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Quantum walk algorithm for element distinctness

Andris Ambainis

Abstract

We use quantum walks to construct a new quantum algorithreléonent distinctness and its gener-
alization. For element distinctness (the problem of findimg equal items among/ given items), we
get anO(N?/3) query quantum algorithm. This improves the previgsv3/*) quantum algorithm of
Buhrman et al.[[T4] and matches the lower boundby [1]. We gise anO(N*/(#+1)) query quantum
algorithm for the generalization of element distinctnesw/hich we have to find equal items among
N items.

1 Introduction

Element distinctness is the following problem.

Element Distinctness.Given numbers;, ..., zy € [M], are they all distinct?

It has been extensively studied both in classical and quacmputing. Classically, the best way to
solve element distinctness is by sorting which requie¢d/) queries. In quantum setting, Buhrman et al.
[T4] have constructed a quantum algorithm that uU3é87>/*) queries. Aaronson and Shi [1] have shown
that any quantum algorithm requires at Ieﬁ$N2/3) quantum queries.

In this paper, we give a new quantum algorithm that solvesiete distinctness witlh(N?/3) queries
tozy,...,zy. This matches the lower bound of [1, 5].

Our algorithm uses a combination of several ideas: quantarch on graphs]2] and quantum walks
[30]. While each of those ideas has been used before, therfiresmbination is new.

We first reduce element distinctness to searching a certaiphgwith verticesS C {1,...,N} as
vertices. The goal of the search is to find a marked vertexh Beamining the current vertex and moving
to a neighboring vertex cost one time step. (This contragtstive usual quantum search[26], where only
examining the current vertex costs one time step.)

We then search this graph by quantum random walk. We stadmif@rm superposition over all vertices
of a graph and perform a quantum random walk with one tramsitile for unmarked vertices of the graph
and another transition rule for marked vertices of the grdpe result is that the amplitude gathers in the
marked vertices and, aft€}(N?/3) steps, the probability of measuring the marked state is atanh
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We also give several extensions of our algorithm. If we havérid whetherzy, ..., xny containk
numbers that are equat;, = ... = z;,, we get a quantum algorithm with (N*/(k+1)y queries for any
constant k.

If the quantum algorithm is restricted to storinqumbers; < N2/3, then we have an algorithm which
solves element distinctness with N/+/r) queries which is quadratically better than the classiv@v?/r)
query algorithm. Previously, such quantum algorithm wasamonly forr < /N [I4]. For the problem
of finding £ equal numbers, we get an algorithm that u@q‘;;{,ff—ffm) queries and stores numbers, for
r < NO=D/k,

For the analysis of our algorithm, we develop a generabimatif Grover’s algorithm (Lemmid 3) which
might be of independent interest.

1.1 Related work

Classical element distinctness Element distinctness has been extensively studied chdlgsidt can be
solved withO (V) queries and)(N log N) time by querying all the elements and sorting them. Then, any
two equal elements must be next one to another in the sortleat and can be found by going through the
sorted list.

In the usual query model (where one query gives one valug)pit is easy to see th&t (V) queries are
also necessary. Classical lower bounds have also been $homore general models (e.d. 125]).

The algorithm described above requife&V) space to store all ofy,...,zy. If we are restricted to
spaceS < N, the running time increases. The straightforward algmiMed@(%Q) queries. Yaol[38]
has shown that, for the model of comparison-based branghogyams, this is essentially optimal. Namely,
any space> algorithm needs timég" = Q(Ntf(l) ). For more general models, lower bounds on algorithms
with restricted spac# is an object of ongoing resear¢h [10].

Related problems in guantum computing. In collision problem we are given a 2-1 functioii and
have to findx, y such thatf(x) = f(y). As shown by Brassard, Hgyer and Tappl [17], collision pnaoble
can be solved iD(N'/3) quantum steps instead 6 N'/?) steps classicallyQ(N'/3) is also a quantum
lower bound[[1[_31].

If element distinctness can be solved withqueries, then collision problem can be solved with/ M)
queries. (This connection is credited to Andrew Yaolin [I[hHus, a quantum algorithm for element dis-
tinctness implies a quantum algorithm for collision but thet other way around.

Quantum search on graphs.The idea of quantum search on graphs was proposed by Aaramsbn
Ambainis [2] for finding a marked item on&dimensional grid (problem first considered by Benidffl[12]
and other graphs with good expansion properties. Our waslalsamilar flavor but uses completely different
methods to search the graph (quantum walk instead of “diaieconquer”).

Quantum walks. There has been considerable amount of research on quantius(aarveyed in[[30])
and their applications (surveyed in [6]). Applications odliss [6] mostly fall into two classes. The first
class is exponentially faster hitting timés[21] 19, 29].eBecond class is quantum walk search algorithms
[36,22/)8].

Our algorithm is most closely related to the second classthigndirection, Shenvi et al.[ [36] have
constructed a counterpart of Grover’s seaich [26] baseduantgm walk on the hypercube. Childs and

1The big-O constant depends bnFor non-constart, we can show that the number of queries)isczN’“/(’““)). The proof
of that is mostly technical and is omitted in this version.



Goldstone[[2R[ 23] and Ambainis et al.]l [8] have used quantwatk w0 produce search algorithms dn
dimensional latticesd( > 2) which is faster than the naive application of Grover’s skaiThis direction is
quite closely related to our work. The algorithms byl[36,/@Rand current paper solve different problems
but all have similar structure.

Recent developments.After the work described in this paper, the results and ide@s this paper
have been used to construct several other quantum algatitMagniez et al.[132] have used our element
distinctness algorithm to give @\(n'3) query quantum algorithm for finding triangles in a graph. Asinis
et al. [8] have used ideas from the current paper to constriagter algorithm for search on 2-dimensional
grid. Childs and Eisenberg [20] have given a different asialpf our algorithm.

Szegedyi[3l7] has generalized our results on quantum wakddéonent distinctness to an arbitrary graph
with a large eigenvalue gap and cast them into the languadédadfov chains. His main result is that,
for a class of Markov chains, quantum walk algorithms aredcaigcally faster than the corresponding
classical algorithm. An advantage of Szegedy’s approatimaisit can simultaneously handle any number
of solutions (unlike in the present paper which has sepalgterithms for single solution case (algorithm
) and multiple-solution case (algoritHth 3)).

Buhrman and SpalekT15] have used Szegedy’s result to cmhstnO(n°/3) quantum algorithm for
verifying if a product of twon x n matricesA and B is equal to a third matrix.

2 Preliminaries

2.1 Quantum query algorithms
Let [V] denote{1,..., N}. We consider

Element Distinctness.Given numbers:, ..., zx € [M], are there, j € [N], i # j such thate; = z;?

Element distinctness is a particular case of

Elementk-distinctness.Given numbers:, ..., zy € [M], are therek distinctindicesiy, . . . ,ix € [NV]
such thatrl-l =Tjy = ... = .I'Zk?

We call suchk indicesiq, ..., ak-collision.

Our model is the quantum query model (for surveys on queryeamake [[F] 18]). In this model,
our goal is to compute a functiofi(xy,...,zx). For examplek-distinctness is viewed as the function
f(x1,...,zxN) which is 1 if there exists &-collision consisting of4, ... ,i; € [IN] and O otherwise.

The input variables:;; can be accessed by queries to an oracland the complexity of is the number
of queries needed to compufe A guantum computation with’ queries is just a sequence of unitary
transformations

Uy—0—-U; —-0—...>Ur_1— 0O —Ur.

U,’s can be arbitrary unitary transformations that do not delpen the input bitscy,...,zy. O are
query (oracle) transformations. To defilewe represent basis states@as, z) wherei consists of log NV
bits, a consists offlog M| quantum bits and consists of all other bits. The® maps|i, a, z) to |7, (a +
x;) mod M, z).

In our algorithm, we use queries in two situations. The fiitsiagion is wherz = |0). Then, the state
before the query is some superpositi®) , «; .|i,0, z) and the state after the query is the same superpo-
sition with the information about;: >, , a; |7, z;, z). The second situation is when the state before the



query is3>>; , a; .|i, —z; mod M, z) with the information about:; from a previous query. Then, apply-
ing the query transformation makes the staig, «; .|i, 0, z), erasing the information about. This can
be used to erase the information abaytfrom 3=, . a; .|i,z;, 2). We first perform a unitary that maps
|z;) — | — x; mod M), obtaining the stat®", , a; .|i, —x; mod M, z) and then apply the query transfor-
mation.

The computation starts with a stdte. Then, we applyy, O, ..., O, Ur and measure the final state.
The result of the computation is the rightmost bit of theestaitained by the measurement.
We say that the quantum computation compuytesith bounded error if, for every = (z1,...,2n),

the probability that the rightmost bit éf-O,Ur_1 ... 0, Uy|0) equalsf(x1,...,xy) is at leastl — e for
some fixedt < 1/2.

To simplify the exposition, we occasionally describe a quancomputation as a classical algorithm
with several quantum subroutines of the fothyO,U;_; ... 0,Up|0). Any such classical algorithm with
quantum subroutines can be transformed into an equivadeoescé/rO, Ur_; . .. O, Uy|0) with the num-
ber of queries being equal to the number of queries in thesiclasalgorithm plus the sum of numbers of
gueries in all quantum subroutines.

Comparison oracle. In a different version of query model, we are only allowed pamnison queries. In
a comparison query, we give two indicgg to the oracle. The oracle answers whethek x; or z; > x;.

In the quantum model, we can query the comparison oracleanstiperpositiony, ; . a; ; .|7, j, 2), where
1,7 are the indices being queried ands the rest of quantum state. The oracle then performs arynita
transformationys, j, z) — —|i, j, z) for all 4, j, z such thate; < x; and|i, j, z) — |, 4, z) for all 4, j, z such
thatz; > z;. In sectionB, we show that our algorithms can be adaptedisaribdel with a logarithmic
increase in the number of queries.

