Counting Solutions in Reduced Boolean Parity.

M. Collins

CISA, Edinburgh University, Scotland

mcc@dcs.ed.ac.uk

Abstract. Motivated by the interest in the boolean parity problem, this
paper examines the structure of solutions to a simple form of the boolean
parity problem and provides efficient methods for counting them. Under-
standing the structures which control solution distribution is important
for understanding the performance of search mechanisms on the reduced
boolean parity problem. EA search mechanisms have reportedly per-
formed better than random search in solving the simplified form of the
boolean parity problem, despite fitness neutrality leading to an absence
of a search gradient, renewing interest in understanding the solution dis-
tribution.

1 Introduction

Using the Cartesian GP [3, 5] Yu and Miller have shown limited success in solving
a simplified form of the boolean parity problem [4]. The form of the boolean
parity problem examined uses only the Boolean EQ and XOR operators, and
shall be referred to as the reduced Boolean parity problem.

This paper examines the properties of solutions to the reduced Boolean parity
problem, and provides methods for counting solutions within the representation
space. Section 2 defines the reduced boolean parity problem and the properties
of a solution. Section 3 describes the representation used in this paper. Section
4 identifies structures which are present in all solutions to the reduced Boolean
parity problem. These structures are then exploited to efficiently count the pos-
sible solution arrangements, greatly simplifying the counting process. Section 5
presents results for some common parameters and Section 6 concludes this work
and suggests how this knowledge could be used in future work.

2 Boolean parity

The Boolean parity problem is the task of identifying whether a Boolean input
sequence contains an even (and equivalently odd) number of TRUE inputs. As a
benchmark problem in EA, it is equivalent to choosing a sequence of functions
from a set F', and input assignments from a set of possible inputs I, such that the
result of evaluating the function over all possible inputs is to correctly classify
the parity of the inputs. It is recognised that the problem difficulty is highly
dependent upon the function set used [1].

2 M. Collins

A solution to the Boolean parity problem is a function which, when evaluated
over all possible inputs, correctly distinguishes the odd parity inputs from the
even parity inputs. This can be achieved in two ways, by identifying the odd
parity inputs, or by identifying the even parity inputs, and one form can be
converted to the other by negation of the output. Irrespective of the nature of
the parity measured, both methods correctly partition the input space.

When the output of the tested function is compared to the output of an odd
(or even) parity function there are three possible situations: the sequences are
the complement of each other, half the sequences are coincident, or the sequences
are identical. These cases correspond to the case where the function evaluated is
the inverse parity of the contrasted parity function, the case where the function
is not a solution to either of the parity problems and the case where the parity
of the function evaluated is precisely the same as the contrasted parity function.
The first and last cases are acceptable as solutions to the Boolean parity problem.

3 Representation

In general, the input alphabet I of size |I] is a set of distinct Boolean val-
ues {Ii,...,I);}, corresponding to the parity of the problem. In the reduced
Boolean p-parity problem, the input alphabet is p elements, and the function
set is {XOR,EQ}. The number of possible arrangements using from 1 up to Fpjaz
functions is:

Frraw
Z 2ipi+1 (1)
i=1
Where an example arrangement using 2 functions and an alphabet of 3 inputs
is: I) EQ I EQ I3 and is a solution to the 3 parity problem. Another arrangement
but this time with 3 functions, I; EQ I EQ I3 EQ I; is not a solution to the 3
parity problem. In this work, the total number of arrangements of functions and
inputs is referred to as the total number of arrangements.

4 Solution structure

Restricting the available operator set to {XOR, EQ} has been shown [1] to restrict
the function space. The commutative and associative properties of the XOR,
EQ operators create equivalence relations between candidate solutions and a
set of functionally equivalent representations. For instance I3 XOR I} EQ I5 is
rearranged to give I; EQ I, XOR I3, which whilst potential distinct entities in
the representation space, are identical in functional terms. Table 1 shows some
simple candidate functions and their simplified equivalent functions.

Solutions occur for this form of the Boolean parity problem iff all Boolean
inputs are referenced once in the simplified equivalent solution. A simple proof
of this, if fewer inputs are referenced then the function is ignorant of some parity
altering input state changes and can not be a solution to the parity problem.

Counting Solutions in Reduced Boolean Parity. 3

Function Simplified equivalent | Solution?
1|13 XOR I EQ I> I EQ I> XOR I3 Even 3-parity.
2|I; XOR I3 XOR I1 EQ I> FALSE EQ I> XOR I3 Non solution.
3|I: EQ I XOR I3 XOR I EQ I2|TRUE XOR I1 EQ I> XOR I3|Odd 3-parity.

Table 1. Examples of simple functions and their simplified equivalent expressions,
constructed from an input alphabet of size 3.

