
Counting Solutions in Reduced Boolean Parity.

M. Collins

CISA, Edinburgh University, Scotland

mcc@dcs.ed.ac.uk

Abstract. Motivated by the interest in the boolean parity problem, this

paper examines the structure of solutions to a simple form of the boolean

parity problem and provides eÆcient methods for counting them. Under-

standing the structures which control solution distribution is important

for understanding the performance of search mechanisms on the reduced

boolean parity problem. EA search mechanisms have reportedly per-

formed better than random search in solving the simpli�ed form of the

boolean parity problem, despite �tness neutrality leading to an absence

of a search gradient, renewing interest in understanding the solution dis-

tribution.

1 Introduction

Using the Cartesian GP [3, 5] Yu and Miller have shown limited success in solving

a simpli�ed form of the boolean parity problem [4]. The form of the boolean

parity problem examined uses only the Boolean eq and xor operators, and

shall be referred to as the reduced Boolean parity problem.

This paper examines the properties of solutions to the reduced Boolean parity

problem, and provides methods for counting solutions within the representation

space. Section 2 de�nes the reduced boolean parity problem and the properties

of a solution. Section 3 describes the representation used in this paper. Section

4 identi�es structures which are present in all solutions to the reduced Boolean

parity problem. These structures are then exploited to eÆciently count the pos-

sible solution arrangements, greatly simplifying the counting process. Section 5

presents results for some common parameters and Section 6 concludes this work

and suggests how this knowledge could be used in future work.

2 Boolean parity

The Boolean parity problem is the task of identifying whether a Boolean input

sequence contains an even (and equivalently odd) number of true inputs. As a

benchmark problem in EA, it is equivalent to choosing a sequence of functions

from a set F , and input assignments from a set of possible inputs I , such that the

result of evaluating the function over all possible inputs is to correctly classify

the parity of the inputs. It is recognised that the problem diÆculty is highly

dependent upon the function set used [1].

2 M. Collins

A solution to the Boolean parity problem is a function which, when evaluated

over all possible inputs, correctly distinguishes the odd parity inputs from the

even parity inputs. This can be achieved in two ways, by identifying the odd

parity inputs, or by identifying the even parity inputs, and one form can be

converted to the other by negation of the output. Irrespective of the nature of

the parity measured, both methods correctly partition the input space.

When the output of the tested function is compared to the output of an odd

(or even) parity function there are three possible situations: the sequences are

the complement of each other, half the sequences are coincident, or the sequences

are identical. These cases correspond to the case where the function evaluated is

the inverse parity of the contrasted parity function, the case where the function

is not a solution to either of the parity problems and the case where the parity

of the function evaluated is precisely the same as the contrasted parity function.

The �rst and last cases are acceptable as solutions to the Boolean parity problem.

3 Representation

In general, the input alphabet I of size jI j is a set of distinct Boolean val-

ues fI1; :::; IjIjg, corresponding to the parity of the problem. In the reduced

Boolean p-parity problem, the input alphabet is p elements, and the function

set is fxor,eqg. The number of possible arrangements using from 1 up to FMax

functions is:

FMaxX
i=1

2ipi+1 (1)

Where an example arrangement using 2 functions and an alphabet of 3 inputs

is: I1 eq I2 eq I3 and is a solution to the 3 parity problem. Another arrangement

but this time with 3 functions, I1 eq I2 eq I3 eq I1 is not a solution to the 3

parity problem. In this work, the total number of arrangements of functions and

inputs is referred to as the total number of arrangements.

4 Solution structure

Restricting the available operator set to fxor, eqg has been shown [1] to restrict
the function space. The commutative and associative properties of the xor,

eq operators create equivalence relations between candidate solutions and a

set of functionally equivalent representations. For instance I3 xor I1 eq I2 is

rearranged to give I1 eq I2 xor I3, which whilst potential distinct entities in

the representation space, are identical in functional terms. Table 1 shows some

simple candidate functions and their simpli�ed equivalent functions.

Solutions occur for this form of the Boolean parity problem i� all Boolean

inputs are referenced once in the simpli�ed equivalent solution. A simple proof

of this, if fewer inputs are referenced then the function is ignorant of some parity

altering input state changes and can not be a solution to the parity problem.

Counting Solutions in Reduced Boolean Parity. 3

Function Simpli�ed equivalent Solution?

1 I3 xor I1 eq I2 I1 eq I2 xor I3 Even 3-parity.

2 I1 xor I3 xor I1 eq I2 false eq I2 xor I3 Non solution.

3 I1 eq I1 xor I3 xor I1 eq I2 true xor I1 eq I2 xor I3 Odd 3-parity.

Table 1. Examples of simple functions and their simpli�ed equivalent expressions,

constructed from an input alphabet of size 3.