2.2 d-wise independence

To make our algorithms efficient in terms of running time andhe case of multiple-solution algorithm in
section[b, also space, we ugavise independent functions. A reader who is only intekdtethe query
complexity of the algorithms may skip this subsection.

Definition 1 Let F be a family of functiong : [N] — {0,1}. F is d-wise independent if, for all-tuples
of pairwise distincty,...,i; € [N]and all¢y,...,¢q € {0,1},

Prif(i1) = c1, f(i2) = ca, ..., f(ia) = ca] = 2—1d-
Theorem 1 [&] There exists al-wise independent famil§ = { f;|; € [R]} of functionsf; : [N] — {0,1}
such that:
1. R = O(N/d/2]y;
2. f;(i) is computable ir0(dlog? N) time, givenj and.

We will also use families of permutations with a similar peojes. It is not known how to construct
small d-wise independent families of permutations. There are,dvew constructions of approximately
d-wise independent families of permutations.



Definition 2 LetF be a family of permutations ofi: [n] — [n]. F is e-approximatelyd-wise independent
if, for all d-tuples of pairwise distincty, . .., iy € [n] and pairwise distincyy, . .., jq € [n],

1—c¢ 14+¢€

Prif) =ju f(ie) = o ) = Ja € | oy T —as o nn =) —d s D)

Theorem 2 [28] Let n be an even power of a prime number. For ahy< n, ¢ > 0, there exists an
e-approximated-wise independent familf = {r;|j € [R]} of permutationsr; : [n] — [n] such that:

1. R = O((n® Jet)3+oV)y;

2. 7;(i) is computable irO(d log? n) time, givenj andi.

3 Results and algorithms
Our main results are

Theorem 3 Elementk-distinctness can be solved by a quantum algorithm @(W’“/(’f“)) queries. In
particular, element distinctness can be solved by a quartigrithm withO(N?/3) queries.

Theorem 4 Letr > k, r = o(N). There is a quantum algorithm that solves element distesstrwith

O(max(%, r)) queries and ané-distinctness witld)(max(%, 1)) queries, using (r(log M+log N))
gubits of memory.

TheorentB follows from Theore 4 by setting= | N%/?| for element distinctness amd= | N*/(k+1) |
for k-distinctness. (These values minimize the expressionthéonumber of queries in Theordin 4.)

Next, we present Algorithn{d 2 which solves element distiess if we have a promise that, ..., zy
are either all distinct or there is exactly one paif, i # j, x; = z; (and k-distinctness if we have a
promise that there is at most one setcahdicesiy, ..., such thatr;, = x;, = ... = z;,). The proof
of correctness of algorithid 2 is given in sectldn 4. Aftertttia sectiorb, we present Algorithih 3 which
solves the general case, using Algorithim 2 as a subroutine.

3.1 Mainideas

We start with an informal description of main ideas. For dinity, we restrict to element distinctness and
postpone the more generaldistinctness till the end of this subsection.

Letr = N?/3. We define a grapi@ with () + (,77) vertices. The verticess correspond to sets
S C [N] of sizer andr + 1. Two verticesvs andvr are connected by an edgelif= S U {i} for some
i € [N]. Avertex is marked ifS containsi, j, z; = z;.

Element distinctness reduces to finding a marked vertexisngitaph. If we find a marked vertex,
then we know that; = x; for somei, j € S, i.e.xq,...,z N are not all distinct.

The naive way to find a marked vertex would be to use Grove=stum search algorithn [26,116]. If

e fraction of vertices are marked, then Grover’s search fintisieked vertex afte@(%) vertices. Assume



that there exists a single pairj € [N] such thati # j, z; = z;. For a randomS, |S| = N?/3 the
probability ofvs being marked is

. . . . . N2B N23 -1 1
Prlie S;j €8] =Prlie S|Pr[je SlieS]= ~ N - (1— 0(1))W'

Thus, a quantum algorithm can find a marked vertex by exagmi@i@ﬁ) = O(N'/3) vertices. However,

to find out if a vertex is marked, the algorithm needs to quUER® itemsz;, i € S. This makes the total
query complexityO(N'/3N?/3) = O(N), giving no speedup compared to the classical algorithm hwhic
queries all items.

We improve on this naive algorithm by re-using the informatirom previous queries. Assume that we
just checked ifvg is marked by querying alt;, ¢ € S. If the next vertexor is such thafl” contains onlym
elementsi ¢ S, then we only need to query. elementsz;, i € T\ S instead ofr = N?/3 elements;,
1eT.

To formalize this, we use the following model. At each momermst are at one vertex @f (superposition
of vertices in quantum case). In one time step, we can exaifriine current vertexg is marked and move
to an adjacent vertexy. Assume that there is an algorithshthat finds a marked vertex with/ moves
between vertices. Then, there is an algorithm that soheaaht distinctness i/ 4 r steps, in a following
way:

1. We use- queries to query alt;, ¢ € S for the starting vertexg.
2. We then repeat the following two operatiohstimes:

(a) Check if the current vertexs is marked. This can be done without any queries because we
already know ally;, i € S.

(b) We simulate the algorithr until the next move, find the vertax- to which it moves fromvg.
We then move tar, by queryingz;, i € T\ S. After that, we know allk:;, i € T. We then set
S=T.

The total number of queries is at mast + r, consisting ofr queries for the first step and 1 query to
simulate each move of.

In the next sections, we will show how to search this graph gnégum walk inO(N2/3) steps for
element distinctness ar@|( N*/(v+1)) steps fork-distinctness.

3.2 The algorithm

Letxy,...,zn € [M]. We consider two Hilbert spacé¢ andH’. H has dimensior(f)MT(N —r) and

the basis states dff are|S,z,y) with S C [N], |S| = r,x € [M]",y € [N]\ S. H' has dimension
(,¥))MT+(r +1). The basis states 6{' are[S,z,y) with S C [N], |S| =r+1,z € [M]"*!,y € S. Our

algorithm thus uses

(v ) v

qubits of memory.



1. Apply the transformation mappin§)|y) to

) ((—H ) ¥ ry'>) .

y' €Sy #y

on theS andy registers of the state K. (This transformation is a variant of “diffusion transfcam
tion” in [26].)

2. Map the state frori{ to H’ by addingy to S and changing: to a vector of lengttk + 1 by introducing
0 in the location corresponding to

3. Query forz, and insert it into location af corresponding tg.

4. Apply the transformation mappin§)|y) to

) ((—1 bt ¥ \y'>) .

y'ESY' #y
on they register.
5. Erase the element efcorresponding to new by using it as the input to query far,.

6. Map the state back t& by removing the 0 component correspondingytsfom x and removingy
from S.

Algorithm 1: One step of quantum walk

In the states used by our algorithmwill always be equal t¢z;, , . .., x;.) whereiy, ..., i, are elements
of S in increasing order.

We start by defining a quantum walk @hand#’ (algorithm[1). Each step of the quantum walk starts
in a superposition of states . The first three steps map the state frofrto H' and the last three steps
map it back toH.

If there is at most oné-collision, we apply AlgorithniR#; andt, arec;/r andcz(%)’f/2 for constants
¢, andcs which can be calculated from the analysis in sedflon 4). &lgsrithm alternates quantum walk
with a transformation that changes the phase if the curtatg sontains &-collision. We give a proof of
correctness for Algorithfll 2 in sectih 4.

If there can be more onke-collision, element-distinctness is solved by algorithith 3. Algorittih 3 is a
classical algorithm that randomly selects several sulmsetsand runs algorithril2 on each subset. We give
Algorithm[3 and its analysis in secti@h 5.



1. Generate the uniform superpositi (N)l(N—r) 2(S|=ryes 19) 1Y)

2. Query allx; for i € S. This transforms the state to

7 > 19)) @ ).

2V (N = 7)) |8|=ry¢s ics

1

3. t; = O((N/r)*/?) times repeat:

(a) Apply the conditional phase flip (the transformatiéf |y)|x) — —|S)|y)|x)) for S such that
Ty = Ty = ... = x;, for kdistinctiq, ... i, € S.

(b) Performte = O(/r) steps of the quantum walk (algorittih 1).

4. Measure the final state. ChecksSifcontains &-collision and answer “there isfacollision” or “there
is nok-collision”, according to the result.

Algorithm 2: Single-solution algorithm

4 Analysis of singlek-collision algorithm

4.1 Overview

The number of queries for algorithith 2sidor creating the initial state an@((N/r)*/2/r) = O(%)

for the rest of the algorithm. Thus, the overall number ofrtgseisO (max(r, %)). The correctness of

algorithm[2 follows from

Theorem 5 Let the inputzy, ..., zx be such thaty;, = ... = x;, for exactly one set of distinct values
i1, ... ,ix. With a constant probability, measuring the final state gbaithm[2 givesS such thaty, . .., i €
S.

Proof: The main ideas are as follows. We first show (Leniha 1) thatrithgo's state always stays in a
2k + 1-dimensional subspace &f. After that (Lemmd2), we find the eigenvalues for the unitaaysfor-
mation induced by one step of the quantum walk (algorifhnretricted to this subspace. We then look
at algorithmP as a sequence of the foft,U;)!* with U; being a conditional phase flip arid, being a
unitary transformation whose eigenvalues have certaipgrties (in this casd)/; is t, steps of quantum
walk). We then prove a general result (Lemipha 3) about suchesegs, which implies that the algorithm
finds thek-collision with a constant probability.

Let |S,y) be a shortcut for the basis stéte) ©;cs |x;)|y). In our algorithm, thex) register of a
state|S, z,y) always contains the state;cs|x;). Therefore, the state of the algorithm is always a linear
combination of the basis statgs y).

We classify the basis statéS, y) (/S| = r, y ¢ S) into 2k + 1 types. A statesS, y) is of type(j,0) if

SN {i1,...,ix}| = jandy & {i1,...,i} and of type(j, 1) if |SN{i1,...,ix}| = jandy € {i1,... i}



Forj € {0,...,k — 1}, there are both typgj, 0) and type(j, 1) states. Foy = k, there are onlyk, 0) type
states. (k, 1) type is impossible because, [§ N {i1,...,ix}| = k, theny ¢ S impliesy ¢ {i1,...,ix}.)

