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Abstract

Quantum computation is a field of computation theory that tries to find
what can be computed, while taking into account the quantum nature of the
physical world. The most celebrated achievement of quantum computation
is Shor’s algorithm, which factors large integers in polynomial time. Another
achievement is Grover’s unordered search algorithm, which finds a single
“marked” element of a database in time which is in the order of the square
root of the size of that database.

We commence the thesis with a brief introduction to that field of sci-
ence. Then we present Grover’s search algorithm, and a proof that it is the
optimal search algorithm—it is better than any other algorithm, be it clas-
sical or quantum. The algorithm includes an initialization step and O(v/N)
iterations of selective phase inversions and Hadamard transforms.

The parameters of the algorithm have been generalized by various au-
thors. Some have generalized the Grover Iterate, and some have generalized
the initial state of the algorithm. We present these generalizations and pro-
vide an analysis of each of them in a uniform method. Then we show and
discuss the most general extension to the Grover Iterate.

We present a new generalization of the initial state of the algorithm, in
which it is allowed to be an arbitrary mixed quantum state. We show that
even when the initial state is extremely mixed, there are cases where Grover’s
algorithm performs very well. We provide an approximation to the von Neu-
mann entropy of pseudo-pure states, and we find that it grows smoothly with
the level of mixedness of the pseudo-pure state. Combined with the previous
result about the good performance of Grover’s algorithm, our finding is in
disagreement with Bose et al. We give a simple counter-example to their
claim that for states with entropy larger than %log N, Grover’s algorithm is
as bad as classical algorithms, and show where their mistake comes from.

We examine the usefulness of Grover’s algorithm when initialized in a



pseudo-pure state, and provide a measure for its effectiveness, including a
threshold under which the algorithm is ineffective. We find that this thresh-
old coincides with Braunstein et al.’s inseparability bound. This result may
be considered as an evidence that entanglement is necessary for nontrivial
quantum computation.



Chapter 1

Introduction

1.1 Quantum Computation Overview

This thesis resides in the realm of Quantum Computation—a relatively new
field of science, combining Computation Theory and Quantum Mechanics.
In the early 1980’s, Richard Feynman pointed out that simulating a quantum
mechanical system on a classical computer is a difficult task. It seems that no
efficient polynomial reduction of quantum behavior to classical computation
exists. The state of a quantum system comprising n 2-states subsystems
belongs to a 2"-dimensional complex space. Its evolution is controlled by a
(2" x 2")-dimensional unitary matrix. Any approach taken to simulate its
behavior, ended up with an exponential cost in terms of required time or
acquired precision. Since some quantum systems can simulate each other
efficiently, Feynman saw a hidden opportunity—maybe, quantum mechanics
has a computational power not utilized by conventional computers.

Computation Theory is a field of computer science where computation
models are designed and their power is then studied. For each computation
model, computer scientists find a class of problems that it can solve—RE,
R and NPNP are just few examples. An important question of Compu-
tation Theory is what can be computed realistically, with consideration of
real-world limitations of time and space. The archetype of efficient and fea-
sible computation model is the Polynomial-time Turing Machine. For a long
time it was considered as the ultimate model of realistic computation. In
fact, the strong version of the Church-Turing thesis asserts that “Any effi-
ciently computable function can be computed by a Polynomial-time Turing



Machine”. Later on, it has been noticed that if the machine is allowed to err,
yet it produces the correct answer with some bounded probability, it seems
to solve many additional problems efficiently. (By the way, as many other
questions in Computation Theory, this question, too, is still open.)

The search for an ultimate computation model has led David Deutsch to
ask what are the inherent physical limitation to the power of a real-world
computation. Having asked that, he had devised a probably feasible, proba-
bly stronger computation model, that takes advantage of natural phenomena
that previous models have ignored—Quantum Mechanics. Since a quantum
system does not have to be in a specific state, and rather can be on a su-
perposition of states, a Quantum Turing Machine could perform multiple
calculations simultaneously.

In 1985 Deutsch gave the first demonstration of a task where a Quantum
Turing Machine requires less steps to perform, compared to a classical Turing
Machine. Together with Richard Jozsa, he later extended this task to a series
of problems where a quantum computer has an advantage over a classical one.
Yet the advantage was certainly sub-exponential, and the problem itself was
neither interesting nor difficult.

Bernstein and Vazirani, followed by Daniel Simon [33], found problems
which a quantum computer can solve efficiently, while a classical probabilis-
tic computer cannot. The most dramatic spur in the field occurred when
Peter Shor demonstrated in 1994 how a quantum computer could calculate
the period of a function, and showed that utilizing this ability, it can solve
the Factoring and Discrete Logarithm problems efficiently. Both problems
are important and considered difficult to solve on a classical computer. Im-
mediately afterwards, Lov Grover presented his quantum search algorithm,
which we discuss in detail in this work. Its advantage was not as dramatic
as the factoring algorithm’s advantage, but it proved that for a large set of
interesting problems, a quantum computer performs significantly better than
a classical computer.

A serious obstacle to the implementation of a quantum computer was the
question whether it can be built of simple gates, taken from a finite set of
“building blocks”. This has both experimental and theoretical consequences—
with analogy to VLSI, building a complicated gate is unthinkable without
reusing many instances of simple components. Respectively, if the simula-
tion of a general quantum gate by simple ingredients is inefficient, one cannot
consider the gates as a cheap resource. It was Deutsch again who provided in
1989 a 3-input 3-output universal gate, relying on the Toffoli universal gate
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for reversible computation. Later on, D. DiVincenzo showed [14] that a set
of gates including one of many 2 bit gates and a single 1 bit phase rotation, is
enough in order to achieve any unitary operation efficiently with reasonable
(that is, polynomial) precision.

Another impediment to applied quantum computation is the inherent
fragility of quantum-scale systems. Objects like photons, electrons, nuclei,
atoms and molecules are vulnerable to external effects, such as changes in
temperature, electro-magnetic field or vibrations. They have a tendency to
emit energy spontaneously, change their state randomly, and decohere. It
seemed that quantum information cannot be stored or managed in a con-
trolled fashion. Similar difficulties in classical computation are tackled by
measuring the stored information repeatedly and boosting problematic val-
ues. A complementary method is using error-correction codes. The first
method is totally inappropriate to quantum information, since the act of mea-
surement does exactly what we try to avoid: the original state is collapsed
and destroyed. It was not at all certain whether the second method of error-
correction code can be extended to the quantum regime, until in 1995 Peter
Shor showed the existence of the first such code [31]. Later he described [30]
how the error correction process can be performed fault-tolerantly.

Meanwhile, the study of Quantum Information per se had been develop-
ing. The basic ingredient of quantum information, the quantum bit or qubit,
was defined, and interesting relations between classical and quantum infor-
mation have been discovered. For example, classical information is easily
duplicated, while the No-Cloning Theorem asserts that arbitrary quantum
information cannot. Another fundamental result is the Holevo bound: A bit
of quantum information comprises 2 independent real numbers, and a bit of
classical information is only one binary digit. Yet no more than one classical
bit can faithfully be encoded into and then extracted from a single qubit.

Therefore, it came as a surprise that in 1992 Charles Bennett and Stephen
Wiesner found a method to transfer 2 bits encoded into one qubit. This
result, called superdense coding, does not contradict Holevo, since in ad-
dition to the single qubit, it uses another resource: pre-shared pair of en-
tangled qubits. Conversely, two classical bits and one pre-shared entangled
pair can be used to transfer a single qubit, in a process called quantum
teleportation. Amazingly, quantum teleportation is done without transfer
of matter—nothing but information is exchanged—and without the sender
having to know what is transferred. The question how these three kinds of
resources are related (along with the need to quantify entanglement) is still
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open to date.

