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Abstract

The Bifurcating Neuron (BN), a chaotic integrate-and-fire neuron, is a model of a neuron augmented by coherent modulation from its
environment. The BN is mathematically equivalent to the sine-circle map, and this equivalence relationship allowed us to apply the
mathematics of one-dimensional maps to the design of a BN network. The study of the bifurcating diagram of the BN revealed that the
BN, under a suitable condition, can function as an amplitude-to-phase converter. Also, being an integrate-and-fire neuron, it has an inherent
capability to function as a coincidence detector. These two observations led us to the design of the BN Network 2 (BNN-2), a pulse-coupled
neural network that exhibits associative memory of multiple analog patterns. In addition to the usual dynamical properties as an associative
memory, the BNN-2 was shown to exhibit volume-holographic memory: it switches to different pages of its memory space as the frequency
of the coherent modulation changes, meaning context-sensitive memory. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The realization of associative memory in a pulse-coupled
neural network (PCNN) has been a topic of interest among
many scientists, and several PCNN models realizing asso-
ciative memory have been proposed (Bibbig, Wennekers &
Palm, 1995; Fukai & Shiino, 1995; Gerstner & van
Hemmen, 1992; Herz, Li & van Hemmen, 1991; Maass &
Natschlaeger, 1998; Wennekers, Sommer & Palm, 1995).
Although each of the PCNN models is different and states its
own unique idea, we can identify two major categories into
which most of the PCNN models can be classified. The
models in the first category utilize the incoherent dynamics
of the PCNN (Gerstner & van Hemmen, 1992; Herz et al.,
1991). In a PCNN operating in an incoherent mode, where
the individual firing time of a neuron does not count, the
function of a spiking neuron is similar to that of a sigmoidal
neuron. In this respect, the models of the first category can
be regarded as PCNN implementations of the continuous
time version of the Hopfield network. The models in the
second category utilize the coherent dynamics of the
PCNN (Bibbig et al., 1995; Maass & Natschlaeger, 1998;
Wennekers et al., 1995). In a PCNN operating in a coherent
mode, the firing of a neuron is confined to small periodic
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windows, and the probability of the firing is determined by
the firings of presynaptic neurons in the previous windows.
Conceptually, the dynamical picture of a PCNN operating in
such a coherent mode is akin to that of the discrete time
version of the Hopfield network. The associative memory
dynamics of a PCNN, whether it is coherent or incoherent,
appear to be equivalent to that of the Hopfield network, of
course, not in a strict mathematical sense, but in a concep-
tual sense. A clear consequence of such equivalence is that
the PCNN models end up being a binary associative
memory, i.e. an associative memory that can store binary
patterns.

The name ‘binary associative memory’ may sound some-
what unfamiliar since it seldom appears in neural network
literature. It seems that the ‘binary’ part is usually implied
and understood, and there is no need to mention it explicitly.
This convention seems to have a long history dating back to
when Cragg and Temperley (1955) introduced an associa-
tive memory mechanism where memory resides in the
hysteresis of the domain patterns of a magnetic system.
The idea is extended by Caianiello (1961) by incorporating
a Hebbian learning, and is taken up by Little and Shaw
(1975) and again by Hopfield (1982). This means that
most associative memory networks introduced so far are
the offspring of the common idea based on the analogy
with a magnetic system, and this explains why the modifier
‘binary’ is usually assumed. This observation naturally
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Nomenclature
List of symbols

xi(1) The internal potential of BN i

0.,(1) The threshold level of BN i

pi(®) The relaxation level of BN i

p(?) Same as p(?) (p,(¢) is independent of i)

Do The amplitude of p(7)
f The frequency of p(f)
ci The constant buildup rate of x,(¢)

yi(n) The output of BN i
ti(n) The n-th firing time of BNi

ui(n) The external (extrinsic) input to BN i
u{(n) The network (intrinsic) input to BN §
k

0 The perturbation in 6,(¢) induced by presynaptic BNs
B The reciprocal time constant of the threshold level of a BN

Wi The binary weight of the k-th connection from BN j to BN i

Tf‘j The time-delay of the k-th connection from BN j to BN i

0% A constant parameter that controls the overall efficiency of external inputs
d A constant parameter that controls the overall efficiency of network inputs
&F The i-th component of the k-th training pattern

leads to the following question: is it impossible to realize an
analog associative memory in a neural network?

It seems that studies in neuroscience do not provide any
evidence in favor of a binary or an analog associative
memory. Although there are several biologically inspired
models for a binary associative memory, as some examples
are shown above, this does not disprove the possibility of
analog associative memory in the brain. In fact, we have
reason to believe, though we cannot prove, that the brain is
utilizing analog associative memory. First, both the input
(sensory signals) to and the output (motor signals) from the
brain are in a graded-valued (analog) form. This means that
analog associative memory can be a more useful form of
memory than binary one. Second, unlike a sigmoidal
neuron, which is basically a thresholding element, a real
biological neuron has far more capability than simply
producing all or none output. For instance, as we will
mention again below, there are many neurophysiological
findings that suggest information coding in the spiking
time (firing instances) of a neuron. Third, it is known that
a neuron in the brain typically makes synaptic connections
of the order of 10* to its neighbors and often makes multiple
connections to the same target neuron (Kuffler, Nicholls &
Martin, 1992). It is hard to understand the purpose of such
recurring connections' if we try to understand it with the
binary associative memory mechanism in mind.