Let |¢;;) be the uniform superposition of basis stat8sy) of type (j,/). Let H be the Rk + 1)-
dimensional space spanned by statgs).

For the spac@(’, its basis statelss, y) (|S| = r+ 1, y € S) can be similarly classified int®k + 1 types.
We denote those typdg, ) with j = |S N {i1,..., i}, I = 1if y € {i1,...,ix} andl = 0 otherwise.
(Notice that, sincg € S for the spacét’, we have typdk, 1) but no type(0, 1).) Let|y; ;) be the uniform
superposition of basis statéS, y) of type (j,1) for spaceH’. Let H' be the 2k + 1)-dimensional space
spanned byy; ;). Notice that the transformatiow, y) — |S U {y}, y) maps

[%i0) = l@io), [¥i1) = lpit1a)-
We claim
Lemma 1 In algorithm[, steps 1-3 maf to H’ and steps 4-6 map’ to H.

Proof: In sectiof4P. |}

Thus, algorithnflL map# to itself. Also, in algorithn{R, stef Ba mapgi o) — —|vr0) and leaves
|v;) for j < k unchanged (because;;), j < k are superpositions of statg$, y) which are unchanged
by step(3b andiy, o) is a superposition of states, y) which are mapped te-|S,y) by step[3b). Thus,
every step of algorithrl] 2 map¥ to itself. Also, the starting state of algorithth 2 can be esged as a
combination ofiy; ;). Therefore, it suffices to analyze algorithfs 1 Bhd 2 on atsH.

In this subspace, we will be interested in two particulatestal et/ s;,,+) be the uniform superposition
ofall|S,y), |S| =7,y & S. Let|tgo0d) = |91,0) e the uniform superposition of alf, y) with iy, ... i, €
S. |¥stare) is the algorithm’s starting statéx),..q4) is the state we would like to obtain (because measuring
[Vg00d) Qives arandom sef such that{iy, ..., it} C 5).

We start by analyzing a single step of quantum walk.

Lemma 2 LetU be the unitary transformation induced 6t by one step of the quantum walk (algorithm
). U has2k + 1 different eigenvalues if(. One of them is 1, with)s:.¢) being the eigenvector. The other
eigenvalues are*%?, ..., e with 0, = (2\/7 + 0(1))%.
Proof: In sectio4P. |}

We setty = [ﬁ\/ﬂ. Since one step of quantum walk fixés t, steps fixH as well. Moreover,
[Vsiart) Will still be an eigenvector with eigenvalue 1. The otl2ér eigenvalues become ' svr o),
Thus, every of those eigenvalues:i8 with 6 € [c, 27 — ¢], for a constant independent ofV andr-.

Let stepU; be stefi_3a of algorithid 2 arid, = U*? be sted_3b. Then, the entire algorithm consists of

applying (UsUy )™ 10 |tstart ). We will apply

Lemma 3 LetH be a finite dimensional Hilbert space apg,), ..., |¢,) be an orthonormal basis fd¥.
Let|1g00d)s [¢start) D two States iftt which are superpositions ¢f1), . . ., [1,,,) with real amplitudes and
(Ygood|Vstart) = . LetUy, Us be unitary transformations oi with the following properties:

1. U, is the transformation that flips the phase [@c04) (U1]¥go0d) = —|¥g00d)) @and leaves any state
orthogonal to|t)4.04) Unchanged.



2. U, is atransformation which is described by a real-valuedk m matrix in the basisyn ), . . ., [m).
Moreover,Us|Vstart) = |Wstart) @nd, if [¢) is an eigenvector o/, perpendicular to1)ssq,¢), then
Us|p) = e|ap) for 6 € [e, 21 — €], & # 7 (Wheree is a constante > 0)?

Then, there exists = O(1) such that|(¢geea| (U2U1) [ ¢stare)] = ©(1). (The constant undef(1) is
independent ofr but can depend oa)

Proof: In sectiof4B. |}

By LemmalB, we can set, = O(é) so that the inner product dU>U1)™ |[¢siare) @Nd [¢hgo0q) iS
a constant. Sincéyy..q) is a superposition ofS,y) over S satisfying {i1,...,i,} € S, measuring
(UsUr)" |9siare) Qives a sefS satisfying{iy, ..., i} C S with a constant probability.

It remains to calculate.. Let o’ be the fraction ofS satisfying{i1,...,it} C S. Since|vsrt) IS the
uniform superposition of allS, y) and|i4.04) is the uniform superposition ¢, y) with {i;,... i} C S
we haven = V.

/ (N__]f) T k=1 ’f'—j rk
o' = Prl{ir,...,ix} € S| = ’(‘N) =~ 11 N (1= 0(1)) 7z
r j=1
Thereforea = Q(]’\”fT/;) andt; = O((N/r)’f/Q). |

LemmalB might also be interesting by itself. It generalizes of analyses of Grover's algorithrl [3].
Informally, the lemma says that, in Grover-like sequenceaisformationgU,U; )¢, we can significantly
relax the constraints ali, and the algorithm will still give similar result. It is quitikely that such situations
might appear in analysis of other algorithms.

For the quantum walk for elemehtdistinctness, Childs and Eisenbelrgl[20] have improveatiaysis
of lemmé[B, by showing tha)geoq| (U2U1)!|¢siare) (@nd, hence, algorithm’s success probability)s(1).
Their result, however, does not apply to arbitrary transfionst/; andU,, satisfying conditions of lemma

a

4.2 Proofs of Lemmag1l andl?

Proof: [of Lemmall] To show that? is mapped taH’, it suffices to show that each of basis vectors
|v;,) is mapped to a vector ifit’. Consider vectorsy; o) and|y; ;) for j € {0,1,...,k — 1}. Fix S,
|S N {iy,...,ix} = j. Wedivide[N] \ S into two setsSy and.S;. Let

So={y:y € [N]J\ S,y ¢ {ir,...,ik}},
S1={y:y e [NJ\Sye{ir,...,ix}}

Since|S N {i1,...,ix}| = j, S1 containss; = k — j elements. Sinc&, U S; = [N] \ S contains
N — r elements Sy containss) = N — r — k + j elements. Defin@)s ) = ﬁ > yes, 1S, y) and
———

[Ys1) = \/%TJ S yes, |S,y). Then, we have
1
= S [wso) @
(I;) (]X_]k) S:|S|=r
1S i1yennrin Y=

>The requiremeng # w is made to simplify the proof of the lemma. The lemma remains if @ = r is allowed. At the end
of sectiofZB, we sketch how to modify the proof for this case

[j0) =
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and, similarly forj+; 1) and|tg 1).

Consider the step 1 of algorithith 1, applied to the sfatg,). Let y¢g70> be the resulting state. Since the
|S) register is unchangeds ) is some superposition of statg% y). Moreover, both the states o) and
the transformation applied to this state in step 1 are iavatinder permutation of statés ), y € Sy or
stateg S, y), y € S1. Therefore, the resulting state must be invariant unden pecmutations as well. This
means that everys, y), y € Sp and everyS,y), y € S1 has the same amplitude fig ,). This is equivalent
to [¥5 o) = also) + blibsa) for somea, b. Because of equatiofl(1), this means that step 1 maps
to alij0) + blepj1). Steps 2 and 3 then map; o) t0 [¢;0) and|v; 1) o [p;11,1). Thus,[; ) is mapped
to a superposition of two basis statestof |p; o) and|p;41,1). Similarly, [1; 1) is mapped to a (different)
superposition of those two states.

Forj = k, we only have one statey, o). A similar argument shows that this state is unchanged Ilpy ste
1 and then mapped @y o) which belongs ta{’.

Thus, steps 1-3 maH to H'. The proof that steps 4-6 méap to H is similar. |
Proof: [of Lemmal2] We fix a basis foH consisting ofitj.0), |¥j1), 7 € {0,...,k — 1} and|¢y ) and a
basis forH’ consisting ofigo o) and|p;1), [;0), 7 € {1,...,k}. Let D, be the matrix

D - —14+2 2ve—¢€2
ol 2vVe—€2  1—2¢ ’

Claim 1 Let U; be the unitary transformation mappirlg to H’ induced by steps 1-3 of quantum walk.
Then,U; is described by a block diagonal matrix

D & 0 0
N-—r
0 D 0

N —r
Uy = : : . : N
0 0 ... D 0
N—r

0 0 0 1

where the columns are in the basig o),
00,00, [1,1): [01,0)0 [02,1)s - - -1 [0k,1)s |9R,0)-

1)

0 |¥11)s - .-, |¥r0) and the rows are in the basis

Proof: Let H; be the 2-dimensional subspace Hf spanned byji; ) and |1;1). Let H; be the 2-
dimensional subspace ®# spanned by, o) and|p;41.1).

