more 

difficult to achieve. The testing stage time series is illustrated by Figure 8.13.  
 

Figure 8.13 – ICN 1991H2 Daily Open Price Time Series (Testing) 

The filtered version of the testing time series is shown in Figure 8.14. Illustrative 

phase and augmented phase spaces are shown in Figure 8.15 and Figure 8.16, 

respectively. The training stage results are seen in Table 8.5. 
 

0

5

10

15

20

25

30

35

40

7/
1/1

99
1

7/1
6/1

99
1

7/3
0/1

99
1

8/1
3/1

99
1

8/2
7/1

99
1

9/1
1/1

99
1

9/2
5/1

99
1

10
/9

/19
91

10
/2

3/1
99

1

11
/6

/19
91

11
/2

0/1
99

1

12
/5

/19
91

12
/1

9/1
99

1

t

x t
 (o

pe
n 

pr
ic

e 
in

 d
ol

la
rs

)



Chapter 8  Financial Applications of Time Series Data Mining 155 

 

Figure 8.14 – Filtered ICN 1991H2 Daily Open Price Time Series (Testing) 

 

Figure 8.15 – Filtered ICN 1991H2 Daily Open Price Phase Space (Testing) 
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Figure 8.16 – Augmented Phase Space of  Filtered ICN 1991H2 Daily Open Price 
(Testing) 

Result Set 1 Set 2 Set 3 
Combined 
Set 

Temporal pattern cluster count, ( )c
�

 1 1 1 3 

Temporal pattern cluster dimensions 1 3 5 1,3,5 

Clusters cardinality, ( )c M  13 7 7 22 

Clusters mean eventness, Mµ  2.06% 0.46% 0.88% 0.41% 
 
Clusters standard deviation 
eventness, Mσ  

7.21% 5.06% 11.93% 8.04% 

Non-clusters cardinality, ( )c M�  113 117 115 104 

Non-clusters mean eventness, 
M

µ �  0.98% 1.2% 1.12% 1.23% 
 
Non-clusters standard deviation 
eventness, 

M
σ �  

5.57% 5.81% 5.28% 5.16% 
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Result Set 1 Set 2 Set 3 
Combined 
Set 

zm 0.52 -0.37 -0.05 -0.46 

αm 6.01x10-1 7.09x10-1 9.59x10-1 6.47x10-1 

Table 8.5 – Filtered ICN 1991H2 Daily Open Price Results (Testing) 

For this collection of testing stage results, Set 1 has a higher cluster mean 

eventness than non-cluster mean eventness. Sets 2, 3, and combined do not. These results 

are presented so they may be contrasted with those in the next section, which 

incorporates the volume time series in predicting events. The next section demonstrates 

that, for the same set of possible events, including the volume time series yields better 

and more statistically significant temporal pattern clusters. 

8.2 ICN Time Series Using Open Price and Volume 

This section extends the results of applying the TSDM method to predicting the 

change in the open price of ICN by including the volume time series in the analysis. As 

with the previous section, this one is broken into two subsections each addressing 1990 

and 1991 periods, respectively. Adding information in the form of a second time series 

enables better characterization and prediction results. 

8.2.1 ICN 1990 Time Series Using Open Price and Volume 

Figure 8.17 illustrates the observed time series X, the first half of 1990 (1990H1) 

open price and volume time series. The TSDM goal remains the same, as does the 

representation in TSDM concepts. The search parameters are described in Table 8.1, and 

the training stage results are shown in Table 8.6. 
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Figure 8.17 -ICN 1990H1 Daily Open Price and Volume Time Series (Observed) 