In the following, we will describe the Bifurcating Neuron
(BN), our neuron model, and then introduce the Bifurcating
Neuron Network 2 (BNN-2), a network of BNs that demon-

! Recurring interconnections mean multiple connections from a pre-
synaptic neuron to a postsynaptic neuron.

strates a possible mechanism of analog associative memory
in a PCNN. To begin with, we will summarize briefly some
of the recent neurological findings that have influenced and
guided our conceptualization of the BN and the BNN-2.

The so-called coding problem (Rieke, Warland, de
Ruyter van Steveninck & Bialek, 1996), which deals with
how the brain encodes information in neuronal spikes, has
been a topic of continuing debate in neuroscience. The most
widely accepted coding scheme is called rate coding, where
information is represented by the mean firing rate of a
neuron, whether in a temporal sense or in a spatial sense.
This hypothesis was first proposed by Adrian (1926) from
the study of the relationship between the activity pattern of a
stretch receptor in a frog muscle and the amount of weight
applied. On the other hand, recent experimental studies are
revealing a growing number of new facts beyond the expla-
nation of rate coding and are suggesting the possibility of
information coding in the precise timing of neuronal spikes,
namely, time coding. An especially descriptive example
supporting time coding in the brain is provided by O’Keefe
and Recce (1993), who studied the firing behavior of hippo-
campal place cells (O’Keefe & Dostrovsky, 1971). They
showed that the firing phases of the place cells with respect
to the theta rhythm have a high level of correlation with the
animal’s location on a linear runway. This result suggests
the possibility of coding spatial location information in the
relative firing phases of neuronal spikes.

Another topic in neuroscience that has had influence on
our network design is the role of coherent activities in the
brain, especially those in the gamma-band centered around
40 Hz. Some of the early observations of gamma-band
oscillatory activities were made in the olfactory bulb and
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cortex of the rabbit (Freeman & Skarda, 1985), in the olfac-
tory systems of the cat and the rat (Bressler & Freeman,
1980), in a variety of structures of the cat brain (Basar,
1983), in the cat primary visual cortex (Eckhorn, Bauer,
Jordan, Brosch, Kruse, Munk et al., 1988; Gray & Singer,
1989), in the monkey visual cortex (Freeman & van Dijk,
1987), and in EEG recordings from the human skull above
association and motor areas (Krieger & Dillbeck, 1987).
The observation of a synchronous activity in the cat visual
cortex by Gray and Singer (1989) has drawn and continues
to draw special attention because, in their experiments, the
synchronous activity was stimulus specific and was
observed across cortical regions, e.g. across multiple visual
association areas, with small phase differences. Gray and
Singer related their result to the so called feature-binding
hypothesis (Milner, 1974; von der Malsburg, 1981), which
states that synchrony provides a means to bind together in
time the features that represent a particular stimulus.

Although the role of coherence is still the focus of debate,
it was necessary to define a role of coherence that can guide
our network design. The one that we chose over other possi-
bilities states that a coherent activity in an integrate-and-fire
neuron network can provide a time reference. This role may
sound excessively general or even trivial, but it is certainly
essential. In the absence of a time reference, the information
that time coding can carry would be extremely limited. The
aforementioned O’Keefe and Recce (1993) experiment is a
good example for such a role of coherence (the theta
rhythm). The fact that rate coding is common in sensory
or motor neurons is also consistent with such a role of
coherence: rate coding must be the only choice when a
common time reference extending throughout the nervous
system is not available. If the role of coherence in biological
systems is to provide a time reference, we do not need to
complicate the design of our network by adding a mechan-
ism to produce coherence; we can provide a time reference
from outside.

The BN is a variation of the integrate-and-fire neuron
model (Glass & Mackey, 1979). We chose the integrate-
and-fire neuron model because it is simple, but still can
deal with time coding. Its internal potential increases in
response to a postsynaptic current until it reaches a thresh-
old level. When the potential touches the threshold level, it
drops instantaneously to a relaxation level, producing a
spike output. The behavior of an integrate-and-fire neuron
appears to be monotonous: it repeats a regular cycle of
charging and discharging. This unrealistically simple
picture of an integrate-and-fire neuron is the result of an
unrealistic assumption about the environment surrounding
the neuron. A neuron in a biological neural network receives
inputs from many different parts of the brain and is also
subject to noise from inside and outside. Also, the same
input can have different effects depending on the nature
and the position of the synapse. Consideration of every
detail of the interaction of a neuron with its environment
would be impractical. Therefore, we made the following

rather simplistic assumptions about the artificial environ-
ment surrounding an integrate-and-fire neuron. First, the
environment provides a persistent incoherent input to the
neuron, which helps the neuron keep active at an optimal
operating point. Second, the environment also provides a
persistent coherent input to the neuron, which is common
to all the neurons in the same network and serves as a time
reference.