The great practical interest in Shor’s algorithm stems from its ability to
attack all prevalent public-key cryptosystems. A remedy to this is Charles
Bennett and Gilles Brassard’s quantum key exchange protocol, known as
BB84. It allows two remote participants to exchange a private message se-
cretly. Unlike classical key-exchange protocols, the security of BB84 does not
assume anything on the computational power of the adversary, other than
its existence in our quantum mechanical world.

1.2 Basic Ingredients of Quantum Computa-
tion

1.2.1 States

According to both classical and quantum viewpoints, a finite discrete physical
system may be in one of N distinguishable states. In Quantum Theory, the
ith state of these is denoted by |7). Much more importantly, Quantum Theory
asserts that the system may be also in a superposition of states—a normalized
linear combination as |1)) = > . a;|i).

The most rudiment ingredient of classical computation models and real-
izations, is the bit—a system with two distinct states, conveniently called 0
and 1. Respectively, the basic component of quantum computation is the
qubit—a system with two distinct states, |0) and |1). However, since it is a
quantum bit, its state may be a superposition of these two distinguishable
states: |¢)) = ap|0) + a1]1). ap and «; are complex and satisfy the normal-
ization condition |ao|® 4 |an|* = 1. The state resides in a two-dimensional
Hilbert space spanned by |0) and |1) over the complex number field C.

A system consisting of n qubits is called a quantum register. If it is
isolated from its environment, its state resides in a 2"-dimensional Hilbert
space, spanned by the computation basis {\z}}zg . The qubits of the register
are inter-connectable—without it, states like the “cat state” %]0%}-%@”—1)
cannot be devised. Such states are called entangled states—they are multi-
particle states and cannot be thought of as a combination of single qubit
states.

The coefficient a; is sometimes called the amplitude of |i). The description
of a system by a state vector is slightly superfluous—the two vectors |¢) and
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e |1)) represent the same physical reality. These vectors are said to be equal
up to a global phase.

1.2.2 Operations

The dynamics of the state of an isolated quantum register is ruled by unitary
operations. A linear operation U is unitary iff its inverse exists and equals
its Hermitian conjugate: UTU = I. Computation is no exception—every cal-
culation applied to the quantum register has to be unitary. Fortunately, any
classical computation can be extended efficiently to be unitary [15]. More-
over, every quantum computation may be realized as a series of applications
of a 2-bit universal gate [14, 3].

Unitary operations are linear by definition. If an operation is known to
produce the transformation

iy 21 £(0))

for all basis states |i), the transformation of any other state is well-defined:
AU .
) = Z%"Z) = Z%”f@)-

All N values of f(-) are computed simultaneously at no extra cost. A delicate
point, however, is that none of these values can be accessed with certainty.
The function f(-) and the state |¢)) have to be chosen carefully in order to
make use of this quantum parallelism.

The Hadamard Transform

A very useful operation in Quantum Computation is the Hadamard trans-
form. On a single qubit it is defined by the matrix

1 1 1
%—5(14)

expressed in the ordered basis {|0), |1)}. Applying a Hadamard transform to
an n-qubit register is defined as applying the single-qubit Hadamard trans-
form to each of its qubits. Thus,

1 HQn—l H2n—1 )
Hyn — — —Hy®--- @ Hy.
2 \/5 ( HQn—l _H2n—1 2%,—%



ST (= 1))i)(j|, where i - j

Equivalently, Ha» may be defined as —=
13/7he bmary representatlons of 7 and j.

denotes the inner product modulo 2 o

1.2.3 Measurement

In order to obtain information from a quantum system, we must apply a
measurement to it. A measurement is usually an irreversible process, whose
outcome cannot be predicted with certainty. If a quantum register in the
state |¢) = Y. o;|t) undergoes a complete measurement in the computation
basis, the result would be |i) with probability |a;|?. Notice that for e|v)
the distribution of results is the same as for |¢)). This is in agreement with
the assertion that a global phase has no physical meaning.

Our definition of measurement may seem excessively restrictive, since dif-
ferent kinds of measurement exist. For example, it is possible to measure only
a few of the qubits, let the system evolve according to the outcome, and then
measure the system again. It is also possible to perform the measurement
in a basis other than the computation basis. However, it is well known [2§]
that a complete measurement in the computation basis is equivalent to the
more general measurement methods, if we can add qubits to the register and
can apply unitary operations to it.

1.2.4 Mixed States

For any superposition |¢)) = > «;|i), there exists a unitary operation Uy_.
so that Uy_o|¢y) = |0). Theoretically, if the parameters «; are known, we
could apply this Uy_ to |1), and produce |0) with absolute certainty. This
is why |¢), and all the states mentioned in Subsection 1.2.1 are called pure
states. However, in latter chapters of this work we discuss the evolution of
a quantum register whose state is not completely known. At best we can
describe its state as a probabilistic ensemble £ = {p;, |1;)} of pure states—
it is in a pure state |t¢;) with probability p;. The density matriz notation
summarizes this as the mized state

ﬂzzpﬂ%ﬂ’tbﬂ-

When a unitary operation is applied to a mixed state, it produces the
transformation

P_>U,0UJr ZPJUWJ QﬁJ|U
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Figure 1.1: A classical reversible oracle
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Figure 1.2: A regular quantum oracle
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This implies that the time evolution of each [¢;) of the ensemble may be
studied independently of other ensemble states.

A unitary operation cannot change the mixedness of a state—if p is pure
(p = |)(]), so is UpUT, and vice versa.

1.2.5 Classical and Quantum Oracles

A classical oracle of a function f(-) is a “black box” that when given a value
x, computes f(z). A special type of a classical oracle is the reversible oracle
seen in Figure 1.1.

A regular quantum oracle is different from the reversible oracle! only in
that it may be given a superposition of inputs >, a;]7,0), and produces a
superposition of pairs ) . a;i, f(7)), as seen in Figure 1.2.

When f is binary, we define the phase quantum oracle as a black box
that flips the phase of its input state |z) if and only if f(x) = 1. For

1Since quantum operations are unitary, a quantum oracle must be reversible.
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Figure 1.3: A controlled phase quantum oracle
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every quantum operation there exists a controlled version, that performs the
original operation if a control bit is |1) and acts as the identity operation
otherwise. In particular, we consider the controlled phase quantum oracle
outlined in Figure 1.3.

Regular quantum oracles and controlled phase quantum oracle are equiv-
alent. Numerous sources such as [23], [27, page 249] or [28, page 277], show
that a regular quantum oracle is reducible into an (uncontrolled) phase quan-
tum oracle. However, we could not find any demonstration of the opposite
direction of that reduction, although the equivalence is assumed in many of
the proofs of the optimality of Grover’s algorithm. Therefore, we devised our
own proof, and provide it in Appendix A.

It is obvious that a quantum oracle of f(-) is not weaker than its classical
counterpart—a quantum oracle fed with a single basis state (no superposi-
tion) easily simulates a classical oracle. Besides that, intuition tells us that
since a quantum oracle executes multiple computations simultaneously, it is
sharply stronger than a classical oracle.

1.3 Well-Known Quantum Algorithms

This section presents three famous quantum algorithms as examples of the
potential advantage of quantum computers. The first two algorithms prove
that a quantum oracle is indeed stronger than its classical counterpart.

1.3.1 Deutsch-Jozsa

This algorithm [12] solves an artificial problem, yet it is of interest since it
was the first algorithm showing the excessive powers of a quantum oracle.
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Assume we are presented with a phase quantum oracle Uy of a binary function
f:{0,1}" — {0,1}. We are promised that f(-) is either constant (Vx :
f(z) = ¢) or balanced (|{z : f(z) = 0}| = [{z : f(z) = 1}|). The problem is
to find whether f is constant or balanced.

