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Diversity in Genetic Programming: An Analysis of
Measures and Correlation With Fitness

Edmund K. Burke, Steven Gustafson, and Graham Kendall

Abstract—This paper examines measures of diversity in genetic
programming. The goal is to understand the importance of such
measures and their relationship with fitness. Diversity methods
and measures from the literature are surveyed and a selected set
of measures are applied to common standard problem instances
in an experimental study. Results show the varying definitions and
behaviors of diversity and the varying correlation between diver-
sity and fitness during different stages of the evolutionary process.
Populations in the genetic programming algorithm are shown
to become structurally similar while maintaining a high amount
of behavioral differences. Conclusions describe what measures
are likely to be important for understanding and improving the
search process and why diversity might have different meaning
for different problem domains.

Index Terms—Diversity, genetic programming, population
dynamics.

I. INTRODUCTION

THE AIM OF this paper is to develop a general under-
standing of diversity in genetic programming and to

gain additional insight into the algorithm’s search behavior.
More specifically, we would like to understand how one could
improve fitness by controlling diversity. Toward this goal, we
survey previous measures and methods of diversity and apply
them in an experimental study. The genetic programming
algorithm can be difficult to reason about theoretically, as
has been shown by numerous past attempts (see [30] for a
review). Many experimental studies have been insightful in
uncovering and addressing various aspects of the algorithm’s
properties; Daida et al.’s examination of problem difficulty and
single node building block analysis [7], [9] is a good example.
Additionally, previous investigations into measures of diversity
have given the community a clearer view of populations and
the evolutionary process of genetic programming [11], [19],
[26], [30], [40], [44]. To assess how informative different types
of diversity measures are, we address the relationship between
population diversity and fitness.

This program of research was also motivated by the low level
of research activity into identifying diversity measures which
correlate with fitness. Conventional wisdom suggests that
increasing diversity should be generally beneficial. However,
there are many possible definitions of diversity in a represen-
tation like genetic programming. Identifying such measures
could allow more prediction of run performance, improved
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understanding of populations and could enable the design of
more efficient operators and genetic programming algorithms.

Three main questions are raised and addressed in this paper.

1) How informative are various measures of diversity (struc-
tural and behavioral measures)?

2) Does there exist a correlation between the best fitness and
diversity of populations?

3) Does diversity play a more significant role at different
stages of the evolutionary process?

As genetic programming is highly stochastic, we do not expect
to obtain clear (and always applicable) rules about exact levels
of diversity. We aim to draw general conclusions and “rules of
thumb” from the investigation of evolving populations with dif-
ferent measures of diversity.

The genetic programming literature consistently cites the im-
portance of maintaining diversity as being crucial in avoiding
premature convergence toward local optima [18], [38], [40],
[44], [46]. Diversity is a key element of the biological theory of
natural selection and is used in genetic programming to describe
structural or behavioral variety in the population. The term di-
versity is often used without definition and the implicit assump-
tion is the diversity of genotypes, or structural diversity, as this is
the common use in the genetic algorithm literature. Measures of
diversity have, however, been defined as the number of different
behaviors (fitness values or phenotypes) [45], the number of dif-
ferent structures (individuals, programs, or genotypes) [29], the
edit distance between structures in the population [12], [18], and
other complex or composite measures [15], [26], [39].

The previous uses and meanings of diversity from the
literature are examined and applied to four standard problem
instances (two with continuous fitness spaces and two with
discrete spaces) to develop a fuller picture of diversity in ge-
netic programming. This paper significantly extends our initial
studies [4], [5] with additional experiments and new and more
complete analysis. Genetic programming evolves solutions by
means of a population. Thus, population diversity is related
to nearly every aspect of the evolutionary process. Extending
this line of research will lead to a deeper understanding of the
algorithm.

II. DIVERSITY MEASURES

Measures of diversity are concerned with the levels and types
of variety in populations. Such measures can be defined over
general features, including fitness values, structures, or a com-
bination of the two. Diversity measures can also be defined with
specific problem domains in mind, such as composite measures
of behavioral types which the fitness function does not express
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[15]. Additionally, there are methods that attempt to control or
promote diversity during evolution. Depending on the specific
problem or representation being used, infinitely many diversity
measures and methods could exist. In this paper, we focus on
measures developed for general problems and measures that are
commonly used, especially in the genetic programming litera-
ture with the tree representation. However, we also report and
analyze significant measures from across the genetic program-
ming field and other relevant genetic algorithm measures. This
section provides a survey of the significant measures and the
methods used to control diversity levels within genetic program-
ming populations.

A. Population Measures

Biological diversity refers to the differences between individ-
uals in a population, which, by the nature of biology, implies
a structural and behavioral difference. In genetic programming,
the standard use of diversity refers to structural differences only.
This does not guarantee behavioral difference and usually only
implies that two structures are not identical. Koza [28] used
the term variety to indicate the number of different genotypes
that were contained in a population. In a standard genetic pro-
gramming population, this would be the number of structurally
unique individuals, trees, or programs. While this measure is
probably the least informative it is the most common due to its
ease of use and understanding. Langdon [29] argued that geno-
typic diversity is a sufficient upper bound of population diver-
sity. Due to the nature of most genetic programming systems
and problems, two identical structures will produce the same be-
havior (fitness). Thus, a decrease in genotypic diversity (unique
structures) will necessarily cause a decrease in unique behav-
iors. In his treatment of the stack problem [29], Langdon in-
vestigated the effects of the crossover operator on variety. The
author noted that genetic programming loses some ability to im-
prove fitness after 20–30 generations and it is most probably due
to crossover causing a loss of variety. Langdon also noted that
in the stack problem, runs with better fitness appeared to allow
crossover to produce a larger number of fitter (and nondupli-
cate) children than their parents.

