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We present a scheme for a quantum optical implementation of
Grover's algorithm based on resonant atomic interactions with
classical fields and dispersive couplings with quantized cavity
fields. The proposed scheme depends on preparation of entangled
states and is within current state-of-the-art technology.

As was first shown by Grover (1), search of a database by using
quantum mechanics can be substantially faster than any
classical search of unsorted data. For example, it was shown by
Grover that, by using quantum superpositions and quantum
entanglement, we can find an object in an unsorted database
containing N objects in O(VN) quantum mechanical steps
instead of O(N) steps (1-3).

The implementation of search algorithms by using optical
methods is a subject of intense interest (4—8), and Grover’s
search algorithm has been implemented by using nuclear mag-
netic resonance (NMR) techniques for a system with four states
(9-11). However, NMR experiments for quantum computing are
carried out at room temperature, and questions have been raised
concerning the appearance of entanglement in the physical state
at any stage of such experiments (12). Braunstein et al. show that
“all states so far used in NMR for quantum computations or for
other quantum-information protocols are separable,” and there-
fore “no entanglement appears in the physical states at any stage
of present NMR experiments.”

In this paper, we propose a scheme for quantum optical
implementation of Grover’s algorithm that is not sensitive to
such thermal decoherence effects. The scheme is based on
resonant atomic interactions with classical fields and dispersive
coupling with quantized cavity fields. We first formulate the
problem in terms of a “circuit” logic involving one-bit unitary
transformation and a two-bit quantum phase gate. For an atomic
system, the one-bit unitary transformation is accomplished by
means of resonant interaction with a classical field, whereas a
quantum phase gate can be implemented by using dispersive
coupling with a cavity field having either 0 or 1 photon. Such a
quantum phase gate has been demonstrated recently [for a
beautiful demonstration of quantum phase gate, see Rauschen-
beutel ez al. (13); conditional phase shifts are also demonstrated
in Turchette et al. (14)]. The proposed scheme involving atomic
interaction with classical field and two cavities therefore lies
within present experimental limitations and should be realiz-
able (15).

Grover proposed an algorithm to search an item in an
unsorted database. The problem he addressed is as follows. We
are given a function f(x) withx = 1, 2 ... N. The function has
the property that it is 0 for all values of x except for x¢, for which
f(xo) = 1. The task is to find x(. Classically, it would require an
average of N /2 steps to accomplish this task. Grover showed that
we can find xo in O(V/N) quantum mechanical steps instead of
O(N) steps.

The basic idea of Grover’s algorithm is to invert the phase
(e.g., change + — —, as in the passage from Egs. 6 to 8) of the
desired basis state and then invert all the basis states about the
average amplitude of all the states. In this paper, we restrict
ourselves to the simplest interesting Grover’s algorithm with N =
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4 with two qubits. First, we discuss the implementation of
Grover’s algorithm in terms of quantum logic gates.

A universal quantum computer consists of only two gates,
namely a unitary transformation (one-bit gate) and a two-bit
conditional quantum phase gate. The one-bit quantum gate for
the ith qubit is given by
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A convenient representation of Uy g in terms of Pauli spin
matrices is given by

Ug ¢ = cosOl — icos¢sinbo, — isingsinfo,,. [2]

The transformation for a two-bit quantum phase gate is given by
O.la, B> = exp(indq,18p,1)|a, B >, where |a > and |B > stand
for the basis states [0 > or |1 > of the qubit. Thus, the quantum
phase gate introduces a phase m only when both qubits in the
input state are 1. In the following, we shall need the quantum
phase gate only with n = r, for which we have

0.=10,0> <0,0+10,1> <0,1|+]1,0> <1, 0|
-1,1> <1,1], [3]
and because [0 >< 0] = (1 + 0,)/2and |1 >< 1] = (1 — 03)/2,
0,=35 1, + 1100 + 0215 — 02102). [4]

Grover’s algorithm is accomplished in three steps. The initial
state of the two qubits is |1, 1 >. In the first step, we apply the
Walsh—-Hadamard transformation,