Duplicate references to inputs result in introns, and introns vanish from the

simpli�ed form. xor and eq are both commutative and since for any Boolean

input Ix, Ix xor Ix = false and Ix eq Ix = true. Even numbers of references

to the same input either invert or leave intact the exact functionality of the

other functions; arrangements of this type can not alter the acceptability of

the function in terms of distinguishing even and odd parity. Finally choosing

between the xor and eq functions is actually irrelevant to the acceptability of

the solution. xor is simply the negation of eq and instances of it can be replaced

by not eq without altering the function of the expression. Negation of a result

is irrelevant to the identi�cation of parity, since it simply changes an even parity

function into an odd parity function and vice versa.

Table 1 shows three example representations of potential solutions to the

reduced 3 parity problem. The functions are numbered on the �rst column and

shows a solution to the 3 parity problem and two cases where an intron is

created. The �rst function contains references to all the possible inputs with

no repeated input references, it is thus a solution to the 3 parity problem. The

second function shows the e�ective loss of the input reference I1 due to it being

referenced twice. The third function shows the case where the simpli�ed function

maintains references to all the inputs, though through the e�ect of the intron the

basic solution has had its polarity reversed (it is now an odd parity solution).

Using the fact that even numbers of references to the same input are ef-

fectively neutral to the output validity, the number of solutions possible to the

p-parity problem which reference n inputs, S(p; n), can be counted by separately

calculating the number of arrangements of the n � 1 functions used and mul-

tiplying this by the number of input sequences which meet the requirement of

referencing each input once and only once in the simpli�ed representation. There

are n�1 functions, each of which can be one of the 2 function types, the number

of function arrangements is then 2(n�1). The number of input sequences which

generate a reference to each input only once in the simpli�ed representation is

denoted by I(p; n).

S(p; n) = 2(n�1)I(p; n) (2)

The number of input arrangements which can be simpli�ed to reference each

input only once is best counted by ignoring the p inputs which must be distinct

for a solution, and counting the number of ways the remaining n� p inputs can

be arranged to be introns with no e�ect. Evidently the introns can only exist if

4 M. Collins

there are an even number of the n � p remaining references, and further each

of the inputs referenced by this surplus must be referenced an even number of

times by the surplus.

The number of ways the n input references can make a solution to the p

parity problem is then given in two steps. The �rst step calculates the ways

introns can be made from the surplus inputs. This is the number of ways that

pairs of the n � p surplus input references can be assigned to groups where all

pairs in the group have the same input reference and no two groups have the

same input reference. The second step involves multiplying the number of intron

arrangements by the number of distinct permutations of n input references.

Enumerating the groups is performed by generating the set of integer par-

titions of the (n � p)=2 pairs. As an example the integer partitions of four are:

ff4g,f3,1g,f2,2g,f2,1,1g,f1,1,1,1gg and represent the number of ways intron ar-

rangements can be made from the xor eq operators with 8 input references; as

an octuple f4g, a hextuple and a pair f3,1g, two quadruples f2,2g,a quadruple

and two pairsf2,1,1g, and as four pairs f1,1,1,1g respectively.
The number of solutions which are present in a partition �, denoted N(�)

is the number of arrangements of groups to the partition, A(�), multiplied by

the number of distinguishable input assignments to the n inputs which have this

partition arrangement D(�).

N(�) = A(�)D(�) (3)

Continuing with 3-parity and using the intron partition f2,1,1g as an ex-

ample, the number of ways of choosing the input for the �rst element of the

partition is simply
�
3
1

�
. The second and third elements of the partition are iden-

tically sized and can not be distinguished, also one input reference has been

used in choosing the assignment for the �rst partition, so the number of ways

of assigning inputs to the second and third elements is the unassigned input

alphabet choose two:
�
2
2

�
. The total number of arrangements of the partition is

A(f2; 1; 1g) =
�
3
1

��
2
2

�
= 3. To be speci�c, the basic labellings for the 3-parity

2,1,1 intron partition (those made from one quadruple and two pairs using an

alphabet of three) are ff1111,22,33g,f2222,11,33g,f3333,11,22gg. The possible

permutations of the partition labeling are considered in equation 6. In order

to generalise this process we require a utility function to count the number of

distinct elements of a particular size in the partition: Let the function C(�; s)

represent the number of partition elements of size 0 < s � I=2 in the partition

�, and let j�j represent the number of elements and �i represent the i
th element

in the partition �.

C(�; s) =

j�jX
i=1

(�i = s) (4)

A(�) =

j�jY
i=1

�
p�
Pi�1

j=0 C(�; j)

C(�; i)

�
(5)

Counting Solutions in Reduced Boolean Parity. 5

Any solution containing the introns represented by the partition � thus con-

tains �i +1 references to the input assigned to �i. These �i +1 assignments are

indistinguishable giving:

D(�) =
n!Qj�j

i=1 (2�i + 1)!
(6)

Continuing with the 3 parity example, and using 9 input references for

demonstration purposes, intron partition arrangements and the number of dis-

tinguishable input arrangements possible are shown in Table 2.

