FROM QUANTUM CHEATING
TO QUANTUM SECURITY

For thousands of years, code-makers and code-breakers have been
competing for supremacy. Their arsenals may soon include
a powerful new weapon: quantum mechanics.

Daniel Gottesman and Hoi-Kwong Lo

ryptography—the art of code-making—has a long his-

tory of military and diplomatic applications, dating
back to the Babylonians. In World War II, the Allies’ feat
of breaking the legendary German code Enigma con-
tributed greatly to their final victory. Nowadays, cryptog-
raphy is becoming increasingly important in commercial
applications for electronic business. Sensitive data such
as credit card numbers and personal identification num-
bers (PINs) are routinely transmitted in encrypted form.
Quantum mechanics is a new tool for both code-breakers
and code-makers in their eternal arms race. It has the
potential to revolutionize cryptography both by creating
perfectly secure codes and by breaking standard encryp-
tion schemes.

The best-known application of cryptography is secure
communication,! illustrated in figure 1. Suppose Alice
would like to send a message to Bob, but there is an eaves-
dropper, Eve, who is wiretapping the channel. To prevent
Eve from knowing the message, Alice may perform
encryption—that is, transform the message to something
that is unintelligible to Eve—during the communication.
On receiving the message, Bob inverts the transformation
and recovers the message.

Bob’s advantage over Eve lies in his knowledge of a
secret, commonly called the key, that he shares with Alice.
The key tells him how to decode the message. Consider
this example (in the style of cold-war espionage thrillers):

The rumble of Soviet tanks shook the Prague
hotel room (number 117) as secret agent John
Blond finished decoding his orders from his
superior, N. He tore the used page from the
codebook and immediately burned it with his
lighter.

Blond is using a perfectly unbreakable cipher, a “one-
time pad.” The secret codebook allows N and Blond to
share a long secret binary string—the key—before Blond
leaves on his mission. Whenever N would like to send a
message to Blond, she first converts it to binary. She then
takes the exclusive-OR (XOR) between each bit of the
message and the corresponding key bit to generate the
encrypted message, which is transmitted over a public
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channel. An enemy can intercept the encrypted message,
but without the key, it is incomprehensible gibberish,
offering no clue to the contents of the original message.
On the other hand, Blond, by looking up the key in the
codebook, can recover the original message by taking the
XOR between the encrypted message and the key. Blond
immediately burns the used page of the codebook to pre-
vent it from falling into enemy hands in the future.

Key distribution problem

John Blond finally snapped shut the codebook
and sighed. He had been on duty in Czechoslo-
vakia for so long that his codebook was getting
thin. He knew his days in Prague would soon
be over: N would have to recall him before he
used up his whole codebook. Blond recalled
master cryptographer R’s remonstration: “This
is no joking matter, double-one seven. Never
reuse the one-time pad.”

R was serious for a good reason. The reuse of keys by
the Soviet Union (due to the manufacturer’s accidental
duplication of one-time-pad pages) enabled US cryptana-
lysts to unmask the atomic spy Klaus Fuchs in 1949.2
When the key for a one-time pad is used more than once,
enemy cryptanalysts have the opportunity to look for pat-
terns in the encrypted messages that might reveal the
key. Nevertheless, excellent cryptosystems (known as
symmetric cryptosystems) that reuse the key have been
developed. The longer the key, the more secure the sys-
tem. For instance, a widely used system is the Data
Encryption Standard (DES), which has a key length of 56
bits. No method substantially more efficient than trying
all 2% values of the key is known for breaking DES. It is
still conceivable, however, that some yet unknown clever
algorithm could defeat DES and its cousins.

For top-secret applications, therefore, the one-time
pad is preferable. Blond’s predicament illustrates the
drawback of the one-time pad: When the secret key is
used up, the code cannot be used until the sender and
receiver get together to share a new secret key. Sending a
courier with a new codebook into the Prague Spring is a
dangerous and unreliable business. Even if the courier
arrives, Blond and N can never be sure that the codebook
was not copied during its journey.