Result Set 1 Set 2 Set 3 
Combined 
Set 

Temporal pattern cluster count, ( )c
�

 1 1 1 3 

Temporal pattern cluster dimensions 2 6 10 2,6,10 

Clusters cardinality, ( )c M  6 7 6 13 

Clusters mean eventness, Mµ  7.24% 4.85% 7.95% 5.09% 
 
Clusters standard deviation 
eventness, Mσ  

9.50% 7.68% 7.15% 7.27% 

Non-clusters cardinality, ( )c M�  118 115 114 111 

Non-clusters mean eventness, 
M

µ �  -0.55% -0.48% -0.63% -0.79% 
 
Non-clusters standard deviation 
eventness, 

M
σ �  

3.57% 3.92% 3.78% 3.38% 

zr -2.46 -0.17 -0.40 -2.08 

αr 1.39x10-2 8.65x10-1 6.89x10-1 3.73x10-2 
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Result Set 1 Set 2 Set 3 
Combined 
Set 

zm 2.00 1.82 2.92 2.88 

αm 4.54x10-2 6.83x10-2 3.53x10-3 4.02x10-3 

Table 8.6 – ICN 1990H1 Daily Open Price and Volume Results (Observed) 

In each case, the cluster mean eventness is greater than the non-cluster mean 

eventness. A comparison to the same time period results from Table 8.2 shows that these 

results are better for both the cluster mean eventness and the statistical measures. Four of 

the statistical tests are significant to the 0.05 α level. 

The testing stage time series is shown in Figure 8.18. The testing stage results are 

seen in Table 8.7. 

Figure 8.18 – ICN 1990H2 Daily Open Price and Volume Time Series (Testing) 

Result Set 1 Set 2 Set 3 
Combined 
Set 

Temporal pattern cluster count, ( )c
�
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Result Set 1 Set 2 Set 3 
Combined 
Set 

Clusters cardinality, ( )c M  12 7 6 18 

Clusters mean eventness, Mµ  5.24% 3.14% 4.41% 3.27% 
 
Clusters standard deviation 
eventness, Mσ  

9.14% 10.67% 12.57% 9.44% 

Non-clusters cardinality, ( )c M
�

 113 116 115 107 

Non-clusters mean eventness, 
M

µ �  -0.63% -0.27% -0.31% -0.63% 
 
Non-clusters standard deviation 
eventness, 

M
σ �  

4.84% 5.22% 5.09% 4.52% 

zr -1.42 -0.18 -4.43 -2.87 

αr 1.57x10-1 8.60x10-1 9.44x10-6 4.09x10-3 

zm 2.19 0.84 0.91 1.72 

αm 2.84x10-2 4.02x10-1 3.61x10-1 8.54x10-2 

Table 8.7 – ICN 1990H2 Daily Open Price and Volume Results (Testing) 

As with the training stage, the testing stage results achieve the goal of finding a 

trading-edge. The cluster mean eventness is greater than the non-cluster mean eventness. 

A comparison to the same time period results from Table 8.3 reveals that these results are 

better in both the cluster mean eventness and the statistical measures. Three of the 

statistical tests are significant to the 0.05 α level. 

8.2.2 ICN 1991 Time Series Using Open Price and Volume 

Figure 8.19 illustrates the observed time series X, the first half of 1990 (1990H1) 

open price and volume time series. The training stage results are shown in Table 8.8 
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Figure 8.19 -ICN 1991H1 Daily Open Price and Volume Time Series (Observed) 

Result Set 1 Set 2 Set 3 
Combined 
Set 

Temporal pattern cluster count, ( )c
�

 1 1 1 3 

Temporal pattern cluster dimensions 2 6 10 2,6,10 

Clusters cardinality, ( )c M  7 7 6 12 

Clusters mean eventness, Mµ  5.76% 10.54% 9.88% 7.87% 
 
Clusters standard deviation 
eventness, Mσ  
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Non-clusters cardinality, ( )c M�  116 114 113 111 

Non-clusters mean eventness, 
M

µ �  0.27% 0.02% 0.19% -0.20% 
 
Non-clusters standard deviation 
eventness, 

M
σ �  

4.65% 3.99% 4.16% 3.85% 
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Result Set 1 Set 2 Set 3 
Combined 
Set 

