Tight Bounds on Quantum Searching *

Michel Boyer ?, Gilles Brassard !
Peter Hpyer 2 and Alain Tapp ®3

aDépartement IRO, Université de Montréal
C.P. 6128, succursale centre-ville, Montréal (Québec), Canada H3C 3J7.
email: {boyer ,brassard,tappa}@iro.umontreal.ca.

b Department of Mathematics and Computer Science, Odense University
Campusvej 55, DK-5230 Odense M, Denmark. email: u2pi@imada.ou.dk.

We provide a tight analysis of Grover’s algorithm for quantum
database searching. We give a simple closed-form formula for the
probability of success after any given number of iterations of the
algorithm. This allows us to determine the number of iterations nec-
essary to achieve almost certainty of finding the answer. Further-
more, we analyze the behaviour of the algorithm when the element
to be found appears more than once in the table and we provide
a new algorithm to find such an element even when the number of
solutions is not known ahead of time. Finally, we provide a lower
bound on the efficiency of any possible quantum database search-
ing algorithm and we show that Grover’s algorithm comes within
2.62% of being optimal.

Key words: Quantum computation. Searching. Lower bound.
Oracle. Soufflés.
PACS: 03.65.Bz, 89.80.4+h, 89.70.4-c, 02.70.-c

* This research was presented at the Fourth Workshop on Physics and Computa-
tion, Boston, 23 November 1996.

I Supported in part by Canada’s NSERC and Québec’s FCAR.

2 Supported in part by the ESPRIT Long Term Research Programme of the EU
under project number 20244 (ALCOM-IT). Current address: Département IRO,
Université de Montréal.

3 Supported in part by a postgraduate fellowship from Canada’s NSERC.

Preprint submitted to Elsevier Preprint 30 June 1998

1 Introduction

Let Xy ={0,1,...,N —1} for some integer N and consider an arbitrary
function F : Xy — {0,1}. The goal is to find some i € X such that F(i) =1,
provided such an i exists. If F'is given as a black box—the only knowledge you
can gain about F'is in asking for its value on arbitrary points of its domain—
and if there is a unique solution, no classical algorithm (deterministic or proba-
bilistic) can expect to achieve a probability of success better than 50% without
asking for the value of F' on roughly N/2 points. Throughout this paper we
assume for simplicity that each evaluation of F' takes unit time. Grover [1] has
discovered an algorithm for the quantum computer that can solve this problem
in expected time in O(\/ﬁ), provided there is a unique solution. He also
remarked that a result in [2] implies that his algorithm is optimal, up to an
unspecified multiplicative constant, among all possible quantum algorithms.

In this paper we provide a tight analysis of Grover’s algorithm. In particular we
give a simple closed-form formula for the probability of success after any given
number of iterations. This allows us to determine the number of iterations
necessary to achieve almost certainty of finding the answer, as well as an
upper bound on the probability of failure. More significantly, we analyze the
behaviour of the algorithm when there is an arbitrary number of solutions.
An algorithm follows immediately to solve the problem in a time in O(vV N/t)
when it is known that there are exactly ¢ solutions. Moreover we provide an
algorithm capable of solving the problem in a time in O(V N/t) even if the
number ¢ of solutions is not known in advance. We also generalize Grover’s
algorithm to the case IV is not a power of 2. Finally, we refine the argument
of [2] to show that Grover’s algorithm is within 2.62% of being optimal.

To motivate this work, here are three simple applications for Grover’s algo-
rithm. Assume you have a large table [0 .. N — 1] in which you would like to
find some element y. More precisely, you wish to find an integer ¢ such that
0 <i< N and TT[i] =y, provided such an i exists. This database searching
problem can obviously be solved in a time in O(log N) if the table is sorted,
but no classical algorithm can succeed in the general case with probability bet-
ter than 50%, say, without probing more than half the entries of T'. Grover’s
algorithm solves this problem in a time in O(v/N) on the quantum computer
by using F'(i) = 1 if and only if T'[i] = y. An exciting cryptographic application
is that Grover’s algorithm can be used to crack the widely used Data Encryp-
tion Standard (DES) [3] under a known plaintext attack. Given a matching
pair (m, ¢) of plaintext and ciphertext, consider function F : {0,1}°¢ — {0,1}
defined by F(k) =1 if and only if DES(m) = ¢. Provided there is a unique
solution, the required key k can be found after roughly 185 million expected
calls to a quantum DES device [4]. Thus quantum computing makes single-key
DES totally insecure. For yet another application, consider a Boolean formula