This issue is known as the “key distribution problem.”
A possible solution is public key cryptography. Instead of
a single long key shared between the sender and receiver,
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public key cryptography uses two sorts of keys: one public
key, which is known to the world, and one private key,
known only to the receiver. Anyone with the public key
can send secret messages, but only someone who knows
the private key can read them. The important defining
feature of public key cryptography is that, even knowing
the encryption key, there is no known computationally
efficient way of working out what the decryption key real-
ly is. As an example, the security of the best-known pub-
lic key cryptosystem, RSA, relies on the difficulty of fac-
toring large integers (see figure 2).

Public key cryptography can be used for another
important task: digital signatures. A digital signature
exchanges the role of the keys used in public key cryptog-
raphy: The private key is used to generate a signature and
the public key is used to verify it. Only someone with the
private key could have created the signature.

Quantum code-breaking

Both DES and RSA rely on an unproven assumption:
There is no fast algorithm to determine the secret key. For
instance, RSA is believed to be secure because mathe-
maticians throughout the world have worked very hard to
break it, steadily producing modest improvements in fac-
toring algorithms, but without groundbreaking success.
With only modest increases in key size, users of RSA can
easily keep ahead even of the exponential growth in com-
puting power over the years.

Quantum mechanics changed this. In 1994, Peter
Shor of AT&T Laboratories invented a quantum algo-

states, each of which corresponds
to a state of a classical computer
of the same size. By taking advan-
tage of interference and entangle-
ment in this system, a quantum
computer can perform in a rea-
sonable time some tasks that
would take ridiculously long on a
classical computer. Shor’s discov-
ery propelled the then-obscure
subject of quantum computing
into a dynamic and rapidly devel-
oping field, and stimulated scores
of experiments and proposals aimed
toward building quantum computers.

Another remarkable discovery was made by Lov
Grover of Bell Laboratories, Lucent Technologies, who in
1996 invented a quantum searching algorithm* (see
PHYSICS TODAY, October 1997, page 19). To find one par-
ticular item among N objects requires checking O(N)
items classically. With Grover’s algorithm, a quantum
computer need only look up items O(\/N ) times. It can be
used to radically speed up the exhaustive key search of
DES (that is, trying all 25 possibilities).

If a quantum computer is ever constructed in the
future, much of conventional cryptography will fall apart!
To provide the same security, the key lengths of symmet-
ric schemes like DES would have to be doubled due to
Grover’s algorithm. The most commonly used public key
schemes are RSA and others based on discrete logarithms
or elliptic curves; Shor’s algorithm breaks all of them.
Even if it is decades until a sufficiently large quantum
computer can be built, this is a matter of current concern:
Some data, such as nuclear weapons designs, will still
need to remain secret, and it is important that today’s
secret messages cannot be decoded tomorrow.

Bob

Quantum code-making

Even if DES and RSA do fall apart, the one-time pad
remains a perfectly unbreakable cipher even against a
quantum computer. However, as previously discussed, it
has a serious catch: the key distribution problem. It pre-
supposes that Alice and Bob share a key that is secret and
as long as the message. There is no way to guarantee that
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FIGURE 2. THE RSA PUBLIC KEY
cryptosystem. The best-known public
key system is called RSA, after its
inventors Ronald Rivest, Adi Shamir,
and Leonard Adleman. It is based on
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in practice. Trusted couriers can be bribed or even inter-
cepted without their knowledge. More generally, classical
signals are distinguishable. An eavesdropper can reliably
read the signals without changing them. Therefore, in
classical physics there is nothing, in principle, to prevent
an eavesdropper from wiretapping the key distribution
channel passively.

Fortunately, quantum mechanics helps to make codes
as well as break them.? (See also Charles Bennett’s arti-
cle, “Quantum Information and Computation,” PHYSICS
ToDAY, October 1995, page 24.) The Heisenberg uncer-
tainty principle dictates that it is fundamentally impossi-
ble to know the exact values of complementary variables
such as a particle’s momentum and its position. This
apparent limitation imposed by quantum mechanics can
be a powerful tool in catching eavesdroppers. The central
idea is to use nonorthogonal quantum states to encode
information. More concretely, the essence of quantum
cryptography can be understood in a single question:
Given a single photon in one of four possible polarizations
(<, 1, 7, or N), can one determine its polarization with
certainty? Surprisingly, the answer is no. The rectilinear
basis (- and !) and the diagonal basis (v and ) are
incompatible, so the Heisenberg uncertainty principle for-
bids us from simultaneously measuring both. More gener-

ed=1 mod (p-1)(g-1)

-y Public key

Encryption
y=m®mod N

Alice

Decryption
m=y?mod N

ally, experiments distinguishing nonorthogonal states,
even if only partially reliable, will disturb the states.