From the proof of LemmBl1, we know that the subspageas mapped to the subspaéeg. Thus, we
have a block diagonal matrices wighx 2 blocks mappingH; to H’ and1 x 1 identity matrix mapping
|Yk.0) 10 |pk0). It remains to show that the transformation frdnf) to H’ is D =y Let S be such that

IS N {iy,...,ix}H = 7. Let Sy, 0)» [1s.1) be as in the proof of lemnia 1. Then step 1 of algorithm
[ maps|s,) to

—z(( 2 s ¥ N—H)

yES y'#yy' ¢S

2
(—1+m+(80—1N ) E \Sy +SO
yESo y€51

=)

11



280 2\/8081
= (-1 .
< TN = T> s,0) + N [Vs.1)

By a similar calculation|ys 1) is mapped to
281 2\/8081 ( 280 ) 2\/8081
14— Vo =(1- Vo .
( t N T) ¥s1) + — - ¥s0) N ) [¥sa) N 1vso)
Thus, step 1 produces the transformation—; on |¢so) and|iyg1). Sincely; o) and|i; 1) are uniform
N—r

superpositions dfiys o) and|iys 1) over all.S, step 1 also produces the same transformalion; on |, )
N—r

and|1,bj,1>. Steps 2 and 3 just map)j,0> to |90j,0> and|¢j71> to |90j+1,1>- I
Similarly, steps 4-6 give the transformatiéh described by block-diagonal matrix

1 0 0 0
0 D', 0 0
r+1 , O
o |0 0 D. o
0 0 0 D,

r+1

from H’ to H. Here, D’ denotes the matrix

D - —14+2 2Ve—¢? '
€ 2Ve—e€2 1 —2

A step of quantum walk i¥/ = UsU;. Let V' be the diagonal matrix with odd entries on the diagonal
being -1 and even entries being 1. Sifcé = I, we haveU = U,V?U; = ULU; for Uy = U,V and

Ul = VU,. Let
B - 1—2¢ 2ve — €2
Ol —2vVe—€2 1 —2 '

Then, U; and U}, are equal td/; andU,, with every D, or D! replaced by corresponding.. 7We
will first diagonalizeU; andU’, separately and then argue that eigenvaluds;éf] are almost the same as
eigenvalues of/;.

SinceUsJ is block diagonal, it suffices to diagonalize each blotk 1 identity block has eigenvalue 1.
For a matrixE,, its characteristic polynomial is> — (2 — 4¢)\ + 1 = 0 and its roots aré — 2¢ + 2v/e — 2.

Fore = o(1), this is equal toe*(2+e(M)ivVe Thus, the eigenvalues @f; are 1, and: W T for

. . . :I:(2+o(1))ii .
j€{1,2,... k}. Similarly, the eigenvalues @f; are 1, and: vN="forj € {1,2,...,k}.

To complete the proof, we use the following bound on the eigleres of the product of two matrices
which follows from Hoffman-Wielandt theorem in matrix apsis [27].

Theorem 6 Let A and B be unitary matrices. Assume thdthas eigenvalue$ + 44, ..., 1 + §,,, B has
eigenvalueg.y, ..., u, and AB has eigenvalueg], ..., u,,. Then,

m
g — w5l <> 16
i=1
for all j € [m].

12



Proof: In sectioZK. |}
Let A = U] and B = U,. Sincele — 1| < |¢|, each of|g;| is of orderO(ﬁ). Therefore, their sum

is of orderO(\/L) as well. Thus for each eigenvalueldf, there is a corresponding eigenvalue gl/;

that differs by at most bY)(_z—). The lemma now follows from~— = o( ). |

4.3 Proof of Lemmal3

We assume thdty| < ce? for some sufficiently small positive constantOtherwise, we can just take= 0
and geq <¢good|(U2U1)t|¢stm"t>| = |<¢good|¢sta¢t>| = |Oé| > 652-

Consider the eigenvalues bf,. SincelUs is described by a reah x m matrix (in the basigyy), .. .,
lvm), its characteristic polynomial has real coefficients. fEfare, the eigenvalues are 1, <&, .. .,
e+ From conditions of the lemma, we know that the eigenvalug™of= —1 never occurs.

Let [w;,+), |wj,—) be the eigenvectors &f, with eigenvalues®, e~ Let|w; ) = S25_ ¢j jrlib).
T'hen, we can assume that; ) = Z}Zl ¢ #[¥j). (SinceUs is a real matrix, takingjg\wj,g =
e?i|w; ) and replacing every number with its complex conjugate givgsy) = e~ |w) for |w) =

l *
j=1 Cj,j'|7/)j’>-)
We write [1)400,4) in @ basis consisting of eigenvectorsia:

l
‘wgood> - a‘wstm’t Z aj +’w] + + aj, —‘w], >) (2)

W. . 0. g., assume that is a positive real. (Otherwise, multiplys:.,+) by an appropriate factor to make
« a positive real.)

We can also assume thaf . = a;_ = a;, with a; being a positive real number. (To see that, let
[Ygood) = Yo—y byr|tbj). Then,bj are real (by the assumptions of Lemma 3). We have, [1go0q) =
aj4+ = Z " 1b]rc”, and (wj,—[Vgo0d) = aj— = Zl-/ 1 bjr (¢S )" = (Zl, 1b]/c* ) = aj . Multi-
plying |w; 1) by ‘aJ =+ and|w; _) by ‘“”‘ makes bothu; anda] _ equal to ’f et = |a;+| which is a
positive real.)

Consider the vector

; : 0;
lug) = a (1 +icot 5) [Vstart) +Za3 (1 + i cot T—Fﬂ) lwj+)+ > a; (1 + i cot 2 ;6) |wj ).

7j=1
®3)
We will prove that, for some = Q(«), |vg) and|v_g) are eigenvectors df,Us, with eigenvalues®.
After that, we show that the starting stdtg,.,¢) is close to the state\}—i|v5> + %|v_5>. Therefore,

repeatingU, Uy % times transformsi..,,¢) to a state close te\/i—i\vm + \7—%\2}_5> which is equivalent to
%h}@} — %|U—6>- We then complete the proof by showing that this state hasistaot inner product with
|7;Z)good>-

We first state some bounds on trigonometric functions thiitbwiused throughout the proof.

Clam2 1. % <sinz <z forall z € [0, ];

us 1 s
2. &= <cotx < _forallzc |0, %]

13



We now start the proof by establishing a sufficient condifiom|vg) and|v_gs) to be eigenvectors. We
havelvs) = [Ygo0d) + ilv;) Where

0+

/ B l —0;+ 3 l
|vf) = avcot §\¢smn> + > ajcot T’w]’7+> + ) ajcot lw; ). (4)

j=1 j=1

Claim 3 If |v) is orthogonal t0t)4004), then|vgs) is an eigenvector df,Uy with an eigenvalue of’® and
lu_g) is an eigenvector df,U; with an eigenvalue of .

Proof: Since |v) is orthogonal t0[t)y00q), We havelU:|vy) = |vj) and Uilvg) = —[¥g00d) + i[V5).
Therefore,

l .
UUilvg) = « (—1 + i cot g) |Vstart) + Z ajewf (—1 + i cot W) lwj 1)+

Jj=1

!
0. b
Zaje_wf (—1 + i cot 2 ;_ﬁ> lwj ).
=1

Furthermore,
) sinz +icosz ez
1+icotx = - = — ;
sinx sinx
. —sing+icosx ezt
—1+4+icotx = - = — )
sinx sinx
Therefore,

(—1+icot§) = ¢ (1+icot§)7

o 95 B

—0; i(5+5+3) .

J+ﬁ>:e 13 :e’5<1+icot
sinJT

e (—1 + icot M)
2
and similarly for the coefficient dfv; ). This means that/>Us |vg) = € |vg).
For|v_g), we write out the inner product®y.oa|vj;) and(Ygeealv’ 5). Then, we see thatyyoeilv’ 5) =
—(tgooa|vy). Therefore, ifl1y4004) and |vj;) are orthogonal, so argye.q) and|v’ 5). By the argument

above, this implies thav_ ) is an eigenvector dfl,U; with an eigenvalue =%, |
Next, we use this necessary condition to bogrfdr which |vz) and|v_g) are eigenvectors.

Claim 4 There exists such thafvy) is orthogonal to|1g004) and % < B < 2.60.

Proof: Let f(3) = (1good|v). We have

I
f(B) = a?cot g +> la;[? (cot # + cot #) .

Jj=1
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We boundf () from below and above, fo¥ € [0, 5]. For the firstterm, we havg; < cot g < % (by claim
). For the second term, we have
—9j+ﬁ 9j+ﬁ__ Sinﬁ
2

cot + cot = . (5)
2 sin L= b; +5 2 i

For the numerator, we ha\2§ < sin 3 < 3, because of Claifil 2. The denominator can be bounded from

below as follows: )
0. 9. —
sin -2 ;ﬁsin J 5 b >sm£sm£ > 26 3
with the first inequality following from¥; > ¢ and3 < § and the last inequality following from claifd 2.
This means

o™ (1—a?)r? 22 1—a?
a%—Tﬁéf(ﬁKaE— -

where we have useft)yooql® = |af* + 2Z§:1 la;|? (by equation [[R)) and|ygeeal| = 1 to replace

Zé’:l |aj|2 by %
The lower bound of equatiofil(6) implies th&ts) > 0 for g = \/ﬁja. The upper bound implies

B, (6)

that f(3) < 0 for 5 = \/ﬁ =a. Since f is continuous, it must be the case thfdl3) = 0 for some

\/_ V1
B e [\/27r(1— a, = al. The claim now follows from) < o < 0.1. |
Let |uy) = ||‘Uﬁ>” and]u2> = I‘IZ:ZT\' We show thati)s,¢) is almost a linear combination o¢f,) and

lug). Define|tenq) = I‘IZZZ?H where

l l

0, 6
|Vend) = Zaj (1 + i cot —) lwj 1) + Za] (1 + i cot j) lwj ). (7)

j= j=
Claim 5
|U1> = Cstarti|7;z)start> + Cend|7;bend> + |’LL/1>,

|’LL2> = _Cstarti|7;z)start> + Cend|7,z)end> + |’LL/2>

wherecsiart, Ceng are positive real numbers and , ), satisfy||u} || < % and ||ub|| < % for 3 from Claim
a.

Proof: By regrouping terms in equatiofll (3), we have
_ . /8 "
lvg) = aicot E‘wstm’t> + |Vena) + \v5> (8)
where

!
, —60; + —0.
lvg) = altstars) + Z aji (cot jTﬁ — cot TJ) w; 4 )
Jj=1
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—I—ﬁ 6,
+Zaj ( ot b0 cotgj) lwj ).

