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Many interesting computational problems can be reformulated in terms of

decision trees. A natural classical algorithm is to then run a random walk on

the tree, starting at the root, to see if the tree contains a node n levels from

the root. We devise a quantum mechanical algorithm that evolves a state,

initially localized at the root, through the tree. We prove that if the classical

strategy succeeds in reaching level n in time polynomial in n, then so does

the quantum algorithm. Moreover, we find examples of trees for which the

classical algorithm requires time exponential in n, but for which the quantum

algorithm succeeds in polynomial time. The examples we have so far, however,

could also be solved in polynomial time by different classical algorithms.

MIT-CTP-2651, quant-ph/9706062

I. INTRODUCTION

Many of the problems of interest to computation experts are, or are reducible to, decision
problems. These are problems that for a given input require the determination of a yes or no
answer to a specified question about the input. For example the traveling salesman problem
is (polynomial time) equivalent to the decision problem that asks whether or not for a given
set of intercity distances there is a route passing through all of the cities whose length is less
than a given fixed length. Another example that we will later use for concreteness in this
paper is the 0 − 1 integer programming problem called “exact cover” [1]. Here we are given
an m by n matrix, A, all of whose entries are either 0 or 1. The number of columns m is
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FIG. 1. The underlying branching tree. At level m there are 2m nodes.

≤ n. We are asked if there exists a solution to the m equations

n
∑

k=1

Ajkxk = 1 for j = 1, m (1.1)

with the xk restricted to be 0 or 1. The brute force approach to this problem is to try the
2n possible choices of ~x = (x1, . . . , xn). For each choice of ~x, checking to see if Eq. (1.1)
is satisfied takes at most of order mn operations, which is polynomial in the input size.
However, checking all 2n possible choices for ~x is prohibitively time consuming even for
moderately large values of n.

For the exact cover problem, with a given instance of the input matrix A, it is not actually
necessary to check all 2n values of ~x to see if Eq. (1.1) can be satisfied. Note that generically
x1 can take the values 0 or 1 and (x1, x2) can have the values (0, 0), (0, 1), (1, 0) or (1, 1).
However, suppose that for some j the matrix A has Aj1 = Aj2 = 1. In this case the choice
x1 = x2 = 1 is eliminated and no ~x of the form (1, 1, x3, . . . , xn) need be tried. If we consider
~x’s that begin with x1, x2, . . . , xℓ then if for some j we have

∑ℓ
k=1Ajkxk ≥ 2, then any ~x

beginning with x1, x2, . . . , xℓ is eliminated. We can picture this in terms of a decision tree as
follows. Before imposing any constraints we construct an underlying branching tree. This
tree starts at the top with one starting node that branches to two nodes corresponding to
the two choices for x1. This then branches to the four choices for (x1, x2) and so on until
we have all 2n choices for (x1 · · ·xn) at the nth level. However if we impose the constraints
and see that a particular node is eliminated, then we can also eliminate all nodes connected
to that node that lie below it in the tree. The decision tree is the underlying branching tree
that has been trimmed as a result of the constraints. Note that the exact cover problem
has a solution if and only if the decision tree has one or more nodes left at the bottom (nth)
level.

More generally we view decision problems as having an underlying bifurcating branching
tree with n levels as in Fig. 1. The specific form (or instance) of the problem imposes
constraints that eliminates nodes from the tree as in Fig. 2. When a node is excluded the
whole branch with that node as its topmost point is also cut from the tree. The decision
question we wish to answer is “are there any nodes left at the nth level after all constraints
have been imposed?”
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FIG. 2. An example of a decision tree, Tn, with one node at level n. For aesthetic reasons we

will no longer put breaks in trees – they are still to be thought of as being many levels deep.

Consider a family of decision problems indexed by a size n. Particular instances of the
problem of size n give rise to particular decision trees that either have or do not have nodes
at the nth level. The computational concern is how much time, or how many algorithmic
steps, are required to answer the decision question as n gets big. Roughly speaking if the
time grows like nA for fixed A > 0, the problem is considered easy whereas if the time grows
like an with a > 1, the problem requires an “exponential amount of time” and is considered
computationally hard.

One approach to solving a decision problem is to systematically check every path that
starts at the top of the tree and moves downward through the tree. If a path reaches a
dead end you try the next path (in some list of paths) until you find a path that has a node
at the nth level or else, after having checked all paths, you discover that the answer to the
decision question is “no”. An alternative to systematically exploring the whole tree is to
move through the tree with a probabilistic rule. For example you could use the rule that if
you are at a given node you move to the other nodes that are connected to it with equal
probability. Thus if you are at a node that connects to two nodes below it you have a 1/3
chance of moving back up the tree; if the node connects to just one below you have a 1/2
chance of moving back up whereas if the node is a dead end you definitely move back. If
you start at the top of the tree and move with this probabilistic rule you will eventually visit
every node in the tree.

Consider a family of decision trees that are associated with underlying branching trees
that are n levels deep. An individual instance of the decision tree either has or does not
have nodes at the nth level. If it does have nodes at the nth level and we use a probabilistic
rule for moving through the tree, then we say that the tree is penetrable if there is a good
chance of reaching the nth level in not too great a time. More precisely we define the family
of trees as penetrable if:

There exist A,B > 0 such that for those trees with a node (or nodes)
at the nth level there is a t < nA with the probability of being at the
nth level by t greater than (1/n)B.

(P)

This means that in polynomial time the probability of reaching the nth level is at worst
polynomially small. If (P) is met, then by running the process order nB times we achieve a
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probability of order 1 of reaching the nth level in time nA+B. If (P) is not met it means that
it either takes more than polynomial time to reach the nth level or the probability of reaching
the nth level is always smaller than ( 1

n
) to any power. Therefore if condition (P) is not met

instances of the trees with nodes at the nth level cannot practically be distinguished from
instances with no nodes at the nth level. In this case the corresponding decision problem is
not solvable in polynomial time by this algorithm. We will divide families of decision trees
indexed by n into two classes, those that satisfy (P) and those that do not, which we call
impenetrable.

We are interested in using quantum mechanics to move through decision trees. We
imagine that nodes of the decision tree correspond to quantum states, which give a basis
for the Hilbert space. We further imagine constructing a Hamiltonian Ĥ with nonzero
off-diagonal matrix elements only between states that are connected in the corresponding
decision tree. (We will be more specific about constructing the Hilbert space and Ĥ later.)
We start the quantum system in the state corresponding to the topmost node and let it evolve
with its time evolution determined by Ĥ so that the unitary time evolution operator is

Û(t) = exp(−iĤt) . (1.2)

At any time t we have a pure state that can be expressed as a (complex) superposition of
basis states corresponding to the nodes. Given Ĥ and the initial state, the probability (the
amplitude squared) of finding the system at the nth level at time t is determined. We then
say that a family of trees indexed by size n is quantum penetrable if condition (P ) is met
and it is quantum impenetrable if condition (P ) is not met.

In the next section we will give a specific form for the quantum Hamiltonian Ĥ and
then prove that any family of trees that is classically penetrable is associated with a closely
related family of trees that is quantum penetrable. This will demonstrate that our model
for quantum mechanically solving decision problems is at least as powerful as the classi-
cal probabilistic method. In Section Three we will go further and give an example of a
family of decision trees that is classically impenetrable but which is quantum mechanically
penetrable. This means that the quantum penetration is exponentially faster than the cor-
responding classical penetration for these trees. However, we have not yet identified general
characteristics of a problem that guarantee that its associated decision trees are quantum
penetrable. Furthermore, for the example considered, the problem associated with the clas-
sically impenetrable trees can be reformulated so that it is computationally simple to solve
by an alternative, classical method.