on n variables. You would like to determine if the formula is satisfiable. There
may exist an efficient classical algorithm for this problem but none are known.
(This is equivalent to the famous P L NP open question in theoretical com-
puter science [5]). In this case Grover’s algorithm solves the problem in a time
in O(2™?), which is better than the time in O(2") required by the obvious
classical algorithm, but not good enough to imply that NP C BQP [2].

2 Overview of Grover’s Algorithm

Grover’s algorithm consists of an initialization followed by a number of
identical iterations, a final measurement, and a classical test. For every
F: Xy — {0,1}, let Sp be the conditional phase shift transform defined by

Sy —iy if F(i) = 1

i) otherwise.
Let Sy denote Sg,, where Fy(i) = 1 if and only if i = 0.

Assume for the moment that N = 2" is a power of 2 and consider any integer
j € Xy as a bit string of length n. Define i-j as the number of 1 in the bitwise
AND of 7 and j. Let W be the Walsh-Hadamard transform defined by

1N1
- wat

This is efficiently implemented [6] by applying the simple unitary transfor-

mation %({ 71) independently to each qubit of |j). Now we can define one

Grover iteration as the unitary transformation

W7)

l]|

Grover’s algorithm first creates a state |U) = W0). Then G is applied to |¥)
some number m of times. (One primary purpose of this paper is to determine
the optimal choice for m.) Finally, the state |¥) is measured, which yields
some classical value i. The algorithm succeeds if and only if F'(i) = 1.

Let us now assume we are given a quantum black box @z for comput-
ing F. This will usually come as a unitary transformation that sends state
li,b) to |i,b@® F(i)), where |b) is a single qubit and @ denotes the exclu-
sive—or. The obvious approach to implementing Sy as a unitary transforma-
tion requires two applications of (Qp: if P is the conditional phase-shift de-
fined by P|i, b) = (—=1)°|i,b) then (Sr|i))|0) can be computed as Qr PQr|i, 0).

However, it follows from Lemma 5.5 in [7] that Sp can be implemented using
a single application of Q). For this, it suffices to note that

(SFlNIA) = Qr(li)|A))
where [A) = ([0) - [1))/V2.

The Walsh-Hadamard transform W is well-defined only if N is a power of 2.
However, this assumption on N can be removed by observing that G is just
one of many transforms that can be used as iteration in Grover’s algorithm.
Let W' be any unitary transform satisfying

W) = > i) 2)

Then one may easily verify that the transform G = W'S, W’ TS works just
as well. (The minus sign in eq. (1) was clearly unnecessary although it makes
the analysis easier.) Any transform W’ satisfying eq. (2) can thus be used in
Grover’s algorithm. When N is a power of 2, the Walsh-Hadamard transform
is indeed the simplest possible choice for W’. When N is not a power of 2, the
approximate Fourier transform given by Kitaev [8] can be used.

3 Finding a Unique Solution

Assume for now that there is a unique i such that F'(i) = 1. For any real
numbers k and ¢ such that k% + (N — 1)¢? = 1, define the state of a quantum
register

(W(k,0)) = klio) + >_ £]i)
i#i
where the sum is over all 7 # iy such that 0 <7 < N.

The heart of Grover’s algorithm is the iteration described in the previous
section. A simple calculation—see Grover’s original article [1] for details—
shows that each iteration efficiently transforms |¥(k, ¢)) into

‘\If (N]fk § ANy N2y %k)>

It follows that the j—th iteration produces state |¥;) = |¥(k;,¢;)) where

ki = N2k + 20000 and G = NP2 - Rk (3)

with initial conditions ky = [j = 1/\/N

In his paper, Grover proves that there exists a number m less than 2N
such that k2, the probability of success after m iterations, is at least 50%.
This is correct, but one must be careful in using his algorithm because the
probability of success does not increase monotonically with the number of
iterations. By the time you have performed v/2N iterations, the probability of
success has dropped down to less than 9.5% and it becomes vanishingly small
after about 11% more iterations before it picks up again. This shows that it
is not sufficient to know the existence of m in order to apply the algorithm:
its explicit value is needed.