The standard program representation (tree structures) in ge-
netic programming lends itself to more fine grain structural mea-
sures that consider nodes, subtrees, and other graph theoretic
properties (rather than just entire trees). Keijzer [26] measured
subtree variety as the ratio of unique subtrees over total subtrees
and program variety as a ratio of the number of unique individ-
uals over the size of the population. Keijzer also used a distance
measure between two individuals as the number of distinct sub-
trees the individuals share. Tackett [51] also measured structural
diversity using subtrees and schemata frequencies.

Problem specific measures can allow additional insight into
population diversity, especially on novel and nontraditional
problems. D’Haeseleer and Bluming [15] defined behavior and
frequency signatures for each individual based on fitness and
gene frequencies, respectively. The average correlation between
every two individuals’ respective signatures represents the
phenotypical and genotypical diversity of the population. In ad-
dition, D’haeseleer and Bluming tag genetic code and evaluate
the behavior of individuals with a “stimulus-response map”

to gain further knowledge into the structure and behavior of
populations in their robot tank problem. Using these measures,
the authors witnessed emerging demes with neighborhood
selection and mating.

Graph isomorphism could be applied to genetic program-
ming tree structures as a measure of diversity. However, due to
the nature of nodes used in genetic programming, the proper-
ties (associativity, commutativity, etc.) would require special,
and possibly complex, implementations of isomorphism [44].
Also, determining graph isomorphism would be computation-
ally expensive for an entire population. However, a measure of
possible isomorphic trees could be found by noting simple prop-
erties (terminal, functions, depth, etc.) to determine the indi-
viduals which could be isomorphic without actually computing
isomorphism.

McPhee and Hopper [40] investigated diversity at the genetic
level by assigning numerical tags to each node in the population.
The tags track the survival of nodes from the initial population
and the change of context for nodes during recombination. The
authors also tracked the genetic lineages from the initial popula-
tion by noting the individuals selected for recombination, which
child they produced and which of the parents provided the root
portion of the child’s tree. They found that populations in the
final generation often descended from one single initial indi-
vidual, and genetic lineages were effectively reduced to one sur-
viving lineage early on in the evolutionary process.

Measuring the difference between two individuals based on
string edit distances has been used several times in genetic pro-
gramming. O’Reilly [42] used an edit distance based on string
matching, which uses single node insertions, deletions and sub-
stitutions to transform two trees to be equal in structure and con-
tent. De Jong et al. [12] also used a similar edit distance in a
multiobjective method. Ekárt and Németh [18] defined an edit
distance specific to genetic programming parse trees, adapted
from [41], which considered the cost of substituting between
different node types (functions versus terminals and within these
classes).

The diversity measures discussed above are based on struc-
tural differences (except [15]). The measure of success in
evolutionary algorithms is typically the fitness of a solution
or behavior in the problem’s environment. Measures based on
behavior compare differences among the populations’ fitness
values at a given time. Rosca [44] used the fitness values in
a population to define an entropy and free energy measure.
Entropy represents the amount of disorder of the population,
where an increase in entropy represents an increase in diversity.
Rosca found that populations appeared to be stuck in local op-
tima when entropy did not change or decreased monotonically
in successive generations.

B. Promoting Diversity

The canonical view of evolution and diversity is that more
diversity will provide more opportunities for evolution. How-
ever, as noted in several diversity studies (see [19]), typical evo-
lutionary algorithms contain a phase of exploration followed
by exploitation. Promoting all kinds of diversity during the en-
tire evolutionary process could be counterproductive to the ex-
ploitation phase. The type and amount of diversity required at
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different evolutionary times remains rather unclear. However,
several measures and methods have been used to promote di-
versity. These methods typically use a nonstandard selection,
mating, or replacement strategy to increase or control diver-
sity. Common methods are geographical distributions of indi-
viduals that define their interactions (neighborhoods [6] and
islands [35]) and methods which consider the behavior similar-
ities (sharing [24]) or structural similarities (crowding [14], or
genotype sharing [13]) to define individual interactions. These
common techniques were initially applied in genetic algorithms.

Eshelman and Schaffer [20] investigated the advantage
of pair-wise mating in genetic algorithms. The authors used
Hamming distances to select individuals for recombination
and replacement to improve over hill-climbing-type selection
strategies for genetic algorithms. Ryan’s “Pygmie” algorithm
[46] addressed premature convergence and elitism in small pop-
ulations for evolving minimal sorting networks. The algorithm
builds two lists based on fitness and length to facilitate selection
for reproduction. Ryan’s algorithm maintained more diversity,
prevented premature convergence, and used simple measures
to promote diversity. De Jong et al. [12] used multiobjective
optimization for the -parity problem to promote diversity
and concentrate on nondominated individuals according to
a three-tuple of . Diversity is the
average square distance to other members of the population,
using a specialised measure of edit distance between nodes. This
multiobjective method promotes smaller and more diverse trees.

Keller and Banzhaf [27] described a structural difference
measure based on the edit distances between two genotypes.
The measure is more complicated than standard edit distance
but is intended for explicitly controlling the diversity of popu-
lations. Brameier and Banzhaf [3] used a string edit distance
on the effective portions of their linear genetic programming
individuals, measuring the distance between the program
code which contributes to fitness. They used their measure
in a two-level tournament, selecting for fitness and then for
diversity.