In Section Four we discuss the construction of the Hilbert space and the Hamiltonian
Ĥ . The usual paradigm for quantum computation [2] envisages a string of, say, ℓ spin-1/2
particles that gives rise to a 2ℓ-dimensional Hilbert space. Each elementary operation is a
unitary transformation that acts on one or two spins at a time. We will show that the Hilbert
space for our system can be constructed using ℓ spin 1/2 particles just as in a conventional
quantum computer. Furthermore, for a large class of problems, the Hamiltonian that we
construct is a sum of Hamiltonians that act on a fixed number of spins. In this sense [3]
our quantum evolution through decision trees lies in the framework of conventional quantum
computation.
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II. CLASSICAL VS. QUANTUM EVOLUTION THROUGH TREES

In the introduction we discussed a classical (that is, non-quantum) probabilistic rule for
moving through decision trees. Here we are going to be more specific and state the rule in
a way that gives rise to a continuous time Markov process. The rule is simply that if you
are at a given node then you move to a connected node with a probability per unit time γ
where γ is a fixed, time independent, constant. This means that in a time ǫ where γǫ ≪ 1,
the probability of moving to a connected node is ≈ γǫ. Using a continuous time process,
as opposed to saying that you move at discrete times, will make it easier when we compare
with the continuous time evolution dictated by the unitary operator in (1.2).

We are now going to introduce some formalism that looks quantum mechanical but we are
going to apply it to describe the classical Markov process. Suppose we are given a decision
tree that has N nodes. (N may be as large as 2n+1 where n is the number of levels.) Index
the nodes in some way by the integers a = 1, . . . , N . Corresponding to the tree we construct
an N -dimensional Hilbert space that has an orthonormal basis {|a〉} with a = 1, . . . , N and
accordingly 〈a|b〉 = δab. Now we define a Hamiltonian Ĥ through its matrix elements in this
basis:

〈b|Ĥ|a〉 =

{

−γ for a 6= b if node a is connected to node b
0 for a 6= b if node a is not connected to node b

〈a|Ĥ|a〉 =







3γ node a is connected to three other nodes
2γ node a is connected to two other nodes
γ node a is connected to one other node .

(2.1)

Return to the classical probabilistic rule for moving through a fixed tree and let

pba(t) = Prob (go from a to b in time t) . (2.2)

For a time ǫ where γǫ≪ 1 we have

pba(ǫ) =

{

−ǫ〈b|Ĥ |a〉 + O(ǫ2) for b 6= a

1 − ǫ〈a|Ĥ|a〉 + O(ǫ2) for b = a
(2.3)

as a consequence of the definition of Ĥ. For a classical Markov process, the probability of
moving depends only on current position, not on history, so we have for any t1 and t2,

pba(t1 + t2) =
∑

c

pbc(t2)pca(t1) . (2.4)

Therefore

pba(t+ ǫ) =
∑

c

pbc(ǫ)pca(t) (2.5)

which for ǫ small gives

pba(t+ ǫ) = pba(t) − ǫ
∑

c

〈b|Ĥ|c〉pca(t) + O(ǫ2) (2.6)
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where we have used (2.3). We see therefore that pba(t) obeys the differential equation

d

dt
pba(t) = −

∑

c

〈b|Ĥ|c〉pca(t) (2.7)

with the boundary condition pba(0) = δab. The solution to (2.7) is

pba(t) = 〈b|e−Ĥt|a〉 . (2.8)

Again, pba(t) given by (2.8) is the classical probability of going from a to b in time t
if you move through the tree with a probability per unit time γ of moving to a connecting
node. As a check we should have that

∑

b

pba(t) = 1 . (2.9)

To see that this is the case note that Ĥ defined by (2.1) has a zero eigenvector,

|E = 0〉 =
1√
N

N
∑

b=1

|b〉 . (2.10)

Therefore
∑

b

pba(t) =
√
N 〈E = 0|e−Ĥt|a〉

=
√
N 〈E = 0|a〉 (2.11)

= 1 .

We have constructed the Hamiltonian Ĥ because of its utility in describing a classical
Markov process. We now propose using the same Hamiltonian Ĥ to quantum mechanically
evolve through the tree. Let

Aba(t) = 〈b|e−iĤt|a〉 (2.12)

be the quantum amplitude to be found at node b at time t given that you are at node a at
time 0. In this case the probability is |Aba(t)|2 with

∑

b

|Aba(t)|2 = 1 (2.13)

as a consequence of the fact that Ĥ is Hermitian. With this quantum Hamiltonian we will
now show that if a family of trees is classically penetrable then there is a related family of
trees that is also quantum mechanically penetrable.

Imagine we are given a family of decision trees {Tn} where each Tn is n levels deep and
does have nodes at the n-th level. For simplicity we will take the worst case possible and
assume that there is only one node at level n. In order to establish our result we are going
to consider another family of trees {T ′

n} where each T ′
n is obtained from Tn by appending a

6



Level  0

Level  1

Level  2

Level –2

Level –1

Level  n–1

Level  n

…

FIG. 3. The tree T
′
n obtained from the tree Tn of Fig. 2 by appending a semi-infinite line of nodes

at the starting node of Tn.

semi-infinite line of nodes to the starting node of Tn. The rule for classically moving on the
semi-infinite line is the same as the rule for moving on the rest of the tree: with a probability
per unit time γ you move to an adjoining node.

We can see that if {Tn} is classically penetrable so is {T ′
n}. Roughly speaking, starting

at 0 on T ′
n, the probability of reaching the nth level is not appreciably reduced because of

the time some paths spend on the semi-infinite line. (We now prove this statement, but the
reader who is already convinced that it is true can skip to the next paragraph.) Suppose
that for {Tn} we have condition (P) so that

Prob (go from 0 to n in time t) ≥ 1

nB
(2.14)

for some γt ≤ nA. At level 1 of the decision tree only one of the two nodes is on the branch
that contains n, the unique node at level n. Denote this level 1 node by 1̄. Now for each
path (on Tn) that reaches n from 0 in time t there is a time t − s at which the path last
jumps from 0 to 1̄. Thus

Prob (go from 0 to n in time t) =
∫ t

0

dsProb (go from 0 to 0 in time t− s) · γ ds ·

· Prob (go from 1̄ to n without hitting 0 in time s) . (2.15)

Using (2.14) it follows that for some γs ≤ γt ≤ nA,

Prob (go from 1̄ to n without hitting 0 in time s) ≥ 1

γtnB
≥ 1

nA+B
. (2.16)
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However this last probability is the same for T ′
n as for Tn. Turning to the trees T ′

n we see
that the node 0 is connected to three other nodes, the node at level −1 on the semi-infinite
tree and the two nodes at level 1. In time 1

γ
there is an n-independent lower bound on the

probability of going from 0 to 1̄. Combining this fact with (2.16) we see that in a time s+ 1
γ

there is a probability of going from 0 to n on T ′
n which is greater that 1

n
to a power. Thus if

{Tn} is classically penetrable so is {T ′
n}.

