
Quantum Algorithms

– Lecture Notes∗–
Summer School on Theory and Technology in

Quantum Information, Communication,

Computation and Cryptography

Julia Kempe†

CNRS & LRI, Université de Paris-Sud
91405 Orsay, France

June 2, 2006

∗These lecture notes are based on a book chapter written by the author for ”Lectures
in Quantum Information”, edited by D. Bruss and G. Leuchs and to be published by
Birkhäuser in 2006

†kempe@lri.fr

1

Contents

1 Introduction 2

2 Notation 3

3 The quantum circuit model 5

4 First Algorithms: Deutsch and Deutsch-Josza 9

5 Period finding 13
5.1 Simon’s algorithm . 13
5.2 Shor’s Factoring Algorithm 15

6 Grover’s Algorithm 19

7 Other Algorithms 20
7.1 The Hidden Subgroup problem 20
7.2 Search Algorithms . 22
7.3 Other Algorithms . 22

8 Recent Developments 23
8.1 Quantum Walks . 23
8.2 Adiabatic Quantum Algorithms 24

9 Exercises 25

1 Introduction

The idea to use quantum mechanics for algorithmic tasks may be traced back
to Feynman [24, 25]. The application he had in mind was the simulation
of quantum mechanical systems by a universal quantum system, the quan-
tum computer. Feynman argued that quantum mechanical systems are well
equipped to simulate other quantum mechanical systems; hence a universal
quantum machine might be able to efficiently do such simulations. Another
approach to this question was taken by Deutsch [14], who tried to recon-
cile quantum mechanics and the Church-Turing principle, which (roughly
speaking) states that any computable function can be calculated by what is
known as a universal Turing machine. Deutsch put the notion of a universal
machine on a physical footing and asked if the principle had to be modified
if the machine was quantum mechanical, establishing what has since been

2

known as the Church-Turing-Deutsch principle. In his work Deutsch was
also the first to exhibit a concrete computational task, which is impossible
to solve on a classical computer yet which has an easy quantum mechan-
ical solution, Deutsch’s algorithm (see next section). What is interesting
about this algorithm is not only that it is the smallest algorithm, involving
only two quantum bits (qubits). It also carries the main ingredients of later
quantum algorithms, and is a nice toy model for understanding why and
how quantum algorithms work.

A major breakthrough in quantum algorithms was made in 1994 by Peter
Shor, who gave an efficient quantum factoring algorithm. Factoring numbers
into primes is an important problem, and no efficient classical algorithm is
known for it. In fact many cryptographic systems rely on the assumption
that factoring and related problems, like discrete logarithm, are hard prob-
lems. Shor’s algorithm has put a threat on the security of many of our daily
transactions - should a quantum computer be build, most current encryption
schemes will be broken immediately.

In these lectures we will introduce quantum circuits and describe some
quantum algorithms leading up to Shor’s celebrated algorithm for factoring.
We will also give the details of another notable quantum algorithm: Grover’s
1996 algorithm for unstructured search. However, quantum algorithm de-
sign has not stopped with Shor’s discovery, and in the last few chapters of
these notes we will describe some generalizations of Shor’s algorithm (the
Hidden Subgroup problem) as well as some new algorithms and algorithmic
techniques.

Those who are interested to know more will find detailed expositions of
the classic quantum algorithms in the literature (in particular [41, 37]) and
of more recent developments in the extensive reference list at the end of
these notes.

2 Notation

In these lectures we will make use of the following conventions and notations:
A bit b is either 0 or 1, i.e. b ∈ {0, 1}. An n-bit string is a sequence of n

bits, i.e. it is an element of {0, 1}n. We often work in arithmetic over the 2-
element field GF (2). In this case we denote addition by ⊕: 0⊕0 = 1⊕1 = 0
and 0⊕1 = 1⊕0 = 1, this is just addition mod 2. We will also use⊕ to denote
bit-wise addition of bit strings mod 2, e.g. 10⊕ 11 = 01. For multiplication
of two bits b1 and b2 we will write either b1b2 or b1 · b2. The inner product of
two bit strings of same length n will also be denoted by ”·” and is defined

3

for x = x1x2 . . . xn and y = y1y2 . . . yn as x · y = x1y1 + x2y2 + . . . + xnyn

mod 2.
A qubit is a two-dimensional quantum system. We will denote the two

basis states by |0〉 and |1〉. The state of several qubits is spanned by the
tensor product of individual qubits. If the first qubit is in the state |φ〉 and
the second qubit is in the state |ψ〉, then we will write the state of the joint
system of two qubits as |φ〉⊗ |ψ〉. In case there is no ambiguity we will omit
the tensor product ⊗. The space of n qubits is spanned by the 2n states
|00 . . . 00〉, |00 . . . 01〉, . . ., |11 . . . 11〉. These states are also called computa-
tional basis states, as they correspond to the classical configurations of n bits.
A measurement in the computational basis projects onto these basis states.
Its outcomes are hence described by an n-bit string. If the system is in a
state |φ〉, then the probability that a measurement in the computational
basis gives a bit string x is given by the inner product squared | 〈x|φ〉|2.
Sometimes we will only perform a partial measurement on a state. This
means we only measure a subset of the qubits in the computational basis.
The state collapses into a state that is consistent with the measurement we
have performed. For instance if we have the state 1√