We claim that|vg|| < %Hvﬁﬂ. We prove this by showing that the absolute value of each effictents in
lug) is at most? times the absolute value of corresponding coefficieritin. The coefficient oftgq,¢)
is avin |vgg) anda(1 + i cot g) in |vg). We have

3. 8

lov (1+zcotﬁ)| > acot— > a—s

27 wp

which means that the absolute value of the coefficierft/of,,+) in [vj) is at most’%ﬁ times the absolute
value of the coefficient ifwg). For the coefficient of thew; ), we have

—0; —0; sin &
cotﬂ—co‘c ] — 7, +62 7,
2 2 sinTsm 5
If 0; — 5> %, then
in B8 8 8 iy
o2 2 <—2 =2 :ﬁgﬁlﬂ'cotM.
iy Z0itB e =05 sin TsinZ 11 2
sin —5— sin — 7l 1 NG
— [ < 3, then
i B i B _p. 8 "y
§1n2 |- sin g ot 0; + 3 <2 _ ot 0; + 0 Sgﬂ
sin =%H8 i =% cos =%itB i =% 2 19 2
2 2 —5 - sin—* ok
with the first inequality following from cos _Gj;rﬁ] > |cos §| = % and|sinz| = sin |z| > @ (using

Claim[3). Therefore, the absolute value of coefficientef ;) in [v7) is at mos@ times the absolute value

of the coefficient offw; ;) in |vg) (which is|a;(1 + i cot =4 +ﬁ)
value of coefficient ofw; ).
By dividing equation[(B) by|vz||, we get

). Similarly, we can bound the absolute

|U1> = Cstm"ti|¢stm"t> + Cend|¢end> + |u/1>
B
oot Cena = el andjup) =
proof forus is similar.  |j
Since|u; ) and|uz) are eigenvectors @f»U; with different eigenvalues, they must be orthogonal. There
fore,
g

(ul‘u2> = _Cgtm"t + and + O(;

for Cypart = v). Sincel[v]| < 2 lvg|, we havel|u) || < 22. The

llosll

) =0,

whereO(2) denotes a term that is at mastst2 in absolute value for some constantust that does not
depend orp ande. Also,
p

H’LL1||2 = Cgtart + Cznd + O(;) =1

16



These two equalities together with,,; andc,.,,q being positive reals imply that;.,.: = % +O(B/e) and
Cend = % + O(B/¢). Therefore,

|U1> = %Z’hﬁstarﬁ + %|¢end> + |u/1/>7

1. 1
|’LL2> = _%Z|¢start> + %W)encﬁ + |’LL/2,>,
with ||[uf|| = O(B8/e€) and||uf|| = O(B3/¢). This means that

‘wstm’t> - _%‘uﬁ + %‘u2> + ’w,>7
Wend) = —=lur) + —=uz) + ")
Vend —ﬁul \/ﬁuz w”),

wherew’ andw” are states withjw'|| = O(5/¢) and||w”|| = O(B/¢). Lett = | 75 ]. Then,(UyUy)t uy) is
almosti|u ) (plus a term of orde©(3)) and (UyUy )!|us) is almost—i|uy). Therefore,

(U2U1)t|¢stm"t> = |¢end> =+ |UI>

where||v'|| = O(/€). This means that

|<¢good|(U2U1)t|7;Z)smrt>| > |<wgood|¢end>| - O(g) (9)

Sincel < 2.6a anda = ce?, we haveO(8/¢) = O(e). By choosing: to be sufficiently small, we can make
theO((3/¢) term to be less thaf.1e. Then, Lemma&l3 follows from

Claim 6

[1-a® 1-a?
|<¢good|¢end>| > min < 5 1 E) .

Proof: Since|venq) = lvena) \ye have(ygood|Vend) = Wgoodlvena) By definition of|v.,4) (equation[[I7)),

- HUendH ! ”vend”

(Vgood|vend) = 25—y a3. By equationR)[vgeedl|? = a® + 2525, a?. Since|[tsgeudl|? = 1, we have
2
<7;Z)good|’uend> =1- CJZ2. Therefore’<1’bgo‘)d|1’bend> =z ||1ve:[dH

We havel|venq|? = 22321 a?(l—l—co‘c2 %J) Sincedy, € [e, 21 —¢], |vend|? < 22321 a?(1+cot2 5) <
(1+ cot?*§) and

1—o? 1—o? 1—a? 1—a?
<¢good’wend> Z a Z a 3 2 min @ s @ €l.
1+ cot2(e/2) 2max(1,cot §) 2 4

If « is set to be sufficiently small{1y00d|?ena)| is close t00.5¢ and, together with equatiofl(9), this
means thal(¥gooa|(U2U1)! [Ystare) | is Of orderQ(e). i
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Remark. If U has eigenvectors with eigenvalue -1, the equafibn (2) besom

l
‘wgood> = a|Ystart) Z aj, +’w] +) +aj, —‘wj ) + a1 |wigr),

with |w;1) being an eigenvector with eigenvalue -1. We also@adg(1—i tan 5 )|wl+1> —aj4+17 tan 2|wl+1>
anda; 41 |w;y1) terms to the right hand sides of equatidds @), (4) &hd (Sperenvely Claimgl$14]5 arfd 6
remain true, but proofs of claims require some modificatiorisandle thew; ) term.

4.4 Derivation of Theorem[®

In this section, we derive Theordn 6 (which was used in thefppb Lemmal2) from Hoffman-Wielandt
inequality.

Definition 3 For a matrixC' = (c;;), we define itd;-norm as||C|| = /3, ; [¢3;]-

Theorem 7 [27), pp. 292] IfU is unitary, then|UC|| = ||C|| for anyC.

Theorem 8 [27), Theorem 6.3.5] Le€ and D bem x m matrices. Letu, ..., uy, and uf, ..., 1., be
eigenvalues of’ and D, respectively. Then,

> (s — i) < O = DI,

To derive theoren]6 from theorelth 8, I€t= B andD = AB. Then,C — D = (I — A)B. Since
B is unitary, ||C — D| = ||I — A| (Theoreni)). LeU be a unitary matrix that diagonalizet Then,
UI-AU=T1-UAUYand||I—A| = || -UAU!||. SinceU AU~ is a diagonal matrix with +J;
on the diagonal] — U AU~ is a diagonal matrix witld; on the diagonal anfil — U AU (|2 = S, |6:]2
By applying Theorerfll8 td andU AU !, we get

In particular, for every, we have(u; — ul)? < (37, 6;]%) and

5 Analysis of multiple k-collision algorithm

To solve the general case &fdistinctness, we run Algorithrll 2 several times, on subsétfhe input
Tt € [N]

The simplest approach is as follows. We first run Algorifimn2ioe entire input;,7 € [N]. We then
chose a sequence of subsgtsC [N], 7> C [N], ... with T; being a random subset of sizg| = (5 2_’“H)"N,
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1. LetT; = [N]. Letj = 1.

2. While |T;| > max(r, V' N) repeat:
(@) Run Algorithnl® on;, i € T}, using memory size; = "‘1?". Measure the final state, obtaining
a setS. If there arek equal elements;, i € S, stop, answer “there is/acollision”.

(b) Letg; be an even power of a prime witfl;| < ¢; < (1 + 5=)|7}|- Select a random permp-
tation 7; on [¢;] from an %—approximatelyzk log N-wise independent family of permutations
(TheoreniR).

(c) Let

-1 - 1 2k
Tj+1:{7T117T21...7Tj1(’L),’L€Hrm(]j-u}.
(d) Letj=j+1,

3. If |T}] < r, query allz;, i € T; classically. Ifk equal elements are found, answer “there |s a
k-collision”, otherwise, answer “there is rkecollision”.

4. If |T;] < v/N, run Grover search on the set of at md&t/? k-tuples(ii, . . . , ;) of pairwise distinc
i1,...,1, € T;, searching for a tupléiy, ..., i) such thats;, = ... = z;, . If such a tuple is found,
answer “there is &-collision”, otherwise, answer “there is riecollision”.

Algorithm 3: Multiple-solution algorithm

and run AlgorithnfR on;, 7 € Ty, then onz;, i € T, and so on. It can be shown that, if the inpyti € [NV]
contains &-collision, then with probability at least 1/2, there esigtsuch thatc;,: € T contains exactly
one k-collision. This means that running algoritiith 2 on< € 7 finds thek-collision with a constant
probability.

The difficulty with this solution is choosing subséfs. If we chose a subset of siz%%N uniformly
at random, we nee@ (V) space to store the subset &n@V) time to generate it. Thus, the straightforward
implementation of this solution is efficient in terms of quepmplexity but not in terms of time or space.
Algorithm[3 is a more complicated implementation of the sapgroach that also achieves time-efficiency
and space-efficiency.

We claim

Theorem 9 (a) Algorithm3 use®)(r + %) queries.

(b) Letp be the success probability of algorithith 2, if there is exaotiek-collision. For anyzy, ..., xx
containing at least oné-collision, algorithm[B finds &-collision with probability at least1 —

o(1))p/2.

Proof:

Part (a). The second to last step of algoritiith 3 use at mogtieries. The last step usegN*/4)

queries and is performed only f N > r. In this case,z—7 > va—omz = N /4. Thus, the last two
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steps us@®(r + %) queries and it suffices to show that algorithin 3 us¢s + %) queries in its
second step (the while loop).
Let 7; andr; be as in algorithni3. Thefl}| = N and|Tj;1| < 57 (1 + 5z)|T5]. The number of
queries in the'*" iteration of the while loop is of the order
T2 [T+ Tl _ NOD2 o T

D72 UL/ N)EDE TN T D N

The total number of queries in the while loop is of the order

NOD2 e DY S (26 2241\ N 2% 2A241)
%: r(k=1)/2 1751+ N <2 2k +1 2k2 SOy 2k+1  2k2 '

§=0
Nk/2

Part (b). If z1,...,zy contain exactly oné-collision, then running algorithfid 2 on all of;, ...,z finds

the k-collision with probability at leasp. If z1,..., 2y contain more than onk-collision, we can have

three cases:
1. For somegj, T; contains more than oriecollision butT} ; contains exactly ong-collision.
2. For somegj, T; contains more than onecollision but7}; . ; contains ndk-collisions.