It is possible to design a network such that it can provide
itself with such incoherent and coherent inputs. For
instance, some extra diffuse connection can be added
between model neurons so that the neurons can feed each
other with an incoherent input. Also, a part of the network
can be used to build a pace maker that can provide a coher-
ent input to other parts of the network. However, any
attempt to model a biological neural network cannot avoid
an approximation at some part of level of modeling. Here,
we are approximating the mechanisms that are responsible
for the incoherent and the coherent input by simply calling
them ‘the environment’. This way, we can focus on what
happens when a time-coding-aware model network is
subjected to such background activities. In this respect, a
BN does not represent a neuron as it is, but a neuron
augmented by incoherent activities and coherent activities
in its environment. This is akin to the concept of an electron
with an effective mass in solid state physics: an electron
with an effective mass is not a model of an electron standing
alone in the vacuum, but a model of an electron augmented
by the influence of the atoms in the lattice surrounding it.

The following set of equations defines the BN:

dy;,

FTE (1)
0,(n) =1 (2)
pi(t) = posin2fi (3)

where x;(?), 6,(t), and pt) are the internal potential, the
threshold level, and the relaxation level of BN i, respec-
tively. Eq. (1) defines the behavior of the internal potential
x;(t) while it does not experience a relaxation. The internal
potential x;(f) rises at a constant rate c;, due to a constant
feed by an incoherent source, until it reaches the threshold
level 6;(t). On touching the threshold level, the internal
potential x;(¢) drops instantly to the relaxation level p;(¢).
Eq. (2) defines the threshold level of BN i, which is constant
when a BN has no connection from other BNs. Eq. (3)
defines the behavior of the relaxation level, which maintains
a sinusoidal oscillation of an amplitude p, and a frequency f
due to a sinusoidal stimulation from a coherent source.
Since the sinusoidal oscillation is extrinsic in nature, we
call p;(¢) adriving signal and, accordingly, p, and fa driving
amplitude and a driving frequency, respectively. Also, we
will omit the subscript of p,(#) hereafter since a driving
signal is shared by all the BNs in a network.

Fig. 1a depicts the typical behavior of the BN: it repeats a



constant buildup and an instant relaxation while it is
subjected to a driving signal p(f). An important fact to
emphasize again here is that a driving signal provides a
time reference to the BN. This fact is more clearly demon-
strated in Fig. 1b, that shows the firing times of the BN with
respect to a modulus of 1, which is the period of the driving
signal. Although the firing of the BN here is not completely
phase locked to the driving signal, the firing time exhibits a
clear structure when it is represented relative to the phase of
the driving signal. In addition to providing a time reference,
the driving signal turns the BN into a chaotic neuron. This
fact is also demonstrated in Fig. 1b, where one can see that
the firing-time pattern is bifurcating until it becomes chaotic
as the amplitude of the driving signal increases. Such a
dynamic behavior of a neuron subjected to an oscillatory
input has been a subject of interest among many researchers
(Aihara & Matsumoto, 1986; Hayashi, Ishizuka, Ohta &
Hirakawa, 1982; Holden & Ramadan, 1981), and a detailed
treatment of the same theme, applied to integrate-and-fire
neurons, appears in Farhat and Eldefrawy (1991, 1992).
Farhat and Eldefrawy discovered that an integrate-and-fire
neuron can operate in dynamically distinct modes of opera-
tion depending on the amplitude and frequency of an
applied oscillatory input, and showed that such a model
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Fig. 2. The bifurcation diagrams of the firing time #;(n) (mod 1) of the BN as the bifurcation parameter ¢; sweeps from 0.5 to 1.5: (a) f=1 and p, = 0.1; (b)

f=1and py=02.

page can be activated by the tuning of the driving
frequency.’

The volume-holographic flavor of the BNN-2 implies
that the memory capacity of the BNN-2 can be expanded
by adding more recurring interconnections while the
number of BNs is kept constant. This feature is in
sharp contrast with that of traditional neural networks,
where memory capacity is usually determined solely by
the number of neurons. The volume-holographic flavor
of the BNN-2 would not immediately translate into a
practical advantage because adding more interconnec-
tions is often more costly than adding more neurons.
Nevertheless, the volume-holographic flavor of the
BNN-2 can explain one possible function of the dense,
often recurring, connections observed in biological
neural networks. The role of recurring connections in
biological neural networks is difficult to understand
from the viewpoint of traditional neural networks, e.g.
the Hopfield networks, because, in these networks,
adding recurring connections to an already fully-
connected network is hardly meaningful. It should be
emphasized that it is the time coding nature of the
BNN-2 that enables its volume-holographic flavor.

In Section 2, we will explain the mechanism that makes
the BN behave as an amplitude-to-phase converter. In
Section 3, we will describe a pulse-coupling scheme that
will make the BNN-2 an analog associative memory. In
Section 4, we will suggest three different methods of train-
ing the BNN-2, thereby completing the definition of the
BNN-2. In Section 5, we will test the proposed mechanism
in a series of numerical simulations. In the final section, we
will summarize our work presented in the paper and list
some afterthoughts regarding the potential and the future
of the BNN-2.