The quantum algorithm to solve this problem requires an n-bit register
and goes as follows:

1. Initialize the register to H|0) (the Hadamard transform applied to the
zero state).

2. Apply the oracle Uy.
3. Apply the Hadamard transform H again.

4. Measure the result. Interpret |0) as constant, and anything else as
balanced.

To understand the algorithm, we notice that in case the function is con-
stant, the application of the oracle does not change the state of the register.
If ¢ = 0 no phase is flipped, and if ¢ = 1 all phases are flipped, changing
only the inconsequential global phase. Thus, the state of the register remains
as the equal superposition of all states, and reapplication of H returns it to
|0). In case the function is balanced, the probability to measure |0) can be
verified to be zero.

The best classical algorithm for this problem is very similar to the fol-
lowing. Evaluate f(z) on k randomly-selected x’s. If they are all equal,
answer “constant”, and otherwise—answer “balanced”. If the function is
indeed constant, it never produces different values, and thus the result is
correct. However, if the function is balanced, we might get k equal results in
a row, and be mistaken with probability 21%1 While the quantum algorithm
required single oracle query to solve the problem with certainty, the classical
algorithm requires more queries and solves the problem probabilistically.

1.3.2 Simon

Simon’s algorithm [33] solves another artificial promise problem, but it does
so with a spectacular speedup compared to classical counterparts. Assume we
are presented with a quantum oracle Uy of a function f : {0,1}" — {0,1}"
that is 2-to-1. We are assured that Vz : f(x) = f(z & a) for some unknown
constant a. The problem is to find that a.
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The quantum algorithm to solve this problem requires two n-bit registers
and goes as follows:

1. (a) Initialize the input register to H|0), and the output register to |0).

)
(b) Apply the oracle Uy to the combined register.
(c) Apply the Hadamard transform H to the input register.
)

(d) Measure the input register. The result m; satisfies a - m; = 0,
where ‘-’ denotes the inner product mod 2.

2. Repeat these steps until acquiring n linearly independent m;’s. Ex-
tracting a from them is a straightforward polynomial classical process
(Gauss-Jordan elimination) which requires no oracle queries.

The average number of repetition (and oracle queries) required to find
the linearly independent set of m;’s is O(n). An m with m - a = 1 is never
measured because of a special feature of the Hadamard transform—when
|z) + |z @®a) are transformed, their “odd” |m) elements cancel out. A classical
algorithm requires O(2"/2) oracle queries on average. Hence, in the case of
this problem, quantum computation is exponentially faster than classical
computation.

1.3.3 Shor

Shor’s algorithm [32] solves two problem (Factorization and Discrete Log-
arithm) whose hardness is the core of the security of RSA [29] and Diffie-
Hellman [13] cryptographic protocols, respectively. Shor showed that both
the Factorization and the Discrete Logarithm problems are reducible to find-
ing the period of a function. In the case of factorization, finding the prime
factors p,q of N is equivalent to finding the period of fy.(z) = a* mod N.
(This is true for most a € {2,... N — 1}.)

Further, Shor showed how a period can be found efficiently using a quan-
tum computer. The key algorithm to perform this task is the Quantum
Fourier Transform

S f@)lz) S <¢% Zez”"“’/Nf(:c)> 1y).

When |y) is measured, the outcome is in the close vicinity of the period of
f(z) with high probability. Two other important aspects are answered by
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Shor: how the initial distribution ) f(z)|z) can be created efficiently for the
given fy.(x), and how to perform QFT efficiently. The overall complexity
of Shor’s algorithm is O(log® N) (polynomial in the number of bits), while
the best known classical algorithm’s complexity is ©(ec(osN)"/*(loglog N)*/%y
(super-polynomial in the number of bits).

1.4 The Structure of this Thesis

In Chapter 2 of this work we describe Grover’s original search algorithm. We
analyze it using the eigenstates of the Grover Iterate. We take great effort
to prove the somewhat obvious classical lower bound, and provide one of the
proofs of the optimality of Grover’s algorithm.

In Chapter 3 we survey the various generalizations of the algorithm. We
analyze them in a uniform method, and state what is the ultimate general-
ization. One of the results of our analysis of one of the generalizations was
cited by [7], and we provide it in full details here.

Chapter 4 presents and analyzes a new generalization of the algorithm,
where the quantum register is allowed to be initialized in an arbitrary mixed
state. We provide an expression for the probability to measure a marked
state as a function of time, and a measure for its effectiveness, including a
threshold under which the algorithm is ineffective. We use our result to give
a counter-example to one of the results of Bose et al. [8].

We conclude our work by explaining why it may be considered as a sup-
port to the common belief that entanglement is essential for true quantum
computation.

In Appendix A we provide our proof of the equivalence of regular quantum
oracles and phase quantum oracle. The proof we present of the optimality
of the algorithm (and other proofs, too) makes use of this equivalence.

13



Chapter 2

Grover’s Algorithm

Assume a binary function f:{0,..., N —1} — {0, 1} such that
1, ife=k
f(x)—{ 0, if £k
for some unknown k (which is selected uniformly in the range {0,...,N —
1}). Assume further that we may use a classical oracle of f(z). The search
problem is to find this unknown marked value k. Our task is quite difficult—
the best option is to try out all values in a random order. The expected
N

number of oracle queries required to find the marked value is 5. However,
if we may use a quantum oracle, we can follow Grover’s algorithm [18] and

s

find the marked value after TN queries on average.

2.1 Classical Lower Bound

Let Ay be a classical search algorithm of size N. Let E(Ay) be the expected
number of queries that Ay uses to find the marked value k.

Without loss of generality we assume that all the queries that Ay asks
are different, as if two of the queries are identical, there exists an equivalent
more efficient algorithm B that remembers the first answer and skips the
second invocation of the query. Therefore, any lower bound we prove on B
is true for Ay, too.

By virtue of the fact that information about f(-) is accessible only through
oracle queries, Ay can identify k& only by querying f(k). There is only one
exception, once N — 1 failed queries are asked, the only untested value must

14



be k since we know there is one. Therefore, Ay defines a series of N oracle
queries, that is independent of the identity of k. Since the marked value k is

selected uniformly from {0, ..., N — 1}, the index i, of the query f(k) in the

series of queries is also distributed uniformly. For 1 <t < N, P(i,, = t) = %

Ap finds k after ij, queries, except for k such that i, = N, where only N — 1
queries are required. Thus, for any algorithm (deterministic or randomized),

the expected number of required queries is at least

N .
N 7 N—-1 N+1 1
E(Ay) =Y Pi)ix = §+ = W
k=1 =1

2.2 The Quantum Algorithm

We assume along this thesis that the size of the search field N = 2" is an
integral power of 2. A search problem with f': {1,..., N’} — {0,1} where
N’ is not a power of 2, is easily reducible to a problem of size N = 2". All
that has to be done is to define NV as the next power of 2 and to define

_f fllx), 0<z<N -1
fm_{o, N <z<N-1

Since N < 2N’, the expected number of queries % < ”T*/W is at worst v/2
times larger than the case of an integral power of 2.

In order to perform the algorithm we assume the existence of a quantum
computer with a computation register of n qubits, and the existence of a
quantum oracle for the function f. The algorithm is as follows:

1. Initialize the register to H |0). That is, reset all qubits to |0) and apply
the Hadamard transform to each of them. This produces an equal
superposition of all states in the computation basis ﬁ > i)

VN
4

2. Repeat the following operation (named the Grover Iterate Q) T =
times:

(a) Rotate the marked state by a phase of 7 radians (/7). This is
done by a single application of the phase quantum oracle.

(b) Apply the Hadamard transform on the register.

15



(c) Rotate the |0) state by a phase of 7 radians (7).
(d) Apply the Hadamard transform again.

(e) Negate the total phase of the register (This step has no physical
meaning, and only provides some aid for understanding).