We are now going to compare the classical and quantum evolution through the family of
trees {T ′

n}. From this point on we set γ = 1.We will return to finite trees later in this section
but for now the device of appending a semi-infinite line to the trees of interest actually makes
the analysis simpler. Again call the starting node (which is at level 0 of the tree T ′

n) 0 and
call the unique node at the nth level n. Then

p(t) = 〈n|e−Ĥt|0〉 (2.17)

is the probability to go from 0 to n in time t if you evolve with the classical rule. Similarly

A(t) = 〈n|e−iĤt|0〉 (2.18)

is the quantum amplitude to be at n at time t if at t = 0 you are at 0 and you evolve with
the quantum Hamiltonian Ĥ. (Of course Ĥ, p(t) and A(t) are all sequences that depend on
the sequence {T ′

n} but we will not bother to place an n label on these quantities.)
The Hamiltonian Ĥ is defined by (2.1) for each tree T ′

n but now the number of nodes is
infinite so the Hilbert space is infinite dimensional. Call the energy eigenvectors |E〉 where

Ĥ|E〉 = E|E〉
and

〈E|E ′〉 = δ(E − E ′) (2.19)

for the continuous part of the spectrum and

〈Er|Es〉 = δrs

for the bound states. Now for any Hermitian operator Ĥ, with matrix elements Hab, any
eigenvalue E of Ĥ must lie [4] in the union (over a) of the intervals

|E −Haa| ≤
∑

b6=a

|Hba| (2.20)

which, given the form (2.1), implies that the eigenvalues lie in the interval [0, 6].
Using the completeness of the |E〉’s we can write (2.17) as

p(t) =

∫ 6

0

dE e−Et〈n|E〉〈E|0〉 (2.21)

and (2.18) as

A(t) =

∫ 6

0

dE e−iEt〈n|E〉〈E|0〉 (2.22)
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where the integral dE is to be interpreted as a sum on the discrete part of the spectrum.
From (2.22) we have

1

2π

∫ ∞

−∞

dt′ eiwt′ A(t′) =

∫ 6

0

dE δ(w − E)〈n|E〉〈E|0〉 . (2.23)

Multiply both sides by e−wt and integrate dw from 0 to ∞ to get, for t > 0,

1

2π

∫ ∞

−∞

dt′
A(t′)

t− it′
= p(t) (2.24)

which could have been obtained using the Cauchy integral formula. Now in the |a〉 basis Ĥ
is real and symmetric and from (2.18) it then follows that A(t) = A∗(−t). This allows us to
write (2.24) as

p(t) =
1

π
Re

∫ ∞

0

dt′
A(t′)

t− it′
. (2.25)

We will now use (2.25) to show that if a family of trees {T ′
n} is classically penetrable

it is also quantum penetrable. Pick some time T and let ǫ be the maximum of |A(t′)| for
0 ≤ t′ ≤ T . Now

p(t) =
1

π
Re

{
∫ T

0

dt′
A(t′)

t− it′
+

∫ ∞

T

dt′
A(t′)

t− it′

}

≤ ǫ

π

∫ T

0

dt′
1

(t2 + t′2)1/2
+

1

π

∣

∣

∣

∣

∫ ∞

T

dt′
A(t′)

t− it′

∣

∣

∣

∣

(2.26)

=
ǫ

π
ln

[

(T 2 + t2)1/2 + T

t

]

+
1

π

∣

∣

∣

∣

∫ ∞

T

dt′
A(t′)

t− it′

∣

∣

∣

∣

.

The magnitude of the last integral in (2.26) is actually less than C/T 1/4 for large T where C
is an n-independent constant. We will show this shortly. With this result we then have that

p(t) ≤ ǫ

π
ln

[

(T 2 + t2)1/2 + T

t

]

+
C

T 1/4
. (2.27)

Now we are assuming that the family of trees is classically penetrable. This means that for
some t ≤ nA we have p(t) > 1/nB for some A and B. For large n, this penetration time t is
clearly ≥ 1. Since the ln term in (2.27) is a decreasing function of t, we have

1

nB
≤ ǫ

π
ln

[

(T 2 + 1)1/2 + T
]

+
C

T 1/4
. (2.28)

Now let T = nD for D > 4B. We then have, for large enough n,

1

nB
≤ ǫ

π
ln(nD) (2.29)
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which means that the maximum of |A(t)| for t < nD is bigger than a constant times 1/nB+1

Thus we have the result that if a family of trees {T ′
n} is classically penetrable, it is also

quantum penetrable.
Before verifying that the last integral in (2.26) is actually bounded as claimed, we need

to establish some facts about the eigenfunctions of Ĥ. Label the nodes on the semi-infinite
line of T ′

n by j with j = 0,−1,−2, . . . so that j = 0 is the starting node of Tn. On the
semi-infinite line

Ĥ|j〉 = 2|j〉 − |j + 1〉 − |j − 1〉 for j ≤ −1 . (2.30)

The state |θ〉 with 〈j|θ〉 proportional to eijθ is an eigenstate of (2.30) with energy

E(θ) = (2 − 2 cos θ) = 4 sin2 θ/2 . (2.31)

Now eijθ and e−ijθ correspond to the same energy but because of the finite branching part of
the tree (Tn, which is connected at j = 0), only one linear combination is an eigenfunction
of the full Ĥ,

〈j|θ〉 =
1

(2π)1/2

[

eijθ +R(θ)e−ijθ
]

(2.32)

with 0 ≤ θ ≤ π, and R(θ) is determined by the structure of Tn. Because Ĥ in the node basis
is real, (2.32) must be real up to an overall j independent phase. This implies that R(θ) is
of the form e−2iδ(θ), that is, |R(θ)| = 1. (The form (2.32) is an “in” state for scattering off of
the tree Tn at the end of the semi-infinite line. The fact that |R(θ)| = 1 is also a consequence
of the unitarity of the S matrix.) We can rewrite (2.32) as

〈j|θ〉 = e−iδ(θ) 2

(2π)1/2
cos(jθ + δ(θ)) (2.33)

and then absorb the phase in the definition of |θ〉 to get

〈j|θ〉 =
( 2

π

)1/2

cos(jθ + δ(θ)) . (2.34)

The states |θ〉 are a set of delta function normalized eigenstates, i.e.,

〈θ|θ′〉 = δ(θ − θ′) . (2.35)

We have introduced the states |θ〉 because we could (fairly) easily normalize them, that is,
pick the coefficient in (2.32) so that (2.35) holds. The continuous energy eigenstates |E〉
given by (2.19) are proportional to the |θ〉’s. To maintain both (2.19) and (2.35) we have

|E〉 =
(dE

dθ

)−1/2

|θ〉 = (4E − E2)−1/4|θ〉 (2.36)

where again E = 4 sin2 θ/2. In the node basis on the semi-infinite line we then have

〈j|E〉 =
( 2

π

)1/2 1

(4E − E2)1/4
cos(jθ + δ(E)) , 0 ≤ E ≤ 4. (2.37)
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We now describe the bound-state part of the spectrum. Return to the form of Ĥ, given
by (2.30) on the semi-infinite line, and consider the eigenfunctions

〈j|α〉 = (−1)jeαj α > 0

〈j|β〉 = eβj β > 0 (2.38)

with energies 2 + 2 coshα and 2− 2 cosh β, respectively. Since we know that the eigenvalues
of the full Ĥ (including the tree) lie in [0, 6], we see that there are no bound states of the
form |β〉 and any bound states of the form |α〉 have energies in the interval [4, 6]. We have
now fully explored the solutions to Ĥ|E〉 = E|E〉 on the runway. Any additional solutions,
which may be nonzero in the tree, will vanish identically on the runway and will play no role
in any of our discussion.

Next we prove the required bound for the last integral in (2.26) The trusting reader is
invited to skip beyond (2.45). First note that

A(t′) = 〈n|e−iĤt′ |0〉 =

∫ 6

0

dE〈n|E〉〈E|0〉e−iEt′ (2.39)

where the integral in the range from 4 to 6 is actually a sum. The integral in (2.26) we wish
to bound is (after dividing by i)

∫ ∞

T

dt′
A(t′)

t′ + it
=

∫ ∞

T

dt′
∫ 6

0

dE〈n|E〉〈E|0〉e−iEt′ 1

t′ + it

=

∫ ∞

T

dt′
∫ 6

0

dE 〈n|E〉〈E|0〉e−iEt′
∫ ∞

0

dµ e−µ(t′+it) (2.40)

=

∫ 6

0

dE

∫ ∞

0

dµ 〈n|E〉〈E|0〉e−iµte−iET e−µT 1

µ+ iE
.