The key to a tighter analysis of Grover’s algorithm is an explicit closed-form
formula for k; and ¢;. This can be obtained by standard techniques—and a
little sweat—from recurrence (3). Let angle 6 be defined so that sin?@ = 1/N
and 0 < 0 < 7/2. It is straightforward to verify by mathematical induction
that

kj =sin((2j+1)0) and ¢; = ﬁ cos((27 +1)8). (4)

It follows from eq. (4) that k,, =1 when (2m + 1)0 = 7/2, which happens
when m = (m — 20)/46. Of course, we must perform an integer number of
iterations but it will be shown in the next section that the probability of
failure is no more than 1/N if we iterate |7/460| times. This is essentially
g\/ﬁ iterations when NN is large because 6 ~ sin = 1/\/N when 0 is small.
It is sufficient to perform half this number of iterations, approximately %\/ﬁ ,
if we are satisfied with a 50% probability of success, as Grover considered
in his original paper [1]. We shall prove in Section 7 that this is optimal
within a few percent because any quantum algorithm that solves the search
problem with a 50% probability of success must evaluate F at least (sin Z)v/N
times and § & 1.026 sin §. One must know when to stop, however: if we work
twice as hard as we would need to succeed with almost certainty, that is we
apply approximately g\/ﬁ iterations of Grover’s algorithm, we fail with near
certainty!

4 The Case of Multiple Solutions

Let us now consider the case when there are ¢ different values of ¢ such that
F(i) = 1. We are interested in finding an arbitrary solution. Grover briefly
considers this problem [1], but he provides no details concerning the efficiency
of his method.

We assume in this section that the number ¢ of solutions is known and that it is
not zero. Let A = {i|F(i) =1} and B = {i| F(i) = 0}. For any real numbers

k and ¢ such that tk* + (N — t)¢* = 1, redefine

Uk, 0) = D kli) +>_ o).

i€A 1€B

A straightforward analysis of Grover’s algorithm shows that one iteration
transforms |¥(k, ¢)) into

‘\If (N];”k ANy N2ty %k»

This gives rise to a recurrence similar to (3), whose solution is that the state
|W(k;,¢;)) after j iterations is given by

kj = % sin((2j + 1)) and ¢; = \/% cos((27 + 1)0) (5)
where the angle 6 is so that sin?6 =¢/N and 0 < § < 7/2.

The probability of obtaining a solution is maximized when ¢, is as close
to 0 as possible. We would have (5 =0 when m = (7 —26)/40 if that
were an integer. Let m = [r/46]. Note that |m —m| < L. Tt follows that
|(2m +1)8 — (2m + 1)0| < 0. But (2m + 1)0 = 7/2 by definition of m. There-
fore |cos((2m + 1)0)| < |sin #]. We conclude that the probability of failure after
exactly m iterations is

(N =), = cos*((2m+1)f) < sin’f = t/N.
This is negligible when ¢t < N.

Note that this algorithm runs in a time in O(V/ N/t) since § > sinf = Vt/N
and therefore

A slight improvement is possible in terms of the expected time if we stop
short of m iterations, observe the register, and start all over again in case of
failure. The expected number of iterations before success with this strategy
is E(j) = j/tk7 if we stop after j iterations since our probability of success
at that point is tk3. Setting the derivative of E(j) to 0, we find that the
optimal number of iterations is given by the j so that 465 = tan((2j + 1)9).
The solution to this equation is very close to j = z/40 when t < N, where
z &2 2.33112 is such that z = tan(z/2). It follows that the optimal number of
iterations is close to 0.58278\/]\7—/15 when ¢t < N and the probability of suc-
cess is close to sin?(z/2) ~ 0.84458. Therefore, the expected number of iter-
ations before success if we restart the process in case of failure is roughly

(z/(4sin*(2/2)))V N/t ~ 0.69003v/N/t, which is about 88% of Zv/N/t, the

number of iterations after which success is almost certain. For a numerical
example, consider N = 2% and ¢ = 1. In this case, we achieve almost cer-
tainty of success after 804 iterations. If, instead, we stop at 596 iterations, the
probability of success is only 0.84420 but the expected number of iterations
before success if we restart the process in case of failure is 596,/0.8442 ~ 706,
which is indeed better than 804.