McKay [38] applied the traditional fitness sharing concept
from the work of Deb and Goldberg [13] to test its feasibility in
genetic programming. The fitness sharing technique is credited
with maintaining population diversity that allowed perfor-
mance improvements and population size reductions for the
multiplexer and recursive list membership problems. Diversity
is the number of fitness cases found, and the sharing concept
assigns a fitness based on an individual’s performance divided
by the number of other individuals with the same performance.
Also, McKay studied negative correlation [31] and a root
quartic negative correlation [37], [39] to preserve diversity on
the multiplexer problem with mixed results. Ekárt and Németh
[18] apply fitness sharing with a novel tree distance definition
to a symbolic regression instance and suggest that it may be an
efficient measure of structural diversity. Their results showed
promise for controlling the size of programs without initially
improving performance. The authors then apply their measure
between every pair of individuals in a weighted arithmetic
mean to develop a population diversity measure [19]. This
measure is used to adaptively control diversity for broad and
more focused search phases as it was noted that a conflict
between fitness improvement and high diversity was observed

in their previous work. The authors find that on their symbolic
regression instances, fitness sharing is able to improve accuracy
and maintain population diversity.

Bersano–Begey [1] tracked how many individuals solve spe-
cific fitness cases, where a pressure was added to promote di-
versity and the discovery of different or less popular solutions.
This is similar to the Stepwise Adaptation of Weights [17] tech-
nique for constraint satisfaction and symbolic regression in-
stances [16]. Smith et al. [48] investigated diversity within their
immune system algorithm for classifier systems, based on a
standard genetic algorithm. Their task is not concerned with tra-
ditional optimization and requires diverse populations to be suc-
cessful. A speciation tree using Euclidean distance is applied by
Bessaou et al. [2] in their study on multimodal optimization with
island models. Their algorithm splits individuals into species,
evolves them with a genetic algorithm, and then redistributes
them into new species. Geard and Wiles [23] counted unique
genotypes while studying recombination and diversity for a ge-
netic algorithm solving their “royal staircase” problem.

Fernandes and Rosa [21] looked at varying population sizes
and nonrandom mating to maintain diversity for the Royal
Road problem. Their negative assortative mating looks for
genotypes with maximal Hamming distances. Darwen and Yao
[11] studied cooperation in the iterated prisoner’s dilemma
problem and found that increasing behavioral diversity, not
genetic diversity, can improve cooperation and performance.
The authors also comment on the dogma surrounding diversity
and some previous methods to maintain diversity [10]. Ursem
[52] cited the importance of high and low diversity phases in
an evolutionary strategy framework. The author used a “dis-
tance-to-average-point” diversity measure for his real-value
encoded individuals. Depending on whether the diversity is in a
predefined high or low phase, different recombination operators
are used which allow diversity to fall or which promote more
diversity, respectively.

C. Studying Diversity

Low diversity is often mentioned as the reason for poor per-
formance in evolutionary algorithms. Some methods mentioned
above have attempted to improve, control or maintain diversity
to improve their algorithms, while others have noticed unusual
behavior while studying diversity issues in their research.

O’Reilly [42] noted the importance of using structural dis-
tance measures on genetic programming populations to under-
stand the underlying dynamics. An edit distance measure is used
here to study the effects of crossover and the differences be-
tween individuals and better individuals. While no clear results
are found, the ability to understand genetic programming pop-
ulations with edit distance measures is suggested. Keijzer [26]
noted that his distance measure of distinct subtrees between two
individuals could be used to predict when subtree crossover will
fail to provide improvements due to loss of diversity. Langdon
[29] found that the loss of diversity caused a decrease of unique
terminals which, due to subtree crossover, led to further di-
versity loss. Langdon and Poli [30] later noted that measuring
variety with only unique genotypes fails to consider the an-
cestral history of individuals, the degree of difference between
nonunique individuals and their behavioral similarities. Our ini-
tial research examined common measures of diversity [4] and
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measures based on edit distance [5]. These studies also briefly
measured the correlation between diversity and fitness, noting
that traditional measures based on unique genotypes had very
low correlation with fitness.

In conclusion, measures of diversity, and studies using those
measures, can provide different levels of knowledge about the
evolving populations. The more detailed a measure is, the more
computation, implementation, and analysis expense there is
likely to be. Therefore, there is a need to find informative and
inexpensive measures which can capture detailed information
about populations (such as the ability to improve or get out of
local optima). The focus of genetic programming is usually
driven by a performance goal (i.e., fitness improvement or
generality of populations) and not by the level of diversity. The
level of diversity is not seen in itself as a goal. Thus, identifying
the measures of diversity that are correlated with fitness is
crucial.

The focus of this paper is to more thoroughly investigate dif-
ferent measures of population diversity, especially with respect
to edit distance measure and the correlation of different mea-
sures during evolution. This paper builds significantly on [4]
and [5]. Two problems with discrete fitness spaces and two in-
stances of the regression problem with continuous fitness spaces
are considered in a quantitative study. We hope to better under-
stand how measures of diversity perform in these different fit-
ness spaces. It should be mentioned that diversity is studied in
other areas of evolutionary algorithms (neural network ensem-
bles [31] for example) but is out of the scope of this paper.

D. Correlation Measures

An objective of this paper is to quantify the importance and
levels of diversity, recorded by different measures, on typical
problems. In this paper, we collected 1000 independent runs for
each problem. As correlation measures, especially the nonpara-
metric one used here, are not particularly appropriate for ex-
tremely large samples, we generally use sample sizes of 100.
Larger and smaller samples were tried with no useful benefits
seen.

Our primary test of the relationship between diversity and fit-
ness is the Spearman correlation measure [47]. The Spearman
measure ranks two sets of variables and tests for a linear re-
lationship between the variables’ ranks. Initially, we are inter-
ested in whether two runs can be distinguished by their diversity
in terms of which run is better. Interesting relationships could
easily exist but not necessarily be linear. We also evaluate a
range of scatter plots which can show linear relationships in ad-
dition to others, as will be seen with edit distance measures later.