3
|00〉+ 1√

3
|01〉+ 1√

3
|11〉

and we measure the second qubit in the computational basis, then the state
of the first qubit will be |0〉 if the outcome is 0 (which happens with prob-
ability 1

3) and 1√
2
(|0〉+ |1〉) if we get outcome 1 (with probability 2

3). This
becomes more obvious if we rewrite the state as

1√
3
|00〉+

√
2√
3
|0〉+ |1〉√

2
⊗ |1〉 .

To analyse the algorithms that follow, we will need some standard nota-
tion to describe the asymptotic behavior of such functions like the running
time of an algorithm as a function of the input size. We will frequently use
the following:

• f = O(g) (f is ”big-O” of g) if there exist positive constants C and k
such that |f(x)| ≤ C|g(x)| for all x > k.

• f = Ω(g) (f is ”big-Omega” of g) if there exist positive constants C
and k such that |g(x)| ≤ C|f(x)| for all x > k.

• f = Θ(g) (f is ”big-Theta” of g) if there exist positive constants C1, C2

and k such that C1|g(x)| ≤ |f(x)| ≤ C2|g(x)| for all x > k.

4

3 The quantum circuit model

A classical computer can be described by a circuit. The input is a string of
bits ({0, 1}n). The input is processed by a succession of logical gates like
NOT, OR, AND or NAND, which transforms the input to the output. In
general the output bits are Boolean functions f : {0, 1}n → {0, 1} of the
input bits. A schematic view is depicted in Fig. 1.

1

Gates

0

1

0
.

.

.

output1

Figure 1: Schematic representation of a classical circuit computing a Boolean
function.

The way Feynman put it, a quantum computer is a machine that obeys
the laws of quantum mechanics, rather than Newtonian classical physics.
In the context of computation this has two important consequences, which
define the two aspects in which a quantum computer differs from its classical
counterpart. First, the states describing the machine in time are quantum
mechanical wave functions. Each basic unit of computation - the qubit - can
be thought of as a two-dimensional complex vector of norm 1 in some Hilbert
space. The two dimensional basis for such a qubit is often labelled as |0〉
and |1〉, where the basis states correspond to the classical bit. And second,
the dynamics that governs the evolution of the state in time is unitary,
i.e., described by a unitary matrix that transforms the state at a certain
time to the state at some later time. A second dynamical ingredient is the
measurement. In quantum mechanics observing the system changes it. In
the more restricted setting of a quantum algorithm a measurement can be
thought of as a projection on the basis states. A particular basis state will
be measured with a probability which is given by the squared amplitude in
the state that is being measured.

With these notions in place, we can describe a general quantum circuit.
In the beginning the qubits are initialized to some known classical state (a
basis state of |0〉 and |1〉, also called the computational basis), like for instance
|0〉 ⊗ |0〉 ⊗ . . . ⊗ |0〉, which we will denote by |00 . . . 0〉. Then a unitary
transformation U is performed on the qubits. In the end the qubits are
measured in the computational basis and the result is processed classically.

5

The general setting can be seen in Fig. 2.

|0〉

U

|0〉

|0〉

|0〉
.

.

.

.

.

.























measure

Figure 2: A general quantum circuit consisting of three steps: initialization of the
qubits, unitary transformation and measurement in the computational basis.

Given this model, it is not even clear if such a quantum computer is able
to perform classical computations. After all, a unitary matrix is invertible
and hence a quantum computation is necessarily reversible. Classical com-
putation given by some circuit with elementary gates, like the AND and
NOT gate, is not reversible, let alone because a gate like the AND gate has
two inputs and only one output. However, the question of reversibility of
classical computation has been studied in the context of energy dissipation
by Bennett in the 70s [8] (see also [49]), who established that classical com-
putation can be made reversible with only a polynomial overhead in the
number of bits and gates used.

Universal Reversible Classical Computation One way to make clas-
sical computation reversible is to simulate any classical circuit with AND
and NOT operations by a circuit consisting entirely of what is called a Toffoli
gate, which acts as depicted in Fig. 3.

a

b

c

a

+

b

c ⊕ ab

Figure 3: The Toffoli gate flips the last bit if the first two bits are in the state 11.

When viewed as a matrix over the 8 basis states 000, 001, 010, 011, 100,

6

101, 110, 111 the Toffoli gate acts as

T =




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0




Clearly, the Toffoli gate is reversible (it is its own inverse and implements a
permutation of the 8 bit strings).