αr 2.95x10-1 8.91x10-8 1.68x10-2 6.15x10-6 

zm 2.84 4.01 2.98 4.05 

αm 4.53x10-3 6.16x10-5 2.92x10-3 5.07x10-5 

Table 8.8 – ICN 1991H1 Daily Open Price and Volume Results (Observed) 

Again, the cluster mean eventness is greater than the non-cluster mean eventness 

for each set, and the results are better than the same time period results from Table 8.4, 

which used only the open price time series. All but one of the statistical tests are 

significant to the 0.05 α level, and all but two are significant to the 0.005 α level. The 

testing stage time series is shown in Figure 8.20, and the results are seen in Table 8.9. 

Figure 8.20 – ICN 1991H2 Daily Open Price and Volume Time Series (Testing) 

Result Set 1 Set 2 Set 3 
Combined 
Set 

Temporal pattern cluster count, ( )c
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Result Set 1 Set 2 Set 3 
Combined 
Set 

Clusters cardinality, ( )c M  9 6 4 15 

Clusters mean eventness, Mµ  5.14% 1.26% 6.40% 3.48% 
 
Clusters standard deviation 
eventness, Mσ  

7.98% 15.07% 11.91% 11.07% 

Non-clusters cardinality, ( )c M
�

 117 118 118 111 

Non-clusters mean eventness, 
M

µ �  0.78% 1.16% 0.92% 0.77% 
 
Non-clusters standard deviation 
eventness, 

M
σ �  

5.45% 5.01% 5.46% 4.58% 

zr 0.89 -3.48 -1.12 -1.05 

αr 3.75x10-1 5.08x10-4 2.61x10-1 2.95x10-1 

zm 1.61 0.02 0.92 0.94 

αm 1.07x10-1 9.87x10-1 3.59x10-1 3.48x10-1 

Table 8.9 – ICN 1991H2 Daily Open Price and Volume Results (Testing) 

As with the characterization, the cluster mean eventness for each set is greater 

than the non-cluster mean eventness. A comparison to the same time period results (from 

Table 8.5) shows that these results are better in both the cluster mean eventness and the 

statistical measures. Recall that, in Table 8.5, only one of the sets had a cluster mean 

eventness that was greater than the non-cluster mean eventness. Here, all of the cluster 

mean eventnesses are greater. However, as seen before, the statistical significances are 

hampered by the limited sample size and temporal pattern stationarity. 

In the next section, the ideas gained from analyzing the ICN time series are 

applied. For the ICN time series, the section applied a temporal pattern discovered in a 
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half-year’s worth of data to the next half-year’s worth of data. The next section will apply 

a half-year’s worth of training to the next day’s prediction. The training stage is repeated 

at each time-step. 

8.3 DJIA Component Time Series 

This section presents the results of applying the TSDMe2-S/M method to the 30 

open daily price time series of the Dow Jones Industrial Average (DJIA) components 

from January 2, 1990, through March 8, 1991, which allows approximately 200 testing 

stages. The following stocks in Table 8.10 make up the DJIA during this period. 

Ticker Company Name  Ticker Company Name  

AA Aluminum of America  JNJ Johnson & Johnson  

ALD AlliedSignal Inc.  JPM J.P. Morgan 

AXP American Express KO Coca-Cola 

BA Boeing MCD McDonald’s 

CAT Caterpillar MMM Minnesota Mining & Manufacturing 

CHV Chevron MO Philip Morris 

DD DuPont MRK Merck 

DIS Walt Disney PG Procter & Gamble 

EK Eastman Kodak S Sears, Roebuck 

GE General Electric T AT & T Corp.  

GM General Motors TRV Travelers (Now part of Citigroup Inc.) 

