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Abstract. This paper presents a new form of Genetic Programming called Car-
tesian Genetic Programming in which a program is represented as an indexed
graph. The graph is encoded in the form of alinear string of integers. The inputs
or terminal set and node outputs are numbered sequentially. The node functions
are also separately numbered. The genotype is just a list of node connections
and functions. The genotype is then mapped to an indexed graph that can be
executed as a program. Evolutionary algorithms are used to evolve the genotype
in asymbolic regression problem (sixth order polynomial) and the Santa Fe Ant
Trail. The computational effort is calculated for both cases. It is suggested that
hit effort is a more reliable measure of computational efficiency. A neutral
search strategy that allows the fittest genotype to be replaced by another equally
fit genotype (a neutral genotype) is examined and compared with non-neutral
search for the Santa Fe ant problem. The neutra search proves to be much more
effective.

1 Introduction

In its original form Genetic Programming (GP) [10][11] has evolved programs in
the form of LISP parse trees. Usually large populations are used and crossover is used
as the primary method of developing new candidate solutions from older programs. In
contrast to this in Evolutionary Programming [4] [5] has tended to emphasize the
importance of mutation operators.

Although GP and EP place different emphasis on the evolutionary operators they
both tend to share the representation of programs as parse trees in which there is no
distinction between genotype and phenotype. Trees are a special form of graphs in
which two nodes must have at most one path between them (a path is a sequence of
connected nodes). One of the original motivations for a tree-based approach was to
allow a solution to the problem of applying crossover to variable length genotypes. In
this work a new approach is proposed called Cartesian Genetic Programming (CGP)
where the genotype is represented as a list of integers that are mapped to directed
graphs rather than trees. One motivation for this is that it uses graphs which are more



general than trees. However the original motivation came from the effectiveness of the
approach in learning Boolean functions where it proved to be considerably more effi-
cient than standard GP methods [14]. In CGP the genotypes are of fixed length but the
phenotypes are of variable length according to the number of unexpressed genes. The
importance and potential advantages of defining a genotype-phenotype mapping were
discussed by Banzhaf [2] in Binary Genetic Programming (BGP) [1]. In BGP binary
strings are trandlated and repaired to form valid programs. In CGP no repair is neces-
sary (see section 2). Another potential advantage of employing a genotype-phenotype
mapping is that it allows for the possibility of many genotypes mapping to the same
phenotype and so explicitly allows neutrality to be present. Neutrality refers to the
presence of genotypes with the same fitness. The importance of neutrality is widely
recognized in modern theories of natural molecular evolution. Indeed, Kimura [8][9]
and Ohta [15][16] maintains that evolution at the molecular level is mainly due to
mutations that are nearly neutral with respect to natural selection. From the point of
view of fitness landscapes in artificial evolution it has been suggested that neutrality
may provide a route whereby adaptive evolution may cross regions with poor fitness
[7]. Thisview is supported in a study of a genotype-phenotype mapping that was ap-
plied to a problem of constrained optimisation using genetic programming [2]. Harvey
and Thompson, in an experiment that used artificial evolution to configure a pro-
grammable silicon chip, also found that the presence of neutrality in a genetically
converged population could lead to further fitness improvement [6]. It is important to
note that neutrality arising from genotype redundancy can only be useful when the
neutral changes are likely to ater the potential effects of future genotypic change,
merely adding unexpressed genes will not facilitate useful neutral evolution.

In CGP there are very large number of genotypes that map to identical genotypes
due to the presence of alarge amount of redundancy. Firstly there is node redundancy
that is caused by genes associated with nodes that are not part of the connected graph
representing the program. This redundancy is very large at the beginning of the evolu-
tionary run as many nodes are not connected in the early populations. The node re-
dundancy gradually reduces during the run to a level that is determined by average
number of nodes required to implement a satisfactory program and the maximum
allowed number of nodes. Another form of redundancy in CGP, also present in al
other forms of GP is, functional redundancy. In this case, a number of nodes imple-
ment a sub-function that actually may be implemented with fewer nodes. This growth
in the number of redundant nodes constitutes bloat. The third form of redundancy,
called input redundancy, occurs when some node functions are not connected to some
of the input nodes. For example, in section 3 it is seen that all the nodes used to evolve
programs to solve the Santa Fe Ant Trail have three inputs and one output, despite the
fact that only one function uses the three inputs. Node and input redundancy both have
the potential of adding useful neutrality. An unconnected node may undergo neutral
change and later become connected — this might be necessary to achieve a higher
fitness. A node with a redundant input might, after a mutation that altered the arity of
the node function, suddenly become useful. Functional redundancy probably positively
contributes to the evolvability of the target function or program as it increases the



number of ways that it might be built. The possibility of disconnecting nodes that CGP
allows might have a useful role in keeping the attendant bloat in check.