5 The Caset = N/4

An interesting special case occurs when ¢ = N/4. Of course, even a classical
probabilistic computer can solve this problem efficiently, with high probability,
but not quite as efficiently as a quantum computer. Here sin?@ = t/N = 1/4
and therefore § = 7 /6. It follows that ¢; = \/% cos(30) = 0. In other words,
a solution is found with certainty after a single iteration. In terms of the
number of times F' has to be evaluated, this is essentially four times more
efficient than the expected performance of the best possible classical proba-
bilistic algorithm when N is large. Furthermore, the quantum algorithm
becomes exponentially better than any possible classical algorithm if we com-
pare worst-case performances, taking the worst possible coin flips in the case of
a probabilistic algorithm. This is somewhat reminiscent of the Deutsch—Jozsa
algorithm [6].

6 Unknown Number of Solutions

A more challenging situation occurs when the number of solutions is not known
ahead of time. If we decide to iterate %\/N times, which would give almost
certainty of finding a solution if there were only one, the probability of success
would be vanishingly small should the number of solutions be in fact 4 times
a small perfect square. For example we saw that we are almost certain to find
a unique solution among 2?° possibilities if we iterate 804 times. The same
number of iterations would yield a solution with probability less than one in
a million should there be 4 solutions! To find a solution efficiently when their
number is unknown, we need the following lemmas, the first of which is easily
proved by mathematical induction using straightforward algebra.

Lemma 1 For any positive integer m and real number o such that sina # 0,

—

— , sin(2ma)

J=0

Lemma 2 Let t be the (unknown) number of solutions and assume that
0<t<N. Let angle § be so that sin>f =t/N and 0 <6 < /2. Let m be
an arbitrary positive integer. Let j be an integer chosen at random accord-
ing to the uniform distribution between 0 and m — 1. If we observe the register
after applying j iterations of Grover’s algorithm starting from the initial state,
the probability P,, of obtaining a solution is given by

1 sin(4md)

p, — - mmy)
2 4msin(20)

In particular P,, > 1/4 when m > 1/sin(20).
PROOF. The probability of success if we perform j iterations of Grover’s

algorithm is tk? = sin®((2j 4 1)0). It follows that the average success proba-
bility when 0 < 7 < m is chosen randomly is

3
L

1
P, = — sin?((2j + 1))
=0
1! 1 sin(4m#)
= — Y 1- 2] +1)20) = -~ — ———.
2m = cos((2 +120) = 5 = w0

If m > 1/sin(26) then

sin(4m#) < 1
dmsin(20) — 4msin(20)

A~ =

The conclusion follows. O

We are now ready to describe the algorithm for finding a solution when the

number ¢ of solutions is unknown. For simplicity we assume at first that
1<t<3N/4

(i) Initialize m =1 and set A = 8/7.
(Any value of A strictly between 1 and 4/3 would do.)
(ii) Choose an integer j uniformly at random such that 0 < j < m.
(iii) Apply j iterations of Grover’s algorithm starting from initial state

W) = Wiy = =)

(iv) Observe the register and let i be the outcome.
(v) If F(i) = 1, the problem is solved: exit.
(vi) Otherwise, set m to min(Am,+/N) and go back to step (ii).

Theorem 3 This algorithm finds a solution in expected time in O(V N/t).

PROOF. Let angle 0 be so that sin®f = t/N and 0 < 0 < 7/2,

N

mo = 1/sin(20) = m

and sy = [log, mo|. Note that my < v/ N/t because t < 3N/4.

