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Abstract

The recent discovery of efficient quantum algorithms for factoring and
database search has shown that quantum computing would allow to solve
important problems which are intractable with conventional computers.
In contrast to the very demanding task of building a large-scale quantum
computer, there are quantum communication protocols, e.g. quantum
key distribution for cryptography, which—though still difficult—require
much less effort and can be implemented with current technology. Apart
from the technological motivation, the study of quantum information of-
fers (at least) two additional benefits. First, new insight into fundamen-
tal questions on quantum mechanics, e.g. concerning non-locality and en-
tanglement, are gained from an information-theoretical approach. And
second, investigating a particular physical implementation of quantum
information can give rise to independent physical results. Spintronics,
the use of spin as opposed to charge in (classical) electronics is a new
field for which some results presented here could be relevant.

In this dissertation we investigate several theoretical aspects of the
physical implementation of quantum computation and communication
in which the fundamental unit of quantum information, the qubit, is
represented by the spin of electrons in semiconductor quantum dots.
The required coupling between the spins can be obtained by allowing
for tunneling of electrons between adjacent dots, leading to a Heisen-
berg exchange coupling J S1 ·S2 between the spins, a scenario which we
study for laterally coupled quantum dots in a two-dimensional electron
system, and for a three-dimensional setup with vertically coupled quan-
tum dots. Furthermore, an alternative scheme to couple the spins via
the interaction with an optical cavity mode is presented.

Quantum error correction represents one of the important ingredients
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iv Abstract

for the physical implementation of a quantum computer by protecting
it from the effects of a noisy environment. As a first test for error-
correction in a solid-state device using spins, we propose an optimized
implementation of the most primitive error correction scheme (the three-
bit code). In this context, we introduce parallel switching, allowing
to operate a quantum computer more efficiently than the usual serial
switching.

Coupling spins with the exchange interaction J S1 ·S2 is not sufficient
for quantum computation; the spins also have to be addressed individu-
ally using controllable local magnetic fields or g-factors giBi ·Si in order
to allow for single-qubit operations. On the one hand, we discuss several
schemes for overcoming the difficulty of applying local magnetic fields
(requiring large gradients), e.g. g-factor engineering, which allows for
all-electric operation of the device. On the other hand, we show that
at the expense of additional devices (spins) and switching operations,
single-spin rotations can be dispensed with completely.

Addressing the feasibility of quantum communication with entangled
electrons in mesoscopic wires, i.e. interacting many-body environments,
we propose an interference experiment using a scattering set-up with an
entangler and a beam splitter. The current noise for electronic singlet
states turns out to be enhanced (bunching), while it is reduced for triplets
(antibunching). Due to interactions, the fidelity of the entangled singlet
and triplet states is reduced by z4

F in a conductor described by Fermi
liquid theory, zF being the quasiparticle weight factor.

Finally, we study the related but more general problem of the noise of
the cotunneling current through one or several tunnel-coupled quantum
dots in the Coulomb blockade regime. The various regimes of weak and
strong, elastic and inelastic cotunneling are analyzed for quantum-dot
systems (QDS) with few-level, nearly-degenerate, and continuous elec-
tronic spectra. In contrast to sequential tunneling, the noise in inelastic
cotunneling can be super-Poissonian. In order to investigate strong co-
tunneling we develop a microscopic theory of cotunneling based on the
density-operator formalism and using the projection operator technique.
We have derived the master equation for the QDS and the current and
noise in cotunneling in terms of the stationary state of the QDS. These
results are then applied to QDS with a nearly degenerate and continuous
spectrum.