3. Measure the resulting state.

2.3 Analysis

A thorough study of this algorithm appears in [19, 9]. The simplest analysis
is done in vector notation. The algorithm is initialized with

) = H10) = —= 3 ), 2.)

and then
Q = —H[{{HI}r
= —H (I —2|0){(0]) H (I —2|k)(k]) (2.2)
= — (I —2H|0)(0|H) (I — 2[k) (k)

is applied iteratively, where |k) is the marked state. Let us now define an
orthonormal basis:

e |k) the marked state
o |l)= \/% > iz i) (equal superposition of the unmarked states).
e Extend these two with additional N — 2 orthonormal vectors.

It is easily verified that in this basis

3 /T
_9¥yN-1 1 _ 2
N N

Q= -1 (2.3)

which is clearly a rotation matrix in the (|k),|l)) plane, with angle w where
cosw =1— %, and a phase flip in the orthogonal subspace. For large N, w
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. ~ L o ey
can be approximated as w & Nk The initial state

| vVN —1
\/_ VN
lies on the rotated plane, with angle ¢ ~ \/LN off the |I) axis. Thus,

) = Q'tho) = sin(wt + ¢)|k) + cos(wt + $)[1), (2.5)

and the probability to measure the marked state

[%0) =

)+ 1) (2.4)

P(t) = |(k|t)|* = sin?(wt + ¢) = % - %COS(th + 2¢) (2.6)
reaches one when 2wt +2¢ = 7, after T ~ ’”ZN iterations. Notice that T', the
number of iterations needed to measure the marked state with certainty, is
unlikely to be an integer. In the limit of large N, this is of no interest, since
the P(t) for the integer nearest to 7" is very close to 1. Yet the question of how
to find the marked state with certainty [22, 25] is interesting to the physicists
and engineers who are building the first small-scale implementations of the
algorithm (and cf. Subsection 3.5.2).

2.3.1 Rotation about the Average

Along with the description of the algorithm as a rotation of a plane, there ex-
ists another description according to which the Grover Iterate Q = —HIfHI}
is broken into two operations: the oracle query I7, and the rotation about
the average operator —H IjH. The latter operation is a rotation about the
average due to the following. For arbitrary [¢) = Zfio a;|i) described in the
computation basis, the amplitudes average is

1 1<
= 2= §< Zaz 7 OIHIY). (2.7)

To rotate all amplitudes about this average means to map

Q|

a; — a; — 2(&1 — d) = 2a — a;. (28)

In vector notation it looks like

: 2 :
(ily) — \/—N<O|H|¢> — (ily). (2.9)
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Notice that ﬁ = (i|H|0), and therefore the mapping is

(i[y) = 2G| H|0)(O[H|¢) — (il4))- (2.10)

Since this is true for every (i|, it follows that the rotation about the average
operation is after all 2H[0)(0|H — [ = —HITH'.

2.3.2 Punctuated Execution

One of the implications of the sinusoidal behavior of P(t) is that when the
P(t) is near its maximal value, it doesn’t improve much with every iteration®.
Thus, we can improve the expected required number of queries if we are will-
ing to cut short of the maximal probability and risk repeating the algorithm
in case of failure. Consider executing the algorithm for ¢ iterations. The
expected number of queries required to measure a marked state is

t t

7= P(t) - sin?(wt + @)

In the limit N > 1 we can find its minimum using derivative and numerical
analysis. The minimum is reached when 2wt ~ tan(wt) which is when wt =~
1.1656 and

At that point

T ~ 0'81857T VN, (2.11)

which means a slight improvement comparing to the full-length execution.

2.4 Algorithm Optimality

Recently before the quantum search algorithm has been devised, Bennett,
Bernstein, Brassard, and Vazirani [5] implicitly proved that a lower bound
to the number of oracle queries required for unordered quantum search is
O(\/N ). Thus, Grover’s algorithm was known to be asymptotically optimal
since its birth. This, of course, did not deter [9, 17, 35, 8, 4, 2] and others

!This was first noted by Boyer et al. in [9], and later discussed in great detail by
Gingrich et al. in [16].
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from providing additional proofs. Some of the proofs vary only in the extent
of their similarity to the first one [5], their simplicity, and their tightness.
Other approach the question of finding a lower bound in a more general way.

In this section we shall restate Grover’s proof [17] which appears to be
the simplest. We (assisted by [27]) extend that proof slightly to include
probabilistic search algorithms, as was first done by Boyer et al. in [9].

At first we describe the most general search algorithm A: It may con-
tain settings of qubits, unitary operations, oracle queries, and measurements.
Without loss of generality we may assume that A begins with initialization
of a quantum register, continues with unitary evolution of that register (in-
cluding oracle queries), and ends with a measurement. Thus, any search
algorithm A includes initialization to some oracle-independent state |1(0))
and unitary evolution of the form UrOUr_,...U;OUy, where O is an oracle
query and Uy...Ur are oracle-independent unitary operations. The algorithm
concludes with a measurement. For A to be useful it has to find the marked
state with a bounded probability by some p, no matter what is the identity
of the marked state. For simplicity of the proof we assume p = %

Consider different executions A; of A, each with a different marked state
i. Let |1;(t)) be the state of the quantum register after U,O;...U;0;Uy is
applied, when the marked state is ¢. O; denotes an oracle query when the
marked state is i. Let |¢n(t)) be the state of the quantum register after
U;...Uy is applied—with all oracle queries replaced by calls to the null oracle.

Definition 1 The Euclidean distance between two states |¢) = . ;i) and
V) = 32, Bili) is defined by |[|¢) — [0)]* £ 3, s — Bi]".

Definition 2 The spread of an execution A; aftert oracle queries is A2(t) =

138 = ()]

Definition 3 The spread of A aftert oracle queries is A%(t) £ Zf\:)l A2(t).
We prove the following 3 lemmas about the spread:

Lemma 1 The initial spread is zero.

The proof is straightforward: before the first step, all executions are equal
to the null execution, and

A%(0) = D [l13(0)) ~ [aun(OD|* = 0
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Lemma 2 In order to meet the bounded probability of success, the spread
has to be Q(N).

Proof We know that the algorithm is successful with probability higher than
%. That is, for every execution, when the register is finally measured at time
T, the marked state is found with probability > %:

, 1
(Wl = 5 (2.12)
(Throughout this proof we discuss only the last step and therefore drop the
(T') qualifier for clarity.) The global phase of the final state of each execution
has no physical meaning, and thus may be assumed to satisfy (¢;]i) = [(1;]3)].

Therefore, we may state that
QA(T) £ ) ) = D)1
= > 2—2Re(Wili) = Y 2 —2[(thili)|

7 K3

and from (2.12),
< 2N — V2N = (2—V2)N. (2.13)

Using Lagrange multipliers we can show that for real a;’s and b;’s and under
the constraint of >, |a;|* + |b;]* = 1, the expression

Zazé\/ﬁ

)

reaches its maximum when a; = and b; = 0. Therefore, for every state,

=

and specifically for |1,,,)

ﬂZ(T) = Z H|wnull> - |Z>H2
= 2N —2Re Z(anuzl)
> 2N —2VN = 2N(1 - ——). (2.14)

VN
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Using Cauchy-Schwarz inequality (that states that Re(z|y) < H:c||2 Hy||2)
and by definition,

AYT) = Z\Hm ot} |
- mei = 1) 18) = )|
= a; —2Re Y (i — i[tnun — 1) + B
> a® =23 1) = | W = D) + 5,

and applying Cauchy-Schwarz inequality again we arrive at

> o —2¢/a?p? + 3
= (3-ay
From (2.13) and (2.14) we obtain

a < VNy\2-v2<VN,

B > V2VN 1_\/—N

2
> ﬁ\/ﬁ(for]\fzw

and conclude that

ANT) = (B—a)

Lemma 3 The spread grows not faster than o(t?).
Proof At first we notice that
AND) = [lla0)) — W (0
= ||t Oalws(t = 1) = Wwaa(t = D))
= [[Ouwult = 1)) = Wt = )|
= 2 —2Re(nun(t — 1)[O4]e(t — 1))
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since the Euclidean distance is invariant under unitary transformations. Thus,

Af(t) = Af(t—1) = 2Re[(Vnun(t — D](t — 1))
— (Unann(t = 1)|O[¢s(t — 1))]
= 2Re X (Ynun(t — D7) [(fl(t — 1))
—(J1Oil(t = 1))].