3 The similarity between the role of the driving frequency in the memory
recall of the BNN-2 and the role of the incidence angle of the refractive
wave in volume holography will become more clear if one thinks of the
reference beam in holography in terms of the angular spectrum of plane
waves (Goodman, 1996).

2. Amplitude-to-phase transformation characteristics of
the BN

In Fig. 1a, the ratio of the two perpendicular sides of the
shaded triangle is equal to c;, the linear buildup rate of the
internal potential x;(f). Therefore, the n-th firing time of a
BN #(n) satisfies the following recursion when the BN is
subjected to a sinusoidal oscillation given by Eq. (3):

tin+ 1) =1t + cl — %sin}rrfti(n) 4
Fig. 2 shows the bifurcation diagram of the firing time ¢#;(n)
(mod 1) of a BN as the bifurcation parameter c¢; ranges
from 0.5 to 1.5. Note that these bifurcation diagrams
look completely different from that shown in Fig. 1 since
the buildup rate c¢; is now chosen as a bifurcation para-
meter. In the period-1 windows of the bifurcation
diagrams, which are centered around the point ¢; = 1, the
curves formed by fixed points are given by the following
equation which can be derived from Eq. (4) by letting
t;(n+1)=1t;(n) + 1/f.

1 1 c;
tf = lim t;,(n) = —arcsin—(l — —l) 5)
n—eo 2nf Po f
If we let ¢; = f + u;, Eq. (5) becomes
* 1 .ou;
i = — ——arcsin— (6)
2nf fpo

When u; is 0, t*; becomes 0. This means that the BN fires
exactly at the beginning of the sinusoidal cycle of the
driving signal p(f). As u; increases, however, a ‘phase-
lead’ develops: the spiking of the BN starts to lead the
beginning of the sinusoidal cycle. On the other hand, if
u; decreases, a ‘phase-lag’ develops: the spiking of the
BN starts to lag behind the beginning of the sinusoidal
cycle. According to Eq. (6), the phase of the spiking
changes from 1/2mf to —1/2wf when u; changes from
—fpo to fpo. In other words, if we regard u; as an external
input, the BN is converting the external input to a phase
shift in its output spike time.
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Fig. 3. Amplitude-to-phase transformation by a series of BNs.

Fig. 3 illustrates what the amplitude-to-phase conversion
implies when it comes to a network of BNs. The bar graph
on the left side shows an analog input pattern u;. All the BNs
in the network are phase locked to a driving signal and will
respond to the analog input with proportional phase-leads in
their firing times. Therefore, one can expect that the input
pattern will be produced as a ‘phase-lead pattern’ in the
firing times of the BNs as shown in the raster plot on the
right side. This figure reminds us of a similar figure that
appears in Hopfield (1995). He also suggested that a spiking
neuron can convert an analog input to a phase shift when it
is influenced by an oscillatory drive. It is interesting to see
that we arrived at seemingly the same result as his, despite
an apparent difference between his neuron model and the
BN, our neuron model. As an aside, we would like to point
out that this similarity will allow us to use his application
ideas for the BN and its network. For instance, we will be
able to use a BN network to detect an analog pattern, if we
add a coherence-detector neuron which receives spikes from
the BNs through properly time-delayed connections.
However, the detailed conversion characteristics of the
BN is different from that of his model neuron. For instance,
the BN performs an almost linear conversion while his

(@) u,=0,u, =0
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model performs a nonlinear conversion, e.g. a logarithmic
conversion under a certain condition. Therefore, we would
not be able to use the BN to explain the logarithmic intensity
transformation of the visual system, for example. Note,
however, that linear conversion is better than any other
type of conversion, as far as an associative memory is
concerned, since it can transfer information with the mini-
mal loss in the presence of noise.

3. Pulse coupling between BNs

As shown in the previous section, a network of BN,
given an analog input pattern u;, develops a phase-lead
pattern which is related to the input pattern by Eq. (6).
However, the induced phase-lead pattern will fade away
as soon as the input is removed. It was speculated that the
network may be able to maintain the induced phase-lead
pattern even after the removal of the input if it can establish
appropriate time-delayed interconnections between BNs.
This idea is illustrated in Fig. 4 which shows a thought
experiment that uses a minimal example network of two
BNs. A step-by-step explanation of the experiment follows:

Fig. 4a. Initially, no input is provided to the BNs. Accord-
ing to Eq. (6), both BNs will be firing exactly at the begin-
ning of the sinusoidal cycle of a driving signal. This means
that they are in synchrony. However, this does not mean that
they are phase locked to each other, but they are phase
locked to the driving signal p(#) which is common to all
of them.

Fig. 4b. A positive external input is provided to BN 2.
According to Eq. (6), BN 2 will develop a phase-lead of a
small amount. This phase-lead will persist as long as the
input is maintained.

Fig. 4c. Two time-delayed connections are added: one
from BN 1 to BN 2 and the other from BN 2 to BN 1.