3. All T} contain more than onke-collision (till |7;| becomes smaller thanax(r, v/N) and the loop is
stopped).

In the first case, performing algorithih 2 an, j € T;4, finds thek-collision with probability at leasp.
In the second case, we have no guarantees about the prggbabitill. In the third case, the last step of
algorithm[3 finds one of-collisions with probability 1.

We will show that the probability of the second case is alwlags than the probability of the first case
plus an asymptotically small quantity. This implies thaithaprobability at least /2 — o(1), either first or
third case occurs. Therefore, the probability of algoriffifinding ak-collision is at least1/2 — o(1))p.
To complete the proof, we show

Lemma 4 LetT be a set containing &-collision. LetNone; be the event that;,: € T; contains no
k-collision andUnique; be the event that;,: € T); contains a uniqué-collision. Then,

) 1
Pr{Uniquej1|T; = T] > Pr[None;j1|T; =T] — o (W) (11)

wherePr[Unique;1|T; = T]andPr[None;1|T; = T] denote the conditional probabilities dfnique; 1
andNonejq1,ifT; =T.

The probability of the first case is just the sum of probabait

Pr{Uniqueji1 ANTj =T] = Pr(T; = T|Pr(Unique;j:|T; = T
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over allj andT such tha{T| > max(r,v/N) andT contains more than orfecollision. The probability of
the second case is a similar sum of probabilities

Pr[Noneji1 NT; =T) = Pr[T; = T|Pr[None;j1|T; =T).

Therefore,Pr{Unique;1|T; = T] > Pr[None;1|T; = T] + O(N1/4) implies that the probability of
the second case is less than the probability of the first claseapterm of order Nl 177 times the number

of repetitions for the while loop. The number of repetitiaasD(klog V), becaus€T} ;| < %(1 +

52)|T5] < (1= 2)|T;|. Therefore, the probability of the second case is less thaprobability of the first

case plus a term of ordet ™ %&.¥) = o(1).

It remains to prove the lemma.
Proof: [of Lemma[4] We fix the permutations;, ..., 7;_; and letr; be chosen uniformly at random from
the family of permutations given by Theoréin 2.

We consider two cases. The first case is whenontains many:-collisions. We show that, in this case,
the lemma is true because the probability\odne; 1 is small (of ordero(N1/4 )). The second case isTi;
contains fewk-collisions. In this case, we pick onesuch that there are at ledstelements, z; = z. We

compare the probabilities that

e T, contains ndk-collisions;
e T}, contains exactly ong-collision, consisting of with z; = x.

The first event is the same @éone;,1, the second event implidSnique;1. We prove the lemma by
showing that the probability of the second event is at Idastprobability of the first event minus a small
amount. This is proven by first conditioning @, containing nak-collisions consisting of with x; # «
and then comparing the probability that less thaof i : z; = = belong to7};,, with the probability that
exactlyk of i : x; = = belong to7}; 4.

Case 1.7} contains at leadbg N pairwise disjoint sets; = {i;1,..., i} Withz;, | = ... =z,
LetS = S1USy... U Sien. If event Nonej,i occurs, at leastog N of mjm;_y...m(i), i € S
(at least one from each of sefg, . .., S,z ) Must belong to[[%ﬁlqj} +1,...,¢;}. By the next claim,

this probability is almost the same as the probability tha¢astlog N of klog N random elements df;]
belong to{[%“qﬂ +1,...,q}.

Claim 7 LetS C Ty, |S| < 2klog N. LetV C [¢;]1¥]. Letp be the probability thatm;m;_1 ... 71(i))ics
belongs toV and letp’ be the probability that a tuple consisting (@f| uniformly random elements ;]
belongs tal’. Then,

|S|? + 1

lp—p'| <
a;

Proof: LetS" = {m;_1...m(¢)[i € S}. Then,p is the probability thatr;(i));cs: belongs toV. Letp”
be the probability thatvs, . .., v|g) belongs toV/, for (vy, ... ,vg) picked uniformly at random among all
tuples of|S| distinct elements ofi;]. By Definition,|p — p”| < %

It remains to boundp” — p/|. If (v, .. -, v|5|) is picked uniformly at random among tuples of distinct
elements, every tuple df| distinct elements has a probabilit ;y( _1)___1(%_‘3'“) and the tuples of non-
distinct elements have probability 0. (i1, . .., v|g)) is uniformly at random among all tuples, every tuple
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has probabilityﬁ. Therefore,
9

i(¢;—1)...(¢; — S| +1 (g — ST+ 1 (g — 1S +1
O B U IR W R el >p,,+<1_q] (s >>7

which implies

We have

S|
L Gg =1 (g —[S[+1) Sl_(%’—\s\) gl—(l—ﬁ>:ﬁ.

¢ 4 9 9

The probability that, out ok log N uniformly randomiy, ... ig1,en € {1,...,¢;}, at leastlog N
belong to{ (%qﬂ +1,...,¢;} can be bounded using Chernoff bourids [33]. Kebe a random variable
that is 1 ifi; € {[%qﬂ +1,...,¢}. LetX = Xi + ... + Xj10g v We need to boundr[X > log N].

We haveE[X] = klog N - E[X1] = 5" log N — o(1) and

(k+1)/(2k+1) \ o8 V 1
€ _ —0.316..1og N __
PT‘[XZIOgN]<<T> =€ & —0(N1/4>,

with the first inequality following from Theorem 4.4 ¢f[33P¢[X > (1 + 0)E[X]] < (ﬁ)’f[x] for
X that is a sum of independent identically distributed O-lugdl random variables). By combining this
bound with Clainil, the probability aVone;; is

1 (klogN)? +1 1
o () + 7 ~o ()

where we used; > |T;| > VN (otherwise, the algorithm finishes the while loop).
Case 2.7} contains less thalog N pairwise disjoint sets; = {i;1,..., i, Withz;, | = ... =z,
Let S be the set of all such thatz; is a part of &-collision amongr;, ¢ € 7.

Claim 8 |S| < 2klog N.

Proof. We first select a maximal collection of pairwise disjoffit This collection contains less thanog N
elements. It remains to prove tHat — U;S;| < klog N.

Since the collection{S;} is maximal, anyk-collision betweenz;, i € 7, must involve at least one
element fromJ;S;. Therefore, for any:, S \ U;S; contains at most — 1 valuesi with z; = z. Also, there
are less thatog NV possibler because any-collision must involve an element from one of s8tsaand there
are less thatbg N setsS;. This means thats — U;S;| < (k —1)log N. |}

Let y1,y2,... be an enumeration of all distingt such that7); contains ak-collision iy, ..., i, with
ziy = ... =z, = y. LetUniqueColl; be the event thél);;; contains exactly ong-collision iy, ..., i
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with z;, = ... = x;, = y, and NoColl; be the event thal;; contains no such collision. The event
Nonej1 is the same ag,; NoColl;. The evenUnique;; is implied byUniqueColly A N\~ NoColl;.
Therefore, it suffices to show

N 2((2klog N)? + 1)
a; '

< Pr |UniqueColly N /\ NoColl,

>1

Pr [ /\ NoColl, (12)
l

The eventd/niqueColl; and NoColl; are equivalent to the cardinality of

. . . 2k
{le’i =y;,i € Tjandr;...m (i) € {1,..., {mq]—‘}}

being exactlyk and less thatk, respectively.
By Claim[4, the probabilities of botf\; NoColl; andUniqueColly A \;~, NoColl; change by at most
% if we replace(r; ... m(i))ies by a tuple of|S| random elements df;;]. Then, the events

NoColl; andUniqueColl; are independent of evendéoColl;; andUniqueColly for I’ # 1. Therefore,

Pr [/\ NoC’olll] = Pr[NoColl4] H Pr[NoColl],
l >1

Pr |UniqueColly N /\ NoColl;

>1

= Pr{UniqueColly] H Pr[NoColl].
>1

This means that, to shoW{|12) for the actual probabilityritistion (7; ... 71 (¢));cgs, it suffices to prove
Pr{UniqueColly] > Pr[NoColl;] for tuples consisting ofS| random elements.

Let be the setof all € T); suchthat:; = y;. Letm = |I|. Notice thain > k (by definition ofz andr).
Let P, be the event that exactlyof 7; ... (i), ¢ € I belong toTj,1. Then,Pr{UniqueColl,] = Pr[P;]
and Pr[NoColl;] = S-F-} Pr[P). Whenr; ... (i), i € I are replaced by random elements/@f, we

have z z
m 1 1 m—
PT[PZ]_<1><1_2/@+1) <2k+1> !

Prip] (7)) 1 1 I+1 1

PriPa] () 2k+1 1— gy m—1 2

Forl <k — 1, we havelth L < kL = 1 This impliesPr[P)] < s Pr[P;] and

k—1 k-1 1
> Pr[p] < <Z W) Pr(Py] < Pr(Py]
1=0 1=0

which is equivalent t&°r[NoColl;] < Pr{UniqueColl;]. |
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6 Running time and other issues

6.1 Comparison model

Our algorithm can be adapted to the model of comparison egiemmilarly to the algorithm of [14]. Instead
of having the registe ;cs|x;), we have a registgy, jo, . . ., j») where|j;) is the index of thét™ smallest
element in the set. Given such register angde [N], we can add, to |ji, ..., j.) by binary search which
takesO (log N*/(#+1)) = O(log N') queries. We can also remove a givere [N] in O(log N) queries by
reversing this process. This gives an algorithm wativ*/(*+1) Jog N') queries.