The key distribution problem can be partially solved
by quantum mechanics using the idea of quantum key
distribution (QKD). The first and best-known protocol,
usually called “BB84” because it was published in 1984 by
Charles Bennett and Gilles Brassard,® is described in the
box below. In a prototypical QKD protocol, Alice sends
some nonorthogonal quantum states to Bob, who makes
some measurements. Then, by talking on the phone
(which need not be secure), they decide if Eve has tam-
pered with the quantum states. If not, they have a shared
key that is guaranteed to be secret. Note that Alice and
Bob must share some authentication information to begin
with; otherwise, Bob has no way to know that the person
on the phone is really Alice, and not a clever mimic. The
key generated by QKD can subsequently be used for both
encryption and authentication, thus achieving two major
goals in cryptography.

Experimental QKD

QKD is an active experimental subject. The first working
prototype, constructed in 1989 at IBM in Yorktown
Heights, New York, transmitted quantum signals over
32 cm of open air.” Since then, various groups—including

The BB84 Protocol

In the best-known quantum key distribution (QKD)
scheme, BB84, Alice sends Bob a sequence of photons, each
independently prepared in one of four polarizations (<, ¢, 7,
or ). For each photon, Bob randomly picks one of the two
(rectilinear and diagonal) bases to perform a measurement.
He keeps the measurement outcome secret. Now Alice and
Bob publicly compare their bases. They keep only the polar-
ization data for which they measured in the same basis. In the
absence of errors and eavesdropping by Eve, these data should
agree.

To test for tampering, they now choose a random subset of
the remaining polarization data, which they publicly
announce. From there they can compute the error rate (that is,
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the fraction of data for which their values disagree). If the error
rate is unreasonably high—above, say, 10%—they throw away
all the data (and perhaps try again later). If the error rate is
acceptably small, they perform error correction and also “pri-
vacy amplification” to distill a shorter string that will act as the
secret key. These steps essentially ensure that their keys agree,
are random, and are unknown to Eve.

Other QKD schemes have also been proposed. For exam-
ple, Artur Ekert of the University of Oxford suggested one
based on quantum mechanically correlated (that is, entangled)
photons, using Bell inequalities as a check of security. In 1992,
Charles Bennett of IBM proposed a simple QKD scheme,
called B92, that uses only two nonorthogonal states.
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over commercial optical fibers. The world record distance
for QKD,? at the time of writing, is about 50 km. One of
the long-distance experiments, performed at Los Alamos,
is depicted in figure 3.

Most experiments to date have used variants of either
the BB84 or B92 schemes (see the box), although recently
three groups—one led by Paul Kwiat of Los Alamos, Gisin
and Zbinden’s group at Geneva, and a collaboration led by
Anton Zeilinger of the University of Vienna and Harald
Weinfurtur of the University of Munich—have independ-
ently implemented protocols based on entangled pairs of
particles, also known as Einstein-Podolsky-Rosen or EPR
states. In the BB84 and B92 schemes, typically a single-
photon source is simulated using attenuated coherent
states—on average, only a fraction of a photon is actually
sent. With additional losses in the fiber, very few arriving
laser pulses actually contain a photon. This low yield does
not interfere much with key distribution, however, since
only the photons that reach Bob are used in the protocol.
The key is generally encoded in either the polarization or
the phase of the photon. Error rates in the photons actu-
ally received are usually a few percent.

For commercial applications in, say, a local area net-
work environment, it is useful for a quantum crypto-
graphic system to be integrated into a passive multiuser
optical fiber network and its equipment to be miniatur-
ized. Townsend’s group has done much work in this area.’
For point-to-point applications, the Geneva group has
devised a so-called “plug and play” system that automati-
cally compensates for polarization fluctuations.’® Such
systems might someday convey secret information
between government agencies around Washington, DC, or
connect bank branches within a city.

QKD has also been performed in open air,'! during
daylight, with a current range of about 1.6 km. Ambitious
schemes to perform a ground-to-satellite QKD experiment
have been proposed. If successful, quantum cryptography
may be used to ensure the security of command control of
satellites from control centers on the ground.