We shall estimate the expected number of times that a Grover iteration is
performed before a solution is found: the total time needed is clearly in the
order of that number since we assumed that F' can be evaluated in unit time.
On the s—th time round the main loop, the value of m is min(v/N, *"!) and
the expected number of Grover iterations is less than half that value since
j is chosen randomly between 0 and m — 1. Note that m < mg for the first
sp times round the main loop, whereas m > my afterwards. We say that the
algorithm reaches the critical stage when m > mg for the first time, which
may never happen of course if success comes earlier.

The expected total number of Grover iterations needed to reach the critical
stage, if it is reached, is at most

li)\s_l < le = 4m
2 2A—1 " o

Thus, if the algorithm succeeds before reaching the critical stage, it does so in
a time in O(my), which is in O(v/N/t) as required.

If the critical stage is reached then every time round the main loop from this
point on will succeed with probability at least 1/4 by virtue of Lemma 2
since m > 1/sin(26). Therefore, A® expected iterations will be performed
at round s = sp+ 1. This will succeed with probability at least 1/4. With
complementary probability at most 3/4, at least one more trip round the loop
will be necessary, requiring %)\50“ additional expected iterations. Again, this
will succeed with probability at least 1/4. With probability at most (3/4)?, at
least one more trip will be required, costing another %)\50“ expected iterations,
and so on. Summing up, the expected number of Grover iterations needed to
succeed once the critical stage has been reached is less than

io: (%)u)\so-i-u < 43)\?))\7710 = 4m,.

u=0

N[

The total expected number of Grover iterations, whether or not the critical
stage is reached, is therefore less than 8mg and thus the total expected time is

in O(V/N/t) provided 0 < t < 3N/4. Note that 8mg ~ 4v/N/t when t < N,
which is less than six times the expected number of iterations that we would
have needed had we known the value of ¢ ahead of time. The case t > 3N/4
can be disposed of in constant expected time by classical sampling. The case
t =0 is handled by an appropriate time-out in the above algorithm, which
allows us to claim in a time in O(v/N) that there are no solutions when this
is the case, with an arbitrarily small probability of failure when in fact there
is a solution. O

7 An Improved Lower Bound

Drawing on general results from [2], Grover points out in [1] that any algorithm
for quantum database searching must take a time at least proportional to v/ N
to succeed with nonnegligible probability when there is a unique solution.
In this section we prove that if the function F' having ¢ solutions is used as a
black box in any quantum algorithm) that makes less than (sin §)v/ | N/t] — 1
calls to F' then, averaging over all such possible F', the probability that () suc-
ceeds cannot be better than 50%. Obviously, it follows that, for any ¢ < N and
any quantum algorithm that makes less than (sin §)v/|N/t| — 1 calls to F,
there exists an F' that has ¢ solutions, yet the algorithm’s probability of success
does not exceed 50%. This proves that Grover’s algorithm comes within 2.62%
of being optimal when the number of solutions is known in advance since it
follows from Section 4 that it needs to call F' only about §+/ N/t times to
succeed with probability better than 50%.

After reading an early version of this paper, Grover noticed that our lower
bound would not apply if we were interested in the ezpected (rather than
worst-case) number of calls to F necessary to succeed with probability at
least 50%. A better algorithm in terms of the expected number of calls to F'
consists in first tossing a biased coin. With probability 40%, do nothing—and
fail for sure. With probability 60%, apply 0.58278\/]\7—/15 iterations of Grover’s
algorithm before looking at the quantum state: this will succeed with prob-
ability roughly 84.458%, as we saw in Section 4. The total expected number
of iterations—and thus of calls to F—is 60% x 0.58278V/N/t < 0.35v/N/t,
which is less than (sin %)\/N—/t, yet the expected success probability is
60% x 84.458%, which is better than 50%. Nevertheless this approach never
yields success unless F' is evaluated more than (sin Z)y/N/t times, which is
why our lower bound is not contradicted by this example.

To capture the notion that F'is a black box, we consider that it is given as an
oracle. All matrices and vectors in this section are finite and complex-valued.
The norm of vector a is denoted ||al|. The norm of a complex number ¢ is
denoted |c|.

10

We restate a basic fact on complex-valued vectors.

Proposition 4 For all normalized vectors a and b, and all complex scalars

o and (3,

laa = Bb|* > |af® + |8[* — 2|a||A].

