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Grover’s quantum search algorithm for an arbitrary initial mixed state
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The Grover quantum search algorithm is generalized to deal with an arbitrary mixed initial state. The
probability to measure a marked state as a function of time is calculated, and found to depend strongly on the
specific initial state. The form of the function, though, remains as it is in the case of initial pure state. We study
the role of the von Neumann entropy of the initial state, and show that the entropy cannot be a measure for the
usefulness of the algorithm. We give few examples and show that for some extremely mixed initial states
(carrying high entropy the generalized Grover algorithm is considerably faster than any classical algorithm.
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. INTRODUCTION generalized t@Q=—UI5UT1},, whereU is an arbitrary uni-
i _ tary operators is an arbitrary stateg and y are arbitrary
Grover's search algorithrfil, 2] provides an example of angles, andv includes any number of marked states. We
the speed-up that would be offered by quantum computers, fiow observe thatny unitary operationQ has a unitary
alnd \_Nrf:e”_ trf]_ey(/j_are built. ;heﬁz;()blelinds?lvled by Grover'sgiagonalization. Therefore, it can be represented as
algorithm is finding a sought-afté¢fmarked”) element in an — Bty o ot ,
unsorted database of sikk To solve this problem, a classi- ggorittr:kuw:]gr.e-rtuls ;st;élijsrt?eeglgggg rsyz:tls%rtl g; g;c;\ézrs
cal computer would neel/2 database queries on average,gach of which may have a different rotation angle. Thus,
and in the worst case it would ne@ti—1 queries. Using  every iterative algorithm is a generalized Grover algorithm.
Grover’s algorithm, a quantum computer can find the marked |n this paper, we study the case where the generalized
state using onlyO(yN) quantum database queries. The im- Grover iterate of Ref.9] is applied to a quantum register that
portance of Grover’s result stems from the fact that it provess initialized in an arbitrary mixed state. Our study extends
the existence of a ga@lbeit a polynomial gapbetween the and corrects a result from Réfl2].
power of quantum computers and classical computers. More-
over, the algorithm may be used to speed up the solution of
many problemgsuch as NP-complete problem$or which Il. ARBITRARY PURE INITIAL STATE

no efficient classical algorithms is known. . . .
. ) : If the above-mentioned search algorithm is used as a pro-
Along this paper, we assume without loss of generality

thatN=2", wheren is an integer. The algorithm requires a cedure by another algorithm, it might be necessary to avoid

register ofn aubits carrving the comoutation. When we sav it its first step. Even if the initialization is performed, gate im-
rey q ying comput s y perfection or external noise might cause the outcome to dif-
is in a statgx), we mean that its qubits are in states corre-

: : : fer from the exacH|0) state. Rather, it may well be some
sponding to the binary representation of the numbésrov- eneral pure statéyo), which is a superposition of the
er's original quantum search algorithm consists of the fol-J P 0/ perposit .
lowing steps{(1) Initialize the register ta4]0). That is, reset marked state and the unmarked states. In addition, the iterate

all the qubits to 0 and apply the Hadamard transform to eacﬁse” may be imperfect: the Hadamard operation might be

. . some other unitary operatiod; the rotations of step&a)
of them. (2) Repeat the following operatiofnamed the . . .
Grover ite(razte QpT= m\N/4 timesg(a)pRotatenthe marked and(2c) may be in angleg andy (respectively, different of
: ; d th tated state of st b .
state|k) by a phase ofr radians (). (b) Apply the Had- m; and the rotated state of stépo) may be a nonzerfs)

X Finally, the set of sought-after items], may include mul-
amard transform to the registéc) Rotate thg0) state by a tiple items.

phase ofr radians (g). (d) Apply the Hadamard transform * \yhen the parameters of the problem are known, we may
again.(3) Measure the resulting state. follow the results of Bihanet al.[9], and calculate the prob-

Several generalizations extended the original Grover algoability to measure a marked staB, as a function of the
. . . ; 0
rithm. Among these is handling multiple marked stdteés number of Grover iterationt

and the initialization of the algorithm in any pure std4e.