Future experiments will aim to make QKD more reli-
able, to integrate it with today’s communications infra-
structure, and to increase the distance and rate of key
generation. Another ambitious goal is to produce a quan-
tum repeater using techniques of quantum error correc-
tion. Such an accomplishment will require substantial
technical breakthroughs, but would allow key distribution
over arbitrarily long distances.

Is QKD secure?

While experiments in QKD forged ahead, the theory
developed more slowly. A clever Eve can adopt many pos-
sible strategies to fool Alice and Bob, including subtle
quantum attacks entangling all of the particles sent by
Alice. Taking all possibilities into account, as well as the
effects of realistic imperfections in Alice and Bob’s appa-
ratus and channel, has been difficult. A long series of par-
tial results has appeared over the years, addressing
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(2) Schematic of the experiment at Los Alamos® that imple-
ments the protocol known as B92 (see the box on page 24) over
48 km of optical fiber. A laser with a wavelength of 1.3 um,
attenuated to approximate a single-photon source, is the source
of the key bits. Its output is passed through Alice’s interferom-
eter. The two nonorthogonal quantum states used in the B92
protocol are realized as two possible settings for the phase
delay ¢, in one branch of the interferometer. To measure the
state, Bob passes the photon through his interferometer, adding
one of two possible phase shifts ¢,, and detects the photon in
one of the two bit detectors. A bright pulse from a second laser
tells Bob when to expect a photon from Alice. Air gaps in both
interferometers allow Alice and Bob to tweak the optical path
lengths to keep properly synchronized. (b) The actual setup of
the experiment. The two boxes in the foreground are the inter-
ferometers, connected to each other only through 48 km of
optical fiber. (Figure courtesy of Richard Hughes.)

restricted sets of strategies by Eve,'? but only in the past
few years have complete proofs appeared.

One class of proofs, by Dominic Mayers'® and subse-
quently by others, including Eli Biham and collaborators
and Michael Ben-Or,* attacks the problem directly and
proves that the standard BB84 protocol is secure. Anoth-
er approach, by one of us (HKL) and H. F. Chau,® proves
the security of a new QKD protocol that uses quantum
error-correcting codes.® (For more on quantum error cor-
rection, see John Preskill, “Battling Decoherence: The
Fault-Tolerant Quantum Computer,” PHYSICS TODAY,
June 1999, page 24.) This approach allows one to apply
classical probability theory to tackle a quantum problem
directly. It works because the relevant observables all
commute with each other. While conceptually simpler,
this protocol requires a quantum computer to implement.
The two approaches have been unified by Peter Shor
and John Preskill,'®* who showed that a quantum error-
correcting protocol could be modified to become BB84
without compromising its security.

The proof of the security of QKD is a fine theoretical
result, but it does not mean that a real QKD system would
be secure.'” Some known and unknown security loopholes
might prove to be fatal. Apparently minor quirks of a system
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can sometimes provide a lever for an eavesdropper to
break the encryption. For instance, instead of producing a
single photon, a laser may produce two; Eve can keep one
and give the other to Bob. She can then learn what polar-
ization Alice sent without revealing her presence. There
are various possible solutions to this particular problem; it
is the unanticipated flaws that present the greatest secu-
rity hazard. Ultimately, we cannot have confidence that a
real-life quantum cryptographic system is secure until it
has withstood attacks from determined real-life adver-
saries. Traditionally, breaking cryptographic protocols has
been considered to be as important as making them—the
protocols that survive are more likely to be truly secure.
The same standard will have to be applied to QKD.

Post-cold-war applications

There are many problems beyond secure communication
that can be addressed by cryptography.
Alice and Bob are considering going on a date,
but neither is willing to admit their interest
unless the other is also interested. How can
they decide whether or not to date without let-
ting slip any unnecessary information?

This dating problem can be phrased as the problem of
computing a function fla, b) = ab, where a and b are sin-
gle bits held respectively by Alice and Bob (0 = not inter-
ested, 1 = interested). Problems like this can be solved clas-
sically using variants of public key cryptography, which we
know might be rendered insecure by quantum computers.
By exchanging quantum states, can Alice and Bob solve the
above dating problem with absolute security?