GT Goodyear Tire & Rubber UK Union Carbide 

HWP Hewlett-Packard UTX United Technologies 

IBM International Business Machines WMT Wal-Mart Stores 

IP International Paper XON Exxon 

Table 8.10 – Dow Jones Industrial Average Components (1/2/1990 – 3/8/1991) 
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Rather than graphically present each of the 30 DJIA component stocks, Figure 

8.21 illustrates the DJIA. As with the ICN time series, a percentage filter is applied to 

each DJIA component time series to facilitate finding temporal pattern clusters. 
 

Figure 8.21 – DJIA Daily Open Price Time Series 

The TSDM goal is to find a trading-edge. The next section shows how this goal is 

captured through TSDM concepts. 

8.3.1 Training Stage 

The objective function is 
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where 0.05β = . The event characterization function to is ( ) 1tg t x += , which allows for 

one-step-ahead characterization and prediction. The optimization formulation is 
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Because of the large number of training processes – 5,970 – a graphical 

presentation of each step is not made. Recall that the TSDMe2 method uses a moving 

training window and a single observation testing window. The training window is 100 

observations. 

The search parameters are presented in Table 8.11. The roulette selection genetic 

algorithm was used. 

Parameter Values 

Random search multiplier 10 

Population size 30 

Elite count 1 

Gene length 6 

Mutation rate 0%  

Convergence criteria 1 

Table 8.11 – Genetic Algorithm Parameters for DJIA Component Time Series 

Because of the large number of training and testing sets and because of the 

trading-edge goal, the results presented are of a summary nature. The statistical training 

results for each DJIA component are presented in Table 8.12. Of the 5,970 training 

processes, the cluster mean eventness ( Mµ ) was greater than total mean eventness ( Xµ ) 

every time. For 69% of the temporal pattern clusters, the probability of a Type I error was 

less than 5% based on the independent means statistical test. For 49% of the temporal 

pattern clusters, the probability of a Type I error was less than 5% based on the runs 

statistical test.  
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Ticker M Xµ µ>  αm 
���������

 αr 
���	� �
�

 

AA 100% 82% 55% 

ALD 100% 72% 52% 

AXP 100% 71% 48% 

BA 100% 70% 42% 

CAT 100% 79% 48% 

CHV 100% 54% 34% 

DD 100% 42% 35% 

DIS 100% 83% 25% 

EK 100% 55% 18% 

GE 100% 66% 81% 

GM 100% 73% 49% 

GT 100% 62% 44% 

HWP 100% 55% 34% 

IBM 100% 67% 24% 

IP 100% 80% 78% 

JNJ 100% 89% 37% 

JPM 100% 90% 14% 

KO 100% 67% 87% 

MCD 100% 62% 62% 

MMM 100% 57% 75% 

MO 100% 65% 29% 

MRK 100% 59% 70% 

PG 100% 76% 38% 

S 100% 59% 86% 

T 100% 66% 40% 

TRV 100% 78% 63% 

UK 100% 36% 66% 

UTX 100% 94% 46% 

WMT 100% 73% 37% 

XON 100% 75% 61% 

Combined 100% 69% 49% 

Table 8.12 – DJIA Component Results (Observed) 
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8.3.2 Testing Stage Results 

Using the 5,970 training processes, 471 events are predicted. The statistical 

prediction results for each DJIA component are presented in Table 8.13. The cluster 

mean eventness ( Mµ ) was greater than the non-cluster mean eventness (
M

µ � ) 20 out of 30 

times or 67% of the time. For 16.7% of the temporal pattern clusters, the probability of a 

Type I error was less than 5% based on the independent means statistical test. For 3.3% 

of the temporal pattern clusters, the probability of a Type I error was less than 5% based 

on the runs statistical test. These low rates of statistical significance at the 5% α  level 

are typical for predictions of financial time series as seen from the previously presented 

ICN results. 