Zusammenfassung

Die Entdeckung von effizienten Quantenalgorithmen für die Faktorisier-
ung und für das Suchen in Datenbanken vor wenigen Jahren hat gezeigt,
dass Quantum Computing die Lösung von Problemen erlauben würde,
die mit konventionellen Computern praktisch unlösbar sind. Die Her-
stellung eines Quantencomputers genügender Grösse, um diese Vorteile
nutzen zu können, ist technisch sehr anspruchsvoll. Im Gegensatz dazu
existieren Anwendungen in der Quantenkommunikation, z.B. Quantum
Key Distribution, die mit kleinerem technischem Aufwand realisiert wer-
den können. Neben den Anwendungen gibt es (mindestens) zwei weitere
Anreize für das Studium der Quanteninformatik. Erstens können damit
neue Einsichten in fundamentale Fragen zur Quantenmechanik, z.B.
bezüglich Nicht-Lokalität und Verschränkung (entanglement), gewonnen
werden. Zweitens kann die Untersuchung einer Implementierung der
Quanteninformatik Anlass zu unabhängigen physikalischen Resultaten
geben. Die Verwendung des Spins anstelle der Ladungsfreiheitsgrade in
der (klassischen) Elektronik (spintronics) ist ein neues Forschungsgebiet,
für welches einige der hier präsentierten Resultate relevant sein könnten.

In dieser Dissertation untersuchen wir theoretische Aspekte der Im-
plementierung von Quantum Computing und Communication, bei der
die kleinste Informationseinheit, das Qubit, durch den Elektronenspin in
einem Quantendot dargestellt wird. Die nötige Kopplung zwischen den
Spins wird erreicht durch das Tunneln von Elektronen zwischen zwei
benachbarten Dots, das zu einer Heisenberg Austauschwechselwirkung
J S1 · S2 zwischen den Spins führt. Wir studieren diesen Mechanismus
für lateral gekoppelte Dots in einem zweidimensionalen Elektronensys-
tem, sowie für vertikal gekoppelte Dots in drei Dimensionen. Ausser-
dem diskutieren wir die indirekte Kopplung von Spins über die Wech-
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vi Zusammenfassung

selwirkung mit einer optischen Kavität.
Weil es die Quanten-Fehlerkorrektur erlaubt, einen Quantencomputer

von störenden äusseren Einwirkungen zu schützen, ist sie eine wichtige
Komponente bei dessen physikalischer Implementierung. Wir schla-
gen als ersten Test für die Fehlerkorrektur in einem Festkörpersystem
mit Spins eine optimierte Realisierung des einfachsten Codes für die
Fehlerkorrektur mit drei Code-Qubits vor. In diesem Kontext führen
wir das parallele Schalten ein, das es erlaubt, einen Quantencomputer
effizienter zu betreiben als das gewöhnliche serielle Schalten.

Die Austauschkopplung von Spins untereinander reicht nicht aus für
einen Quantencomputer; die Spins müssen auch einzeln mit lokalen Mag-
netfeldern oder g-Faktoren giBi · Si adressierbar sein. Wir zeigen ein-
erseits, wie dies ohne (schwer realisierbare) lokale Magnetfelder möglich
ist, z.B. mit einem ortsabhängigen g-Faktor, welcher die Operation nur
mit elektrischen Gates erlaubt. Andererseits zeigen wir, dass es durch
den Aufwand eines Vielfachen an Spins und Schaltoperationen möglich
ist, auf die Adressierung einzelner Spins vollständig zu verzichten.

Sind verschränkte Elektronen in mesoskopischen Drähten, also in
wechselwirkenden Mehrteilchensystemen, geeignet für Quantenkommu-
nikation? Zur teilweisen Beantwortung dieser Frage schlagen wir ein
Streuexperiment mit einem Verschränker (entangler) und einem Strahl-
teiler vor. Wir finden, dass das Stromrauschen für Elektronen im Sin-
gulettzustand erhöht ist (bunching), während es im Triplett unterdrückt
ist (antibunching). Durch die Wechselwirkung in einer Fermiflüssigkeit
wird die Güte (fidelity) der verschränkten Singulett- und Tripplettzu-
stände um einen Faktor z4

F reduziert (zF ist das Quasiteilchengewicht).
Schliesslich studieren wir das allgemeine Problem des Rauschens im