_ (14 +ioyy) (1, + ioy,)
&

which rotates each qubit from [0 > to (|0 > —|1 >)/V/2 and |1 >
to (|0 > +]1 >)/V2. The resulting state is
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s > :%(|0,0>+\o,1>+\1,0>+\1,1>). (6]

In the second step, the unitary operator Co g flips the sign of
state |a, 8> (e = 0 or 1 and B = 0 or 1). In the original Grover’s
algorithm, this is accomplished through operator (1 — 2|a, g >
< a, B|). Here we follow a different approach. We first flip the
sign of state |1, 1 > via a quantum phase gate O, followed by
unitary operators that either retain the state of the qubit or
change the state of the qubit from 0 to 1 and 1 to 0. The sign flip
operators for the four possible states in this approach are given by

Coo = —021020+ = UrppoUrp 0O s [7a]
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Fig. 1.

Co1 = —i0 1,0, = '117/2,0Q175 [7b]
Cio= —i110,0, = i/z,on [7c]
C1,1 = Qw' [7d]

Here the resulting state may have an unimportant overall phase
factor.

At this point, the oracle applies one of the C, g operators to
state 6 and thus changes one of the signs from + to —. For
example, if Cy; is chosen, then Eq. 6 becomes

—i
Coqls > = 7(|0, 0>—0,1>+[1,0>+|1,1>). [8]

It is now our job to find the marked state (|0, 1 > in the above
example). This is accomplished by the application of operator
N =1 — 2|s >< s|. The resulting state is the desired state |a,
b > apart from an unimportant 7 phase shift. To find a
representation for Win terms of operators Ug ¢ and Q ., we first
note that

N= % (1113 = 1102 = 0 ls = 01002), [9]

so that, from Eqs. 8 and 9, we have NCy 1|s >= —|0, 1 >. If we
use the fact that rotating o, about the y axis yields oy, that is,

(1 +ioy)

o
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[10]

we note the remarkable fact that operator N as given by Eq. 9
is the appropriately rotated quantum phase operator Q , of Eq.
7b, i.c.,

— 1 2 1 2
N = U‘n’/4, - 17/2U77/4, — 7T/2Q7TU7T/4,7T/2U1T/4,7T/2'

This is the essence of Grover’s algorithm and the departure point
for our implementation of the algorithm.

On combining the various operators from Eqgs. 5, 7, and 11, we
can write Grover’s algorithm in terms of simple transformations
corresponding to one- and two-bit quantum gates as ‘NCo,g W1,
1 >= e"a, B >, where i is a phase depending on the choice
of a and B. These steps are summarized in the “circuit” diagram
of Fig. 1 for the present (N = 4) implementation of Grover’s
algorithm. Only the one-bit unitary gates and two-bit conditional
quantum phase gates are required for this purpose.

Next, we consider schemes for the implementation of Grover’s
algorithm on the basis of cavity quantum electrodynamics (16—
20), using resonant atomic interaction with classical Ramsey
fields and dispersive atomic interaction with quantized high Q
cavity fields. First, we present a scheme that requires two species
of atoms and two cavities. This scheme is conceptually simple but
difficult to implement. We then consider a second scheme that

[11]
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Level diagram for the implementation of Grover’s algorithm.

requires single species of atoms interacting with only one cavity
that supports two modes, and the atomic level spacings are
appropriately changed by electric or magnetic fields.

First, we consider the schematic for the proposed implemen-
tation as given in Fig. 2. The two qubits are represented by two
different three-level atoms of types A and B (Fig. 2a). Levels |a >
and |b > of these atoms represent qubits [0 > and |1 >,
respectively. The levels scheme is such that w, b1 = w.,b> + Ay
and wy,by = w,b1 + A;. Cavities C; and C; are resonant with
transitions wq b1 and wqbs, respectively. Here, and in the
following, the odd subscripts 1, 3, 5, and 7 refer to the atom,
cavity, and classical fields corresponding to the atoms of type A4,
whereas the even subscripts 2, 4, 6, and 8 refer to atoms of type
B. Four atoms (two of type A and two of type B) pass through
cavities C1 and C, and a sequence of classical fields, as follows
(Fig. 2b).