Integer partition Num. assignments Num. of distinct Total

� to the I.P, A(�) permutations, D(�) N(�)

f3g
�
3

1

�
9!=7! 216

f2,1g
�
3

1

��
2

1

�
9!=5!3! 3024

f1,1,1g
�
3

3

�
9!=3!3!3! 1680

Total 4920

Table 2. The 3-parity problem with 9 inputs. Intron arrangements (as represented

by integer partitions) are shown in column one, and the number of ways of assigning

inputs to the introns is shown in column two and the third column shows the number

of ways such an arrangement could be produced.

And so the total number of intron arrangements possible for the p-parity

problem using the xor,eq operators is:

I(p; n) =

8�X
N(�) (7)

The number of solutions possible for all possible functions referencing up to

a maximum of n inputs, is then:

nX
i=p

S(p; i) (8)

5 Results

Table 3 shows the relationship between the parity, the number of inputs refer-

enced and the number of solutions in the space. For comparison the number of

possible arrangements of input references and function assignments is given, and

the amount of the space which is occupied by solutions is given as a percentage.

Previous work [4] examined the 5, 8 10 and 12 even parities and permitted

size of up to 100 functions (101 inputs). In [4] the 5-parity results used xor and

eq functions, whereas the 8, 10 and 12 parity used only eq. For comparison,

6 M. Collins

Parity Num. inputs Num. solutions Num. possible Percent

4 4 192 2048 9.4

5 0 16384 0

6 15360 131072 11.7

7 0 1048576 0

8 1032192 8388608 12.3

5 5 1920 50000 3.84

6 0 500000 0

7 268800 5000000 5.38

8 0 50000000 0

9 29675520 500000000 5.94

Table 3. Examples of the number of solutions and the number of possible arrangements

against the parity and the size of the function (measured in terms of the number of

input references made by the function)

Parity Num. solutions Num. possible Percent

5 3:157 1099 5:556 10100 5:68181

6 1:303 10106 5:421 10108 0:24038

7 4:508 10113 3:091 10115 1:45833

8 1:013 10118 2:204 10121 0:04596

9 1:187 10124 3:209 10126 0:37007

10 1:241 10127 1:334 10131 0:00930

11 1:880 10132 2:013 10135 0:09341

12 2:568 10134 1:315 10139 0:00195

13 9:989 10138 4:249 10142 0:02351

14 3:176 10140 7:546 10145 0:00042

15 4:724 10144 7:997 10148 0:00591

Table 4. The number of solutions and the number of possible arrangements for the 5

to 15 parity problems using up to 100 functions.

Table 4 shows the
P100

i=p S(p; i) result for the �rst 10 non-trivial parity problems;

from 5-parity through to 15-parity. It should be noted that for all experiments

in this work both xor and eq functions are used.

However, the choice of the maximum number of functions used in the repre-

sentation is signi�cant. If the parity problem is even and the maximum number

of functions is even, then all the arrangements which use the maximum number

of functions | by far the majority of the space | are non-solutions. The same

e�ect occurs when the problem to be solved is odd party and the maximum

number of functions is odd. This sampling e�ect can be seen in Table 4, which

shows distinct bias towards solving odd parity problems as a consequence of

having an even maximum number of functions (100 in this case).

Counting Solutions in Reduced Boolean Parity. 7

6 Conclusion

This paper presents eÆcient methods for counting the solutions to the reduced

Boolean parity problem, and provides example results for some common pa-

rameters. The structure of the solution space; distinct solutions permuted by

various intron assignments, indicates the space is regularly populated with ele-

mentary solutions which have functionally identical alternative representations

at distances governed by the possible permutations of the intron groups. This

suggests that the space may be better explored by moving between equivalence

classes; a promising topic for future work.

7 Thanks

Thanks to all those who helped with this paper, not least Michelle Galea and

Henrik Westerberg, whose insight with combinatorics allowed me to make the

deadline. Thanks also to John Levine and Jacques Fleuriot for reading this

paper at extremely short notice. Also thanks to the anonymous reviewers, whose

contributions are gratefully received.

References

1. W. Langdon. R. Poli. Boolean Functions Fitness Spaces 1997. University of Birm-

ingham Technical Report CSRP-98-16.

2. J. Miller. What Bloat? Cartesian Genetic Programming on Boolean problems E.

Goodman (Ed.) 2001 Genetic and Evolutionary Computation Conference Late Break-

ing Papers, pp 295-302.

3. J. Miller. An empirical study of the eÆciency of learning boolean functions using

a Cartesian Genetic Programming approach R. Poli et al (Eds.) Proceedings of the

Third European Conference on Genetic Programming. 2000. pp. 121-132.

4. T. Yu. J. Miller. Finding Needles in Haystacks Is Not Hard with Neutrality J. Foster

et al (Eds.) EuroGP 2002, LNCS 2278, pp. 13-25.

5. T. Yu. J. Miller. Neutrality and the Evolvabilty of Boolean Function Landscapes

Proceedings of the Fourth European Conference on Genetic Programming. 2001.

6. W. Langdon. R. Poli. Foundations of Genetic Programming Springer-Verlag. 2002.

ISBN 3-540-42451-2. pp 145-150.