(b)u =0,u,=0.1
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Fig. 4. A simple example to illustrate a possible mechanism to realize an associative memory using a BN network.
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The lengths of the time delays are determined such that the
situation may look as if the firings of the BNs are triggered
by each other. The required lengths of the time delays, 7,
and 75, can be calculated by using Eq. (6).

Fig. 4d. The input to BN 2 is removed. What will happen
then? We expect that the phase-lead of BN 2 which was
induced by the input will now be maintained by the time-
delayed connections.

The threshold coupling suggested in the thought experi-
ment can be represented by the following equation:

6;(t) =1 — 8,1 )

where 6,(f) denotes a perturbation in the threshold level
induced by inputs from presynaptic BNs. Since the purpose
of the threshold coupling is to maintain an induced phase-
lead pattern, the coupling should have a short time constant
so that it is capable of fine time resolution. A simple, but
effective, type of coupling we chose is given by the follow-
ing first order equation:

ag;

5 = BT o) @®)
or, equivalently,

do, N f

5 = B0 — 1) —duj(r) ©)

where 3 is the reciprocal time constant of the restoring
dynamics of the threshold level, u{ (7) represents the network
input, i.e. the input from presynaptic BNs, and d is a
constant that controls the overall coupling strength of the
BNs. The input u’; (#) is the weighted sum of the delayed
spike trains from the presynaptic BNs:

1 K
W)= Y why - ) (10)

j=1 k=1

where the variable y;(¢) represents the output of BN i and
can be approximated by a series of Dirac-delta functions,
each of which represents a spike in the spike train:

N;
yit) =D 8(t = 1;(n) (11)
n=1

where ¢;,(n) is the n-th firing time of BN i, and V; is the
ordinal number of the latest firing of BN i. A synaptic
connection from BN j to BN i is characterized by the two
quantities, wg- and 1{; the strength and time delay of the
connection. In the current network design, the weight matrix
wg is either 1 or 0, only indicating the existence of a connec-
tion, while the delay matrix frg» can take any real number
centered around the average firing period of the BNs for the
reason that will soon become clear. The superscript k
signifies the possibility of recurring connections between a
pair of BNs, and it, as it will turn out, is also the index of
analog patterns to be remembered by the network. The

required time delay 75- for the network to maintain a
phase-lead pattern induced by an input i; is given by Eq.
(6), i.e.
. 1 1 1 u; u;
=0 —t+—-=—-— —(arcsin—’ — arcsin—j)
! Tf o f 2 fpo fpo
(12)

where 1/fis added to (#f — ;) in order to make sure that 7}; is
positive for all i, j, and k.

The thought experiment was about a network of two BNs
which can store a single training pattern. Can the idea be
extended to the case of a larger network and multiple train-
ing patterns? A series of simulations that follow will show
that it is indeed the case, and that the associative memory
becomes more robust as more BNs are involved in the
network.

4. Training methods for BNN-2

Since the weight matrix wf; is binary valued, it is more
a design parameter that defines the structure of the BNN-
2 than a target of training at least in this exploratory
stage of the study of the BNN-2. Therefore, the follow-
ing discussion of training methods concerns how to
determine or adapt the delay matrix Tfj given a set of
training patterns. Consider the following two different
choices of training methods:

Online training. Suppose that a BNN-2 already contains
many recurring connections of a spread of time delays, but
of negligibly small strengths. A training pattern, when
applied to the network, will induce a phase-lead pattern in
the firing times of the BNs. While the phase-lead pattern is
maintained, we let each BN strengthen those incoming
connections that deliver a spike from other BNs at the
exact moment it fires. Repeat the same procedure for
other training patterns.

Off-line training. Given a set of training patterns, we can
calculate the corresponding time delays of connections by
using Eq. (12). One can add all the required connections at
once and in advance.

The online training would be a more biologically plausi-
ble way of training the BNN-2 since ‘strengthen those
incoming connections that deliver a spike from other BNs
at the exact moment it fires’ is stating exactly the principle
of an online Hebbian learning (Hebb, 1949). Another advan-
tage of the online training is that one does not need to
depend on Eq. (12) which may become inaccurate if the
driving signal of the BNN-2 is not perfectly sinusoidal.
We are currently working on the online training of the
BNN-2, but still have some practical problems to solve. In
the following series of simulations, we will use a training
method that we call ‘quasi-online training’. It may be
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Fig. 5. Training patterns to be used in the simulations of the BNN-2 to test the associative memory function of the BNN-2. The intensity of the pixels in the plot
denotes the values of §,vk, uniform random numbers between 0 and 1; black for O and white for 1.

regarded as an online training method because it defines a
simple action that can be done by individual BNs when a
new training pattern is presented to a BNN-2. On the other
hand, it is not an online training method in a true sence
because it requires the addition (creation) of new
connections to the network, which is not quite biologically
plausible.

Quasi-online training. Suppose that BNN-2 contains
no inter-BN connections initially. When a training
pattern is applied to the network, it will induce a
phase-lead pattern in the network. After the phase-lead
pattern is stabilized, create time-delayed connections
between BNs, where the amount of time delay of
each connection is determined such that spikes from
presynaptic BNs can arrive at postsynaptic BNs at the
exact moment the postsynaptic BNs fire. Note that the
computation of the time delays does not require the use
of Eq. (12) since the time delay of a new connection is
simply the difference in the firing times of a source and
a destination BN. Repeat the same procedure for other
training patterns.