Taking the absolute value we get

∣

∣

∣

∫ ∞

T

dt′
A(t′)

t′ + it

∣

∣

∣
≤

∫ ∞

0

dµ e−µT

∫ 6

0

dE |〈n|E〉| |〈E|0〉|
(µ2 + E2)1/2

(2.41)

By the Cauchy-Schwarz inequality,

∣

∣

∣

∫ ∞

T

dt′
A(t′)

t′ + it

∣

∣

∣
≤

∫ ∞

0

dµe−µT
[

∫ 6

0

dE ′|〈n|E ′〉|2
]1/2 [

∫ 6

0

dE
|〈E|0〉|2
µ2 + E2

]1/2

=

∫ ∞

0

dµe−µT
[

∫ 4

0

dE
|〈E|0〉|2
µ2 + E2

+
∑

r

|〈Er|0〉|2
µ2 + E2

r

]1/2

(2.42)

using 〈n|n〉 = 1. For 0 ≤ E ≤ 4, the matrix element 〈E|0〉 is given by (2.37) so we have
|〈E|0〉|2 ≤ C1/(4E−E2)1/2 where Ci here and below are easily computable constants. Since
∑

r |〈Er|0〉|2 ≤ 1, and each Er ≥ 4, we have

∣

∣

∣

∫ ∞

T

dt′
A(t′)

t′ + it

∣

∣

∣
≤ C2

∫ ∞

0

dµ e−µT
[

∫ 4

0

dE

(4E −E2)1/2(µ2 + E2)
+

1

µ2 + 42

]1/2

. (2.43)
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The integral dE in (2.43) is

∫ 4

0

dE
1

(4E − E2)1/2

1

µ2 + E2
=

∫ π

0

dθ
1

µ2 + (4 sin2 θ/2)2
<

∫ π

0

dθ
1

µ2 + (2/π)4θ4
≤ C3

µ3/2
.

(2.44)

Now the inequality (2.43) becomes

∣

∣

∣

∫ ∞

T

dt
A(t′)

t′ + it

∣

∣

∣
≤ C2

∫ ∞

0

dµ e−µT
[ C3

µ3/2
+

1

µ2 + 42

]1/2

≤ C4

∫ ∞

0

dµ e−µT 1

µ3/4
≤ C5

T 1/4
(2.45)

which is the desired result. This was the last step we needed in showing that if {T ′
n} is

classically penetrable then it is quantum penetrable.
Of course we are not ultimately interested in quantum evolving on the family of infinite

trees {T ′
n} because we only imagine building a quantum computer with a finite number of

building blocks. However we now argue that if the family {T ′
n} is quantum penetrable there

is a closely related family of finite trees {T f
n } that is also quantum penetrable. In fact T f

n

is obtained from T ′
n by chopping off the semi-infinite line at some node that is far, but not

exponentially far as a function of n, from the node 0. Alternatively we can view T f
n as arising

from Tn by appending to Tn at 0 a finite number of linearly connected nodes.
To understand when infinite and very long give rise to the same quantum evolution

consider an infinite line of nodes by itself with the Hamiltonian given by (2.30). In this case
it is possible to explicitly evaluate the amplitude to go from j to k in time t:

〈k|e−iĤt|j〉 = e−2iti(k−j)Jk−j(2t) (2.46)

where Jk−j is a Bessel function of integer order. For fixed t this amplitude dies rapidly if
|k−j| is bigger than 2t. Imagine starting at j = 0 at t = 0. The quantum amplitude spreads
out with speed 2 (recall that we have set γ=1). Chopping off the infinite system at the nodes
±L will not affect the evolution from j = 0 as long as L≫ 2t.

Return to the family of quantum penetrable trees {T ′
n}. These trees have the property

that starting at 0, which is at the end of the semi-infinite line, there is a substantial quantum
amplitude for being at the node on the nth level of the branching tree at a time t ≤ nĀ for a
fixed Ā. Lopping off the infinite tree at a node of order (nĀ)2 down from 0 will not affect this
result. Thus the family of finite trees {T f

n }, which are obtained from the family of classically
penetrable trees {Tn} by adding a finite number of linearly connected nodes, is quantum
penetrable.

It is reasonable to ask why we bother with the family of infinite trees {T ′
n} when we

are only actually interested in finite trees. Why didn’t we prove directly that the family of
classically penetrable trees {Tn} is also quantum penetrable? Of course the answer is we
would have if we could have. The difficulty lies in the fact that for an arbitrary finite tree
with an exponential number of nodes there are an exponential number of energy eigenvalues
falling in a fixed interval and we were unable to establish the requisite facts about the density
of states needed for a proof.

Let us summarize the results of this section. We started with a given family of trees
{Tn} that was assumed to be classically penetrable. We then constructed the closely related

12



n210–1–2–3–4 n–1 n+1

FIG. 4. The tree T
′′
n obtained from the tree Tn of Fig. 2 by appending two semi-infinite lines,

one connected at the starting node and one connected to the node n. The tree is drawn with the

direct line of nodes from 0 to n along the base.

family of trees {T ′
n} that has a semi-infinite line of nodes attached to the starting node of

each Tn. The trees {T ′
n} are also classically penetrable. Then, using the analytic relationship

between the classical probabilities and quantum amplitudes of {T ′
n} we were able to prove

that {T ′
n} is quantum penetrable. We also argued that cutting the semi-infinite line at some

node far from 0 cannot affect the quantum penetrability as long as the distance to the cut is
much greater than the quantum penetration time. Therefore the family {T f

n } of trees that is
made from {Tn} by appending a long (but finite) string of nodes to the starting node of each
Tn is quantum penetrable if the original {Tn} is classically penetrable. Clearly {Tn} and
{T f

n } are addressing precisely the same decision question. Therefore any problem that can
be solved by classically random walking through a decision tree can be solved by quantum
evolving through a very closely related tree.

III. A FAMILY OF TREES THAT IS QUANTUM,

BUT NOT CLASSICALLY, PENETRABLE

If we know enough about the structure of a family of trees we can decide if it is classically
penetrable and if it is quantum penetrable. Here we will show examples of families of trees
that are quantum but not classically penetrable. We begin by discussing the calculations in
the quantum case. As in the last section we consider a family of trees {Tn} whose members
have only one node at the nth level, called n. This time we construct the family {T ′′

n} where
each tree T ′′

n has two semi-infinite lines of nodes, one connected to the starting node of Tn,
and the other semi-infinite line of nodes attached to the node n of Tn. For calculational
purposes we make these two extra lines of nodes semi-infinite but ultimately we envisage
making them of length n to a power.

For convenience we redraw our trees so that the direct line of nodes from 0 to n lies
along the base. In this way the tree depicted in Fig. 2 with two semi-infinite lines appended
becomes that of Fig. 4. We use “bush” to denote a group of nodes coming out of a node on
the base. Here we label the nodes on the base by j. The nodes j = −1,−2,−3, . . . are on the
semi-infinite starting line. The nodes j = n+ 1, n+ 2, . . . are on the appended ending line.

13



The nodes j = 0, . . . , n are all on the original tree Tn and the nodes 0, . . . , n − 2 may have
bushes coming out them although the nodes n− 1 and n do not. (If node n− 1 had a bush
then n would not be the unique level n node.) What we imagine doing is building a quantum
state localized near 0 on the starting line and then calculating the quantum amplitude for
penetrating the tree and being on the ending line. To this end we now set up the formalism
for calculating the energy dependent transmission coefficient T (E) and then evaluate it in
certain specific cases of families of trees.