The Spearman correlation coefficient is computed (from [47])
as follows:

where is the number of items, and is the distance between
each population’s rank of fitness and rank of diversity. A value
of represents negative correlation, 0.0 denotes no corre-
lation, and 1.0 demonstrates positive correlation. For our mea-
sures, if we see ideal low fitness values, which will be ranked

in ascending order ( ) and high di-
versity, ranked in ascending order ( and

), then the correlation coefficient should
be strongly negative. Alternatively, a positive correlation indi-
cates that either bad fitness accompanies high diversity or good
fitness accompanies low diversity.

III. EXPERIMENTS

Four common problem instances and parameter values are
used (see [8], [32], [34], [40], [50]). As previous studies into the
dynamics, code growth, recombination, and theoretical foun-
dations in genetic programming use similar problems and pa-
rameter settings, we felt it appropriate to use them here as well.
For all problems, a population size of 500 individuals, a max-
imum depth of 10 for each individual, a maximum depth of 4
for the tree generation ramped half-n-half algorithm, standard
subtree crossover, and internal node selection probability of 0.9
for crossover is used. Each run consists of 51 generations.

The crossover probability is set to 1.0 (no mutation is used),
the tournament size is 4, and the Mersenne Twister random
number generator [36] is seeded with the current time in mil-
liseconds for each run. Evolutionary Computation in Java, ver-
sion 7.0, [33] is used, where each problem (except Rastrigin,
which was modified from the regression problem) is available in
the distribution. The setup of all experiments are summarized in
a parameter file which allows the exact same run to be rerun for
verification. Note that the measures of diversity (and necessary
modification to accommodate those measures) are not available
in the Evolutionary Computation in Java framework, but imple-
mentation detail can be acquired from the authors.

A. Problems

The artificial ant, even-5-parity, and symbolic regression
problems (with the quartic polynomial and Rastrigin function)
are used. All four problem instances are common in the genetic
programming literature and can be found in many studies,
including [28], [30], [40], and [50]. The functions and terminals
of each problem are summarized in Table I along with other
experiment parameters. Each of the problem instances can be
summarized as follows.

1) Artificial Ant: The artificial ant problem (with the Sante
Fe trail) consists of finding the best strategy for picking up pel-
lets along a trail in a grid. The Sante Fe trail contains 89 food
elements on a two-dimensional surface. The ant problem uses
the if_food_ahead, progn2, and progn3 functions and left, right,
and move terminals. The function if_food_ahead tests for a food
pellet and executes one of its two arguments. The other two
functions (progn2, progn3) execute their arguments in succes-
sion. The terminals left and right turn the ant, and the move
terminal moves the ant forward. The fitness for this problem
is measured as the number of pellets missed. The artificial ant
problem is investigated in several studies. Recently Langdon
and Poli [30] report an in-depth investigation.

2) Quartic and Rastrigin Regression: The quartic regres-
sion instance (using the quartic polynomial) attempts to fit a
curve for the function . Fitness here is deter-
mined by summing the squared difference for each point along
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TABLE I
EXPERIMENT AND PROBLEM PARAMETERS. NOTE THAT BOTH

REGRESSION INSTANCES’ FUNCTION SET INCLUDES THE SAME FUNCTIONS

(SIN,COS,EXP,LOG) AND THAT “P/” IS PROTECTED DIVISION IN

BOTH THE QUARTIC AND RASTRIGIN INSTANCES,
RETURNING 1.0 IF THE DENOMINATOR IS 0.0

the objective function and the function produced by the indi-
vidual. The Rastrigin instance is similar to the quartic instance
where the function is

For the Rastrigin instance, is in the range [ , 5.12] and for
the quartic instance, is in [ , 1.00], while for both
instances. Both problems use the same function and set of ad-
dition, subtraction, multiplication, protected division (returning
1.0 if the denominator equals 0), sine, cosine, exponentiation,
and logarithm. Their common terminal set includes the original
functions’ values, 20 randomly sampled points for both prob-
lems. The function set used here is typical for the Rastrigin in-
stance, whereas the quartic instance occasionally uses only addi-
tion, subtraction, multiplication, and division. We use the same
for both to be consistent and do not use any ephemeral random
constants. Note that by keeping the function and terminal sets
the same for both regression instances, the Rastrigin problem
is likely to be more difficult to solve without using ephemeral
random constants. Also, in this paper, we will often refer to
the “quartic problem” and “Rastrigin problem” when they are
indeed instances of the same problem domain: the regression
problem.

3) Even-5-Parity: The even-5-parity problem takes an
input of a random string of 0s and 1s and outputs whether

there are an even number of 1s. The even-5-parity fitness is
the number of wrong guesses for the combinations of 5-bit
length strings. All problems have an ideal fitness of low values
( ). The function set consists of the binary
and, or nand functions and there are the five terminals D0, D1,
D2, D3, and D4 representing the boolean inputs. The parity
problem has also been investigated in detail in [30].

B. Diversity Measures Used

Our experimental study uses several measures of diversity
that were introduced in Section II. With the following measures,
we attempt to asses their relationship with performance and use
them as a way to view population dynamics. The measures are
collected for each population in every generation.

• Genotype diversity counts the number of unique trees
[29]. Genotype diversity does not consider the fitness or
behavior of the trees. Two trees are equal only if they con-
tain the exact same structure and content.

• Phenotype diversity counts the number of unique fitness
values in a population [45]. This measure is quite im-
portant, as we will see later, as the selection mechanism
which must choose individuals to produce the next gener-
ation selects individuals based on their fitness. Different
problem domains define the number of possible fitness
values differently. For instance, in the Parity problem,
there is a finite number of possible fitness values that an
individual can have. However, the fitness space is contin-
uous in regression problems, but due to the precision of
numbers, wrappers around operators (protected division
for instance), and the presence of nonfunctional code it is
common for different trees to have the same fitness value.