The following proposition is a consequence of Chebyshev’s summation inequal-
ity.

Proposition 5 For all set of complex numbers, {z;}i—_;,

r—1 2 r—1
(Z |xl|> < r Z |xl|2
i—0 i—0

Lemma 6 Let S be any set of N strings, and C be any configuration space.
Let |¢o) be any superposition, and

|9r) = Up ... UsUs | o)

any sequence of r unitary transforms. Let { f;}I_, be any set of partial functions
from C into S. For any y € S, let

|6,) = Uy.... UsUi | o)

be any sequence of r unitary transforms where for all i =1,...,r,

Uile) =Uile) if fia(le)) # -

Set |dp) = |po), and for alli =1,...,r, set |¢;) = Us|p;_1) and |d}) = Ul).
Foralli=0,1,...,r, set |¢;) = qiyldiy) +igloig), where |¢;,) (resp. |piz))
is a normalized superposition of configurations where f; equals (resp. does not
equal) y. Denote |y similarly.

Then the following holds:

(1) lllgn) = el < 2375 Jauy for ally € 8.
(2) (L= lary| = lajg) < llgp) =62 forally € S.
(8) N=VN-Seslargl < 2%

PROOF. We divide the proof into three parts.

Proof of (1): For all y € S and all i = 1,...,r we have

11

Uilpie1) = Uj (i Lyldiciy) + aicigloioig)

i (Qi1yldi1y) + Ui (Qiigldig)

= U (Gi— 1,y>) Ui (0i—1,y]dic1y)) + Uil diz1)
)

I
S

7 az 17y

|6i) + (U; = Us) (i 1y|6i-14)) -

Hence, by mathematical induction on ¢,

|66) = Ui...Ullgo) = Idi) +E (Ui -+ Up)Uj = Uj) (@j1,105-10)) »
7j=1
SO,
I165) = el = ||Z (Ui Ui)(Uj = Uj) (@1,9[d5-19))

< 2 Z a1yl
7=1

and (1) follows.

Proof of (2): The inequality follows from:

ln) = 1enll® = Ilar,léy,) + ahgldng) — (aryldry) + crglérm)”
= [l{onyl@l,) — aryldry)) + (r g1l — crglérm)|”

= lanyl81,) = arglér) I” + llenzl615) — argléra)|I®
> (logy " + lany [* = 2[a]. y [lowy|)
+ (|a;«,y 2+ g 2 - 2|a;«,y||ar,?|)
= 2(1 = |on llomy| = log gllowgl)
> 2(1 = Jowy| — lagg0),

where the two inequalities follow from proposition 4 and the fact that the
norm of any scalar is at most 1.

Proof of (3): By (2), (1), and proposition 5,

2
1 r—1
L= fongl = il < 360~ 1ol < 2(Tlowsl) < 2T
=0

Thus,

12

Z (1 — oyl — |a;«,y|)

yes y

VAN
m
w0
7 N
[\
3
-, =
Il |
o =
8
&
[\
N~

Since

Z (1 - |a7",y| - |a;«,y|) = N-— Z |ar,y

/
- Z |ar,§

yes yeS yeS
1/2

> N-VN (Z Iar,yl2> — > |yl
yeSs yeS

= N-— \/N_ Z |a;,y|7
yeSs

we have
N—=VN =Y largl < S (1= Jary| = |z < 27,

yeS yeS

and (3) follows. 0O

Theorem 7 Let S be any set of N strings, and M be any oracle quantum
machine with bounded error probability. Let y € S be a randomly and uniformly
chosen element from S. Let F' be the oracle such that F(x) =1 if and only
if © =vy. Then the average number of times M must query F in order to
determine y with probability at least 50% is at least {(sin %)\/NJ, where the
average is taken over all possible y.

PROOF. Let S be any set of N strings and C be any configuration space.
Let |¢)g) be any superposition of configurations, and M any bounded-error
oracle quantum machine. Given any oracle F*, assume that we run M*" for s
steps, and assume that M queries r times its oracle F™* during the computation.
Since we will only run M using oracle F* with F*(z) = 0if x ¢ S, without
loss of generality, assume that M never queries F™* on strings not in S.