For the tree depicted in Fig. 4 with an infinite base, for each energy E with 0 ≤ E ≤ 4,
there are two energy eigenstates. (Here again we have set γ equal to 1). On the semi-infinite
lines they are, in the node basis, of the form eijθ and e−ijθ where again E = 4 sin2 θ/2
and 0 ≤ θ ≤ π. Superpositions of the eijθ are used to make right moving packets whereas
superpositions of e−ijθ make left movers. Consider the state |E,+in〉 that on the starting
and ending lines is of the form

〈j|E,+in〉 = N(E)[eijθ +R(E)e−ijθ] j = −1,−2, . . .

〈j|E,+in〉 = N(E)T (E)eijθ j = n− 1, n, n+ 1, . . . (3.1)

with

N(E) =
1

(2π)1/2

1

(4E − E2)1/4
.

At this point we say nothing about 〈a|E,+in〉 if a is a node on Tn. Superpositions of
|E,+in〉 make states that at early times represent right moving packets on the starting line
headed towards the tree structure Tn. At late times the packet splits into a reflected piece,
proportional to R, left moving on the starting line, and a transmitted piece, proportional
to T , which is right moving on the ending line. Similarly we can define |E,−in〉, which
represents a state left moving on the ending line at early times that at late times is split into
a right mover on the ending line and a transmitted part left moving on the starting line. For
|E,−in〉 we have

〈j|E,−in〉 = N(E)[e−ijθ + R̄(E)eijθ] j = n− 1, n, n+ 1, . . .

〈j|E,−in〉 = N(E)T̄ (E)e−ijθ j = −1,−2, . . . . (3.2)

The states |E,+in〉 and |E,−in〉 are a complete set of scattering states useful for discussing
tree penetration. Equivalently there is the set |E,+out〉 and |E,−out〉 that at late times
represents respectively a right mover on the ending line and a left mover on the starting line.
From (3.1) and (3.2) we get

|E,+in〉 = R(E)|E,−out〉 + T (E)|E,+out〉
|E,−in〉 = R̄(E)|E,+out〉 + T̄ (E)|E,−out〉 . (3.3)

This transformation from the out states to the in states is called the S-matrix,

S =

(

R T
T̄ R̄

)

(3.4)

which is necessarily unitary so we have
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|R(E)|2 + |T (E)|2 = 1

|R̄(E)|2 + |T̄ (E)|2 = 1 (3.5)

R∗(E)T (E) + T̄ ∗(E)R̄(E) = 0 .

The standard interpretation of T (E) is as follows. Suppose we build a state |ψ〉 com-
pletely on the starting line, that is, 〈a|ψ〉 is nonzero only for nodes a on the starting line.
Furthermore suppose that |ψ〉 expanded as a superposition of energy eigenstates is made
only of states whose energy is close to some E0. If we quantum mechanically evolve |ψ〉
with the unitary operator e−iĤt, then at late times the probability of being on the ending
line is |T (E0)|2. Thus |T (E)|2 has a direct interpretation as the E dependent transmission
probability through the tree.

Of course any state |ψ〉 that is highly localized in energy is necessarily highly delocalized
in the node basis. (This can be viewed as a consequence of the uncertainty principle.) We
don’t want our constructions to rely on building states that are very spread out on the
starting line since we eventually do wish to chop it off not too far from the node 0. Suppose
we start at a specific node, j on the starting line, and we want the amplitude for being at
node k on the ending line at time t. This is given by

Akj(t) = 〈k|e−iĤt|j〉

=

∫ 4

0

dE {〈k|E,+in〉〈E,+in|j〉 + 〈k|E,−in〉〈E,−in|j〉} e−iEt +
∑

r

〈k|Er〉〈Er|j〉e−iErt

=

∫ 4

0

dEN2(E)
{

T (E)eikθ(e−ijθ +R∗(E)eijθ) + (e−ikθ + R̄(E)eikθ)T̄ ∗(E)eijθ
}

e−iEt

+
∑

r

〈k|Er〉〈Er|j〉e−iErt (3.6)

where we have used the explicit forms for |E,±in〉 on the starting and ending lines and also
included possible bound states. Now using the last equation in (3.5), with the further fact
that Ĥ being real in the node basis implies T (E) = T̄ (E), we get

Akj(t) =

∫ 4

0

dE N2(E)
{

T (E)ei(k−j)θ + T ∗(E)e−i(k−j)θ
}

e−iEt +
∑

r

〈k|Er〉〈Er|j〉e−iErt. (3.7)

In order to obtain amplitudes Akj that are large enough to ensure penetrability, we will look
for trees for which T (E) is large and non-oscillatory in some interval of E’s. This guarantees
that the right-hand side of (3.7) is large enough at some relevant time.

We now turn to calculating T (E), which clearly depends on the structure of the tree to
which we have added the semi-infinite starting and ending lines of nodes. For each of the
nodes m = 0, 1, . . . , n− 2 along the base of the tree – see Fig. 4 – that has a bush sprouting
up from it, let us define

ym(E) =
〈node above m|E,+in〉

〈m|E,+in〉 (3.8)

where |node above m〉 is the state corresponding to the node one level up from the base above
the node m. Now for fixed E, ym(E) is determined solely by the bush coming out of the
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node m; it does not depend on the other bushes. To see this suppose that the bush coming
out of node m has N nodes above the base node m. Label these nodes by a = 1, . . . , N .
Now Ĥ|a〉 gives a superposition of |a〉 and the states connected to a. Thus

〈a|Ĥ|E,+in〉 = E〈a|E,+in〉 (3.9)

is N equations for the (N + 1) quantities 〈a|E,+in〉 and 〈m|E,+in〉. Divide through by
〈m|E,+in〉 and we get N equations for the N ratios 〈a|E,+in〉/〈m|E,+in〉 so we see that
(3.8) is determined by the bush alone. Furthermore the equations that were used to determine
ym(E) are all real so ym(E) is also real. For any given bush ym(E) can be calculated
recursively by looking at sub-bushes and it is not actually necessary to solve the N equations
(3.9).

Let m be a node on the base with a bush coming off. Now, from (2.1),

〈m|Ĥ|E,+in〉 = 3〈m|E,+in〉
−〈m+ 1|E,+in〉 − 〈m− 1|E,+in〉 − 〈node above m|E,+in〉

= E〈m|E,+in〉 (3.10)

which implies that

〈m+ 1|E,+in〉 = (3 − E − ym(E))〈m|E,+in〉 − 〈m− 1|E,+in〉 (3.11)

where we have used (3.8). If m has no bush coming out of it, a parallel argument gives

〈m+ 1|E,+in〉 = (2 −E)〈m|E,+in〉 − 〈m− 1|E,+in〉 . (3.12)

We can use (3.11) for nodes with bushes as well as without if we define ym(E) = 1 for nodes
on the base with no bushes above. Equation (3.11) can be written as a matrix equation

[

〈m+ 1|E,+in〉
〈m|E,+in〉

]

=

[

(3 − E − ym(E)) −1
1 0

] [

〈m|E,+in〉
〈m− 1|E,+in〉

]

. (3.13)

We then have
[

〈n|E,+in〉
〈n− 1|E,+in〉

]

= M

[

〈0|E,+in〉
〈−1|E,+in〉

]

. (3.14)

where

M = Mn−1Mn−2 · · ·M0 (3.15)

and

Mm =

[

(3 − E − ym(E)) −1
1 0

]

. (3.16)

Substituting the explicit form for |E,+in〉 from (3.1) we get
[

T (E)einθ

T (E)ei(n−1)θ

]

= M

[

1 +R(E)
e−iθ +R(E)eiθ

]

. (3.17)
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If we know the matrixM , T (E) is determined by these last two equations for T (E) and R(E).
From (3.16) we see that M is the product of matrices of determinant 1 so det(M) = 1. We
can write

M =

[

a b
c d

]

(3.18)

with ad− bc = 1 and a, b, c, d all real. Solving for T (E) we get

T (E) = e−inθ 2i sin θ

c− b+ (d− a) cos θ + i(d+ a) sin θ
. (3.19)

It is interesting to note that if for some E we have ym(E) = 1 for all m, then T (E) = 1.
To see this we construct M = M(E) in this special case. From (3.15) and (3.16) we have

M(E) =

[

2 −E −1
1 0

]n

=
1

sin(θ)

[

sin
(

(n+ 1)θ
)

− sin(nθ)
sin(nθ) − sin

(

(n− 1)θ
)

]

. (3.20)

Plugging into (3.18) and (3.19) we get T (E) = 1. To understand why this comes about recall
that a node with no bush is the same as a node with a bush for which ym(E) = 1 as far as
the calculation of T (E) is concerned. Therefore if all bushes have ym(E) = 1 at some E we
have unimpeded transmission at that E.