6.2 Running time

So far, we have shown that our algorithm solves elenkedlistinctness wittO(N*/(5+1)) queries. In this
section, we consider the actual running time of our algorifavhen non-query transformations are taken
into account).
Overview. All that we do between queries is Grover’s diffusion operathich can be implemented in
O(log N) quantum time and some data structure operations ofi §et example, insertions and deletions).
We now show how to storé' in a classical data structure which supports the necesgmratons
in O(log*(N + M)) time. In a sufficiently powerful quantum model, it is possilib transform these
O(log*(N + M)) time classical operations int@(log(N + M)) step quantum computation. Then, our
quantum algorithm runs i®(N*/(*+1) 1og¢(N 4 M)) steps. We will first show this for the standard query
model and then describe how the implementation should befiedbr it to work in the comparison model.

Required operations. To implement algorithrl2, we need the following operations:
1. Addingy to S and storingz,, (step2 of algorithnill);
2. Removingy from S and erasing:,, (step® of algorithnil1);

3. Checking ifS containsiy, ..., i, z;, = ... = x;, (to perform the conditional phase flip in s{ep 3a of
algorithm[2);

4. Diffusion transforms of) register in stepSl1 ard 4 of algoritHidn 1.

Additional requirements. Making a data structure part of quantum algorithm createsstiotle issues.
First, there is the uniqueness problem. In many classidal stauctures, the same sgtcan be stored in
many equivalent ways, depending on the order in which elésngare added and removed. In the quantum
case, this would mean that the basis stéfeis replaced by many states!), |S2), ... which in addition to
S store some information about the previous sets. This caa aaery bad result. In the original quantum
algorithm, we might havex|.S) interfering with—«/|S), resulting in 0 amplitude fofS). If a|S) — «|S)
becomesy|S') — a|S?), there is no interference betweg#t) and|S?) and the result of the algorithm will
be different.

To avoid this problem, we need a data structure where the satfieC [N] is always stored in the same
way, independent of how was created.

Second, if we use a classical subroutine, it must termimagefixed timet. Only then, we can replace
it by an O(poly(t)) time quantum algorithm. The subroutines that take tinoa average (but might take
longer time sometimes) are not acceptable.
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level 2 > —0
level 1 - > > I §
level O > > > > > —— 0

Figure 1: A skip list with 3 levels

Model. To implement our algorithm, we use standard quantum cimodel, augmented with gates for
random access to a quantum memory. A random access gatettedemputsii), |b) and|z), with b being
a single qubitz being anm-qubit register and € [m]. It then implements the mapping

‘i, b, Z> — ‘Z, Ziy Rl e Zi_1b2i+1 c. Zm>.

Random access gates are not commonly used in quantum ligeiiut are necessary in our case because,
otherwise, simple data structure operations (for exametapvingy from S) which requireO(log N) time
classically would requir€(r) time quantumly.

In addition to random access gates, we allow the standardmhévo qubit gates [9].

Data structure:overview. Our data structure is a combination of a hash table and aiskipVe use the
hash table to store paifs$, ;) in the memory and to access them when we need tadjridr a given:. We
use the skip list to keep the items sorted in the order of agingz; so that, when a new elemeins added
to S, we can quickly check if; is equal to any of;, j € S.

We also maintain a variable counting the number of different € [A] such that the se$ contains
il,...,ikWith$i1 = ... =Ty =T

Data structure:hash table. Our hash table consists efbuckets, each of which contains memory for
[log N entries. Each entry uséXlog? N +log M) qubits. The total memory is, thu,(r log®(N + M)),
slightly more than in the case when we were only concernedtahe number of queries.

We hash{1, ..., N} to ther buckets using a fixed hash functiéii) = |i - /N | + 1. Thej** bucket
stores pairgi, z;) for i € S such that:(i) = 7, in the order of increasing

In the case if there are more th@ling V| entries withi (i) = j, the bucket only storedog N of them.
This means that our data structure misfunctions. We willskiwat the probability of that happening is
small.

Besides thelog V| entries, each bucket also contains memory for stariagr | countersiy, . .., d|iog |-
The counteid; in the j*" bucket counts the number ofc S such thath(i) = j. The counted;, I > 1is
only used ifj is divisible by2!. Then, it counts the number of S such thatj — 2! + 1 < h(i) < j.

The entry for(i, z;) contains(i, z;), together with a memory foflog N'] + 1 pointers to other entries
that are used to set up a skip list (described below).

Data structure:skip list. In a skip list [3%], eachi € S has a randomly assigned levgbetween 0 and
lmaz = [log N'|. The skip list consists of,,,. + 1 lists, from the level-0 list to the levé),, list. The
level list contains all € S with I; > [. Each element of the levéllevel list has a level-pointer pointing
to the next element of the leveélist (or O if there is no next element). The skip list also uses additional
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“start” entry. This entry does not store aflyx;) but had,,.., + 1 pointers, with the level-pointer pointing
to the first element of the levéllist. An example is shown in figuid 1.

In our case, each list is in the order of increasing(If severali have the same;, they are ordered by
1.) Instead of storing an adress for a memory location, pmrgeore the value of the next elemeént S.
Giveni, we can find the entry fofi, z;) by computingh (i) and searching thi(:)™" bucket.

Givenz, we can search the skip list as follows:

1. Traverse the levdls,,. list until we find the last elemerit

max

with z;, <.

2. Foreacl = l00 — 1, Lz — 2, ..., 0, traverse the levalist, starting ati; 1, until the last element
i With z;, < .

The result of the last stageis, the last element of the level-0 list (which containsiadl .S) with z;, < z. If
we are given andx;, a similar search can find the last elemgnivhich satisfies eithet;, < z; orx;, = z;
andiy < 4. This is the element which would precedéf i was inserted into the skip list.

It remains to specify the levels. The levell; is assigned to each € [N] before the beginning of
the computation and does not change during the computatjés.equal toj with probability 1/27+1 for
§ < limaz @nd probabilityl /2!mas for j = 4z

The straightforward implementation (in which we chose theel independently for each) has the
drawback that we have to store the level for eacivgiossible; € [N] which require€2(V) time to choose
the levels and2(V) space to store them. To avoid this problem, we define thedewg@hgl,,,., functions
hi,ho, ..., hy,,.. © [N] — {0,1}. i € [N] belongs to level (for | < lpag) if h1(i) = ... = (i) =1
but h;+1(i) = 0. @ € [N] belongs to level,,q, if h1(i) = ... = k. (i) = 1. Each hash function
is picked uniformly at random from é@&wise independent family of hash functions (Theoldm 1),dfet
[4logy, N + 1].

In the quantum case, we augment the quantum state by an egtster holdinghy,...,h, .. ). The
register is initialized to a superposition in which evengissstatdh,, ..., h;,, ) has an equal amplitude.
The register is then used to perform transformations dep#grahh, ..., k. On other registers.

Operations: insertion and deletion.To addi to S, we first query the value;. Then, we computé(7)
and add(i, z;) to theh (i)™ bucket. If the bucket already contains some entries, we naersome of them
so that, after insertingi, z;), the entries are still in the order of increasing/NVe then add 1 to the counter
dy for the h(i)™ bucket and the countel; for the ((@121)““ bucket, for eacti € {2,...,|logr]}. We
then update the skip list:

1. Run the search for the last element befofas described earlier). The search finds the last eleipent
beforei on each level € {0, ...l }-

2. For each level € {0,...,1;}, letj; be the level- pointer ofi;. Set the level-pointer ofi to be equal
to j; and the level-pointer ofi; to be equal ta.

After the update is complete, we use the skip list to find thallstj such thatr; = z; and then use
level-0 pointers to count if the number ¢f: x; = z; is less thark, exactlyk or more thark. If there are
exactlyk suchj, we increase by 1. (In this case, before addirido S, there were: — 1 suchyj and, after
addings, there aré: suchj. Thus, the number of such thatS containsiy, ..., iy withz;, = ... =2;, ==
has increased by 1.)
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An element can be deleted fron§ by running this procedure in reverse.
Operations: checking for k-collisions. To check fork-collisions in setS, we just check ifv > 0.

Operations: diffusion transform. As shown by Grover[26], the following transformation an, .. .,
|n) can be implemented wit (log n) elementary gates:

. 2\ . 2,
- (12 e X2, (13)
i'€[n],i’'#i
To implement our transformation in the stgp 4 of Algorithinwie need to implement a 1-1 mappirfg
between betwee§ and{1,...,|S|}. Once we have such mapping, we can carry out the transfamati
lyy — |f(y)) by [¥)|0) — |y)|f(y)) — |0)|f(y)) where the first step is a calculation 6fy) from y and
the second step is the reverse of a calculation fodbm f(y). Then, we perform the transformatidn13) on
[1), ..., ]|S|) and then apply the transformatidfi(y)) — |y), mapping{1,...,|S|} back toS.
The mappingf can be defined as followsf(y) = fi(y) + f2(y) where f1(y) is the number of items

i € S that are mapped to buckefsj < h(y) and f>(y) is the number of itemg’ < y that are mapped
to bucketh(y). Itis easy to see that is 1-1 mapping fromS to {1,...,|S|}. f2(y) can be computed by
counting the number of items in buckety) in time O(log N). fi(y) can be computed as follows:

1. Let:=0,1=[logr],s=0.
2. Whilel > 0 repeat:

(@) Ifi+ 2! <y, addd; from the (i 4 2')** bucket tos; leti = 4 + 2/;
(b) Leti=1—-1;

3. Returns asfi(y);

The transformation in stdd 1 of algoritith 1 is implementesing a similar 1-1 mapping between
betweenN]\ S and{1,...,N — |S|}.

Uniqueness.t is easy to see that a sgtis always stored in the same way. The values$S are always
hashed to buckets byin the same way and, in each bucket, the entries are locatkd order of increasing
i. The counters counting the number of entries in the bucketsigiquely determined by. The structure
of the skip list is also uniquely determined, once the forgi, ..., &y, are fixed.