First, consider the case that we run M using the trivial oracle: let F' be the
oracle such that F'(z) =0 for all z € S, and let

W’s) = As.. -A1|7/)0> (6)

be the unitary transformation corresponding to the computation of M using
oracle F'.

13

For all © = 1,...,r, let ¢; be the time stamp for M’s i—th query, and set
¢r+1 = s+ 1. Then eq. (6) can also be written as

|6r) = Uy ... Urldo) (7)
A

where [pg) = Ag 1...A1|thy), and for all ¢ = 1,...,r, U; = Ag,,1... A
and |¢;) = U;|;_1). At the i—th query some configurations will query F', some
will not. For all i = 0,...,r — 1, set f;(|c)) = z if |¢) queries F on z at the
(i + 1)-st query.

Now, consider what happens if we flip one of the oracle bits: Given any y € S,
let F’ be the oracle such that F'(x) = 1 if and only if x = y. Then the
computation of M’ corresponds to the unitary transformation

|6,) = Uy Uilgo)
where Ul|c) = U;|e) if fi 1(|e)) # y.

At the end of the computation of M¥', we measure the superposition |¢/.)
in order to determine the unknown y. For each configuration |¢) € C, set
fr(lc)) = x if, by measuring |c¢), M answers that z is the unknown y.

Set [¢)) = ay.,|9,,) + a,5|@).-) where |¢]) (resp. |#;7)) is the normalized
superposition of configurations where f, equals (resp. does not equal) y. Then
|a,,|* is the probability that A" " correctly determines y. Since, by assump-
tion, this probability is at least 50%,

g 5] < for all yeS. (8)

Sl

Furthermore, by Lemma 6,

N-VN=Y|alg] < 22

yeSs

Hence, by eq. (8)

22 > N—W—%N = (1—L>N—\/N.

It follows by straightforward algebra that
2—v2
N S S)

provided N > 15. But eq. 9 holds nevertheless for all N because the oracle
must be queried at least once to succeed with probability at least 50%
when N > 2, and therefore r > 1> (sinZ)y/N —1 holds as required for

14

2 < N < 15. In addition, the equation holds vacuously when N < 2 since
r>0> (sinf)y/N —1 in that case. The theorem follows directly from the
generality of eq. 9. O

Theorem 7 gives a lower bound for finding a unique solution using a bounded-
error quantum machine. However, in most applications we would expect that
there will be more than one solution. Furthermore, we might even not know if
there is a solution at all. Let ¢ be the number of solutions. For the case t > 1,
we have the following theorem.

Theorem 8 Let S be any set of N strings, and M be any bounded-error oracle
quantum machine. Let A C S be a randomly and uniformly chosen subset of S
of size t, t > 1. Let F be the oracle such that F(x) =1 if and only if x € A.
Then the average number of times M must query F in order to determine
some member y € A with probability at least 50% is at least {(sin SIVIN/ JJ,

where the average is taken over all possible A of size t.

The proof of this theorem is almost identical to the proof of Lemma 6 and
Theorem 7. In Lemma 6, egs. (1) and (2) now hold for all subsets of ¢ strings.
Hence, by choosing a largest number of such disjoint subsets from S, say R of
cardinality N; = [N/t], in the proof of (3), we obtain

Ne=Ne= ¥ Jal 5

X;ER

< 272,

The remaining part of the proof is the same as the proof of Theorem 7, only
with obvious and minor changes.

8 Conclusions and Future Directions

We have provided a tight analysis of Grover’s quantum search algorithm and
proved that it comes to within a few percent of being optimal in terms of
the number of times the function must be evaluated when it is provided as a
black box (or an oracle). Moreover, we showed how to apply the algorithm even
when the number of solutions is unknown ahead of time. It would be interesting
to determine if in fact Grover’s algorithm is exactly optimal or whether it is
possible to improve it slightly. Also, a lower bound on the expected number of
function evaluations required to find the solution by any quantum algorithm
would be useful. How would it compare with our upper bound 0.69003v/N?