The principal motivations behind the work reported in this paper were twofold,
firstly, to introduce CGP as an alternative methodology to standard GP, and secondly,
to extend CGP to non-Boolean problems and show that it is a useful method for
evolving programs with other data types. It is important that researchers in Genetic
Programming explores the advantages and disadvantages of many representations
rather than confining themselves to one dominant form. Diversity is important in re-
search just asit isin evolving populations.

The organization of the paper is as follows. In section 2 the method of CGP is ex-
plained. Section 3 describes the problems that CGP is tested on and the measure used
to calculate computational effort. The test problems are: symbolic regression of a sixth
order polynomia from input-output data, and the harder problem of evolving a pro-
gram to control an artificial ant traversing the Santa Fe Ant Trail. In section 4 the
results are presented and discussed and another useful measure of computational effi-
ciency called the hit effort is defined. Finally in section 5 some conclusions are given.

2 Cartesian Genetic Programming

CGP is Cartesian in the sense that the method considers a grid of nodes that are ad-
dressed in a Cartesian coordinate system. CGP has a some of points of similarity with
Parallel Distributed Genetic Programming (PDGP) [17][18] and the graph-based GP
system PADO (Parallel Algorithm Discovery and Orchestration) [19]. In the former
graphs were evolved without the use of a genotype-phenotype mapping and various
sophisticated crossover operators were defined. In the latter, each program is repre-
sented as an arbitrary directed graph of N nodes, where each node may have up to N
outputs. Moreover, in PADO each node possesses its own private stack based mem-
ory, and also accessto a globally defined indexed memory.

A Cartesian program (CP) denoted P is defined asa set {G, n, n, n, ,F, n, n, n, I}
where G represents the genotype and isitself a set of integers representing the indexed
n, program inputs, the n, node input connections and functions, and the n, program
output connections. The set F represents the n, functions of the nodes. The number of
nodes in arow and column are given by n, n_ respectively. Finally the program inter-
connectivity is defined by the levels back parameter |, which determines how many
previous columns of cells may have their outputs connected to a node in the current
column (the primary inputs are treated in the same way as node outputs). In this paper
only feed-forward connectivity is considered. However a Cartesian program can be
readily extended to include sequential processes (e.g. loops), by allowing the inputs to
nodes to be connected to the program outputs through a clock. Note that the program
inputs are allowed to connect to any node input. An example of the genotype and
genotype-phenotype mapping is depicted in Fig. 1 for a program with six inputs and
three outputs. The example shows a feed-forward program of three rows by four col-
umns, with| =2and n, = 3.
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Fig. 1. Genotype-phenotype mapping a) Phenotype. b) Genotype. For a program with six inputs
and 3 outputs, and three functions (0, 1, 2 inside square nodes, in italics in genotype). The grey
sguares indicate unconnected nodes.

Nodes in the same column are not allowed to be connected to each other, and any node
may be either connected or disconnected. The CP with the most freely connected
network is obtained when then=1 and I= n_, i.e. any node can be connected to any
node on the right. The length of the genotype G that maps to a particular CP is fixed
and is equal to nn(n, +1)+ n, however this just means that the maximum size of the
associated Cartesian program is fixed, the actual size may be anything from zero up to
the maximum (in Fig. 1 only 9 nodes are connected).



When a population of genotypes is created or mutation is applied the genes must
obey certain constraints in order for the genotype to represent a valid program. These
are defined as follows:

Let ¢, represent the gene associated with the k-th input of a node in column j (the
leftmost column is represented by 0) then it obeys the inequalities
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Let ¢, represent the gene associated with the k-th program output then it obeys the
inequalities
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Let ¢, represent the gene associated with the function of k-th node then it obeys the

inequality
f
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Provided the genotypes obey these constraints, crossover can be freely applied to
produce a valid solution.