• Entropy diversity is calculated for the population as in
[44], where “ is the proportion of the population oc-
cupied by population partition ”

A partition is assumed to be each possible different fitness
value, but could be defined to include a subset of values.
This would be most appropriate for the continuous fitness
space problems. However, for these problems, it would be
equally valid to define the phenotype measure in this way,
but both tasks would require a deeper understanding of
the possible fitness values. Entropy represents the amount
of chaos in the system, where high entropy describes the
presence of many unique fitness values where the popula-
tion is more evenly distributed over those values. Low en-
tropy describes a population which contains fewer unique
fitness values and many individuals have the same fitness.

• Pseudo-isomorphs are found by defining a three-tuple of
for each individual

and the number of unique three-tuples in each population
is the diversity measure. Two identical three-tuples repre-
sent trees which could be isomorphic and two noniden-
tical three-tuples are not isomorphic. To determine if the
trees are indeed isomorphic would be too computationally
expensive.
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• Edit distance 1 and 2 diversity is based on the edit dis-
tance between individuals used by de Jong et al. [12] (re-
ferred to as “ed 1” in the graphs) and an adapted version
of the approach used by Ekárt and Németh [18] (“ed 2”).
Every individual in the population is measured against the
best fit individual found so far in the run. This measure is
then divided by the population size. The first measure (de-
noted “ed 1”) is a standard edit distance measure where
two trees are overlapped at the root node. Two different
nodes, when overlapping, score a distance of 1 and equal
nodes score 0. The edit distance is then the sum of all dif-
ferent nodes which is normalized by dividing it by the size
of the smaller tree. The second measure (denoted “ed 2”)
is adapted back to its original formulation in [41] where
the difference, between any two nonequal nodes
and is 1. The difference between two trees is then (de-
fined in [18])

if neither nor
have any children

otherwise

where , are trees with roots , and possible chil-
dren ( total) subtrees , , and . The constant

is set to 1/2 but can be adjusted, as done by Ekárt and
Németh [18], to weight the depth of tree differences differ-
ently. Two trees are brought to the same tree structure by
adding “null” nodes to each tree. Note that the differences
near the root have more weight. This is possibly a very
convenient description for genetic programming as it has
been noted that programs converge quickly to a fixed root
portion [25], [40]. Also, note that our edit distance diver-
sity measures the population against the individual with
the best fitness in the run so far, not the one with the best
fitness in the current population, a distinction that was less
clear in [5]. The reason for this is that it is common for re-
searchers to consider this individual rather than the best
in each generation for analysis. Additional experiments
using edit distance based on the current generation’s best
of run individual yielded little variation.

IV. RESULTS AND ANALYSIS

First, we examine the primary results of the experiments, fo-
cusing on trends that populations exhibit when viewed with best
fitness and diversity measures. We then attempt to present a
more general analysis of how effective our diversity measures
are, what diversity tells us about evolving populations, and how
these results support previous results and conjectures.

A. General Comments on Sample Runs

We begin by viewing 50 of the random independent runs, with
one graph for each problem and for selected diversity measures.

Fig. 1 shows the best fitness of each generation during the
evolutionary process, and Fig. 2 shows the evolution of size and
depth for all problems. Many runs stop improving after 15–20

generations, with the exception being the Parity problem which
continues to make improvements. Previous research by Luke
[32] showed that it is better to carry out short runs (above a crit-
ical point) than fewer long runs for the ant and quartic problem.
Luke also found that with the parity problem (even-10), one long
run was actually better, because of the difficulty of the problem
and the ability of genetic programming to consistently make im-
provements. This critical point was around generation 8 for the
quartic problem and slightly higher for the ant problem. With
this period in mind, we now look at several measures of diver-
sity for the same runs.

An early period of higher activity in the runs also exists with
respect to diversity measures. Note that in Figs. 3–5 there is typ-
ically a lot of activity in the early generations and not too much
after generation 30. In these graphs of diversity measures, pop-
ulations begin with similar values, and during the initial gener-
ations branch off to lower and higher diversity values with gen-
erally lower fitness.

The phenotype diversity in Fig. 3 of the quartic and Rast-
rigin instances (which have continuous fitness spaces) shows
an initial decrease followed by a sharp increase, whereas the
ant and parity problems show only an increase in initial popula-
tions. This behavior was also seen with genotype diversity and
entropy, an initial sharp decrease followed by an increase within
the quartic and rastrigin problems and in all problems with geno-
type diversity. Intuitively, the cause of this initial fluctuation is
due to the population settling after the selection and recombina-
tion of initial populations, where differences are due to problem
representations. This initial phase highlights these differences.
Also, note that phenotype diversity for the parity problem con-
tinues to increase until the final generation.

The edit distance in Fig. 4, for all problems, generally de-
creases after the initial generation. Also, in Fig. 4, the popula-
tions measured with edit distance 2 behave similarly (note that
only the averages are graphed in Fig. 5). With this in mind, and
because the edit distance 2 measure places more importance on
the root and higher portions of trees, we can conclude the fol-
lowing: While trees are changing (according to edit distance 1)
to be more like the best fit tree in each population, the differ-
ences between the roots and top portions of the tree also be-
come more similar (according to the edit distance 2 measure).
This supports previous conclusions [25], [40], [49] that roots
become fixed early on in the evolutionary process. Structural
convergence is important when considering using a method to
control diversity. If structural convergence is beneficial to ge-
netic programming search, then encouraging or forcing struc-
tural diversity (edit distance in this case) could have negative
consequences. However, the loss of edit distance diversity does
not necessarily mean a loss of phenotypic diversity or the wors-
ening of fitness, as seen in Figs. 1 and 3.