Without loss of generality (Cf. Appendix A) we assume that O; is a phase
oracle, that is,

(2.15)

slode = { Y 7L (2.16)

and therefore

AN(t) = AXt—1) = 4Re(Yna(t — 1)]i) (it — 1))
< A nan = D) = 1))
After subtracting and adding (i|t,.), and dropping the (¢t — 1) qualifier,
this becomes

= A Ynan)| i) = (lonan) + (ilvonan),
which is (by the triangle inequality),

< 4| Ynun)

= 4‘<i|¢null>

[1Gile) = (ilPmun) | 4 (i [30mun) |]

|

|

Now notice that for any a, b and any positive A, (A|a|—[b|)* > 0 and therefore
2, 210

4]al|b] < 2\|a]® + X|b| . (2.17)

Summing over all ¢’s, and applying this inequality,
AYt) = A(t—1) = Y AN - At -1)
2 . .
+5 2 {ilbmar) = (il

and since | (1|¥nun) — (i];)])* < A2(t — 1),
< 4+2)\+§A2(t—1). (2.18)
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Substituting for A = A(t — 1), this becomes
A2(t) — A%(t — 1) < 4A(t — 1) + 4,

which is equivalent to
Alt) <A(t—1)+2.

Since A(0) = 0, this means that
A%(t) < 4t
u

Together, these lemmas infer that A requires Q(v/N) queries in order to
fulfill its task. The first proof following this structure appeared as one of
the weaknesses of quantum computing in Bennett et al.’s paper [5], before
Grover’s algorithm has been devised. Zalka’s proof [35] follows that struc-
ture, too, and gives the exact number of queries required to obtain certain
probability p.

Bose, Rallan and Vedral [8] give a similar, yet different proof. Instead
of following the evolution of the spread of the algorithm, they follow the
entropy of the quantum register (See Eq. 4.8). They prove three properties
of the entropy:

1. The initial entropy is zero, since the initial state is known to be H|0).

2. At the end of the algorithm the entropy must be log N, since the final
state is the marked state, and there are N different possible marked
states occurring with equal probability % (Bose et al. do not dis-
cuss probabilistic algorithms, where the final state does not have 1-to-1
mapping with the marked state.)

3. The entropy can grow by no more than % log N with each oracle query.

And again, the conclusion is that (v N) queries are required.
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Chapter 3

(Generalizations

Grover’s original algorithm described in Section 2.2 is quite restrictive. In
order to make it more useful, to study its resistance to noise and to learn
where its power stems from, the algorithm was generalized by many people.
In this chapter we survey all known generalizations, and find the most general
one.

3.1 Many Marked States

The simplest generalization of Grover’s algorithm is to consider a function
where the number of s satisfying f(z) = 1is r > 1. Not surprisingly, Boyer
et al. show in [9] that finding one of the r marked z’s is easier when r is large,
and the difficult search problem is when r < N. Grover’s original algorithm
requires almost no changes in order to solve the problem of multiple marked
states. The only element that changes is the required number of iterations—

withr > 1itis T = %\/g . The analysis of the algorithm is very similar, too,

yet we have to be more careful while selecting the convenient orthonormal
basis. The N-dimensional Hilbert space of the register states may be broken
into two subspaces: K of r dimensions, spanned by the marked states, and
L of N — r dimensions, spanned by the unmarked states. The first basis
element for K is

Ik 2 % S, (3.1)

1eM
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where M is the set of all marked states. The rest of the basis is any orthonor-
mal extension denoted by {|k1)...|k,—1)}. A basis for L is

7

N :
) = Nage: %4!@% (3.2)

and any orthonormal basis extending it, denoted by {|l1)...|[Ix_»—1)}. In
the ordered basis (|k), |), [k1) .. [kr—1),|l1) - [IN—r—1)),

o 2\/T(N—T)

N N
r(N-r) 2r
-2 ~ 1 — & r—1
1
Q= (3.3)
1 N—r—1
——~
-1
—1

[gnoring the partial phase flip, @) is a 2-dimensional rotation with angle w,
where cosw =1 — ?V—T The initial state lies with angle ¢ to the |l) axis, where

N —r

= (0|H|l) = .

cosd = (OH) = 1/~

Forr < N, w =~ 2,/% and ¢ =~ /. Thus, the probability to measure a
marked space is again

! cos(2wt + 2¢). (3.4)

P(t) =5 -3

1
2

Notice that the best time to measure, T ~ %\/g depends on r. This is why

Gilles Brassard compares quantum search to baking a souflé—if you don’t
know when it is ready, you cannot enjoy it.

3.2 Unknown Number of Marked States

Another interesting question addressed by [9] is what happens when r is
unknown. Is it then impossible to bake the soufié? They found out that it is
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possible, and with no asymptotic penalty—it requires only O(\/§) queries.
All that is needed to accomplish that, is to start with a single application of
the Grover Iterate. If the marked state is not found, repeat the algorithm
with a number of iterations which is g times the previous number. Stop when
the number of iteration has reached %\/N .

We give here a proof for a weaker result: When r < N, the expected
number of queries to find a marked state is O(v/N). Choose t €z {1...v/N}
and run ¢ iterations of Grover’s algorithm. Since P(t) behaves like a smooth
cosine (3.4), the expected value of P(t) is

foﬁp(t')dt'_1+sin2w\/ﬁ>1_ 1118
VN 2 4wV N 2 4wvN 2 8/r 8

Thus, no more than 3 choices of random ¢ are required on average, and a
marked state is found in O(v' N) queries.

1
5 (35)

3.3 Arbitrary Pure Initial State

If Grover’s search algorithm is used as a procedure by another algorithm, it
might be necessary to avoid its initialization step. Even if the initialization
is performed, gate imperfection or external noise might cause the outcome to
differ from the exact H|0) state. Rather, it may well be some general pure
state |t)p), which is a superposition of marked states and unmarked states.
The first to address this problem were Biham et al. in [6], yet here we take
another path taken by [16], and similar to [10].

Let us represent |¢) in the orthonormal basis of Section 3.1 (which is
independent of the initial state)

N—r—1
o) = k) (klwo) + |1)(Iltho) +Zrk (Kiltbo) + Z 113} (Li1b0)
= Ake”kyk)+Aewlyz>+\fak|w0k>+\/ —7"0;\1/101) (3.6)

where Ae®* and A;e’ are defined as the unique polar representation of
(k|to) and (l|1bg), respectively. oy, |tor), oy and |ig) are defined such that
Vrog|tor) and VN — roj|iy) are the unique representation of their respec-
tive terms as norm and normalized state.
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The Grover Iterate is, of course, independent of the initial state. Thus,
@ keeps the form of a 2-dimensional rotation matrix (3.3). This means that
(except for signs) only the projections of [1bg) on |k) and |I) are affected by
(@, and that the state of the quantum register as a function of time is

W) = Q'lvo)
= Vroglto) + (=1)'VN —roi|vo) + Ape™Q'[k) + A Q'|I)
= Vrowtor) + (=1)'VN —roifha)
+ (Ape" coswt + Aje™ sinwt) |k)
+ (A coswt — Ape® sinwt) |1) (3.7)

Let Py be the operator of projection on the marked subspace. The probability
to measure a marked state as a function of the number of Grover iterations
t is the squared amplitude of Pi|i)(t)):

‘2

P(t) = |Pele(t)

= roitudbo) + AL L gz getn cos(t + 26,,)
= (Py,) — APy, cos(2wt + 2¢y, ). (3.8)
where
tan 260, 2AkA;1§2€30j(il2— Or) 7
(Ppo) = rop+ #,
and

1 . .
A_Pwo = 5 }Azehe’“ + A?GQZGI‘ .