Modern forms of GP allow the use of Automatically Defined Functions (ADFs). In
the form of CGP discussed here there are no ADFs, however as node outputs may be
widely re-used one can consider it as employing Automatic Re-used Outputs (AROS).
One of the attractive features of CGP is that no explicit encoding is required to facili-
tate this. A potential disadvantage isthat AROs are not as general as ADFs as they can
only re-use an output with the same inputs. One can control the amount of AROs by
adjusting the levels-back parameter and the number of rows and columns. AROs are
most strongly favoured in a configuration of nodes with one row, and in which 1= n_ .
At the other extreme AROs are forbidden whenn_ = 1.

In this paper two evolutionary algorithms were applied. For the symbolic regression
problem a generational Genetic Algorithm (GA) was used with uniform crossover,
where each gene in the offspring is randomly picked up from the parents. Size two
probabilistic tournament selection was used with the winner of the tournament being
accepted with a probability of 0.7 (otherwise the loser was accepted). In the Santa Fe
Ant Trail problem a simple form of (1 + A) Evolutionary Strategy (with A = 4) was
used. No crossover was applied. The algorithm was as follows:



Algorithm

Generate initial population at random (subject to constraints)

Evaluate fitness of genotypesin population

Promote fittest genotype to new population

Fill remaining places in the population with mutated versions of the fittest
Return to step 2 until stopping criterion reached

grwWDNPE

Note that at step 3. If no new genotype has greater fitness but other genotypes have the
same fitness as the best then one of these would be randomly chosen and promoted to
the new population. In this paper this is referred to as neutral search. If only better
genotypes are chosen then the search is referred to as non-neutral. For the Santa Fe
trail both methods were examined.

3 Test problems

Two problems were studied in this paper: Symbolic regression of a sixth order poly-
nomial [11, pages 110-122]

6 4 2
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The objective was to evolve a program that produces the given value of the sixth order
polynomia above as its output, when the value of the one real-valued independent
variable x is given asinput. The program inputs were 1.0 and X. This departs from the
definition given by Koza [11], who used ephemeral constants randomly defined over
[-1.0, 1.0] with a given precision. Ephemeral constants are generated when the first
program input is connected to a node in the initial population. From that point on in
the evolutionary algorithm these constants are fixed and cannot be mutated. The func-
tion set used in this paper was {+, - *, div}, where div returns the numerator if the
divisor is zero, otherwise it returns the normal result of division. The fitness cases
were 50 random values of X from the interval [-1.0, +1.0]. These were fixed through-
out the evolutionary run. The fitness of a program was defined as the sum over the 50
fitness cases of the sum of the absolute value of the error between the value returned
by the program and that corresponding to the sixth order polynomial. The population
size chosen was 10. The number of generations was equal to 8000. The crossover rate
was 100% (entire population replaced by children). The mutation rate was 2%, i.e. on
average 2% of the all the genes in the population were mutated. Other parameters
were as follows: n, =1, n_ =10, | =10. An evolved genotype with a high fitness is
given below (withn =4, n_=4, | =4):
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Fig. 2. The genotype for a program evolved to match a sixth order polynomial. The two inputs O
and 1 refer to 1.0 and X respectively. Functions+, -, * , div are represented by integers 0, 1, 2,
3 respectively. The program output is taken from the node with output label 15 (underlined).

The other problem studied was the Santa Fe Ant Trail [10, pages 147-155]. An imagi-
nary ant starts at position (0,0) (top-left corner) of a 32 x 32 toroidal grid of squares.
The ant initially faces east. There is a trail of food covering 144 sguares with may
gaps and twists and turns containing 89 pieces of food. The ant can move one square
inthe direction it isfacing or turn left or right on the square that is situated on. Each of
these actions require one time step. The ant has a sensor that enables it to detect
whether there is food on the square one position ahead in the direction it isfacing. The
ant eats any food on sguares that it is occupying. The objective is to evolve a program
that can successfully navigate the ant so that it consumes all 89 pieces of food (success
predicate). Only 600 time steps are allocated to execute the ant control program?. If a
program (as is very likely) finishes before 600 time steps have elapsed then it is re-
peated, starting at the current state of the ant and map, this process is repeated until the
600 time steps have elapsed. This is a much more testing problem for Genetic Pro-
gramming than the sixth order polynomial because of the time dependent behaviour of
the ant. Thus one is evolving a sequential program with states that depend on past
history. The function set was as used by Koza { if-food-ahead, prog2, prog3} coded as
functions O, 1, 2 respectively. The program inputs were coded as O, 1, 2 and repre-
sented move, left, right respectively.