Ticker c(M) Mµ  σM ( )c M
�

 
M

µ �  σM’ αm αr 

AA 16 0.569% 1.652% 182 -0.013% 1.620% 1.78x10-1 7.76x10-1 

ALD 14 0.438% 1.428% 184 -0.102% 1.851% 1.83x10-1 9.91x10-1 

AXP 14 0.027% 2.058% 184 -0.023% 2.610% 9.32x10-1 9.91x10-1 

BA 13 0.080% 2.044% 185 -0.030% 2.181% 8.52x10-1 1.76x10-1 

CAT 26 -0.003% 1.817% 172 -0.098% 2.127% 8.08x10-1 3.19x10-1 

CHV 16 0.057% 1.572% 182 0.061% 1.200% 9.92x10-1 8.40x10-1 

DD 16 0.526% 1.946% 182 -0.045% 1.635% 2.55x10-1 7.76x10-1 

DIS 20 -0.024% 1.488% 178 0.069% 2.069% 8.00x10-1 9.87x10-1 

EK 14 -0.045% 1.879% 184 0.074% 1.998% 8.20x10-1 2.66x10-1 

GE 16 0.094% 1.410% 182 0.000% 1.881% 8.04x10-1 4.92x10-1 

GM 16 0.671% 2.090% 182 -0.149% 1.863% 1.29x10-1 4.92x10-1 

GT 20 -0.962% 2.034% 178 -0.066% 2.549% 6.93x10-2 9.87x10-1 
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Ticker c(M) Mµ  σM ( )c M
�

 
M

µ �  σM’ αm αr 

HWP 13 -0.779% 1.881% 185 0.116% 2.664% 1.08x10-1 1.76x10-1 

IBM 16 -1.079% 1.785% 182 0.175% 1.460% 6.32x10-3 8.41x10-1 

IP 16 1.197% 2.525% 182 0.025% 1.587% 6.80x10-2 2.09x10-1 

JNJ 13 0.665% 1.444% 185 0.160% 1.551% 2.25x10-1 8.63x10-1 

JPM 11 1.420% 1.878% 187 0.040% 1.985% 1.82x10-2 5.90x10-1 

KO 11 1.794% 3.396% 187 0.008% 1.807% 8.36x10-2 2.18x10-1 

MCD 13 0.367% 1.753% 185 -0.013% 1.977% 4.54x10-1 3.14x10-1 

MMM 16 0.238% 1.044% 182 0.043% 1.258% 4.82x10-1 4.92x10-1 

MO 17 0.038% 1.820% 181 0.251% 1.641% 6.42x10-1 1.80x10-1 

MRK 19 0.669% 1.163% 179 0.073% 1.580% 4.11x10-2 7.10x10-2 

PG 13 0.174% 1.615% 185 0.047% 1.707% 7.85x10-1 3.14x10-1 

S 14 1.449% 2.677% 184 -0.157% 1.938% 2.77x10-2 9.28x10-4 

T 11 1.307% 1.797% 187 -0.193% 1.645% 6.88x10-3 5.44x10-2 

TRV 21 1.531% 2.449% 177 -0.147% 2.617% 3.21x10-3 5.58x10-1 

UK 14 -0.449% 2.263% 184 0.041% 1.900% 4.30x10-1 5.75x10-1 

UTX 14 -0.289% 1.979% 184 -0.028% 1.828% 6.33x10-1 2.66x10-1 

WMT 18 0.658% 1.950% 180 0.120% 2.458% 2.77x10-1 5.79x10-1 

XON 20 0.077% 1.398% 178 0.090% 1.263% 9.68x10-1 4.19x10-1 

All 471 0.313% 1.970% 5,469 0.011% 1.919% 1.38x10-3 6.76x10-1 

Top 15 245 0.596% 1.966% 2,725 -0.020% 1.809% 2.27x10-6 8.84x10-3 

Table 8.13 – DJIA Component Results (Testing) 
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 For the combined results – using all predictions – the mean cluster eventness is 

greater than the non-cluster mean eventness. It also is statistically significant to the 