Another generalization is the replacement of the Hadamard

transform by any other unitary operatis—7]. In this way, P ()=(P.,)—AP. cog2wt+2 1

the algorithm may be used to speed up many classical deci- 10D =(Pug) 1COS 20T+ 2y ). @)

sion algorithms and heuristics. Other generalizations use ar-

bitrary rotation angle$8], replace thel0) state from step .

(20) with any other state, or combine all of the abd@. (P, and APy, denote the average over time and the am-

The rotation angles may be tweaked in order to find aPlitude of P, , respectively. The subscripis, denote that

marked state with certainfyl0,11]. the values depend on the initial state. Howewgrwhich is
The original Grover iterate iQ=—HIgHI . It has been defined by
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+
cosw= >, |(i|U|s)|%cos g
ieM

+ >, [(i|uls)|? cos?
|¢M

is independent of the initial state. In a large search problem
with N—oo, and with the original Grover iteratey may be
approximated byw=2/\/N. With the original initial state
H|0) studied by Grover, we reobtaifPyq)) = APyj0)=1/2

and ¢0y~0.

Ill. ARBITRARY MIXED INITIAL STATE

A mixed state arises when one cannot describe the state of
a quantum system deterministically, no matter what basis one
chooses. Su_ch a cond|t|on_appears very often Wh_en aquan- g g The change of probabilities as projections of rotating
tum system is entangled with its environment, while the ens, ctors.
vironment cannot be accessed or manipulated. The state o
such a system may be described by a completely positiverhile
trace-1 Hermitian density matrix, denoted py An equiva-
lent description is an ensembzﬁa:{pﬂ,lwﬂ)} .WhereE.MpM Py=> PP,
=1 andp=2%,p,|¢,){¥,|. According to this description, I
the system is in the pure staterﬂ) with probability p,, . 5
When a unitary operatioN is applied to the mixed state, it 35 _ \/ ;
transforms the state int®,p,V|¢,,)(,|V'. The mixedness AP (% PuAP,COS2, % PLAP,SIN2Py | .
of the state does not change, and it may be thought ¥s if 4
transforms each of the componentséahdependently of the
others. and
Extending the argument of Sec. Il, the initial state of the
quantum register might not be pure, due to external noise, > pLAP,SIN24,)
decoherence, or previous manipulations. Instead, the initial tan 2¢= ® ) (5)
state may be some general mixed staté&iven the descrip- D D, AP,COS26,)
tion of £ as an ensemble, all we can say is that the register is e "
in the pure statgy,) with probability p,, (for all i’s). . ) )
When the Grover algorithm is applied to a register which The probability to measure a marked state reaches its maxi-
is in a pure staty, ), the probability to measure the marked MUM value,
state isP ,(t). The probability for the register to be lnm Prax=(P) AP
is p,, (considering the ensembf. Thus, the total probabil- max
ity to measure the marked state is the weighted average after T=(m—2¢)/(2w) iterations.

If the algorithm is repeated until success witliterations

2
+

P(t)= E P,P.(1) each time, the expected total time to measure a marked state
“ is
=2 p(P)—AP, cof20t+2¢,)]. (2 r_T2¢
W Q 5
20P ax
The functions since the number of repetition until success is distributed
P,()—(P,)=—AP, cod2uwt+24,) geometrically with parameteﬁ’max. When the original iter-
)2 2 m “

ate is used, and a single item is sought after, this reduces to

share a sinusoidal form, differing in amplitude and phase, bufo=(7—2¢) N/(4P 4. If this value is significantly
not in frequency. They may be thought of as the projectionsmaller than the classical expected tifg=N/2, then the
of vectors rotating in frequency, as exemplified by Fig. 1. quantum algorithm has an advantage. Quantitatively, the ex-

Therefore, their weighted suP (the center of mass of the Pected number of oracle queries that the quantum algorithm
vectors in the figureis a sinusoidal function with the same requires is smaller by a factor of

f , - -
requency Tc _N“’Pmax_zpmax\/N
P(t)=(P)—APcog 2wt +2¢) (3) o w-2¢ 7-2¢

(6)
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IV. EXAMPLES case. This is in disagreement with our findin@8]. A coun-
terexample to their claim is(lnogz n)-pure @S defined above.