Duplicate references to inputs result in introns, and introns vanish from the
simplified form. XOR and EQ are both commutative and since for any Boolean
input I, I, XOR I, = FALSE and I, EQ I, = TRUE. Even numbers of references
to the same input either invert or leave intact the exact functionality of the
other functions; arrangements of this type can not alter the acceptability of
the function in terms of distinguishing even and odd parity. Finally choosing
between the XOR and EQ functions is actually irrelevant to the acceptability of
the solution. XOR is simply the negation of EQ and instances of it can be replaced
by NOT EQ without altering the function of the expression. Negation of a result
is irrelevant to the identification of parity, since it simply changes an even parity
function into an odd parity function and vice versa.

Table 1 shows three example representations of potential solutions to the
reduced 3 parity problem. The functions are numbered on the first column and
shows a solution to the 3 parity problem and two cases where an intron is
created. The first function contains references to all the possible inputs with
no repeated input references, it is thus a solution to the 3 parity problem. The
second function shows the effective loss of the input reference I; due to it being
referenced twice. The third function shows the case where the simplified function
maintains references to all the inputs, though through the effect of the intron the
basic solution has had its polarity reversed (it is now an odd parity solution).

Using the fact that even numbers of references to the same input are ef-
fectively neutral to the output validity, the number of solutions possible to the
p-parity problem which reference n inputs, S(p,n), can be counted by separately
calculating the number of arrangements of the n — 1 functions used and mul-
tiplying this by the number of input sequences which meet the requirement of
referencing each input once and only once in the simplified representation. There
are n— 1 functions, each of which can be one of the 2 function types, the number
of function arrangements is then 2(*~1). The number of input sequences which
generate a reference to each input only once in the simplified representation is
denoted by I(p,n).

S(p,n) =2""I(p,n) (2)

The number of input arrangements which can be simplified to reference each
input only once is best counted by ignoring the p inputs which must be distinct
for a solution, and counting the number of ways the remaining n — p inputs can
be arranged to be introns with no effect. Evidently the introns can only exist if

4 M. Collins

there are an even number of the n — p remaining references, and further each
of the inputs referenced by this surplus must be referenced an even number of
times by the surplus.

The number of ways the n input references can make a solution to the p
parity problem is then given in two steps. The first step calculates the ways
introns can be made from the surplus inputs. This is the number of ways that
pairs of the n — p surplus input references can be assigned to groups where all
pairs in the group have the same input reference and no two groups have the
same input reference. The second step involves multiplying the number of intron
arrangements by the number of distinct permutations of n input references.

Enumerating the groups is performed by generating the set of integer par-
titions of the (n — p)/2 pairs. As an example the integer partitions of four are:
{{4}.,{3,1},{2,2},{2,1,1},{1,1,1,1}} and represent the number of ways intron ar-
rangements can be made from the XOR EQ operators with 8 input references; as
an octuple {4}, a hextuple and a pair {3,1}, two quadruples {2,2},a quadruple
and two pairs{2,1,1}, and as four pairs {1,1,1,1} respectively.

The number of solutions which are present in a partition 7, denoted N ()
is the number of arrangements of groups to the partition, A(w), multiplied by
the number of distinguishable input assignments to the n inputs which have this
partition arrangement D (7).

N(m) = A(m)D(m) (3)

Continuing with 3-parity and using the intron partition {2,1,1} as an ex-
ample, the number of ways of choosing the input for the first element of the
partition is simply (:1") The second and third elements of the partition are iden-
tically sized and can not be distinguished, also one input reference has been
used in choosing the assignment for the first partition, so the number of ways
of assigning inputs to the second and third elements is the unassigned input
alphabet choose two: (3). The total number of arrangements of the partition is
A({2,1,1}) = (3)(3) = 3. To be specific, the basic labellings for the 3-parity
2,1,1 intron partition (those made from one quadruple and two pairs using an
alphabet of three) are {{1111,22,33},{2222,11,33},{3333,11,22}}. The possible
permutations of the partition labeling are considered in equation 6. In order
to generalise this process we require a utility function to count the number of
distinct elements of a particular size in the partition: Let the function C(r,s)
represent the number of partition elements of size 0 < s < I/2 in the partition
7, and let |7| represent the number of elements and ; represent the i'* element
in the partition 7.

C(m,s) = Z (mi =) (4)

Counting Solutions in Reduced Boolean Parity. 5

Any solution containing the introns represented by the partition 7 thus con-
tains 7; + 1 references to the input assigned to ;. These 7; + 1 assignments are
indistinguishable giving:

n!
I @ +1)!
Continuing with the 3 parity example, and using 9 input references for

demonstration purposes, intron partition arrangements and the number of dis-
tinguishable input arrangements possible are shown in Table 2.

D(m) (6)

Integer partition|Num. assignments| Num. of distinct |Total
™ to the I.P, A(7) |permutations, D(w)| N(x)
{3} (z)] 9!/7! 216
{2,1} @) 9!/5!3! 3024
{1,1,1} () 9!/313!3! 1680
Total 4920

Table 2. The 3-parity problem with 9 inputs. Intron arrangements (as represented
by integer partitions) are shown in column one, and the number of ways of assigning
inputs to the introns is shown in column two and the third column shows the number
of ways such an arrangement could be produced.