All the atoms are initially in their ground states |b >, i.e., |by,
ba, b3, by >, and we assume that the classical Ramsey fields are
on only when the appropriate atoms are passing through them.
Atom 1 of type A and atom 2 of type B are initially in their
ground states |[b; > and |b, >, i.e., in qubits |1, 1 >. The
Walsh—-Hadamard transformation on these atoms is carried out
by interacting with classical fields R, and R; of frequencies w, b1
and w,,b,, respectively. The interaction of an atom with the
classical field results in the unitary transformation (Eq. 1) on the
atomic states |[@ > and |b >, such that 6 depends on the Rabi
frequency and the interaction time, and ¢ depends on the phase
of the driving field (21, 22). We choose, for the interaction of Ry
with atom 1 and R, with atom 2, 6, = 6, = w/4 and ¢ = P, =
—1r/2, so that the state of the atoms is (|a1, a2 > +la1, by > +1by,
a; > +|b1, b, >)/2

In the next step, we consider operation C, 5. This step requires,
in addition to the unitary operations, a quantum phase gate. The
operation of the quantum phase gate is accomplished as follows.
Atom 1 in the state (la; > +|b; >)/V2 passes through the
empty cavity C;. The interaction time is chosen such that the
atom leaves in the ground state |b; >, and the field state inside
the cavity becomes (|0; > +|1; >)/V/2. Atom 2, which is of type
B, then passes through the cavity. Because of the dispersive
coupling, the effective Hamiltonian for the interaction between
atom 2 and cavity C; is (21, 22)

2

hg .
Hepr = X (arallc; > <co| —ajaylb, > <b,|), [12]

where g is a coupling coefficient, and a; and a] are destruction
and creation operators for the field state inside cavity Cy. The
resulting entangled state between atom 2 and the field in cavity
C;is 1 (|0], a, > +‘01, by, > +|11, a, > +€i"|1], b> >), where
n= g221-/ A;. The net result is that there is no photon number
change inside the cavity, and there is a phase change only when

there is one photon inside the cavity and the atom is in state
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Fig. 2. (a) Atomic-level spacings for types A and B atoms. Here wsb1 = wib2 + Aj and wayb2 = webr + Ay (b) Schematics for the cavity quantum

electrodynamics implementation of Grover's algorithm. Here all the atoms are initially in their ground states |b >, i.e., |bs, b, bs, bs > . After passage through
the box corresponding to the Walsh-Hadamard transformation W, the state of the atoms is (|a1, a > + a1, ba > +|by,a; > +|by, by >)/2 ® |bs, bs >.
After passage through box C corresponding to the oracle for, say, state |0, 1 >, the atomicstateis (b1 > ®]as, a; > — a3, by > +|bs, a2 > +|b3, by >)/2
® |bs > . Finally, after passage through box N corresponding to the inversion about the average, the atomic state is |by, b, > ®|as, bs > .

|b2 >. Interaction time 7 and detuning A; are chosen such that
m = . This operation corresponds to the quantum phase gate
discussed above and experimentally implemented in refs. 13 and 14.

Atom 3 of type A in ground state |b3 > now passes through
cavity Cy, followed by a classical field R¢,. The interaction times
with the cavity and classical fields are such that the cavity field
is reduced to |0 >, and the resultant entangled state between
atoms 2 and 3 is given by (|as, a; > +|as, by > +|b3, ax > —|bs,
b, >)/2. Here and in the following, we neglect the unimportant
overall phase factor. Now Gy, Co1, Ci0, and Cj; are imple-
mented by turning classical fields R3 and R4 on, only R3 on, only
R4 on, and none of the fields on, respectively. In the present
example where the oracle picks (1, field Rz is tuned to
frequency w, b1 and interacts with atom 3, and field R4 tuned to
frequency w, b, is off. The interaction time for field R3 is chosen
such that 6 = /2 and ¢ = 0. Atoms 2 and 3 are in an entangled
state (|as, ax > —las, ba > +1|bs, an > +|bs, by >)/2. This
completes the oracle operation (y,; corresponding to the 7 phase
shift of state |as, by >.