5. Analog associative memory

The definition of the BNN-2 does not specify a parti-
cular form of network topology. BNs may be arranged
in a one-dimensional or two-dimensional configuration,
and they may have short range or long range intercon-
nections. In the following numerical simulations of the
BNN-2, we will assume that BNs form a two-dimen-
sional lattice, and they have only local interconnections
with neighboring BNs. Suppose that BNs are arranged
in an LXL planar configuration (= L?. Each BN is
connected to its neighbors that are within the Hemming

distance r. (inclusive), i.e.

. { 1 dGj)=r,

wh = (13)
0 dG,j) > r.

for all k, where d(i, j) denotes the distance between BN i and
BN . In order to demonstrate the associative memory func-
tion of the BNN-2, we prepared eight training patterns &F as
shown in Fig. 5, where k is the index of training patterns,
and 7 is the index of pixels. Since the pixel values of the
training patterns range from O to 1, they need to be rescaled
properly so that they may fall within the input dynamic
range of the BNN-2, i.e.

u; = Y poét (14)

where y < 1 is a positive scaling factor, and f and p are the
frequency and the amplitude of the driving signal. Eq. (12)
now becomes

« 1 1

1
=t 1 77 2 (arcsiny§; — arcsiny§;)
(15)

Preliminary numerical experiments showed that the network
parameters, po, ¥, and 3, should be determined carefully for
the optimal performance of the BNN-2 while the driving
frequency f can be chosen to be 1, without loss of generality,
by a proper normalization of the time variable. Currently,
we are working hard toward the development of a systema-
tic method for finding the optimal network parameters.
Meanwhile, however, we will rely on the following rules
of thumb, which we gathered from trials and errors.

e As p, becomes larger, the BNs tend to have a stronger
synchronizing tendency, but seems to become less toler-
ant of an error in the time delays of the interconnections.
A series of trials and errors led us to the conclusion that
po= 0.1 is a reasonable choice.
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Fig. 7. Simulation 1: the time evolution patterns of the BNN-2 shown in a gray-scale raster plot, where black represents a firing-time lead of 0.05, and white

represents a firing-time lag of 0.05: (top) for d = 0.007 and (bottom) for d =

evolution is the same as that of the first experiment. The
only difference is in the recall quality of the embedded
pattern: the recalled pattern is in better agreement with the
input pattern & than that of the first case. Of course, this
result does not mean that larger choice of d will always give
better recall quality. If d is chosen too large, the behavior of
the network becomes unpredictable.

5.2. Simulation 2: multiple attractors in the BNN-2

A similar network configuration as was used in the
previous simulation is used to test if the BNN-2 can remem-
ber multiple patterns simultaneously. The first four patterns
in Fig. 5 are used in this simulation. The required inter-BN
connections can be added to the network in the same way as
before except that the network now needs multiple, recur-
ring connections between the same source and destination
BNs. All the required connections are added to the network
in advance according to the quasi-online training scheme
defined in Section 4.

Suppose that the first training pattern & is applied to the
network as an input. The connection associated with this
pattern will give rise to strong synchronized spikes in the
threshold levels of the BNs. On the other hand, the other
connections will result in a spread of small spikes. This

0.011.

effect is statistical in nature and, therefore, it is necessary
to have large numbers of connections among BNs. In this
simulation, the radius of connection r, is chosen to be 3,
which gives M = 48. The choice of the other network para-
meter values in this simulation is as follows: f = 1, py =
0.1,y=0.5,8 =200, and d = 0.0013. This value of d is
chosen as such based on the rough estimation given by Eq.
(16): d > 0.05/48 = 0.001 for M = 48.

o At =0, the network is randomized, i.e. the internal
potential of the BNs are initialized with random
numbers.

e At 1= 50, the first training pattern &, is applied to the
network as an input, i.e. u; = Y poél.

e At t=75, the input is removed, i.e. u; = 0.

e The above two steps are repeated for the remaining
training patterns.

e At t= 250, a random pattern, which is not one of the
four training patterns, is applied to the network as an
input.

e At t= 275, the input is removed.

The simulation results are shown in Fig. 8 which contains
two types of plots: a raster plot which was also used in the
previous simulation, and a line plot, which shows the
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Fig. 8. Simulation 2: (top) the time evolution pattern of the BNN-2 shown in a gray-scale raster plot, where black represents a firing-time lead of 0.05, and
white represents a firing-time lag of 0.05, and (bottom) the change of the correlation y, () in time.

temporal change of the correlation between the phase-lead
pattern of the network and one of the four training patterns
during the simulation:

1
D> E = ENGD — L)

i=1

X)) = - - (18)
SE-EVD G - Loy
i=1 i=1

where

_ 1d

=>4 (19)
i=1

_ 1d

L= 7> 40 (20)
i=1

and £ «(7) is defined in Eq. (17). According to this defini-
tion, y,(7) will take small value close to 0 when there is no
correlation between §,~k and {(¢), but will be maximized
(£(t) = 1) when {(t) is proportional to §f‘.