Cotunnelstrom durch ein System von Quantendots (QDS) im Coulomb-
Blockade Regime. Schwaches und starkes, elastisches und inelastisches
Cotunneling werden für QDS mit diskretem, fast entartetem, und kon-
tinuierlichem Spektrum analysiert. Im Gegensatz zum sequentiellen
Tunneln kann das Rauschen beim inelastischen Cotunneln dasjenige eines
Poisson-Prozesses übersteigen. Zur Untersuchung des starken Cotunneln
entwickeln wir eine mikroskopische Theorie, die auf dem Dichteoperator-
formalismus und der Projektortechnik aufbaut. Wir leiten die Master-
gleichung für das QDS her, drücken Strom und Rauschen durch den
stationären Zustand aus, und wenden die Resultate auf ein QDS mit
fast entartetem und kontinuierlichem Spektrum an.
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Chapter 1

Introduction

1.1 The physics of information

Storing and processing information can only be done with the use of
suitable physical systems, e.g. magnetic discs or tapes, electronic circuits,
pencil on paper, the human brain, etc. Landauer’s principle, saying
that erasing one bit of information dissipates the energy kBT ln 2, is
an example of the fundamental importance of physical considerations
when dealing with information. Whereas for today’s computers this tiny
amount of energy is irrelevant, Landauer’s principle may obtain some
practical value in the future when the ongoing downsizing of electronic
devices reaches the atomic scale. As shown by Bennett, any computation
can in principle be done reversibly by carefully avoiding the erasure of
information, thus producing an arbitrarily small amount of heat [1].

The recent discovery of Shor’s quantum algorithm for efficiently fac-
toring large numbers [2, 3] clearly demonstrates that the choice of the
underlying physical representation—in this case between classical and
quantum—can determine not only the energy, but also the time con-
sumption of a computation. For the factoring problem, the difference
between the classical and the quantum representations is essential; it ap-
pears that the problem is intractable for a classical computer1 while—as
Shor proved—it would be efficiently solvable with a quantum computer.

1 The fact that no classical algorithm for factoring large integers is known is the
basis of the widely used RSA scheme for public key cryptography.

1



2 1. Introduction

t(n) ∝ classical quantum

factoring exp
[
c n1/3(lnn)2/3

]
(number field sieve)

n2(lnn)(ln lnn) (Shor)

database search n (linear search)
√
n (Grover)

Table 1.1: Comparison between the scaling of the time consumption t(n) for
the best known classical and quantum algorithms as a function of the size of
the input n. For the factoring problem, n = log2 N where N is the number to
be factorized, and c is a numerical constant of order 1. For database search,
n is proportional to the number of entries of the database.

By efficiency we mean that the required computational resources (time
t, or memory) scale polynomially with the size n of the problem (input
data). The classical and quantum complexities of factoring and database
search are compared in Table 1.1. Shor’s factoring algorithm and the al-
gorithm for searching unsorted databases found by Grover [4] provide
the main motivation for studying possible physical representations of
quantum information, such as electron spins in quantum dots [5] and
wires, with which we shall be concerned in this dissertation.

1.2 Quantum computation

A quantum computer coherently processes quantum states. Its memory
is therefore a quantum system, which is usually thought of as a collec-
tion of quantum two-level systems, named quantum bits, or qubits. In
contrast to a classical bit (a classical two-state system) which can take
the two values 0 and 1, a qubit can exist in any linear superposition2 of
the basis states |0〉 and |1〉,

|ψ〉 = α|0〉+ β|1〉, (1.1)

where α and β are complex numbers which satisfy the normalization
condition |α|2 + |β|2 = 1. A spin 1/2 system (say, the spin of an elec-
tron) is a very natural example for a qubit; we can identify the spin up
and down states with respect to an arbitrary quantization axis with the

2 In general, a qubit can also be in a mixed state, described by a density matrix
ρ.
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logical basis, i.e. |↑〉 ≡ |0〉 and |↓〉 ≡ |1〉. When several, say n, qubits
are combined, then the resulting quantum register (memory) has the
possibility to be in an arbitrary superposition

2n−1∑
x=0

αx|x〉, (1.2)

where |x〉 is the product basis vector defined by the binary representation
of x, e.g. |6〉 = |110〉 = |1〉|1〉|0〉. Roughly, a quantum computation works
as follows.