And so the total number of intron arrangements possible for the p-parity
problem using the XOR,EQ operators is:

v
Ipm) =3 N() (7)

The number of solutions possible for all possible functions referencing up to
a maximum of n inputs, is then:

Z S(p,1) (8)

5 Results

Table 3 shows the relationship between the parity, the number of inputs refer-
enced and the number of solutions in the space. For comparison the number of
possible arrangements of input references and function assignments is given, and
the amount of the space which is occupied by solutions is given as a percentage.

Previous work [4] examined the 5, 8 10 and 12 even parities and permitted
size of up to 100 functions (101 inputs). In [4] the 5-parity results used XOR and
EQ functions, whereas the 8, 10 and 12 parity used only EQ. For comparison,

6 M. Collins

Parity|Num. inputs|{Num. solutions|Num. possible/Percent
4 4 192 2048 9.4
5 0 16384 0
6 15360 131072 11.7
7 0 1048576 0
8 1032192 8388608 12.3
5 5 1920 50000 3.84
6 0 500000 0
7 268800 5000000 5.38
8 0 50000000 0
9 29675520 500000000 5.94

Table 3. Examples of the number of solutions and the number of possible arrangements
against the parity and the size of the function (measured in terms of the number of
input references made by the function)

Parity|Num. solutions|Num. possible|Percent
5 3.157 10%° 5.556 10107 5.68181
6 1.303 10106 5.421 10108 0.24038
7 4.508 1013 3.091 1015 1.45833
8 1.013 1018 2.204 10! 0.04596
9 1.187 1014 3.209 10*2¢ 0.37007
10 1.241 10?7 1.334 103! 0.00930
11 1.880 1032 2.013 1038 0.09341
12 2.568 1034 1.315 10'° 0.00195
13 9.989 10'3® 4.249 1014 0.02351
14 3.176 104° 7.546 10*%° 0.00042
15 4.724 1044 7.997 108 0.00591

Table 4. The number of solutions and the number of possible arrangements for the 5
to 15 parity problems using up to 100 functions.

Table 4 shows the Zg(; S(p, i) result for the first 10 non-trivial parity problems;
from 5-parity through to 15-parity. It should be noted that for all experiments
in this work both XOR and EQ functions are used.

However, the choice of the maximum number of functions used in the repre-
sentation is significant. If the parity problem is even and the maximum number
of functions is even, then all the arrangements which use the maximum number
of functions — by far the majority of the space — are non-solutions. The same
effect occurs when the problem to be solved is odd party and the maximum
number of functions is odd. This sampling effect can be seen in Table 4, which
shows distinct bias towards solving odd parity problems as a consequence of
having an even maximum number of functions (100 in this case).

Counting Solutions in Reduced Boolean Parity. 7

6 Conclusion

This paper presents efficient methods for counting the solutions to the reduced
Boolean parity problem, and provides example results for some common pa-
rameters. The structure of the solution space; distinct solutions permuted by
various intron assignments, indicates the space is regularly populated with ele-
mentary solutions which have functionally identical alternative representations
at distances governed by the possible permutations of the intron groups. This
suggests that the space may be better explored by moving between equivalence
classes; a promising topic for future work.

7 Thanks

Thanks to all those who helped with this paper, not least Michelle Galea and
Henrik Westerberg, whose insight with combinatorics allowed me to make the
deadline. Thanks also to John Levine and Jacques Fleuriot for reading this
paper at extremely short notice. Also thanks to the anonymous reviewers, whose
contributions are gratefully received.

References

1. W. Langdon. R. Poli. Boolean Functions Fitness Spaces 1997. University of Birm-
ingham Technical Report CSRP-98-16.

2. J. Miller. What Bloat? Cartesian Genetic Programming on Boolean problems E.
Goodman (Ed.) 2001 Genetic and Evolutionary Computation Conference Late Break-
ing Papers, pp 295-302.

3. J. Miller. An empirical study of the efficiency of learning boolean functions using
a Cartesian Genetic Programming approach R. Poli et al (Eds.) Proceedings of the
Third European Conference on Genetic Programming. 2000. pp. 121-132.

4. T. Yu. J. Miller. Finding Needles in Haystacks Is Not Hard with Neutrality J. Foster
et al (Eds.) EuroGP 2002, LNCS 2278, pp. 13-25.

5. T. Yu. J. Miller. Neutrality and the Evolvabilty of Boolean Function Landscapes
Proceedings of the Fourth European Conference on Genetic Programming. 2001.

6. W. Langdon. R. Poli. Foundations of Genetic Programming Springer-Verlag. 2002.
ISBN 3-540-42451-2. pp 145-150.