The subscripts 19 denote that the values depend on the initial state. w is
independent of the initial state, and as explained in Section 3.1, may be
approximated by w = 2\/% . The probability to measure the marked state
reaches its maximum after T = “gj‘b iterations.
Our results are in agreement with previous works. For example, by our

definition

Vrowtor) = Pec(ltho) — [k)(Kl¢o))-
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This means that

o7 (Porltor) = Z| ilvo) — (ilk) (kltbo) Z| ilo) — k[ (3.9)

zeM ZEM

is the variance of (i|1o)’s. This is exactly the definition of oy in [6]. Another
example is the original case studied by Grover, for which we find <PH|0>> =
APyjgy = 3 and ¢pp) ~ 0. The maximum probability (~ 1) is reached after

T = i 1terat10ns

3.4 Amplitude Amplification

Lov Grover [20, 21] reported that his algorithm works well when the Hadamard
transform is replaced by almost any other unitary operation. Brassard,
Hgyer, Mosca and Tapp took a slightly different approach in [10], where
they call this idea “Amplitude Amplification”. They consider a search prob-
lem with » marked states, and assume a quantum algorithm A that, when
initialized by |0), finds one of the marked states with probability

£ iAo

€M

and fails with probability W; £ 1—W,,. They showed that Grover’s algorithm
may be used to amplify this amplitude if it is initialized with 4]0), and the
Grover Iterate is modified to @ = —AIJ .AT[]’I. After applying @ iteratively
ka times, a marked state is found with almost certainty. In this perspec-
tive, the Hadamard transform in the original algorithm is a “blind guess”
O(N) algorithm. Gingrich et al. [16] combined this generalization with the
arbitrary initial state. We follow their analysis, since it hardly differs from
that of Section 3.3. We start by defining

F > " li)(ilAlo), (3.10)
and
= |4) (i].A]0). (3.11)
v
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{|k:) Y= and {|I;)}X7"~* are defined accordingly to complete an orthonormal

basis. In this basis ) continues to be a rotation matrix, but now with angle
w & 2y/Wj. Similarly to (3.6) we represent |t)g) in this new basis

N—-r—1

o) = [k)(Elo) + |1){I|vo) +Z|f~c (kilwpo) + Z |13 (L o)
= Age|k) + A1) +\/ w0k ok +¢_alrwm

and re-define Age A oy, |vor), o and |vbg) accordingly. Notice that

now
2

o _ 1 a2 | i) 1

€M

is the weighted variance of (i|¢g)’s, as defined in [7, Eq. (3.48)].

. 2 A%-I—A?
P(t) still adheres to Eq. (3.8), only that now (Py,) = Wyoj, + =5,

3.5 General Rotations

The original Grover Iterate —H IoH 1 has been further generalized to —UI?UTI }’
by Biham et al. [7]. That is, they use some arbitrary transformation U in-
stead of Hadamard (this is equivalent to A in Section 3.4), arbitrary “pivot”
state |s) instead of |0), and arbitrary phase rotations ( and 7y) instead of
phase inversion. Actually, replacing |0) with |s) is superfluous. Let

Xso =1 = [0)(0] = [s)(s] + [0)(s| + [s){0]

be the swap operation between |0) and |s). For any U and |s) there exists
some V = UX, such that

VIV = V(I = (1= e?)o)po]) V1
U (1 (1 — )X 0[0) <oyX§0) Ut
= U —(1—¢7)s)(s]) UT
= UIPU".

Their analysis of the generalized algorithm has been done in the method
of recursion equations, which they also used in [6]. We show that the vec-
tor notation analysis, which is used throughout this work, is applicable too.
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When represented in the orthonormal basis of the previous section, the gen-
eralized Grover Iterate is

(M) r;l

—et

Q= —e™ N-r—1 : (3.12)

—1

The topmost 2-dimensional component of @) (in the {|k), |l)} subspace) is

v - (1-— eiﬁ)e.”Wk - Q” VWiWi(1 - ')
VWiWie (1 —e®) (1 —eP)W, -1

a byt (3.13)

- /W,
c WL d
Since the elements of M are potentially complex, it cannot be interpreted

immediately as a rotation matrix. In order to analyze @), we first diagonalize
M with M = SDST, and write (as in [7]),

- )\+ _ eiw+
p=(M )= (T )

where
Wy =7+ ? +w
and
cosw:chosﬁ+7+W/lcosﬁ;7. (3.14)

The eigenvectors of M, and their conjugates, are

weblk) + (s = a)ll)

VDI A = af

) =
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weblk) + (A= = a)ll)

‘qji) - Wk |1,]2 2 7
Vb2 + A — ]
v Wb (k| + (X7 — a*)(I
+ p—
VLB + Ay —al?
VIR + N —al? [y -
- )\7 _)\+ b m< |_ <| )
wi
and
b (k] + (A2 = a*){l]
<\IL‘ - Wk 11,12 2
VWP + A —al
Welpl2 + A —al2 [, _
_ e RN
Ao — Ay b/ We
Wi
Therefore,

Qo) = UL (W [yho) + e W) (W_|¢o)
+(=1)' e Wiol o) + (=1)'vVWiarlga)  (3.15)
and its projection on the marked subspace is
PeQ'lho) = ™ k) (R[04 ) (P [tho) + €~ k) (k[T _)(W_ )
+ (_1)t€m Wiow|tor).-

The probability to measure a marked state, which is the squared amplitude
of this projection, is

P(t) = [+ (kW) (W fdho) + -1 (R O_)(T_[¢)|* + Wyo?
= (R T [0 + (kI )T [o)[* + Wio
+ Re e (kW) (W [h) (o W) (W _ k)
= Wi(22 + 22 + 0}) — 2Wpz1 25 cos (2wt + 20), (3.16)

where z1, 29, ¢1 and ¢ are real and satisfy

aV/Wie = (kWL ) (U [v)

and
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— 2o/ Wi D172 = (k| W) (W _[y)y).
We conclude that
P(t) = (P) — AP cos(2wt + 2¢),

where (P) = Wy (2} + 25 + 07) and AP = 2Wyz125.

3.5.1 J-sensitivity of AP

With some algebra we obtain that

In order to discuss our result we define the difference between the two rotation
angles

§=y—p0.

The two extreme cases of 6 = 0 and 6 = O(1) were discussed by Biham et
al. [7]. Here we discuss the intermediate case where 0 < 6 < 1. One of our
results was cited in [7], and we would like to present the full details here.
Assuming W), < 1 (otherwise the algorithm is not of much use), we can
approximate (3.14) by

52 J 52
cosw ~ chosﬁ(l—E)—Wk§+(1—Wk)(1—§)
J . 92
w o~y [2W 1—COSB+§Smﬁ —}-Z. (3.17)

By definition wy =7 + 3 + % + w, and through approximation of (3.13),

= —e"+0OW,) = ettt
b = 1—eP+0(W,)
and
B> ~ 2(1—cosf3).
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w+=7r+6+%+w

Figure 3.1: The relation between (3, v, w4, and
6wy v .0 P2 omn

The approximations

o
|
S
Q
|
7~
S
+
(YRS
~
Q)
R

and
A=A &~ 2w

are affirmed looking at Figure 3.1. Finally we can deal with AP, using k& and

[ as shorthand for <\k/|;pv—(;> and @wwof, respectively:

AP = 2Wk2’122

Wk 0 i3 0 i
3\ 2
Wil e (5ke)
_ Wi 212 i 2 28 2 0°
= 5. b*l° — 2blke*’w + k*e w 1
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Figure 3.2: AP as a function of § and 9, with constant W,
Y1ap Wi TR ,5-1 3 5w 1vepnas AP

~ %’; |0°1% — 2blke™w + K*e*72Wy (1 — cos B)|
Wi,

< g (PP [RPWE) + 200l [kw)
Wk w
— (4(1+1)+4

< 2w2<( +1) + Wk)

and since by (3.17) w > £,
16Wk 8\/ sz
T

5 (3.18)

which means that if § > +/W}, the algorithm hardly changes the probability.
Figure 3.2 illustrates this behavior of AP. The special case of (3.18) for
r=1, Wy, =1/N and |¢y) = U|0), was already discussed in [24].