To recap, given a decision tree Tn with one node at level n, construct a new tree with
semi-infinite lines attached to the starting node 0 and to the node at level n. Redraw the
tree as in Fig. 4 with the direct line from 0 to n along the base. Suppose we can calculate
the n − 1 functions y0(E), y1(E), . . . , yn−2(E). Substitute into (3.16) and (3.15) to get the
matrix M as a function of E. The transmission coefficient T (E) is then given by (3.19)
where E = 4 sin2 θ/2.

In order for a family of trees to be quantum penetrable, the function |T (E)| must be not
too small over a not too small range of E as can be seen from (3.7). Furthermore even if
|T (E)| is not small, T (E) must not oscillate rapidly about zero or else the integral in (3.7)
may be small due to cancellations. It is interesting to note that for any tree T (E) → 1 as
E → 0. To see this note that the zero-energy eigenvector of Ĥ, |E = 0,+in〉, is constant in
the node basis, that is, 〈a|E = 0,+in〉 is independent of a. Thus ym(0) defined by (3.8) is 1
for all nodes on the base and by the argument of the paragraph before last we have T (0) = 1.
For trees that are not quantum penetrable we will see that although T (0) = 1, T (E) falls to
near zero at an exponentially small value of E.

Consider a decision tree that is perfectly bifurcating until level n−1 and then only one of
the 2n−1 nodes at level n−1 continues on to level n. The associated tree Tn is shown in Fig. 5.
This decision tree could arise from the following question. You are given a list of N = 2n−1

items with the knowledge that a single unspecified item may or may not be marked. The
question is, “Is there a marked item?” (This is essentially the problem for which Grover [5]
found a quantum algorithm requiring order

√
N steps.) Any classical algorithm for solving

this problem requires of order N steps. In particular the Markov process for moving through
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Level  0

Level  1

Level  2

Level  n–1

Level  n

…

FIG. 5. The tree, Tn, which is perfectly bifurcating for the first n − 1 levels and then has only

one node at level n.

n210–1–2–3–4 n–1 n+1

FIG. 6. The tree T
′′
n constructed from Tn of Fig. 5 by appending two semi-infinite lines of nodes

and drawing the direct line of nodes from 0 to n along the base.
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Height  1

Height  0

Height  k–1

Height  k

FIG. 7. A perfectly bifurcating bush of height k coming out of the base of the tree in Fig. 6 at

node m = n − 1 − k.

the decision tree gives a probability of being at the unique node at level n that is at most of
order 1/N , so this family of trees is classically impenetrable.

We now turn to quantum evolution through the same set of trees. Draw the tree in Fig. 5
with the direct line from 0 to n along the base and add semi-infinite starting and ending
lines; see Fig. 6. We see that each bush coming out of the base at node m is a perfectly
bifurcating bush of length n− 1−m for m = 0 to n− 1. The ratio ym(E) can be calculated
for each of these bushes. Consider one such bush of length k = n − 1 −m as depicted in
Fig. 7. At height ℓ, with 1 ≤ ℓ ≤ k, there are 2ℓ−1 nodes. At each height we define the
normalized state

|ℓ; pb〉 =
1

(2ℓ−1)1/2

∑

a at height ℓ

|a〉 (3.21)

with |0; pb〉 being the state at the node on the bottom of the bush, that is, |0; pb〉 = |m〉.
With these labels, for these bushes, ym(E) defined by (3.8) is

ym(E) =
〈1; pb|E,+ in〉
〈0; pb|E,+ in〉 . (3.22)

Note that Ĥ to any power acting on |0; pb〉 gives a linear superposition of states that only
contains the states |ℓ; pb〉 on the bush. Further note that

〈ℓ; pb|Ĥ|ℓ′; pb〉 = 3δℓℓ′ −
√

2[δℓ,ℓ′+1 + δℓ,ℓ′−1] for 1 ≤ ℓ, ℓ′ ≤ k − 1 (3.23)

so the bush in Fig. 7 can be replaced by the effective linear bush given in Fig. 8 where the
number next to the node on the right gives the diagonal element of the Hamiltonian and the
number by the connecting edge on the left gives the off-diagonal element. Up to an overall
constant that drops out of 3.22, for ℓ = 1 to k we have

〈ℓ; pb|E,+ in〉 = cos(ℓθ′ + α)

and

〈0; pb|E,+in〉 =
√

2 cosα (3.24)
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Height  1

Height  0

Height  k–1

Height  k1

3

3

–1

3

–√2

–√2

–√2

FIG. 8. The effective bush of height k associated with the bush of Fig. 7. The number to the

left of each edge gives the matrix element of Ĥ between the two states connected by the edge. The

number next to the node gives the diagonal element of Ĥ for that state.

with
E = 3 − 2

√
2 cos θ′ .

By applying Ĥ to the ℓ = k node we can determine α,

tan(kθ′ + α) =
cos(θ′) −

√
2

sin θ′
. (3.25)

Going back to (3.22) we then have

ym(E) =
1√
2

{√
2 sin((k − 1)θ′) − sin(kθ′)√
2 sin(kθ′) − sin((k + 1)θ′)

}

(3.26)

where again k = n− 1−m. Of course the calculation of ym(E) in this example was greatly
facilitated by the regularity of the bush.

With ym(E) determined for each bush we can evaluate T (E) by substituting into (3.16),
(3.15) and then (3.19). In Fig. 9 we show |T (E)| for n = 26. At the n − 1 level there are
225 = 107.5 nodes. Although T (0) = 1, T (E) has fallen substantially by E = 10−10. Most
of the area under the curve comes from E of order 1. We can evaluate T (E) explicitly at
E = 3. Note from (3.24) that θ′ = π/2 at E = 3. In this case ym(3) is 1 if k = n− 1 −m is
even and ym(3) is −1/2 if k is odd. Thus M(3) can be written as (for n even)

M(3) =

{[

1/2 −1
1 0

] [

−1 −1
1 0

]}n/2

= (−1)n/2

[

3/2 1/2
1 1

]n/2

(3.27)

= (−1)n/2

[

1 −1/3
1 2/3

] [

2n/2 0
0 2−n/2

] [

2/3 1/3
−1 1

]
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 Perfectly Bifurcating Tree with One Node at level n=26

FIG. 9. The magnitude of T versus E for E between 0 and 4 for the perfectly bifurcating tree

with one node at the n
th level.
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from which we conclude that T (3) ∼ 2−n/2. The transmission amplitude is of order 2−n/2 so
the transmission probability goes like 2−n. Here the quantum algorithm is doing no better
than the classical algorithm.