The algorithm used to evolve the Cartesian programs was described in section 2.
The specific parameters used were as follows: A = 4. A range of mutation rates per
individual genotype were investigated from 4%-40%. Population size was 10, 100
runs of 12,000 generations were carried out. Other parameters were as follows: n =1,
n, =20, | =20. Thus with 81 genes and a mutation rate of 10%, 8 genes would be mu-
tated in each genotype in the population.

1 Although it appears that Koza [10] used 400 time steps. A personal communication from
William B. Langdon assured me that the correct figure was 600 and that this figure is used by
other investigators.



4 Resaults

One method proposed for assessing the effectiveness of an algorithm, or a set of pa
rameters was as follows [10, page 194]. It consists of calculating the number of indi-
vidual chromosomes, which would have to be processed to give a certain probability
of success. To calculate this figure one must first calculate the cumulative probability
of success P(M, i), where M represents the population size, and i the generation num-
ber. R( 2) represents the number of independent runs required for a probability of suc-
cess (meeting success predicate), given by z, by generationi. 1(M, z i) represents the
minimum number of chromosomes which must be processed to give a probability of
success z, by generation i. The formulae for these are given below, N (i) represents the
number of successful runs at generation i, and N represents the total number of
runs:

total !

N, (i) U logd-2 O

iy=—22 =cel i = i (5)
P(M,i) No R(2) calmg,l(M,l,z) M R(2)(i+1)

Note that when z=1.0 the formulae are invalid (all runs successful). In the expression
for I(M, i, 2), i+1 is used to taken in account the initial population. In this paper z was
chosen as 0.99 so that the computational effort represented the number of evaluations
required to give a probability of success of 0.99.

4.1 Sixth order polynomial

One hundred runs were carried out with 61 runs successful. The minimum computa-
tional effort (see egn. 5) was 90,060 that corresponded to 6 runs of 1,500 generations.
It is not possible to compare this with the effort computed in [11] as the experimental
conditions were not the same and employing the fixed constant 1.0 conferred a great
advantage over randomly chosen ephemeral constants.

4. 2 SantaFe Ant Trail

In Tables 1 and 2 are listed the results obtained after 100 runs for various mutation
rates when the neutral and non-neutral strategies were employed. The number of solu-
tions found with the maximum fitness is listed as #hits. The minimum computational
effort | defined in equation 5 is listed in the third column (divided by 1000). The gen-
eration at which the minimum effort was observed is shown in the fourth column.
Finally the number of hits that were observed at that generation is listed in the fifth
column. The first thing to notice, is that some of the figures for the computational
effort are calculated for aridiculously small number of hits (less than 10, see column
5), and thus are instantly under suspicion, since in different batches of 100 runs these



figures are likely to vary enormously (Actually most of figuresin Table 2 are of this
type). The computational effort is plotted against mutation rate in Fig. 3. 1t would be
very easy to pick out a very good figure for | and compare it favourably with results
found in the literature (see Table 3). It is quite difficult to define under what condi-
tions the calculation of computational effort is reliable without undertaking many
batches of 100 runs.