Grover’s algorithm and the ideas presented in this paper can be extended in
several directions, which we are currently investigating and will be the topic of
a subsequent paper. In particular, Grover’s algorithm can be thought of in a

15

more general setting than quantum searching. Each iteration of the algorithm
can be used to amplify the amplitude of a desired state. From this perspective,
Grover’s algorithm is really an amplitude amplification process.

It would be silly to use Grover’s algorithm directly to solve most NP—com-
plete problems because there are classical heuristics that would go faster on
almost all instances. We are currently investigating the extent by which these
heuristics can be sped up on a quantum computer by way of amplitude am-
plification. In many cases, we can combine the classical heuristics with ampli-
tude amplification to allow quadratic speed up compared to the best classical
heuristics available, but we do not yet know how general this phenomenon is.
Similarly, more efficient quantum algorithms might exist for specific NP-com-
plete problems if the structure of the problem is exploited. Furthermore, we
are investigating how to use ideas from Grover’s algorithm to solve problems
higher than NP in the polynomial-time hierarchy.

Assume F': Xy — {0,1} is as in our paper but our goal is to determine the
number ¢ of i € Xy such that F(i) =1 rather than finding a specific one.
In light of the theory of #P—completeness, this is thought to be a harder
problem for classical computers. Combining Grover’s algorithm with some
ideas from Shor’s quantum factoring algorithm [9], we have preliminary results
that indicate the possibility of solving this quantum counting problem with
high probability in a time in O(tv/N) without need for a large supply of
auxiliary quantum memory. If we are satisfied with an approximate answer, a
time in O(v/N) provides an answer whose absolute error is bounded by v/
with high probability, and a time in O(v/N/t) suffices to count with small
expected relative error.

We presented in the Section 1 an application of Grover’s algorithm to the
cryptanalysis of secret-key cryptosystems such as the DES. Can quantum com-
puting be used in more subtle ways for cryptanalytical purposes, for instance
when double or triple-key encipherment is used?” What is the best way to use
quantum searching for finding collisions in a cryptographic hash function?

Acknowledgement

We are grateful to Richard Cleve for telling us how to implement one iteration
of Grover’s algorithm with a single function evaluation, and to Lov Grover for
pointing out that our lower bound would not apply to the ezpected number
of function evaluations to succeed with a given probability. The third author
would like to thank Edmund Christiansen for helpful discussions concerning
recursion equations, and Joan Boyar for helpful discussions in general.

16

References

[1] GROVER, Lov K., “A fast quantum mechanical algorithm for database search”,
Proceedings of 28th Annual ACM Symposium on Theory of Computing, 1996,
pp. 212-219.

[2] BENNETT, Charles H., Ethan BERNSTEIN, Gilles BRASSARD and Umesh
VAZIRANI, “Strengths and weaknesses of quantum computing”, to appear SIAM
Journal on Computing.

[3] NATIONAL BUREAU OF STANDARDS, “Data Encryption Standard”, Federal

Information Processing Standard, U.S. Department of Commerce, FIPS PUB 46,
Washington, DC, 1977.

[4] BRASSARD, Gilles, “Searching a quantum phone book”, Science, in press, 1997.

[5] GAREY, Michael R. and David S. JOHNSON, Computers and Intractability:
A Guide to the Theory of NP -completeness, W.H. Freeman, 1979.

[6] DEUTSCH, David and Richard JozsA, “Rapid solution of problems by quantum
computation”, Proceedings of the Royal Society, London, Vol. A439, 1992,
pp- 553-558.

[7] BARENCO, Adriano, Charles H. BENNETT, Richard CLEVE, David P.
D1VINCENZO, Norman MARGOLUS, Peter SHOR, Tycho SLEATOR, John
A. SMOLIN and Harald WEINFURTER, “Elementary gates for quantum
computation”, Physical Review A, Vol. 52, 1995, pp. 3457-3467.

[8] KITAEV, A. Yu.,, “Quantum measurements and the Abelian stabilizer
problem”, manuscript, 1995. Available on Los Alamos e-Print archive
(http://xxx.lanl.gov) as quant-ph/9511026.

[9] SHOR, Peter W., “Algorithms for quantum computation: Discrete logarithms
and factoring”, Proceedings of 35th Annual IEEE Symposium on Foundations
of Computer Science, 1994, pp. 124-134.

17