There are many possible functions f that two people
might wish to compute together, too many to consider
each of them individually. Instead, cryptographers rely on
a suite of primitive operations that can be combined to
build more complex functions. One important protocol is
called bit commitment, and it is the electronic equivalent
of a locked box. Alice chooses a bit, 0 or 1, and writes it on
a piece of paper, which she deposits in the box. She gives
the box to Bob but keeps the key. She cannot change what
she wrote, and without the key, Bob cannot open the box.
But at some later point, Alice can give Bob the key and
reveal her bit. By itself, bit commitment is useful mostly
for debunking professional psychics, but it serves as a use-
ful building block for more interesting functions.

Consider the following bit commitment scheme® pro-
posed by Bennett and Brassard: If Alice wishes to commit
to a 0, she sends Bob a polarized photon in the rectilinear
basis; if she wishes to commit to a 1, she sends Bob a
polarized photon in the diagonal basis. In either case,
Alice flips a coin to decide which of the two polarizations
to send. Bob has no way to tell which basis Alice used; no
matter which bases Alice and he choose, Bob would meas-
ure a random value. But when Alice unveils her bit,
telling Bob which of the four states she sent, Bob can
measure in the appropriate basis to verify that Alice is
telling the truth. If she lies about which basis she used,
Bob has a 50% chance of finding out. If the protocol is
repeated many times, Alice’s chance of successfully cheat-
ing is abysmally small.

This protocol is secure against a classical cheater,
who does not have much ability to store and manipulate
quantum states. But as Bennett and Brassard recognized,
a quantum cheater can break the protocol. Suppose that
instead of picking a specific state and sending it to Bob,
Alice creates an entangled pair of photons, (|<1)—
[t<))\/2 (an EPR pair), and sends the second photon to
Bob, keeping the first one. She stores the quantum state
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FIGURE 4. THE CHURCH OF THE LARGER HILBERT SPACE.
In cryptography—and other areas—the quantum mechanical
description of explicitly quantum aspects (such as single-photon
polarizations) can be expanded to include other parts as well,
including measurements and random number generation. This
alternative treatment consists of three steps. First, the original
quantum system—which might consist of two-level quantum
bits (called “qubits”), for example—is augmented with an addi-
tional system. In this expanded Hilbert space, all operations are
unitary and can be combined into a single quantum mechanical
step (here denoted by “U”). Part of the output of the transfor-
mation is thrown away, leaving only the final quantum system
of interest. Using quantum mechanics to simulate classical com-
putations and working with pure quantum states allows the
most generalized treatment of a problem and simplifies the task
of determining whether a given protocol is secure. Describing a
protocol in the Church of the Larger Hilbert Space does not
change the protocol in any way; it merely provides a new and
sometimes simpler way of looking at the system.

of the first photon and delays measuring it. Suppose that
when the time comes for Alice to open the commitment,
she decides she would like the committed bit to read O,
which requires her to specify a state in the rectilinear
basis. Because of the entanglement, Alice knows that if
she and Bob measure in the same basis, they will get
opposite results. Therefore, she can measure her photon
in the rectilinear basis and tell Bob he has the opposite
polarization, and she will always be right.

If Alice instead wishes the committed bit to read 1,
she needs a state in the diagonal basis. But (J<1)—
[t=)N2 = (J7N) = [N7)/A/2. So Alice can measure her
particle in the diagonal basis and again be sure that Bob’s
measurement outcome will be opposite to hers. Quantum
cheating allows Alice to change her mind at the last
minute without being caught by Bob, thus totally defeat-
ing the purpose of bit commitment.

Nonetheless, more sophisticated schemes for quan-
tum bit commitment were proposed, and for a long time
were believed to be secure. Eventually, the bubble burst
and it was shown that the above quantum cheating strat-
egy, which uses EPR nonlocality and delayed measure-
ments, can be generalized to break all two-party quantum
bit commitment schemes.!® If Alice and Bob hold one of
two pure quantum states that are indistinguishable to
Bob, then Alice, acting unilaterally, can change one to the
other. Therefore, the two basic requirements of bit com-
mitment—that Bob does not know the bit and that Alice
cannot change it—are fundamentally incompatible with
quantum mechanics.