Table 1. Effort to solve the Santa Fe Ant Trail (neutral)

Mutation rate (%) #hits Min| /1000 Generation #hits at generation

4 34 476 420 4

6 48 280 60 1

8 68 335 2580 30
10 83 252 2100 32
12 89 235 5880 70
14 93 173 1440 32
16 86 270 9000 79
18 85 193 2760 49
20 91 212 10,620 90
25 93 209 10,440 90
30 78 331 8280 69
40 63 511 1380 12

Table 2. Effort to solve the Santa Fe Ant Trail (non-neutral)

Mutation rate (%) #hits Min| /1000 Generation #hits at generation

4 17 686 300 2

6 14 831 180 1

8 20 823 360 2
10 28 139 60 2
12 30 888 5220 24
14 39 458 300 3
16 42 276 120 2
18 50 204 180 4
20 48 441 900 9
25 52 324 1620 21
30 52 413 180 2
40 40 757 840 5




Table 3. Previously published effort to solve the Santa Fe Ant Trail [12]

Method 1/1000
Koza GP [10, page 202] 450
Size-limited EP[3] 136
Strict Hill Climbing [12] 186
PDGP [12] 336
1000 -
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Fig. 3. The computational effort for neutral and non-neutral strategies for various mutation
rates.

To assess the quality of an algorithm one could just ook at the total number of hits
(second column from left in Tables 1 and 2) rather than the computational effort. This
is plotted against mutation rate in Fig. 4. Unfortunately this would give no information
about the time taken by the algorithms to give these results.
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Fig. 4. The number of hits for neutral and non-neutral strategies for various mutation rates.

It is suggested that a more reliable measure of computational efficiency might be the
hit effort which is defined here to be the total number of evaluations over the 100 runs



divided by the number of hits. The is effectively the average number of evaluations
reguired per hit. The hit effort is most reliable when a scenario is chosen that gives
many successful runs as it is fairly sensitive to the number of hits. The advantage of
using hit effort isthat it is afigure that is measured over the full set of runs and is not
an inference based on assumptions about likely outcome of another experiment.
Qualitatively is satisfies the requirements of a good measure of computational effi-
ciency and quality. In the experiments performed here it presented a much more
regular behaviour as can be seen in Fig. 5 which shows the variation in hit effort with
mutation rate,
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Fig. 4. The hit effort for neutral and non-neutral strategies for various mutation rates.

Langdon and Poli [12] noted that genetic programming and other search techniques do
not do much better than random search and that size of the allowed programs has a
marked effect on performance, with larger programs fairing more badly (above some
threshold). It can be seen from the results presented here that high mutation rates of
about 14% are most effective with neutral search, and that a higher rate of 25% are
better for non-neutral search. These results support the findings that the fitness space
associated with the Santa Fe trail has a great deal of randomness associated with it
[12]. with the search space. It should also be noted that the maximum length of CG
programs used in this paper was 20, so the results may be dlightly better because of
thisfact (see[12]).

5 Conclusions

This paper has presented a new form of genetic programming called Cartesian Ge-
netic Programming. It has aready been shown to be very effective for Boolean func-
tion learning [14] and here it is extended to problems with real-valued data and time
dependent behaviour. It is certainly no less effective a method than other forms of GP
when tested on the Santa Fe Ant problem.



The representation of genotypes in CGP has very large redundancy and it was
shown that the neutrality in fitness that this allows can be used to improve the search.
An important question that needs to be answered relates to which type of neutrality is
most important. Other preliminary experiments for the problem of evolving binary
arithmetic functions show that the search is impaired when either the node or func-
tional redundancy is restricted when compared to a situation in which both are al-
lowed. Other results indicate that provided a small but sufficient amount of node re-
dundancy is present the search is most effective. Also experiments are underway that
attempt to discover the relative importance of two types of neutrality- the first, geno-
types with equal fitness that map to the same phenotype and second, genotypes with
equal fitness that map to different phenotypes.

It was argued that the widely used measure of computational effort [10] is unreli-
able, and that a new measure called hit effort should be used instead. This gave much
more stable results for experiments performed on the Santa Fe Ant Trail. Although the
hit effort is still sensitive to the number of successful runs, at least it is afigure that is
actually calculated for the entire set of runs, rather than being an inference.

There is much more work to be done and many questions remain. Crossover is eas-
ily accomplished with the Cartesian genotypes. But doesiit really confer a considerable
advantage for other classes of problems? The mutation mechanism employed in this
paper is extremely simple. In Evolutionary Programming this is generally more so-
phisticated. Could more involved methods of mutation improve the performance of
algorithms based on Cartesian genotypes? Why is CGP effective is it due the presence
and exploitation of neutrality? Would CGP be much more effective by allowing the
possibility of true Automatically Defined Functions? How could this be accom-
plished?
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