0.005α level according to the independent means test. However, better results can be 

achieved by predicting which temporal pattern clusters are more likely to yield accurate 

predictions. This is done by defining 

 
( ) ( )0.05 0.05

2
m r

µ
α αα ≤ + ≤

= . (8.4) 

The µα  is the average of the αm 
���������	��

� αr 

�����������������
Table 8.12. The excess return, 

 e M M
µ µ µ= − � , (8.5) 

is the difference in the returns achieved by using the temporal pattern clusters and the 

complement of the temporal pattern clusters. The αµ has a 0.50 correlation with the 

excess return. Figure 8.22 illustrates this. 
 

Figure 8.22 – αµ vs. Excess Return 
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The top 15 stocks are selected based on their αµ. The prediction results using the 

portfolio formed from these top 15 DJIA components yields exceptional results. Using 

the temporal pattern clusters for the top 15 stocks, 245 predictions are made. The cluster 

mean eventness ( Mµ ) was greater than the non-cluster mean eventness (
M

µ � ) 13 out of 15 

times or 87% of the time. The average predicted event had a 0.596% increase in open 

price. The average of the not predicted events was -0.020%. According to both statistical 

tests, the results are statistically significant. Using the means test, there is only a 

0.000227% chance of making a Type I error in rejecting the null hypothesis that the 

predicted events are the same as the not predicted observations. Using the runs test, there 

is a 0.884% chance of making a Type I error.  

The best way to understand the effectiveness of the TSDM method when applied 

to financial time series is to show the trading results that can be achieved by applying the 

temporal pattern clusters discovered above. An initial investment is made as follows: If a 

temporal pattern cluster from any of the stocks in the portfolio predicts a high eventness, 

the initial investment is made in that stock for one day. If there are temporal pattern 

clusters for several stocks that indicate high eventness, the initial investment is split 

equally among the stocks. If there are no temporal pattern clusters indicating high 

eventness, then the initial investment is invested in a money market account with an 

assumed 5% annual rate of return. The training process is rerun using the new 100 most 

recent observation window. The following day, the initial investment principal plus 

return is invested according to the same rules. The process is repeated for the remaining 

investment period. 
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The results for the investment period of May 29, 1990 through March 8, 1991 are 

shown in Table 8.14. This period is less than the total time frame (January 1, 1990, 

through March 8, 1991) because the first part of the time series is used only for training. 

The return of the DJIA also is given, which is slightly different from the buy and hold 

strategy for all DJIA components because the DJIA has a non-equal weighting among its 

components. 

Portfolio Investment Method Return 
Annualized 

Return 

All DJIA components Temporal Pattern Cluster 30.98% 41.18% 

Top 15 DJIA components Temporal Pattern Cluster 67.77% 93.70% 

DJIA Buy and hold 2.95% 3.79% 

All DJIA components Not in Temporal Pattern Cluster 0.35% 0.45% 

Top 15 DJIA components Not in Temporal Pattern Cluster -2.94% -3.74% 

All DJIA components Buy and hold 3.34% 4.29% 

Top 15 DJIA components Buy and hold 2.81% 3.60% 

Table 8.14 – Trading Results 

An initial investment of $10,000 made on May 29, 1990, in the top 15 DJIA 

component stocks using the TSDM method would have grown to $16,777 at the end of 

March 8, 1991. One caveat to this result is that it ignores trading costs [59]. The trading 

cost is a percentage of the amount invested and includes both the buying and selling 

transaction costs along with the spread between the bid and ask. The return of the top 15 

DJIA component portfolio using the temporal pattern cluster investment method is 

reduced to 63.73% or 87.76% annualized when a trading cost rate of 0.01% applied. This 
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level of trading cost would require investments in the $500,000 to $1,000,000 range and 

access to trading systems that execute in between the bid and ask prices or have spreads 

of 1/16th or less. A 0.2% trading cost applied to the same portfolio results would reduce 

the return to 3.54% or 4.55% annualized. 