The last comment on these figures is the observable behavior
that in some runs (most notably in the ant problem) fitness con-
tinues to increase until the final population. Identifying the prop-
erties of these populations that allowed for this continued in-
crease is critical for genetic programming practitioners. And this
is one of the goals of this paper: understanding how to make pop-
ulations more amenable to improvement. Given the wide range
of fitness and diversity, we would like to know if these measures
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Fig. 1. Ant, parity, quartic, and Rastrigin best fitness per population, plotted against the generation number. Fifty independently random runs of each problem
are shown.

Fig. 2. Average depth and average number of nodes in an individual in each
generation, averaged over 50 random independent runs. Note that all problems
evolved individuals which quickly reached the maximum depth of 10 around
generation 15. The quartic instance showed the largest variance and, thus, the
lowest average number of nodes. Since the quartic instance is the easiest to solve,
we suspect that this also leads to smaller trees.

correlate in any way. Addressing this question is key to under-
standing if controlling diversity is likely to be effective and how
it should be applied on different problem domains.

B. Correlations in Final Populations

We initially look at the correlation of diversity and fitness in
the final generation of each run. We limit our analysis to sam-
ples of size 100. Table II (with four, problem specific subtables)
summarizes the Spearman correlation coefficients between fit-
ness and diversity, and also between diversity measures.

In the ant problem (Table II) negative correlation is seen be-
tween phenotypes and fitness, and also between entropy and fit-
ness. As one might expect, good (low) fitness is seen with high
phenotype diversity and entropy. There is a positive correlation
of edit distance with fitness and also between pseudo-isomorphs
and fitness. Only very weak correlation is seen between geno-
types and fitness on the ant problem, which is the trend for all
the problems. In this case, a positive correlation between fitness
and edit distance and fitness and pseudo-isomorph correlation
with fitness suggests that low (good) fitness is seen with low di-
versity. As we know from Figs. 4 and 5, edit distance generally
decreases during the run. While runs tend to structurally con-
verge for the ant problem, and with respect to the edit distance 1
measure in the parity problem, those which converge more often
have better fitness.

The last table of correlation coefficients in Table II gives the
Rastrigin problem results. This table shows the lack of strong
correlations between diversity and fitness (the same effect is
partially seen in the quartic instance as well). It may be the case
that a correlation did exist between fitness and diversity, but
final populations have lost any correlation due to the repeated
application of selection and recombination without change in
fitness.

The importance of phenotypic diversity is now seen with the
parity problem in the second part of Table II, where a strong
negative correlation exists with fitness and phenotype diversity.
Fig. 3 shows that phenotype diversity tends to increase in
the parity problem. With only 32 possible fitness values in
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Fig. 3. Ant, parity, quartic, and Rastrigin phenotype diversity, plotted against the generation number. Fifty independently random runs of each problem are shown.

Fig. 4. Ant, parity, quartic, and Rastrigin edit distance 1 diversity plotted against the generation number. Fifty independently random runs of each problem
are shown.
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Fig. 5. Average of 50 runs of the entropy, edit distance 2, genotype, and pseudo-isomorph diversity measures for ant, parity, quartic, and Rastrigin.

this problem, the population begins with random guesses
with approximately a fitness of 15. As populations undergo
selection and recombination, the number of unique fitness
values increases from 3–4 to 6–13. Without some increase in
phenotypic diversity, genetic programming cannot distinguish
between good individuals and bad ones. Thus, it is critical that
the number of unique fitness values is increased for the parity
problem.

Another effect of high phenotype diversity and entropy is the
relationship it has with the selection pressure. As tournament
selection uses the fitness values of an individual to decide tour-
naments, the less unique phenotypes in the population (and the
lower the entropy) will make selection more random. That is, se-
lection will be faced with many individuals that have the same
fitness. Therefore, if a high phenotypic diversity and entropy is
maintained, selection pressure remains at the preset level. The
lowering of phenotype diversity and entropy might actually ben-
efit some problems where less selection pressure is suitable, but
negatively affect others where higher selection pressure is better.

Table II also gives the correlation between the measures of
diversity. In the ant problem, note that more phenotype diver-
sity negatively correlates with the structural measures (geno-
types, pseudo-isomorphs, and the edit distances). An increase
(or decrease) of unique fitness values in the population corre-
sponds with a decrease (or increase) in the structural diversity.
This seems counterintuitive as more unique structures should
correspond with more unique fitness cases. We expect this be-
havior with the edit distance measures as we know that these
measures generally decrease during evolution, while phenotype

diversity increases. In this problem, the discovery of different
fitness values appears to be aided by less structural diversity.
That is, if the population is structurally similar, it is easier to
find more unique fitness values.

C. Evolving Populations’ Correlation

Does diversity play a more significant role at different times
of evolution? The fact that several methods have been previously
used to adaptively control the level of diversity would suggest
so. Fig. 6 shows the correlation between diversity and fitness for
each generation. Note that each point represents the correlation
between 100 populations, sampled from 100 runs. Thus, there
is a dependency of later generations on preceding ones, but this
is what we are interested in observing. We would expect to see
less activity in changes in correlation between fitness and diver-
sity toward the end of runs, as fitness usually stops improving
before this point. Also, Fig. 5 uses only random runs, where as
a similar graph in [5] considered populations from nonrandom
experiments, ones that were predictively poor.