For clarity and simplicity, our examples use the original )
The entropy of pseudopure state is

Grover iterate and single marked stdte, with different
initial mixed states.

A. Pure initial state S(pe-pure) = S( In+€]0)(0]
When the arbitrary mixed state is chosen to be pure,
the summations are degenerated and the results of[ &ef. B E 1-€
are achieved. For example, if the initial state is the original = |°g2
E={p=1H|0)}, the original Grover case is found.
If €={p=1/k)}, then (P)=AP=1/2 and ¢==/2. An 1+ (N=1De o 1+(N-1)e
interesting known property of the Grover algorithm is N % N
that for all states orthogonal to boflk) and H|0), (P) B 1—e
=AP=0. =—(N- 1) I092
B. Pseudopure initial state 1+(N-1)e 1+(N-1)e
Ensembles, where a stat¢) appears with probability B N log, N '
e+(1—€)/N and any state orthogonal to it appears with
equal probabilities of (*e€)/N are called pseudopure _
mixed states. They are written more convenientypas, . and for largeN, whereN/(N—1)~1,
=(1—¢€)(I/N)+ €| ). Notice that B<e<1 is a measure
of the purity of p: when €=0 it is totally mixed and 1—e (1 1
whene=1 itis totally pure. It is easy to see that in the limit ~—(1—e¢)log, N _(N+ el|log, N+ e)
of large N, (P)—e(P¢> “AP= eAP,, and b= ¢, . For
example, 1
=(1—e¢e)logpN—(1—e€)log,(1—¢€)— +e Iog2 +e
! =(1—¢€)log,N—¢ 7
P(1/log,N-pure™ 1- log, N N"' log, N H[O(O[H, =(1-e)log, ’ )
where {=(1—¢€)logy(1—¢€)+(1/N+€)log,(1/N+€) e

we obtain(P)=AP= 1/2 log;N and $=0. Notice that al- (—1,0.8) for any G=e<1 and anyN=2. For e=1/log, N,
thoughp is extremely mixed, the quantum advantage is ofwve  obtain  S(p(aiog, n)-pure = (1—1/l0g, N)log, N+O(1)
factor 2\/ﬁ/(7rlogz N). =log, N+0O(1). This entropy is almost maximal. However,
as noted above, the Grover algorithm outperforms any clas-
sical algorithm, even when it is initialized with this state.
Entropy is not a good measure for the usefulness of Grov-
Let us study the case, where the register is initialized teer’s algorithm. For practically every value of entropy, there
Premix=2" 22 o MHIi)(i|H. This state may occur if then  exist states that are good initializers and states that are not.
least signlflcant qubits of the register are totally mixed beforg=or example, S(p(n-1)mix) =102 N—1=S(p/0g, N)-pure)
the first Hadamard transform is applied. Sincekll) are  but when initialized i (h—1)-mix. the Grover algorithm is as
orthogonal toH|0) (except forH|0) itself) and they are bad as guessing the marked state. Another example may be
almost orthogonal t¢k) (since|[(k|H|i)|*=1/N), the evolu-  given using the pure staté$|0)(O|H andH|1)(1|H. With
tion of py.mix IS governed byp=2~",H|0)} and we obtain the first, Grover arrives to the marked state with quadratic

’<‘|5'>:'ZT3: 1/2"*1 and'$=0. Largem would render the al- speed-up, while the second state is practically unchanged by

C. Initial state where m of the qubits are mixed

gorithm useless. the algorithm.
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