Guaranteed running time. We show that, for any, the probability that lookup, insertion or deletion
of some element takes more th@tlog* (N + M)) steps is very small. We then modify the algorithms
for lookup, insertion or deletion so that they abort aftésg? (N + M) steps and show that this has no
significant effect on the entire quantum search algorithrorévprecisely, let

|¢t> = Z atS,y|¢S7h1,---yhlnbaw>|y>|h‘17 c 7hlrnaw>

S7y’h17"'7hlmaz

be the state of the quantum algorithm aftesteps (each step being the quantum translation of one data
structure operation), using quantum translations of thiéepedata structure operations (which do not fail
but may take more tharlog* N steps). Herels n,....n,, . ) Stands for the basis state corresponding to our
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data structure storing andx;, ¢ € S, using the hash function’s,, ..., ., ... (Notice that the amplitude

ag,y is independent ok, ..., A, ., Sinceh,..., k. all are equally likely.)
We decomposéry) = [49°°Y) + |ypbed), with [19°°Y) consisting of(S, hy, ..., k.. ) for which the
next operation successfully completescilog? (N + M) steps andy?*?) consisting of(S, hy, ..., h,..)

for which the next operation fails to completedivg® (N + M) steps. Lety,) be the state of the quantum
algorithm aftert steps using the imperfect data structure algorithms whiaf abort. The next lemma is an
adaptation of “hybrid argument” by Bennett et al.l[11] to context.

Lemmab5
d bad
e — gl <7 20
t'=1

Proof: By induction. It suffices to show that

e = 4l < Ml = Wia | + 201 -

To show that, we introduce an intermediate statf) which is obtained by applying the perfect trans-
formations in the first — 1 steps and the transformation which may fail in the last stégn,

l196e — il < llvbe — o7l + [l — ill-

The second term|vy; — 1| is the same a1 — 1;_,|| because the statés;) and|v;) are obtained
by applying the same unitary transformation (quantum tedios of a data structure transformation which
may fail) to stategy,_1) and|y;_,), respectively. To bound the first terffyy, — +}||, let U, andU; be the
unitary transformations corresponding to perfect and ifepe version of the'" data structure operation.
Then,|¢) = Uplyi—1) and|y;) = Uj|¢—1). SinceU, andU; only differ for (S, k4, ..., hy,,,.) for which
the data structure operation does not finishliog* N steps, we have

e = will = 1Upltbe—1) — Uiltre—1)ll = 10 9329) — Usl2)l < 201921

Lemma 6 For everyt,

w?ad” = O(N%-E) ).

Proof: We assume that there is exactly dneollision z;, = ... = z;,. (If there is nok-collisions, the
checking step at the end of algoritiih 2 ensures that the arisveerrect. The case with more than one
k-collision reduces to the case with exactly dneollision because of the analysis in secfidn 5.)
By Lemmall, every basis stat§, =) of the same type has equal amplitude. Also,/all..., A, ..
have equal probabilities. Therefore, it suffices to show, tfar any fixeds = |[S N {i1,...,i}| and
t = |{z} N {i1,..., i}, the fraction ofl S, z, hy, ..., h,,,.) for which the operation fails is at mo%.
There are two parts of the update operation which can fail:

1. Hash table can overflow if more thalog N'| elements € S have the samé(i) = h;

2. Update or lookup in the skip list can take more thdsg* N steps.
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For the first part, les = |[S N {i1,...,i}]. If more than[log N'| elementsi € S haveh(i) = j,
then at leasflog N — s of them must belong tQV] \ {i1,...,ix}. We now show that, for a random set
S C [N]\{i1,..., ik}, |S| = r — s the probability that more thaflog N| — s of i € S satisfyh(i) = jis
small.

We introduce random variableX, , ..., X,_, with X; = 1 if » maps the™ element ofS to j. We
need to boundY = X; + ... + X,_,. We have%ijj < E[X]] < ]{,Vf’;g which means thab'[X;| =

% + O(%). (Here, we are assuming thiatis a constant.s is also a constant because< k.) Therefore,
EX]=(r—s)E[X;] =1+0(1).

The random variableX; are negatively correlated: if one or moreXfis equal to 1, then the probability
that other variables(;; are equal to 1 decreases. Therefaré [34], we can apply Ciiknounds to bound

Pr[X > log N — s]. By using the bound’r[X > (1 + 0)E[X]] < (ﬁ)’fm [33,32], we get
Prix lou N elogN—s—l 1
T[ -8 S] < (logN - s)logN—s =0 (m) :

For the second part, we consider the time required for ilmsedf a new element. (Removing an element
requires the same time, because it is done by running thaimsalgorithm in reverse.) Adding, x;) to
the (h(i))t" bucket requires comparingio entries already in the bucket and, possibly, moving softleeo
entries so that they remain sorted in the order of increasiSince a bucket contain@(log V) entries and
each entry usdeg? (N + M) bits, this can be done ift (log* (N + M)) time. Updating counterg; requires
O(log N) time, for each oD (log ) = O(log V) counters.

To update the skip list, we first need to compbigi), ..., hy,,,. (). This is the most time-consuming
step, requiringD(dlog® N) = O(log® N) steps for each of,,,, = [log N7 functionsh;. The total time
for this step isO(log* N). We then need to update the pointers in the skip list. We shaty tor any fixed
S,y (and randomhy, ..., hy, ..), the probability that updating the pointers in the skip fé&kes more than
clog* N steps, is small.

Each time when we access a pointer in the skip list, it may @Keg? N) steps, because a pointer
stores the numberof the next entry and, to find the entfy, x;) itself, we have to compute(i) and search
the h(7)*" bucket which may contaiibg N entries, each of which usésg N bits to storei. Therefore, it
suffices to show that the probability of a skip list operatimeessing more tharlog? N pointers is small.

We do that by proving that at mogt= 4log N + 1 pointer accesses are needed on eadhgolV + 1
levelsi. We first consider level 0. Lef, j2, ... be the elements of ordered so that;, < z;, < zj, ...
(and, ifz; = z;,, for somej, thenj; < j41). If the algorithm requires more thahpointer accesses
on level 0O, it must be the case that, for soihej;, ..., jiiq_1 are all at level 0. That is equivalent to
h(jir) = h1(Jirs1) = ... = hi(jir+a—1) = 0. Sinceh, is d-wise independent, the probability that
hl(jir) =...= hl(ji’—i—d—l) =0is27% < N~*,

For levell (0 < I < lynae), We first fix the hash functions, ..., h;. Let ji, js,... be the elements
of S for which hy, ..., hy are all 1, ordered so that;, < z;, < zj,.... By the same argument, the
probability that the algorithm needsor more pointer accesses on levé the same as the probability that
hit1(ji) = ... = hig1(Jirea—1) = 0 for somei’ and this probability is at most—¢ < N~%. For level
lmaz, We fix hash functiong, ..., h;, . 1 and notice that is on levell,,,, wheneverh; (i) = 1. The
rest of the argument is as before, with), .. (ji') = hi,,.. (Jir41) = ... = hi,,,, (Jir+a—1) = 1 instead of
h1(jir) = h(Jiry1) = - . = h(Jirya—1) = 0.
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Since there artog N + 1 levels and- elements of5, the probability that the algorithm spends more than
k — 1 steps on one level for some elementois at mostO('s‘}v#fN) = O(ﬁ).

Therefore [|¢7?||? = O(5) and||)*¢|| = O(++), proving the lemma. ||

By Lemmagb anfl6, the distance between the final states afe¢hkadlgorithm (where the data structures

never fail) and the actual algorithm is of ord€(+z) = O(ﬁ). This also means that the probability

distributions obtained by measuring the two states dif;eaibmostO(ﬁ), in variational distance [13].
Therefore, the imperfectness of the data structure opesatioes not have a significant effect.
Implementation in comparison model. The implementation in comparison model is similar, except

that the hash table only storégstead of{i, x;).

7 Open problems

1. Time-space tradeoffs.Our optimalO(N?/3)-query algorithm requires space to stereN?/?) items.

How many queries do we need if algorithm’s memory is regddbr items? Our algorithm needs

O(%) queries and this is the best known. Curiously, the lower ddondeterministic algorithms in

comparison query model @(NTQ) queries [[38] which is quadratically more. This suggests tla
algorithm might be optimal in this setting as well. Howeie only lower bound is théZ(N2/3)
lower bound for algorithms with unrestricted memdry [1].

2. Optimality of k-distinctness algorithm. While element distinctness is known to reun(aN2/3)
queries, it is open whether oar( N*/(#+1)) query algorithm fork-distinctness is optimal.

The best lower bound fde-distinctness i§2(N%/?), by a following argument. We take an instance of
element distinctness, . .., x and transform it intd:-distinctness by repeating every elemgnt 1
times. Ifzq,...,zxN are all distinct, there is né equal elements. If there aigj such thatr; = x;
among originalNV elements, then repeating each of them 1 times create8k — 2 equal elements.
Therefore, solving:-distinctness orik — 1) N elements requires at least the same number of queries
as solving distinctness aN elements (which requirefsz(N2/3) queries).

3. Quantum walks on other graphs. A quantum walk search algorithm based on similar ideas can
be used for Grover search on grid$[[8] 22]. What other graphggoantum-walks based algorithms
search? Is there a graph-theoretic property that detesnifigeiantum walk algorithms work well on
this graph?

[B] and [37] have shown that, for a class of graphs, the perdmice of quantum walk depends on
certain expressions consisting of graph’s eigenvaluegaiticular, if a graph has a large eigenvalue
gap, quantum walk search performs welll[37]. A large eigkm/gap is, however, not necessary, as
shown by quantum search algorithms for grid< 8, 37].

Acknowledgments. Thanks to Scott Aaronson for showing thatistinctness is at least as hard as
distinctness (remark 2 in secti@h 7), to Robert Beals, Gragefberg and Samuel Kutin for pointing out
the “uniqueness” problem in sectibh 6 and to Boaz Barak, Andthilds, Daniel Gottesman, Julia Kempe,
Samuel Kutin, Frederic Magniez, Oded Regev, Mario Szegkathagat Tulsi and anonymous referees for
comments and discussions.
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