• Initially, some product state |x〉 is prepared (e.g. x = 0, by maxi-
mally polarizing all spins).

• Then, the actual quantum algorithm is performed. Any time evo-
lution of the (closed) quantum system consisting of n qubits—
including the quantum algorithm which is to be performed—can
be described by a unitary 2n×2n matrix. It has been demonstrated
[6] that any unitary operation on n qubits can be represented as
a series of elementary local operations acting on one or two (ad-
jacent) qubits only. During this period, the quantum register will
usually be in non-trivial quantum superpositions, and has therefore
to stay phase coherent.

• At the end of the computation, the final state of the quantum
register is measured by measuring each qubit one-by-one, i.e. each
qubit is projected in the basis |0〉, |1〉. Thus, the outcome of the
quantum computation consists of n classical bits.

For a thorough introduction into quantum information theory and quan-
tum computation, we refer the reader to Preskill’s lecture notes [7].

The reason why there are no large-scale quantum computers at work
yet is that it is hard to find a suitable physical implementation of qubits,
because the requirements [8, 9] for such an implementation are extremely
demanding. Quantum phase coherence needs to be maintained over a
long time compared to the length of an elementary step in the compu-
tation, in order to allow for quantum error correction [10, 11, 12, 13, 14,
15, 16, 17]. As a further requirement, it has to be possible to couple
pairs of qubits in a controlled manner in order to carry out elementary
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quantum logic. Moreover, operations on single qubits need to be imple-
mented, and at the end of a computation, the qubits have to be read
out by performing a quantum measurement. Finally, the design of the
quantum computer should be scalable3 to a large number of qubits.

1.3 Coherence

Phase coherence is one of the vital ingredients for quantum computation.
Decoherence (loss of coherence) happens because every quantum system,
including the memory of a quantum computer, is coupled to external
degrees of freedom. In order to describe the decoherence of a single
qubit, it it convenient to first rewrite its initially pure state Eq. (1.1) in
terms of the density matrix

ρ = |ψ〉〈ψ| =
(
|α|2 αβ∗

α∗β |β|2
)
. (1.3)

In the case of a single qubit (i.e. a spin 1/2) one commonly describes
decoherence by two times4: T1 describes how fast the spin is depolarized,
while T2 is the characteristic time after which the phase information is
lost. For the systems we are interested in, T2 < T1, therefore the deco-
herence time T2 is the more restrictive and thus more important quantity
for quantum information storage and processing. We can describe the
process of decoherence for a single qubit roughly as follows. After a time
of order T2, the off-diagonal matrix elements of Eq. (1.3) will have de-
cayed, leaving us with a incoherent mixture ρ = |α|2|0〉〈0| + |β|2|1〉〈1|.
Then, after time T1 the diagonal elements go to thermal equilibrium
ρ = 1

Z e
−βH , where β = 1/kBT and H is the Hamiltonian of the qubit.

If there is no splitting, H � kBT , then this state is completely mixed,
ρ = 1

21, where 1 denotes the unity matrix.

3 Scalability means that there is a method (e.g. photolithography) which allows to
increase the number of fundamental units of a device (e.g. the number of transistors
on a chip) once it is known how a single unit can be fabricated.

4 This description is incomplete. Under the assumption that the environment is
memoryless (Markovian approximation), it takes 12 independent numbers to com-
pletely describe decoherence.
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1.4 Existing proposals and implementations

There is a growing number of proposals for implementing quantum com-
putation in various physical systems (for a more comprehensive review,
see e.g. Ref. [18]). A few of them have already been demonstrated in
small-scale (but nevertheless very interesting) experiments:

• The theoretical proposal for using the internal degrees of freedom
of cold trapped ions as qubits and coupling them via their mo-
tional degrees of freedom (phonons) [19] was quickly followed by
its implementation [20] at the level of a single quantum gate.

• Quantum gate operation with atoms in optical cavities [21] — using
photons instead of phonons — was also shown in experiment [22].