The simulation results demonstrate that there is a marked
difference in the responses of the network to a known
pattern and an unknown pattern. A phase-lead pattern
induced by a known pattern persists after the removal of
the input until a new input is applied. The response of the

network is completely different for an unknown pattern:
the network forgets the pattern as soon as the input is
removed. The bottom line is that the BNN-2 is capable of
remembering multiple analog patterns essentially without
interference.

5.3. Simulation 3: large basins of attraction?

We have shown that the BNN-2 can maintain the phase-
lead pattern which is induced by one of the training patterns
(known patterns). On the other hand, it cannot maintain the
phase-lead pattern which is induced by random patterns
(unknown patterns). This demonstrates the basic memory
capability of the BNN-2. However, this alone is not suffi-
cient to make the BNN-2 a useful associative memory since
an associative memory should be able to recognize a pattern
which is known, but is distorted by noise. Also, the entire
input pattern sometimes may not be available, and an asso-
ciative memory is required to complete the entire pattern
from a part of it. In terms of nonlinear dynamics, this
problem reduces to that of the size of a basin of attraction.
We have shown in the foregoing simulations that the train-
ing patterns form attractors in the BNN-2. However, we still
need to examine how large are the basins of attraction asso-
ciated with the attractors. In fact, we have already answered
this question, though in part, in Simulation 1. The BNN-2,
which was started with a random initial condition, could
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Fig. 9. Simulation 3 (8 = 300): (top) the time evolution pattern of the BNN-2 shown in a gray-scale raster plot, where black represents a firing-time lead of
0.05, and white represents a firing-time lag of 0.05, and (bottom) the change of the correlation y(¢) in time.

successfully recall an embedded pattern. This means that the
basins of attraction associated with the embedded pattern
were occupying the whole input space. However, the answer
is only to a special case of a single training pattern. Simula-
tion 3 will answer the same question when BNN-2 is
required to store more than one pattern. The choice of the
network parameter values used in this simulation is
summarized below: r.=3, f=1, py=0.1, y=0.5,
B =200 and 300, and d=0.0025. The same simulation
will be repeated for the two different values of 3.

We prepared corrupted versions of the first four training
patterns, which were shown in Fig. 5, to be used in the
simulation.

koi<1In
kz{ft i / (21)

&
0 i>12

The first half of each corrupted version is the same as that of
the corresponding original pattern, and the second half is
filled with zeros. All the connections with the required time
delays to store the four original training patterns are estab-
lished in advance according to the quasi-online training
scheme defined in Section 4.

e At r=0, the corrupted version & il of the first training
pattern is applied to the network as an input, i.e.

u; = Y poé ,-1. Then, the network is allowed to run until
t =50 so that it can reconstruct the whole pattern.

e The above step is repeated for the other corrupted train-
ing patterns: 5,2 at =50, 5,3 at =100, and 5,4 at
t=150.

The result of the case of 8 = 300 is shown in Fig. 9. We can
see an apparent visual difference in the pattern of the
network response to the inputs in the first and the second
halves of the network. A longer transient period in the
second half of the network indicates the network’s effort
to reconstruct the missing part in the input patterns. In the
case of B = 200, the network could reconstruct the missing
part successfully for the first, third and fourth training
patterns, but not for the second pattern. It seemed that the
network tends to perform better when the parameter 3 is
larger. However, the network model will depart further from
biological reality if the parameter 3 becomes too large.

5.4. Simulation 4: volume holographic memory

According to Eq. (15), the time delays associated with the
connections required to store a pattern in the BNN-2 are
dependent on the driving frequency f. This means that the
BNN-2 can recall a stored pattern only when the same driv-
ing signal that was present at the time of training is present.
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Fig. 10. The first run of Simulation 4: (top) the time evolution pattern of the BNN-2 shown in a gray-scale raster plot, where black represents a firing-time lead
of 0.05, and white represents a firing-time lag of 0.05, and (bottom) the change of the correlation x,(¢) in time.

This situation is reminiscent of volume holography. For a
volume hologram to reconstruct a recorded image, it is
necessary that a reference beam should be supplied exactly
at the same angle as it was in the recording step. In fact, this
sensitivity to the angle of the reference beam enables
volume holography to store multiple patterns in a single
photorefractive crystal. It appears that the driving frequency
f of the BNN-2 plays the role of the angle of a reference
beam in volume holography. Therefore, the question which
we are about to answer in the simulation is this: can the
BNN-2 store different patterns at different driving frequen-
cies without causing interference among the patterns?

The values of the network parameters used in this simula-
tion are as follows: r.=3, f=1, py=0.1, y=0.5,
B =300, and d = 0.003. The same simulation was repeated
twice for different numbers of training patterns.