The alert reader may wonder whether any use can be made of the bound states which
may exist for 4 ≤ E ≤ 6. The answer is no, at least in this case. To check this, we
changed the Hamiltonian on the semi-infinite lines to have values 3 on the diagonal and
−3/2 between neighbors. Now the continuum states |E,±in〉 are defined for 0 ≤ E ≤ 6
and are complete. We recalculated T (E) and looked for intervals of E’s where T (E) is
large and nonoscillatory. Again, there are no values of T (E) which permit transmission with
probability greater than ∼ 2−n.

Now we make a seemingly small modification of the tree. We take all of the odd-height
bushes coming out of the base line of Fig. 6 and trim back one layer so all bushes are of
even height. The magnitude of the transmission coefficient is shown in Fig. 10 where we see
that for a substantial range of E near 3, |T (E)| is very close to 1. In fact for all of these
teeth, ym(3) = 1, which by the argument given above implies that T (3) = 1. We can also see
that T (E) does not oscillate rapidly in this region by plotting the real part of T (E), which
is shown in Fig. 11, confirming a more tedious analytic evaluation. Therefore the family of
trees is quantum penetrable.

It is easy to see that these trees with even-height bushes are not classically penetrable.
Before trimming back the odd-height bushes we had the n-level tree shown in Fig. 5, Tn, which
is associated with the tree T ′′

n shown in Fig. 6. These trees are not classically penetrable.
Now, if we trim the odd-height bushes back one layer, the trimmed tree still contains all of the
tree T ′′

n−1, which has even- and odd-height bushes. Since T ′′
n−1 is not classically penetrable,

the even-height bush family is also not classically penetrable, since, classically, any time you
add nodes to bushes you necessarily decrease the chances of getting to the node n.

We have given a single example of a family of trees that is not classically penetrable but
is quantum penetrable. Clearly there are many variants of this example using even-length,
perfectly bifurcating bushes in all sorts of combinations; we will not pursue these other
examples here. However, we are faced with the question of what problem this family of trees
corresponds to.

We can think of decision trees as associated with functions that impose constraints. At
each level i there is a function fi that depends on the first i bits. If fi(x1 · · ·xi) = 1 then
the ith-level node x1 · · ·xi is connected to the (i − 1)th-level node x1 · · ·xi−1. (The 0th-level
node needs no bits to describe it.) If fi(x1 · · ·xi) = 0 then x1 · · ·xi is absent from the
tree. In terms of the functions fi, the decision question is, “Is there an x1 · · ·xn such that
fi(x1 · · ·xi) = 1 for all i = 1 to n?”

For the tree depicted in Fig. 5, the functions f1, . . . , fn−1 are all identically 1. This gives
the perfectly bifurcating structure. Then there is a function fn(x1 · · ·xn) that is guaranteed
to be 0 for all but one of the 2n values of x1 · · ·xn. At one special, but unknown, value fn

is either 0 or 1. (We draw the decision tree assuming there is a value for which fn equals 1.
Otherwise the transmission coefficient is 0 and there is nothing to calculate.) Without further
information about fn, any classical algorithm will need to search 2n values of x1 · · ·xn to see
if there is a value at which fn equals 1.

Let us turn to the functions that determine the quantum penetrable tree just discussed.
At the nth level there is the function fn(x1 · · ·xn) which may take the value 1 on one input,
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FIG. 10. The magnitude of T versus E for the same tree used in Fig. 9 after removing one layer

of nodes from each odd-length bush.
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FIG. 11. The real part of T versus E showing that T does not oscillate rapidly about zero close

to where T is 1, for the same tree as Fig. 10.

say w1 · · ·wn. To arrange for the bushes to all have even height, the tree must be trimmed
at level n − 1. For n even, the function fn−1(x1 · · ·xn−1) is 0 if x1 6= w1 or if x1 = w1,
x2 = w2, and x3 6= w3 or if x1 = w1, x2 = w2, x3 = w3, x4 = w4, and x5 6= w5, etc. If we are
allowed to call the function fn−1(x1 · · ·xn−1), which we know has this much structure, we can
determine (thanks to M. Sipser) w1 · · ·wn−1 with far fewer than order 2n function calls. First
try various inputs until you find an example x1 · · ·xn−1 such that fn−1 is 1 on this input.
Then you know that w1 = x1. Trying inputs of the form w1x2 · · ·xn−1 will allow you to find
w2, etc. Once w1 · · ·wn−1 is determined, two function evaluations of fn(w1 · · ·wn−1xn) with
xn = 0, 1 will answer the decision question. Of course what is occurring here is that the
extreme regularity of the tree, which guarantees its quantum penetrability, is also structuring
the decision problem so that it can be answered much more efficiently than by a classical
random walk, which is incapable of seeing larger structures.
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IV. IMPLEMENTING THE QUANTUM SYSTEM

In this section, we show how to implement on a conventional quantum computer the
quantum systems previously described. A conventional quantum computer consists of ℓ spin
1/2 particles that give rise to a 2ℓ dimensional complex Hilbert space with basis elements
|z1z2 · · · zℓ〉 where we take each zi to be 0 or 1. The computer program can be thought of as
a sequence of unitary operators Ûα each of which acts on (at most) B bits. That is, for each
Ûα in the sequence, there is a set Sα = {i1, i2, . . . , iB} that tells us which B bits are being
acted on and a 2B by 2B unitary matrix whose elements we write as Uα(w′

1 · · ·w′
B;w1 · · ·wB).

We then have for each Ûα,

〈z′1z′2 · · · z′ℓ|Ûα|z1z2 · · · zℓ〉 =
∏

j /∈Sα

I(zj = z′j)Uα(z′i1 · · · z
′
iB

; zi1 · · · ziB) . (4.1)

Here I(s) is the indicator function that is 1 if s is true and 0 if s is false. This formula is
just a way of writing that Ûα acts on B bits.

In previous sections we described evolution through decision trees using the quantum
Hamiltonian Ĥ that gives rise to the unitary time evolution operator e−itĤ . To find a
sequence of unitary operators each of which acts on only several bits and whose product
gives (approximately) the same evolution as e−itĤ , we follow the procedure given in [3].
Suppose

Ĥ =

p
∑

k=1

Ĥk (4.2)

where for each k, Ĥk and hence e−itĤk acts only on (at most) B bits. The Trotter formula
says,

e−itĤ ≈
[

e−itĤ1/m e−itĤ2/m · · · e−itĤp/m
]m

(4.3)

for t/m small. Thus the evolution operator e−itĤ can be approximated as a product of pm
unitary operators each of which acts on a fixed number of bits. As a function of n the largest
times t that interest us are, say, nA. Taking m = n2A allows us to obtain e−itĤ with a
number of elementary unitary operators that only grows polynomially with n, as long as p
also grows only polynomially with n.