Next, we implement operator N, which inverts the states about
the average. Atoms 3 and 2 interact with classical Ramsey field
Rs and R, which are resonant with |@ > to |b > transitions of
atoms 3 and 2 with 6 = w/4 and ¢ = 7/2.

According to Eq. 12, we should next apply a quantum phase
gate O, with « = . This step is accomplished as above by first
transferring the atomic coherence of atom 2 to the empty cavity
C, by adjusting the interaction time with the cavity appropri-
ately. And then, on passing atom 3 through cavity C,, the
entangled state of atom 3 and cavity C; is (Jas, 0, > —|as, 1, >
+‘b3, 0, > —|b3, 1, >)/2

Subsequently, a fourth atom of type B passes through cavity
C,, and a classical field, Rc,, leaves the cavity empty and
transfers the field coherence to the atom yielding (|as, a4 > —|as,
by > +|bs, as > —|b3, by >)/2. As alast step, atoms 3 and 4 pass
through a sequence of classical fields, R7, resonant with |a > to
|b > transitions of atom 3 and Rg resonant with |a > to |[b >
transitions of atom 4, such that 0 = w/4, ¢ = m/2 for R;, Rs.
This step completes the implementation of operator N, and the
resulting state of atoms 3 and 4 is |as, b4 >. The final state of
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atoms 3 and 4 would be |as, a4 >, |as, by >, |b3, ay > or |bs, by >,
depending on the choice of C, .

Motivated by the above scheme, we consider an equivalent
scheme that requires only one species of atoms and a single
cavity, as shown in Fig. 3. Here the atoms have one lower level
and two excited levels, whose splitting can be adjusted by
applying electric or magnetic fields (23). These Stark or Zeeman
splittings can be used to carry out resonant or dispersive atomic
couplings with the cavity fields.

We consider a cavity that can support two modes of frequen-
cies v; and v,. The three-level atoms having a lower level [b >
and two upper levels |a; > and |a, > can have level spacings that
depend on the applied electric or magnetic fields, as shown in
Fig. 3a. Level [b > corresponds to qubit |1 >, and levels |a; >
and |a, > correspond to qubit |0 > for atoms 1 and 3 and atoms
2 and 4, respectively. In configuration 0, levels |a; > and |a, >
are completely detuned with respect to cavity resonance fre-
quencies v; and v, and the atom is effectively decoupled from
the cavity fields. In configuration 1, the atom resonantly interacts
with v; but is decoupled with »,. In configuration 2, the atom
interacts dispersively with v, but is decoupled with v;. Similarly,
in configurations 3 and 4, the atom interacts resonantly with v,
with no interaction with vy, dispersively with »;, and with no
interaction with v,.

As before, four atoms are sent inside the cavity initially in their
ground state |[b > such that they interact with a sequence of classical
driving fields R; (i = 1 — 8) and cavity fields C; and C, of
frequencies v; and v, respectively, as shown in Fig. 3b. The
interaction times are the same as in the first scheme. The appro-
priate interactions leading to the implementation of Grover’s
algorithm corresponding to the first scheme are obtained if the
sequence of the atomic level spacings during the passage through R;
and C; is chosen for various atoms as that given in Fig. 3c.

In conclusion, we have shown how Grover’s algorithm can be
implemented by using the known methods and techniques of
quantum optics. Limitations are imposed by considerations of
spontaneous emission and by cavity field damping. A potential
source of error is the uncertainty associated with the location of
atoms in the various fields.
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(a) Level spacings in three-level atoms corresponding to different applied electric or magnetic fields. (b) Applied classical fields R; and cavity fields C;on

the incoming atoms. (c) Table indicating the configurations corresponding to Fig. 3a that the four atoms experience during their passage through various Ramsey

and cavity fields.
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