Both the ant and parity problems contain varying levels of
correlation for edit distance with fitness (ant) and also for phe-
notype diversity with fitness. The quartic problem contains a
period of early fluctuation, followed by an increase in positive
correlation between entropy (and phenotype diversity) and fit-
ness. As runs typically achieve the best fitness early, we think
this effect is due to many copies of the best fit individual accu-
mulating in the population. That is, populations which achieve
good local optima begin to have lower entropy.
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TABLE II
ANT, PARITY, QUARTIC, AND RASTRIGIN PROBLEMS. CORRELATION BETWEEN

BEST FITNESS IN LAST GENERATION AND THAT POPULATION’S DIVERSITY

MEASURE IN THE FIRST COLUMN. THE OTHER COLUMNS SHOW THE

CORRELATION BETWEEN THE LAST POPULATION’S DIFFERENT DIVERSITY

MEASURES. THE SAMPLE SIZE IS 100 INDEPENDENT RUNS

The Rastrigin problem contained an early period of varying
correlation between diversity and fitness before most measures
lost correlation with fitness. In this problem and representation,
the relationship between fitness and diversity becomes less im-
portant, probably due to other, more critical relationships like
node-to-node dependencies [9]. As we noted in [5], a positive
correlation between fitness and edit distance occurs together
with a negative correlation between fitness and phenotype diver-
sity. This behavior is seen to some degree in all problems, most
notably in the ant and parity problems. These results suggest that
the fitness landscape induced by the representation and opera-

tors is uncorrelated. Small differences between individuals are
still capable of expressing a wide range of behaviors. However,
this statement should be considered in the light of the operator
not being used to define distance and the actual difference be-
tween behaviors is not being measured. The measures used here
can only approximate the fitness landscape.

D. Scatter Plots of Diversity and Fitness

The Spearman correlation coefficient only describes linear re-
lationships, so we now examine a series of scatter plots. Figs. 7
and 8 plot a population’s performance (best fitness found in
the population is plotted along the axis, where values to the
left are better) versus that population’s diversity (on the axis).
Each point represents a population sampled from a different run,
where no run is used twice and 10 populations are sampled for
each generation, requiring 500 runs. Also, note that all points
for the parity problem have their fitness values randomly offset
in the range of [ ,0.2] so the number of populations at each
fitness value can be seen.

A few general comments can be made about the scatter plots
in Figs. 7 and 8. There are clear trends of fitness occurring
with lower edit distance and with higher entropy. However,
many populations with low fitness also have a wide range of
entropy (Rastrigin and quartic) and edit distance (quartic). The
ant problem, in particular, shows a transition from high to low
fitness with populations in the middle containing a wide range
of entropy and edit distance values. The populations which
achieve the lower fitness also have lower entropy and edit dis-
tance. It is likely that this problem suffers the most from local
optima, where populations stuck with suboptimal individuals
also have suboptimal diversity. Too high edit distance diversity
and either too-low or too-high entropy would appear to be
suboptimal for the ant problem.

An important observation is that better populations tend to
occur near the end of evolution and resulting populations will be
less diverse simply because of our search and selection mech-
anisms. We can see in Fig. 8 that when populations have large
edit distances they are unlikely to have better fitness values. The
reason for this is that in our experiments, large edit distances
only occur at the beginning of runs. As we are attempting to un-
derstand genetic programming populations better, the question
of whether these populations always occur late in evolutionary
process is analyzed next.

For Fig. 9, we use the same populations from Fig. 8, except
now the axis shows a vertical line representing the generation
in which that population occurred. A common trend is that the
worse fit populations occur in early generations, which is to be
expected as Fig. 1 showed fitness to always improve (decrease
in value) initially. In general, as we move from right to left in
fitness values (from worse to better), the lines get taller on the

axis. However, it is not the case that the best populations are
at the end of runs for all problems. We can see many popula-
tions where good fitness occurs early and in the middle of runs.
Furthermore, Fig. 9 emphasises that populations have different
diversity at similar times in the evolutionary process. Later evo-
lutionary periods do not always imply high or low values of di-
versity and fitness.
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Fig. 6. Evolving populations’ correlation between best fitness in each population and different diversity measures. Each point represents the correlation between
100 populations from a 100 runs, each 50 generations are represented.

Fig. 7. Ant, parity, quartic, and Rastrigin best fitness per population plotted against that population’s entropy diversity. Note that each point represents one
population from each run. We sample ten different runs for each population at generation g, requiring 50� 10 = 500 runs for all 50 generations.
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Fig. 8. Ant, parity, quartic, and Rastrigin best fitness per population plotted against that population’s edit distance diversity. Note that each point represents one
population from each run. We sample ten different runs for each population at generation g, requiring 50� 10 = 500 runs for all 50 generations.

Fig. 9. Ant, parity, quartic and Rastrigin best fitness per population (x axis) plotted against that population’s edit distance 1 diversity, (y axis) and the generation
the population occurred (z axis). Note that each point represents one population from each run.
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V. DISCUSSION

The measures chosen to study here (and in [4] and [5]) are
in a sense related hierarchically with respect to the amount
of information they contain about the population. The edit
distance measures provide a fine grain description of population
structural differences, pseudo-isomorphs give a more abstract
view of the population and the genotype diversity measure
simply describes the number of absolutely different trees.
Entropy and phenotype diversity are similarly related. Entropy
not only describes the number of unique phenotypes, but also
how the population is distributed over the existing phenotypes.
Also, the experimental study presented here shows the most
consistent correlation between edit distance and fitness and
between entropy and fitness (suggesting they capture an im-
portant element in the genetic programming search process).
The pseudo-isomorph diversity measure was used to capture
a level of information that is more specific than genotype
diversity, but less expensive than edit distance. Our initial
investigation of this measure in [4] and the results here show
that it can express stronger correlations than genotype diversity
and is generally more correlated to edit distance measures than
genotype diversity.

The experiments used different measures of diversity and
have enabled us to analyze not only the measures and how
they correlate with fitness, but also the behavior of standard
genetic programming on commonly used problems. Results
showed additional evidence that the roots of trees become fixed
very early on in the genetic programming evolutionary process
and are unlikely to change. This has been demonstrated by
previous research [25], [40], [49] and is supported here by the
edit distance diversity measures.