• Quantum gate operation and small-scale quantum algorithms in-
volving up to seven qubits have been performed using liquid-state
nuclear magnetic resonance (NMR) [23, 24, 25, 26], where the
qubits are encoded in specific nuclear spins of a molecule. In NMR,
gate operations and measurements are performed on a macroscopic
ensemble of this molecule, typically at room temperature. The
operation at high temperature using so-called pseudo pure states
implies that the state at every step of the computation can be
described classically, a fact which has led to debates whether the
NMR experiments are real quantum computation at all [27, 28].

Besides the solid-state proposals which we discuss separately in the
following section, we mention that there are further proposals for quan-
tum computing, including neutral atoms in optical lattices [29] and elec-
trons floating on liquid helium [30].

1.5 Why solid-state quantum computation?

The scalability (see footnote 3) of conventional electronic solid-state de-
vices suggests that solid-state realizations of quantum computation have
the potential for being scalable to large numbers of qubits which con-
trasts with the known limitations of existing small-scale implementa-
tions. In this dissertation, we will concentrate on a theoretical proposal
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to use coupled semiconductor quantum dots in which the spin of the ex-
cess electron on each dot represents a qubit [5]. Apart from electron spins
in quantum dots, a number of other solid-state systems have been pro-
posed for quantum computation: nuclear spins of donor atoms in silicon
[31], ESR transistors in SiGe heterostructures [32], electrons trapped by
surface acoustic waves [33], charge degrees of freedom in quantum dots
[34, 35, 36, 37, 38]; charge states [39, 40] or flux states [41] in coupled
Josephson junctions, and d-wave Josephson junctions [42].

1.6 The spintronics proposal for quantum
computation

We will now focus on using the spin of electrons in quantum dots for
quantum computation, as suggested by Loss and DiVincenzo [5]. The
spin of electrons in a semiconductor has several properties which make
it a good candidate for a qubit:

• Long decoherence time. Recently, the decoherence time T ∗2 of an
ensemble of spins in a semiconductor (GaAs) was measured using
time-resolved Faraday rotation [43, 44, 45]. It turns out that at
zero field and T = 5K, the transverse spin lifetime (decoherence
time) T ∗2 can exceed 100 ns. This lifetime is much longer than
typical decoherence times associated with the charge (or orbital)
degrees of freedom of electrons in the same material, which are
usually of the order of picoseconds up to few nanoseconds at very
low (mK) temperatures [46]. Time-resolved Faraday rotation was
also used to probe the spin decoherence times in semiconductor
(CdSe) quantum dots [47]. The relatively small T ∗2 (a few ns at
zero field) which have been seen in these experiments presumably
originate from a large inhomogeneous broadening due to a strong
variation of g-factors. Theoretical estimates predict much longer
single-spin decoherence times T2 [48].

• Natural two-state system. A spin 1/2 is the equivalent of a qubit,
i.e. it has the same (two-dimensional) Hilbert space. In contrast to
this, the orbital degree of freedom of a confined electron or Cooper
pair allows for more than two states. If the latter are to be used as
a qubit, then the Hilbert space has to be truncated, and it has to
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be made sure that transitions into “forbidden” states (“leakage”
effects) can be suppressed.

• Scalability. As mentioned in the previous section, solid-state physics
and in particular semiconductor physics offer the advantage that
there exists a well-developed technology for fabricating large arrays
of small structures, such as quantum dots and wires.

• Mobility. Being attached to electrons in a semiconductor, the spin-
qubit can be moved around by applying an external field, and is
therefore of interest for applications in quantum communication
(the transport of quantum information), see also Sec. 1.7.

As will be explained in more detail in Chapter 2, two spins in tunnel-
coupled quantum dots experience an exchange coupling which can be
described by an isotropic Heisenberg Hamiltonian

Hs(t) = J(t) S1 · S2. (1.4)

This interaction is sufficient for generating a two-qubit gate (e.g. the
XOR gate) [5] which, when complemented with single-spin rotations,
can be used to assemble any quantum algorithm [6]. A similar coupling
(described by the XY model) which is also suited for quantum computing
can be obtained when the quantum dots are not coupled directly but via
an optical cavity mode [49], see Chapter 5.