In this chapter, the TSDM method was applied to financial time series. Using 

temporal pattern clusters from single and multiple time series as a trading tool has yielded 

significant results. Even with a complex, nonstationary time series like stock price and 

volume, the TSDM method uncovers temporal patterns that are both characteristic and 

predictive. 
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Chapter 9 Conclusions and Future Efforts 

Through the novel Time Series Data Mining (TSDM) framework and its 

associated methods, this dissertation has made an original and fundamental contribution 

to the fields of time series analysis and data mining. The key TSDM concepts of event, 

event characterization function, temporal pattern, temporal pattern cluster, time-delay 

embedding, phase space, augmented phase space, objective function, and optimization 

were reviewed, setting up the framework from which to develop TSDM methods. 

Chapters 4 and 6 developed TSDM methods to find optimal temporal pattern 

clusters that both characterize and predict time series events. TSDM methods were 

created for discovering both single and multiple temporal pattern clusters in single and 

multi-dimensional time series. Additionally, a set of filtering and time series windowing 

techniques was adapted to allow prediction of nonstationary events.  

This dissertation has demonstrated that methods based on the TSDM framework 

successfully characterize and predict complex, nonperiodic, irregular, and chaotic time 

series. This was done, first, through a set of explanatory and basic examples that 

demonstrated the TSDM process. TSDM methods were then successfully applied to 

characterizing and predicting complex, nonstationary, chaotic time series events from 

both the engineering and financial domains. Given a multi-dimensional time series 

generated by sensors on a welding station, the TSDM framework was able to, with a high 

degree of accuracy, characterize and predict metal droplet releases. In the financial 

domain, the TSDM framework was able to generate a trading-edge by characterizing and 

predicting stock price events. 
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Future efforts will fall into three categories: theoretical, application, and 

performance. Theoretical research will be conducted to determine the required dimension 

of the reconstructed phase space given an arbitrary number of observable states. There 

are many research applications for TSDM, including: high frequency financial event 

prediction, incipient fault prediction in induction motor-drive systems, and 

characterization of heart fibrillation. As the time series data sets grow larger, the 

computational effort required to find hidden temporal patterns grows, requiring higher 

performance implementations of the TSDM methods. 

As discussed in Chapter 2, Takens proved that a 2Q+1 dimensional phase space 

formed using time-delay embedding is guaranteed to be an embedding of, i.e., 

topologically equivalent to, an original Q-dimensional state space. This theorem is based 

on using one observable state to reconstruct the state space. Povinelli and Feng showed 

experimentally in [2] that using multiple observable states can yield better results. The 

unanswered theoretical question is: What phase space dimension is required for an 

arbitrary number of observable states so that the phase space is topologically equivalent 

to the original state space? It is obvious that when all Q states are observable, then the 

reconstructed phase space need only be Q-dimensional. Future research efforts will 

investigate the relationship between the number of observable states n and the required 

phase space dimensionality when 1 n Q< < . 

One of the future application efforts will be to create a synergy between the 

research of Demerdash and Bangura, which demonstrated the powerful abilities of the 

Time-Stepping Coupled Finite Element-State Space (TSCFE-SS) method in predicting a 

priori characteristic waveforms of healthy and faulty motor performance characteristics 
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[60-65], and the Time Series Data Mining (TSDM) framework presented in this 

dissertation to characterizing and predicting incipient motor faults. 

Improving computational performance will be addressed through two research 

directions. One direction is to investigate alternative global optimization methods such as 

interval branch and bound. A second parallel direction is to investigate distributed and 

parallel implementations of the TSDM methods. 

Through the creation of the novel TSDM framework and methods, which have 

been validated on complex real-world time series, this dissertation has made a significant 

contribution to the state of the art in the fields of time series analysis and data mining. 
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