We have previously mentioned the importance of phenotypic
diversity and entropy due to the ability of selection to distin-
guish between individuals better and maintain a constant level
of pressure. Depending on the problem and behavior of the cur-
rent run, the increase and decrease of phenotypic and entropy
diversity is likely to be crucial at different stages of evolution.
This emergent change of selection pressure due to the loss of
entropy could be beneficial in helping to avoid local optima for
some problems. The constantly fluctuating values of phenotype
diversity in Fig. 3 could be demonstrating this behavior. How-
ever, based on our experiments and analysis, it is not clear if this
is necessarily the case.

The Spearman correlation coefficient [47] shows a positive
correlation between fitness based diversity and fitness, and a
negative correlation between edit distance diversity and fitness.
We hypothesise that this is the result of the following: More
structurally similar populations create a neighborhood in which
crossover is likely to find better neighbors. Crossover initially
works with very unlike structures until a significantly good one
is found. Then, combined with the selection pressure, the pop-
ulation begins to resemble this good individual as crossover re-
peatedly combines more and more like individuals. Success at
this point suggests that crossover is able to work within this
population structure to find better solutions. We have seen here
and in [4] and [5] how quickly diversity is lost. It appears that

this crossover-friendly neighborhood occurs early in the evo-
lutionary process, but might also be responsible for leading the
search toward inescapable local optima rather quickly. The point
here is not to argue that crossover is (or is not) a sufficient
operator for search in tree-based genetic programming, but to
show (in cases where genetic programming is solving problems)
how populations and recombination operators may be working
together.

However, just as the correlation coefficient suggests associa-
tions between diversity and performance, it should not be used
to infer causation between variants, i.e., higher diversity does
not necessarily cause better performance but better performance
is seen with higher diversity (phenotypic diversity here). This
should apply to all conclusions about diversity. Caution should
also be taken considering that the search mechanism’s recombi-
nation and selection methods play an extremely important role
in shaping individuals and populations. Very simple implemen-
tation differences can drastically increase or decrease diversity
measures. Models of causation based on diversity results should
be defined carefully.

Standard genetic programming is often compared with a blind
local search or a hill-climber, due to the loss of diversity and the
attraction to local optima [22], [40], [43]. The results presented
here with diversity also support this phenomenon with lopsided
exploration and exploitation phases. After an initial period of
adjustment to different problem representations and selection,
the populations appeared to converge toward less structural di-
versity. These initial few generations of each run appear to rep-
resent the exploration phase, while the latter part of the run is
concerned with exploiting the better individuals found. Adap-
tive controls of diversity, selection pressure or mutations could
be used to extend the exploration phase to allow more global
search. However, they should also be aware of the initial settling
behavior observed here, which might be the process of vetting
poor individuals.

Researchers have shown that encouraging different amounts
of diversity can lead to better performance (for example [46]).
Based on our results, we hypothesise that the strong exploita-
tion of structures occurs in almost all runs (populations con-
sistently converge on a common structure), but not all runs
exploit good structures. Thus, genetic programming may be
exploiting structures which are not amenable to further im-
provements with respect to the existing population and the al-
gorithm. If our algorithm backtracked upon finding a bad struc-
ture, or made a concentrated effort to find a good structure, it
could be argued that we would be more likely to exploit the
better structures which lead to better performance. In essence,
by either increasing the length of exploration or adaptively ex-
ploring in later phases, local-optima may be avoided more ef-
fectively. This is the effect that we think has been achieved
in previous work, while improvements are being made with
fitness, populations are allowed, or forced, to exploit that struc-
ture. However, when no improvements are made, then popula-
tions are pushed to become more diverse and try other struc-
tures. Increased population sizes, higher levels of mutation, and
models which prevent the overall convergence of populations
(such as islands, demes or distributed models) could achieve
this effect.
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VI. CONCLUSIONS AND SOME FUTURE DIRECTIONS

This paper has provided a survey of measures used to capture
diversity in genetic programming and of the methods employed
to control diversity. An experimental study enabled an analysis
of the correlation between selected measures of diversity and
fitness. The results showed three important behaviors.

1) The generation to generation behavior of specific diver-
sity measures is problem specific. In fact, representation
changes of the same problem are likely to have different
diversity behaviors. Thus, the pursuit of a single measure
with which to control diversity in order to improve fitness
is likely to be difficult.

2) Entropy and edit distance diversity showed strong corre-
lation with fitness. This is likely to be related to an emer-
gent change of selection pressure and the level of struc-
tural convergence which allows a form of hill-climbing
search.

3) Regression problems had the weakest correlation between
any measure of diversity and fitness overall, suggesting
that the things that make these populations achieve good
fitness may not be captured by any of the measures used
here.

The introduction of different recombination operators, large
changes in parameter values and applications on different
problem domains are all likely to effect the results and in-
terpretations made here. However, the methodology of using
several informative and complimentary measures of diversity
should allow one to gain a deeper understanding of the search
space and algorithm. As search spaces become larger and
more complex, fine grain measures will become too inefficient.
Therefore, using measures which capture the right level of
information while still being efficient will be critical. Based on
these results, we make the following recommendations. Before
applying new methods to control diversity in order to improve
fitness the correlation between fitness and diversity should be
investigated. Knowledge of this correlation can help to enhance
the diversity measure and method and give insight into results,
taking care to distinguish between correlation and causation.
Also, when a many-to-one relationship exists between the
genotype and phenotype encoding, measures which are based
on genotype uniqueness will probably not be as useful as those
which capture phenotype uniqueness.

Our future research is looking at various methods used
to control diversity and the effects of higher and lower di-
versity on different problem domains. Additionally, we are
attempting to incorporate more knowledge of operators (subtree
crossover) into existing diversity measures while preserving
their efficiency.
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