We now show two cases where the Hamiltonian Ĥ given by (2.1) can be written as a sum
of Ĥk where each Ĥk acts on a fixed number of bits. Consider first the underlying branching
tree, Fig. 1 and its associated Ĥ. Start with ℓ = 2n+1 bits that we group for convenience as

(yx) = (y0y1 · · · ynx1 · · ·xn) . (4.4)

The y bits indicate the level of the node. The states we use will have a single yi = 1 and the
rest 0 to indicate that the node is at level i. The x1 · · ·xi will indicate the particular node
at the ith level; these nodes will also have xi+1 = xi+2 = · · · = xn = 0. We now define the
following one bit operators through their action on the basis vectors |yx〉:
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ŷj|yx〉 = yj|yx〉
x̂j |yx〉 = xj|yx〉
ρ̂j |yx〉 = ρ̂j|y0 · · · yj · · · ynx〉 = ȳj|y0 · · · ȳj · · · ynx〉 (4.5)

σ̂j |yx〉 = σ̂j|yx1 · · ·xj · · ·xn〉 = x̄j |yx1 · · · x̄j · · ·xn〉

where ȳj = 1 − yj and x̄j = 1 − xj. We see that x̂j and ŷj are diagonal in this basis. The

operator ρ̂†i ρ̂i+1 acting on a state at level i brings it to level i+ 1 whereas ρ̂i ρ̂
†
i+1 moves from

level i+ 1 to level i.
The Hamiltonian (2.1) defined on the underlying branching tree is

Ĥ = 2ŷ0 + 3
n−1
∑

i=1

ŷi + ŷn −
n−1
∑

i=0

(ρ̂†i ρ̂i+1 + ρ̂i ρ̂
†
i+1)(1 − x̂i+1)

−
n−1
∑

i=0

(ρ̂†i ρ̂i+1σ̂i+1 + ρ̂i ρ̂
†
i+1σ̂

†
i+1) . (4.6)

The first three terms give the diagonal matrix elements. The fourth term connects the nodes
x1 · · ·xi at level i with the nodes x1 · · ·xi0 at level i + 1 whereas the last term connects
x1 · · ·xi at level i with x1 · · ·xi1 at level i+ 1. Thus we see that Ĥ can be written as a sum
of Ĥk each of which acts on at most three bits.

We have built a Hilbert space with 22n+1 states whereas the underlying branching tree
has only 2n+1 − 1 nodes. However, if we start in the state corresponding to the topmost
node, that is, y0 = 1 and all other bits 0, then if we act with e−iĤt with Ĥ given by (4.6) we
only ever reach states in the subspace corresponding to the underlying branching tree. The
22n+1-dimensional Hilbert space may not be the most economical choice to describe the tree
but it suffices for our purpose of showing that Ĥ can be built as a sum of local Hamiltonians.

Of course we also want to construct Ĥ as a sum of Hamiltonians acting on a fixed
number of bits for interesting trimmed decision trees. There are families of trimmed trees
whose Hamiltonians we cannot represent in this way. But for many interesting problems
we can write Ĥ as a sum of Hamiltonians that act on at most B bits, where B does not
grow with n. For example, we now show how to do this for a version of the exact cover
problem discussed in the introduction. We restrict the matrix A, which defines an instance
of the exact cover problem, to have exactly three 1’s in any row and three or fewer 1’s in
any column. Even with this restriction, the problem is NP-complete.

Consider first the question of whether the ith-level node x1 · · ·xi connects to the (i+1)th-
level node x1 · · ·xi1. We assume that x1 · · ·xi is in the tree and we need to be consistent
with (1.1) so we know that for each j,

∑i
k=1Ajkxk is 0 or 1. If for some j this sum is 1 and

also Aj,i+1 = 1, then x1 · · ·xi1 is eliminated as a node. Consider the function

C1
i (x1 · · ·xi) =

m
∏

j=1

{

[

1 −
i

∑

k=1

Ajkxk

]

Aj,i+1 +
[

1 − Aj,i+1

]

}

. (4.7)

Given that x1 · · ·xi is an allowed node, then this function is 1 if x1 · · ·xi1 is allowed and 0
if x1 · · ·xi1 is excluded. Furthermore, given the restriction that A has three 1’s in any row
and three or fewer in any column, C1

i has at most six xk’s appearing.
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Now we ask if x1 · · ·xi at level i connects to x1 · · ·xi0 at level i+ 1. This connection will
be allowed unless for some j with Aj,i+1 = 1, there is a k ≤ i and a distinct k′ ≤ i such that
Ajk = Ajk′ = 1 and xk = xk′ = 0. The reason the node x1 · · ·xi0 would be eliminated in
this case is that there are exactly three 1’s in any row and (1.1) could not be satisfied if the
three bits xk, xk′ , and xi+1 are all 0. Now consider the function

dj
i (x1 · · ·xi) =

i
∑

k=1

Ajk(1 − xk) . (4.8)

For any j with Aj,i+1 = 1, dj
i can be 0, 1, or 2. Only if dj

i (x1 · · ·xi) = 2 is x1 · · ·xi0 eliminated.
Let

C0
i (x1 · · ·xi) =

m
∏

j=1

{

[

1
2
dj

i (1 − dj
i ) + 1

]

Aj,i+1 + (1 − Aj,i+1)
}

. (4.9)

Then this function is 0 if x1 · · ·xi0 excluded and it is 1 if x1 · · ·xi0 is allowed. Again because
of the restrictions placed on A, this function has only six xk’s appearing.

The functions C0
i and C1

i can be promoted to operators simply by replacing their argu-
ments by the bit operators x̂k defined in (4.5), that is, we have C0

i (x̂1 · · · x̂i) and C1
i (x̂1 · · · x̂i).

If we multiply the last term in (4.6) by C1
i and the fourth term by C0

i , the Hamiltonian has
off-diagonal elements only where the tree has connections. Similarly we can write the diag-
onal term as

Ĥdiagonal = 2ŷ0 +
n−1
∑

i=1

ŷi(1 + C0
i + C1

i ) + ŷn . (4.10)

Thus we have written the Hamiltonian for the trees trimmed by A in the form (4.2) with
B = 9.

Generally, we think of decision trees as associated with functions fi that impose con-
straints: fi(x1 · · ·xi) = 1 if the (i − 1)th level node x1 · · ·xi−1 is connected to the ith level
node x1 · · ·xi; otherwise fi = 0. The exact cover example above makes clear that as long
as there is a fixed B such that fi(x1 · · ·xi) depends on only B bits for each i (which bits
can vary with i, of course) then the problem can be implemented within the usual quantum
computing paradigm – we only need to replace Cx

i−1(x̂1 · · · x̂i−1) in (4.10) by fi(x̂1 · · · x̂i−1, x)
and also to multiply the appropriate connection terms in (4.6) by fi(x̂1 · · · x̂i−1, x).

Note that our example in Section 3 for which the quantum algorithm achieved exponential
speed-up does not meet this fixed-B requirement. We do have, however, similar examples
that achieve exponential speed-up and that do meet this requirement. These problems also
rely on even-length, very structured bushes, and also can be solved quickly by other classical
algorithms.

V. CONCLUSIONS

There is great interest in devising quantum algorithms that improve on classical algo-
rithms, and there have been some notable successes. For example, the well-known Shor [6]
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and Grover [5] algorithms demonstrate remarkable ingenuity. Each uses quantum interfer-
ence, the necessary ingredient for quantum speed-up, in what appears to be a problem-
specific way. So far these methods have not been successfully applied to problems very
different from the ones for which they were originally devised.

In this paper, we have considered a single time-dependent Hamiltonian that evolves a
quantum state through the nodes of a decision tree. (For a related approach, see [7].) This
is in contrast to the usual setup consisting of a sequence of unitary operators each acting on
a fixed number of bits. (For many problems, including NP-complete ones, our algorithm can
be rewritten in the conventional language of quantum computation.) Studying Hamiltonian
evolution on decision trees is facilitated by the technique of calculating energy-dependent
transmission coefficients. The example in Section Three shows explicitly how interference
allows a class of trees to be penetrated exponentially faster by quantum evolution than by
classical random walk. However, this example can be quickly solved by a different classical
algorithm.

The particular Hamiltonian we chose allowed us to prove, in Section Two, that the quan-
tum algorithm succeeded in polynomial time whenever the corresponding classical random
walk on the decision trees succeeded in polynomial time. In searching for more examples
where the quantum algorithm outperforms the classical algorithm, one is not restricted to
this Hamiltonian. We can imagine trying any Hamiltonian with nonzero off-diagonal ele-
ments where there are links between the nodes on the decision tree. With this flexibility,
we hope that the class of trees that can be penetrated quickly by the quantum algorithm is
large enough to include classically difficult problems.
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