1.7 Quantum communication

The recently demonstrated injection of spin-polarized electrons into semi-
conductor material [50, 51] is an important progress towards replacing
the spatial (charge) degrees of freedom of the electron by its spin as
the carrier of information in electronics [52, 53, 54]. Moreover, the
long spin decoherence times found in GaAs by Kikkawa et al. [43]
(see above) makes them suitable carriers for transporting quantum infor-
mation. Such quantum communication protocols usually require much
smaller resources (number of qubits and gate operations) than quan-
tum computation and their implementation is therefore technically less
demanding.



8 1. Introduction

The fundamental resource for many applications in quantum com-
munication are pairs of entangled particles [55]. Two qubits (spins) are
called entangled if their state cannot be expressed as a tensor product of
single qubit (spin) states. Well-known examples of maximally entangled
states of two qubits are the spin singlet and triplet (with mz = 0) of two
spin-1/2 particles,

1√
2

(
|↑↓〉 ± |↓↑〉

)
. (1.5)

In quantum optics, violations of Bell inequalities and quantum telepor-
tation with photons have been investigated [56, 57, 58], while so far,
no corresponding experiments for electrons in a solid-state environment
are reported. This reflects the fact that it is harder to produce and to
measure entanglement of electrons in solid-state.

One possibility for producing entangled states from product states is
using the quantum gates which are the building blocks of quantum com-
puters [5, 59]. Another possibility for the production of spin-entangled
electron pairs in mesoscopic systems is to use the properties of the su-
perconducting condensate and the simultaneous tunneling of a Cooper
pair into a pair of quantum dots as it is proposed in Ref. [54].

The persistence of this entanglement during electron transport in
quantum wires under the influence of interactions [60] is addressed in
Chapter 8, where we also discuss an interference experiment, in which
EPR pairs can be unambiguously tested for entanglement by measuring
the shot noise. Recently, another detection scheme for the entangled
ground states in coupled quantum dots (Chapter 2) was proposed in
Ref. [61], which involves the Aharonov-Bohm phase in the cotunneling
current in the Coulomb blockade regime.

1.8 Outline

This thesis is organized as follows. In Chapter 2 (see Ref. [59]) we
analyze the spin dynamics of two laterally coupled quantum dots in a
two-dimensional electron system, containing a single electron each, com-
pute the spin exchange coupling J [cf. Eq. (1.4)] as a function of external
parameters, and discuss the application of this setup as a quantum gate.
For vertically coupled quantum dots this analysis is extended to three
dimensions in Chapter 3 (see Ref. [62]). The influence of the direction of
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the applied electric and magnetic fields in this case is discussed. Chapter
4 (see Ref. [9]) is a short study on g-factor engineering in semiconduc-
tor heterostructures and its possible application for all-electric switching
for quantum computing. Chapter 5 (Ref. [49]) introduces an alternative
method for coupling electron spins in quantum dots via an optical cavity.

Chapters 6 and 7 contain general considerations on quantum compu-
tation using the Heisenberg (or XY) interaction and are therefore rele-
vant in connection with Chapters 2, 3, and 5. In Chapter 6 (Ref. [63])
we find the most optimal implementation of a very basic error-correction
code and introduce parallel switching. In Chapter 7 (see Ref. [64]) it is
shown that the exchange interaction alone—without the additional use
of single-spin rotations—can be used for quantum computation at the
expense of additional resources (qubits, quantum gate operations).

In Chapter 8 we consider the potential use of spins in quantum wires
for quantum communication, the persistence during the transport of
pairwise entangled states through a Fermi liquid and its detection via a
measurement of the shot noise. In Chapter 9 (see Ref. [65]) a more com-
prehensive theory of the shot noise in the cotunneling regime which can
be used (among other applications) as a tool for studying the transport
of quantum information (as e.g. in Ref. [61]).

The Appendices A–J contain additional material related to the Chap-
ters 2, 3, 6, and 9.
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