The strength of the proof lies in its generality. The
idea is to treat the whole system as if it were quantum
mechanical, extending the part that was originally quan-
tum to include any dice, measuring devices, and classical
computations that appear in the protocol. From this point
of view, the original protocol is equivalent to a purely quan-
tum one, with some of the output being thrown in the trash



(see figure 4). Note that throwing something away can
never help a cheater, so we might as well assume that the
state shared by Alice and Bob is the pure quantum state
that is completely determined by the protocol. That
assumption substantially reduces the complexity of the
problem. It is not difficult to show that when Alice and Bob
hold a pure state, quantum bit commitment is impossible.

Following the fall of quantum bit commitment, other
important basic quantum cryptographic protocols have
also been proven to be insecure by one of us (HKL), thus
leaving the field in a shambles. What is left?

Some potential applications in cryptography are too
similar to bit commitment and cannot be done at all quan-
tum mechanically. Others have more modest goals and
can be solved by quantum protocols. For instance, Lior
Goldenberg, Lev Vaidman, and Stephen Wiesner of Tel
Aviv University have proposed a method of “quantum
gambling,” in which a cheater must pay a large fine if
caught. The majority lie in a middle ground—we do not
know whether they can be solved. The dating problem is
an example. Many approaches to it tread too near bit com-
mitment and are doomed to failure, but it’s possible there
are others, as yet undiscovered, that do not.

Physics today, cryptology tomorrow

Quantum computers are still on the drawing boards, and
quantum cryptographic systems are only prototypes. Still,
there are a number of reasons for thinking about quan-
tum cryptology today. Unlike other cryptosystems, the
security of QKD is based on fundamental principles of
quantum mechanics, rather than unproven computation-
al assumptions. QKD eliminates the great threat of unan-
ticipated advances in algorithms and hardware breaking
a widely used cryptosystem. Small-scale QKD systems are
well within the capabilities of today’s technology, and com-
mercial systems could be available within a few years
(although whether such systems are widely adopted
depends on many nonacademic factors, including cost).

Furthermore, grappling with the problems posed by
quantum protocols can give us insight into more general
questions about quantum mechanical systems in many
fields of physics. For instance, one reason it is hard to
analyze protocols and attacks is that they frequently
involve a combination of quantum and classical behaviors.
In considering bit commitment, though, it was possible to
replace classical parts of the protocol with a quantum
description, an approach that is useful for many problems
inside and outside the field of quantum cryptography.
This fully quantum treatment is sometimes called the
Church of the Larger Hilbert Space, following John
Smolin of IBM. All quantum operations, including meas-
urements, are unitary when considered as acting on a
larger Hilbert space (figure 4).

Finally, quantum mechanics changes the world of
cryptology, and it is important to know what the new ter-
rain will look like to decide on cryptographic standards
that may last for decades. In a world where quantum com-
puters and communication are commonplace, today’s most
widespread public key cryptosystems would no longer
work; in the worst case, perhaps no public key cryptosys-
tem will work. If so, symmetric cryptosystems and QKD
would partially fill the gap, allowing secure communica-
tion. Unfortunately, digital signatures would fail as well,
meaning important communications would need to be
notarized by a trusted third party.

Of course, QKD and symmetric cryptosystems are not
useful in situations in which Alice and Bob have never
met. Solving this problem would probably require a quan-

tum cryptographic center, which could verify the identity
of both of them. The center would have to be known and
trusted by both Alice and Bob.

Problems beyond secret communication and digital
signatures are a mixed bag. Many, such as bit commit-
ment and perhaps the dating problem, would be impossi-
ble, whereas others, such as quantum gambling, could be
carried out with complete security.

This is just one of a number of possible futures. Per-
haps some new or existing public key cryptosystems will
survive quantum computation, or perhaps new public key
systems will be developed that can only run on a quantum
computer. Perhaps quantum computers will always
remain difficult to build (we believe that this is unlikely),
and public key cryptography will remain widespread,
despite its potential flaws. Only time will tell who benefits
more from quantum cryptology: the code-makers or the
code-breakers.

Decoding the message in Figure 1

he code is a “Caesar’s cipher,” in which each letter is shift-
ed by a fixed number of places in the alphabet. In this case,
the shift is three places.
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