The result of the first run is shown in Fig. 10. The time-
delayed connections for the first four training patterns
shown in Fig. 5 are added to the network according to the
quasi-online training scheme. In doing so, we used different
driving frequencies for different training patterns: f=1,
1.02, 1.04 and 1.06 for the four training patterns, respec-
tively. At t = 0, the network is randomized, i.e. the internal
potentials of the BNs are initialized with random numbers.
While the simulation is running, the frequency of the driving
signal is changed discontinuously as follows: f=1 at =0,
f=102 at t=50, f=1.04 at +=100, and f=1.06 at

t=150. Each of the four embedded patterns shows up
when the driving frequency is switched to the frequency
which was used in the training of the pattern. This experi-
mental result clearly demonstrates that the memory of the
BNN-2 is, indeed, dependent on the driving frequency. In
other words, it demonstrates the multiplexing nature of the
BNN-2 associative memory.

In the second run, we used all the eight training patterns
shown in Fig. 5. The first four and the second four training
patterns were learned by the network under the driving
frequencies of f=1 and 1.02, respectively. We designed
this experiment in order to check if the two memory spaces
associated with the two different driving frequencies are
independent and do not interfere. The simulation procedure
is similar to that of Simulation 2 except that the fifth training
pattern is used in place of the random pattern which was
used in Simulation 2. The simulation result is shown in
Fig. 11.

e At t=0, the network is randomized, i.e. the internal
potential of the BNs are initialized with random numbers.

e At t= 150, the first training pattern §i1 is applied to the
network as an input, i.e. u; = yf poli.

e At t=75, the input is removed, i.e. u; = 0.

e The above two steps are repeated for the other three
training patterns.

o At t= 250, the fifth pattern, which is not one of the four
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Fig. 11. The second run of Simulation 4: (top) the time evolution pattern of the BNN-2 shown in a gray-scale raster plot, where black represents a firing-time
lead of 0.05, and white represents a firing-time lag of 0.05, and (bottom) the change of the correlation y;(¢) in time.

training patterns which were learned by the network
under the driving frequency of 1, is applied to the
network as an input.

e At t=275, the input is removed.

Throughout the simulation, the driving frequency was kept
constant at f= 1. Up to our expectation, the network cannot
recognize the fifth pattern which was learned under a differ-
ent driving frequency (f'= 1.02). The network is treating the
fifth pattern in the same way as it did a random pattern in
Simulation 2. This experiment result clearly demonstrates
the independence of the memory spaces associated with
different driving frequencies.

6. Conclusions

We applied the amplitude-to-phase converting function
of the BN to the design of an analog associative memory,
whose principle was illustrated using a simple thought
experiment. The idea was verified through a series of
numerical simulations. While the first three simulations
demonstrated the basic characteristics of the BNN-2 as an
analog associative memory, the last simulation emphasized
the multiplexing, or ‘volume-halographic’ flavor of the
BNN-2 memory. We are particularly interested in the
following characteristics of the BNN-2.

1. The memory of the BNN-2 is dependent on the presence
of a driving signal of a specific frequency. This implies
the following two consequences. First, the BNN-2 can be
turned on or off by an external control of a driving signal.
In the absence of a relevant driving signal, the response
of the BNN-2 is largely noisy and meaningless. It
becomes active only when a specific driving signal is
provided. Here, the role of a driving signal strongly
reminds us of the function of the thalamic reticular
complex suggested by Crick in his searchlight hypothesis
(Crick, 1984; Crick & Koch, 1990). Second, the memory
of the BNN-2 is driving-frequency dependent, i.e. it is
context dependent. The driving frequency may be used as
a context key to access different pages in the BNN-2
memory. This also means that the same neural network
can represent a completely different memory after a kind
of mode switching. We are almost tempted to translate
the context-dependency of the BNN-2 into the language
of neuroscience, but will postpone it until we become
more confident in the BNN-2 as a model of a biological
neural network.

2. The BNN-2 utilizes multiple recurring connections

between the same source and destination pair of BNs.
Considering the extremely high connectivity of the
brain (of the order of 10* for each neuron), the dramatic
reduction to a single connection between a source and a
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destination, as seen in most of the network models,
should be an oversimplification. Such a reduction may
be justified under a rate-coding approximation, but may
not if the individual timing of the neuronal spikes are to
be counted. With such multiple recurring connections, a
neuron now can signal to the destination neurons with a
temporal pattern, not merely with a single spike. The
BNN-2 provides an example how such recurring connec-
tions in the brain can be utilized.

The amplitude-to-phase converting function of the BN
alone may be able to find many useful applications. It can
be used to convert a rate-coded signal to a time-coded signal
which may be more appropriate as an input to another spik-
ing neuron network. It can be also useful in building a
pattern matching network similar to the one suggested by
Hopfield (1995) or building a radial basis function network
similar to those that appeared in Natschlaeger and Ruf
(1998).

As a final note, we have to mention that the work
presented in this paper is still exploratory in nature, and
our exploration of the possibility of the BNN-2 is by no
means complete. At the time of writing, we are diligently
working toward the establishment of a more theoretical
ground for the BNN-2. A few immediate goals of our
current study of the BNN-2 include the development of a
biologically-plausible online training method, the estima-
tion of the memory capacity of the BNN-2, and the devel-
opment of a systematic method for the optimal choice of the
network parameters.
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