3.5.2 Finding a Marked State with Certainty

The probability to measure a marked state as a function of time is given by a
smooth cosine form (3.16). However, the first experimental implementations
of Grover’s algorithm use a small number of qubits which means that w =
0(2_”/ %) is not that small, and it is probable that the optimal time to measure
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the register falls far between two iterations. An interesting outcome of the
arbitrary rotation generalization, is that one can carefully set 3 and 7 so that
the optimal time is exactly an integer. Algebraically, we search for 3, v, |¢o)
and an integer ¢ such that

P(t) = Wi(2} + 25 + 07) — 2Wpi21 29 cos(2wt + 2¢) = 1.

We do not solve this equation here. Recently, Hayer [22] and Long et al. [25]
published two special solutions of this equation.

3.6 The Ultimate Generalization

In this section we discuss the most general iterative quantum process R'. We
show that any such R is a generalized Grover Iterate, where there may be
multiple “pivot” states with different § for each of them. Since R may be
any unitary operation, this is the ultimate generalization conceivable.

Let f define an arbitrary number of marked states, and let v be an arbi-
trary rotation angle. Since any unitary operation has a unitary diagonaliza-
tion [34], there exist U, a set of states S and a corresponding set of angles (3

such that R[J?7 =U IEU . where I g rotates the phase of each of the states
in S by a possibly different angle. Let us now define

Q2 R=UIU'T]

According to the previous section, we know how R operates on arbitrary
input if S include a single state. If only we knew to analyze ) when S
includes several states and B includes different elements, we would know how
to analyze any iterative quantum process.

However, the analysis of such ultra-generalized algorithm has proved to be
difficult. To understand why, we consider A and B, two unitary operations
over the vector space CV. Let {|a;)};; and {|b;)}}2, be the eigenvectors
of A and B, respectively, whose eigenvalues are not 1. We may extend
these two sets into a complete basis with {|cy,)} "™ unless for some
J |b;) € span({|a;)}r;), in which case we would need more |c,,)’s. Now
let us examine the operation AB. Since AB|c,,) = Alcm) = |cm), it has
N — n, — ny eigenvectors which are easy to find and whose eigenvalue is 1.
Its other n,+n, eigenvectors are most likely to have different eigenvalues, and
are usually much harder to find. Before we understood this elementary linear
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Figure 3.3: The number of eigenvalues which are not 1 as a function of n,
and ny
Np=1Ng 2V MRPNAI 1 DPRY D»NRYN D2IIPN 190N

algebra fact, we checked it with Matlab and provide a graph in Figure 3.3.
In the context of this section, A = UISUt, n, = |S|, B = I} and ny = 7.
When |S| = 1, the problem degenerates into the simple rotation with partial
phase rotations seen in (3.15). However, in general it remains a complex
multi-dimensional motion.
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Chapter 4

Initialization with a Mixed
State

In this chapter we study the case where the original Grover Iterate, as de-
fined in Section 2.2, is applied to a quantum register that is initialized to an
arbitrary mixed state. This work is the first rigorous discussion of this case.
In addition, our study extends and corrects a result from [8], and provides a
simple approximation to the entropy of a pseudo-pure state (4.9). Our gen-
eralization can be easily combined with the generalizations from Chapter 3.

4.1 Arbitrary Mixed Initial State

A mixed state arises when one cannot describe the state of a quantum system
deterministically, no matter what basis one chooses (Cf. Subsection 1.2.4).
Such a state appears very often when a quantum system is entangled with
its environment, while the environment cannot be accessed or manipulated.

Extending the argument of Section 3.3, the initial state of the quantum
register might not be pure, due to external noise, decoherence or previous
manipulations. Instead, the initial state may be some general mixed state &£.
Given the description of £ as an ensemble, all we can say is that the register
is in the pure state |¢;) with probability p; (for all i’s).

When the Grover algorithm is applied to the register whose state is [1;),
the probability to measure the marked state is P;(t). The probability for the
register to be in that state is p;. Thus, the total probability to measure the
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Figure 4.1: The differences P, — (P;) as projections of a rotating AP,
a1non AP, Hv oYy P — (P;) nwiann

marked state is the weighted average
P(t) = > piPi(t)

= Zpi ((P;) — AP;cos (2wt + 2¢;)) - (4.1)

The functions
Pi(t) — (P) = —AP, cos (2wt + 26)

share a sinusoidal form, differing in amplitude and phase, but not in fre-
quency. They may be thought of as the projections of vectors rotating in
frequency w, as exemplified in Figure 4.1. Therefore, their weighted sum
(the Center of Mass of the vectors in the figure) is a sinusoidal function with
the same frequency:

P(t) = (P) — AP cos (2wt + 25) (4.2)

where

(]5; = sz‘<Pi>, (4.3)
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2 2
AP — (Z p; AP; cos 2@) + (Z piAP;sin 2¢z> (4.4)

and

> DiAP; sin (2¢;)

> DiAP; cos (2¢;)

The probability to measure the marked state reaches its maximum value

tan 20 = (4.5)

~ —_ —_—

Pinaz = (P) + AP (4.6)

after T' = ”;—3‘15 iterations.
If the algorithm is repeated until success with 7" iterations each time, the
expected total time to measure a marked state is

T, T2 T2y
QWPWLO,CE 4Pmam

since the number of repetition until success is distributed geometrically with
parameter P,,,,. If this value is significantly smaller than the classical ex-
pected time 7 = N/2, then the quantum algorithm has an advantage. Quan-
titatively, the quantum algorithm is faster by a factor of

E_ NWﬁmax o 2§maz\/ﬁ (47)
1q 7r—2$ 7T—2$ ‘ '

Of course, the constant factors in this expression have no real meaning until
we know the relative “clock speed” of quantum computers. Notice that this
definition of the quantum advantage counts only oracle queries and does not
take into account the cost of repeated initialization of the register. In cases
where the initialization is costly, arefind measure should be used.

4.2 Examples

4.2.1 Pure Initial State

When the arbitrary mixed state is chosen to be pure, the summations are
degenerate and the results of [6] are regained. For example, if the initial
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state is the original &€ = {p = 1, H|0)}, the original Grover case is found If
E ={p=1,|k)} (where |k) is the marked state), then < ) = AP =1 1 and
(E = 5. An interesting known property of the Grover algorithm is that for all
states orthogonal to both |k) and H|0), <AP/) = AP =0.

4.2.2 Pseudo-Pure Initial State

€

Ensembles where a pure state [1)) appears with probability € + % and any
state orthogonal to it appears with equal probability of % are called pseudo-
pure mixed states. They are written more conveniently as

1—e€
Pe-pure = TI + €|1/)><¢|

Notice that 0 < e < 1 is a measure of the purity of p: when € = 0 it is totally
mixed, and when € = 1 it is totally pure. It is easy to see that in the limit of

large N, <P> = e (Py), AP = eAP, and ¢ = ¢y. For example, for

1 1 1
=—(1- I+ ——HI|0)(0|H
Praxpure N( logN) +logN 0){011;

we obtain (P) = AP = 210g ~ and gb =0. Notlce that although p is extremely

mixed, the quantum advantage is of factor m = O(VN).

4.2.3 Initial State Where m of the Qubits Are Mixed

Let us study the case where the register is initialized to

1 2m—1
Pm~miz = 2_m ; H|’L><Z H

This state may occur if the m least significant qubits of the register are totally
mixed before the first Hadamard transform is applied. Since all H |i) are
orthogonal to H |0) (except for H |0) itself) and they are almost orthogonal
to |k) (since |(k|H|i)| = ) the evolution of py-mis is governed by {p =
27 H|0)} and we obtain < ) = AP = s and ¢ = 0. The quantum

advantage is of factor % large m would render the algorithm useless.
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4.3 Algorithm Usefulness and Entropy

The von Neumann entropy of a mixed state p is defined as

S(p) = —trplog p. (4.8)
Bose et al. [8] presented a new model for quantum computation and laid
out a new proof for the optimality of the Grover algorithm (Cf. Section 2.4).
However, one of their results was the following: if the Grover algorithm is
initiated with a mixed state p, such that

1

the algorithm would have no advantage compared to the classical case. This
is in disagreement with our findings: Bose et al. have a mistake regarding the
entropy of the classical search problem!. This mistake does not invalidate
the other results in their paper.

A counter-example to their claim is the state P Ly-pure defined above.

The entropy of the pseudo-pure state pepyre is

(o) = 5 (LI +l0)0])

B szll_elo 1—¢
- N &N

1+ (N=1e. 1+(N-1)
— N log N
1—e¢ 1—c¢
= —(N-1) N log I
1+ (V- 1)1 1+ (N —1)e
N g N Y
and for large N, where N/(N ~ 1,

~ —(1—¢) log

(N )10g (é +€)

= (1—e)logN — (1 —¢)log(1—¢) — (%ﬂ) log (%ﬂ)
— (1—¢)logN —¢, (4.9)

1 Just above their Equation (10), they say that classical search can change entropy by
log /N in v/N steps. This is true for a search field of size v/N, but wrong for the question
in matter where the search field is of size N.
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where { = (1—¢)log(1—€)+ (+ + €) log (+ + €) € [0,0.88) for any 0 < e < 1

and any N > 2. For e = @, we obtain ¢ =~ 0 and

1
S(pﬁ_pme) ~ (1 - logN) log N =log N — 1.

This entropy is almost maximal. However, as noted above, the Grover algo-
rithm outperforms any classical algorithm, even when it is initialized with
this state.

Entropy is not a good measure for the usefulness of the Grover algo-
rithm. For almost every value of entropy, there exist states that are appli-
cable as initializers and states that are not. For example (for n = log V),
S(ptn-1)-miz) = log N —1 = S(plO;N_pure), but when initialized in p(,—1)-miz;

the Grover algorithm is as bad as guessing the marked state. Another exam-
ple may be given using the pure states H |0) (0| H and H [1) (1| H. With the
first, Grover arrives at the marked state with quadratic speed-up, while the
second is practically unchanged by the algorithm.

It seems as if Bose et al. had in mind only mixed states of the type of
Subsection 4.2.3 (pp-miz ). For these states, Grover’s algorithm is faster when

2V N

2m

>1
which means also
1 1
m < §logN+1 —logm ~ ilogN

which in turn is almost identical to [8, Eq. (10)].
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Chapter 5

Summary and Conclusions

In this work we have given a brief introduction to Quantum Computation.
We presented Grover’s quantum search algorithm, and presented a proof that
it is the optimal search algorithm—better than any other, be it classical or
quantum. Later we surveyed the various generalizations of this algorithm,
some of which generalize the operations of the algorithm, and some generalize
its initial state. We have analyzed each of the generalization using the method
of eigenvector analysis of the Grover Iterate. We stated what is the ultimate
generalization thinkable for the operations of the algorithm. Based on the
work of Biham et al., we generalized the initial state of the algorithm further,
so we can deal with arbitrary mixed initial states.

Particularly, we studied how the algorithm behaves when initialized with
a pseudo-pure initial state. We have shown that Grover’s algorithm is better
than any classical algorithm in some exponentially mixed state. Braunstein
et al. [11] showed that mixed-enough states are separable. Had we found
a separable state with better-than-classical behavior, it would have had re-
sounding implications: it would have implied that entanglement is not essen-
tial for non-trivial quantum computation. However, a careful examination
of [11] shows that our results provides some evidence to the contrary.

Figure 5.1 is a cross-section of the Bloch sphere. Braunstein et al. showed
that when € > ﬁ, inseparable states are appearing. Notice that according
to Subsection 4.2.2; the quantum advantage of Grover’s algorithm which is
initialized with the pseudo-pure state pepure = 5 + ¢H|0)(0|H is of factor
2ev/ N /7. From this we learn that a necessary condition for a quantum
speed-up is € > ﬁ These two thresholds coincide up to a constant factor.

This result may be considered as an evidence (although not a proof) that
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Figure 5.1: Braunstein et al.’s separability bounds on the Bloch ball
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inseparability s necessary for nontrivial quantum computation.

Amazingly or not, we observe that a similar result appears when con-
sidering Simon’s algorithm (Cf. Section 1.3.2), which performs well only
when initialized with the pure state H|0). If it is initialized with the p =
£ + e |0) (0| H pseudo-pure state and repeated until success, the expected
number of queries needed is O(M%N). Since the best classical solution re-

quires O(v/ N) queries, the quantum advantage is of factor fog. Again, this

implies that if € < ﬁ, the quantum advantage vanishes.
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Appendix A

Oracle Equivalence

The regular quantum oracle and the controlled phase quantum oracle of a
binary function f(-) were described in Subsection 1.2.5 and illustrated in
figures 1.2 and 1.3. In this appendix, we prove that these two oracle models
are equivalent. Let us define them rigorously, by describing how each operates
on every element of the computation basis. The regular quantum oracle is
the operation

Up |z, y) — |,y & f(2)),

and the controlled phase quantum oracle is
c-pUs : |z, ¢) — (=)@ |z, ¢).

Figure A.1 demonstrates the reduction Uy > c-pUy, where H denotes the
Hadamard transform of a single qubit. Inspired by [26, page 113], we added
the control bit to the known construction of an uncontrolled phase oracle
using a regular oracle. Figure A.2 demonstrates the reduction c-pU; > Uy.
We apply the Hadamard transform to the control line of c-pUy before and
after the oracle query. Each transform cancels out its respective Hadamard
transform from the previous construction, and returns the oracle to its simple
form.

Initially we check the reduction Uy > c-pUy for the two possible values of
¢, and for arbitrary value of z:

H 1
0.0) 2 (12.0) +[2.1)
U (e f@) + o1 @ f@)

S

2
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) — H

Figure A.1: Construction of a controlled phase quantum oracle using a reg-

ular quantum oracle

279 7011p YR MYRNARA NI IR KPR N3

|z)

ly) H

H

ly @ f(x))

Figure A.2: Construction of a regular quantum oracle using a controlled

phase quantum oracle
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1
= % (|z,0) + |z, 1))

A |2,0) = (=1)*7®|z,0),

and
z,1) & 7(|$ ,0) = |z, 1))
Y 7(|a: f2) = |z, 16 f(2))
(_1)f($)

_ (|, 0) — |z, 1))

A (=)@ g, 1),

Similarly, the opposite reduction is checked for the two possible values of ,
and for arbitrary |z):

H

|z, 0) — 7— (I, 0) + [z, 1))
c-Llff \/Lﬁ (|I, 0)> + (—1)f(m)|x7 1>)
a0 f(2)),
and
1) & 7 (|,0) =]z, 1))
o 2 oo
Lz 1@ f(x)).
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