To show how a circuit consisting of Toffoli gates can simulate any classical
circuit we will assume here that the classical circuit is made of NAND gates
and FANOUT gates. It is known (and not hard to show) that any Boolean
function can be computed by a circuit of NAND and FANOUT gates. The
FANOUT gate simply copies one bit into two bits. The NAND gate outputs
0 if and only if both input bits are 1; otherwise it outputs 1. In other
words, it acts as NAND(a, b) = 1 ⊕ ab. Fig. 4 shows how the Toffoli gate
can implement the FANOUT and the NAND gate with some extra ancillary
bits.

1

a

0

1

+

a

a

a

b

1

a

+

b

1 ⊕ ab

input }output

input{
output

b) NANDa) FANOUT

Figure 4: Implementing the FANOUT (a) and the NAND gate (b) with the Toffoli
gate.

Replacing every occurence of a FANOUT or a NAND gate in a circuit
by the corresponding Toffoli gate supplemented with ancillary bits, we can
simulate the whole circuit in a reversible fashion. Since classical reversible
computation is just a permutation on the bit strings of its input, it is in
particular unitary. As a result, quantum computation is at least as strong
as classical computation.

The next important question is whether it is possible to build a universal
quantum machine (rather than special purpose computers). In other words,

7

is there a small set of operations that implements any unitary transforma-
tion? Classically, it is well known that any Boolean function can be com-
puted with a small set of universal gates, like AND and NOT , or NAND,
as we have seen above. Moreover each of the elementary gates in a classical
circuit only operates on few (one or two) bits at a time. Fortunately, it
turns out that a similar statement is true for the quantum world; it was
shown [15, 17] that there are sets of universal quantum gates on at most 2
qubits. In particular it has been shown that any unitary transformation can
be decomposed into a sequence of gates consisting of one-qubit gates and
CNOTs. We can describe the action of the CNOT gate by showing how it
transforms the basis states |00〉, |01〉, |10〉 and |11〉. The CNOT gate acts
as in Fig. 5.

|a〉

|b〉 +
|a ⊕ b〉

|a〉

Figure 5: The CNOT gate flips the second qubit if the first qubit is in the state
|1〉.

However, the set of gates consisting of CNOT and single qubit gates is a
continuous gate set. Sometimes it is convenient to work with a small finite
set of universal gates. One such universal gate set is the set of three gates
{π

8 , H, CNOT}, where

π

8
=

(
e
−iπ
8 0
0 e

iπ
8

)
H =

1√
2

(
1 1
1 −1

)

π
8 is a gate that multiplies the basis state |1〉 with ei π

4 , the Hadamard
gate H maps |0〉 → 1√

2
(|0〉+ |1〉) and |1〉 → 1√

2
(|0〉 − |1〉) and the controlled

NOT gate, CNOT, is as defined above. This gate set is universal in the sense
that any unitary transformation can be approximated to arbitrary precision
by a sequence of gates from this set.

It turns out that there are many other choices of finite universal gate
sets acting on few qubits only. In principle the complexity of a unitary
transformation, when counted as the number of elementary gates needed to
implement it, might depend on the choice of universal gate set. However,
Solovay and Kitaev have shown that all finite universal gate sets are equiva-
lent in the sense that if we can approximate an n-qubit unitary with poly(n)
gates from one set, we can also approximate it with poly(n) gates from the

8

other. In complexity theory, problems that can be solved by circuits with
a number of gates polynomial in the size of the input are called efficiently
solvable.

When we wish to solve a problem (like factor a large number) we are often
content with a circuit that solves the problem with some probability p, which
is not too small. If we have such a circuit and we can verify rapidly if the
circuit gave the correct answer (in the case of factoring we just need to check
if the numbers that are output are indeed factors of our original number),
we can repeat it several times to boost the success probability. Repeating
the circuit r times boosts the success probability up to 1− (1− p)r which is
exponentially close to 1.

In complexity theoretic terms, a problem that can be solved by a quan-
tum circuits with poly(n) elementary gates (from some fixed universal gate
set) with high probability, where n is size of the input, is said to be in
the complexity class BQP (which stands for bounded quantum polynomial
time).

4 First Algorithms: Deutsch and Deutsch-Josza

As mentioned before, the first quantum algorithm is Deutsch’s algorithm
[14]. Before we describe it, let us clarify the notion of a quantum black-box
function. A black box function is often used to model a subroutine of the
calculate. We are then interested to know how often this subroutine needs
to be performed to solve a problem. In this context we do not care about the
details of the calculation in the subroutine, we simply model the function
that is computed as a black box. Many of the separations between classical
and quantum computing power will be formulated in the black box or oracle
model. We will see that for certain problems a quantum algorithm needs to
make substantially less calls - or queries - to the black box than any classical
algorithm.

Classically, a black-box function can be simply thought of as a box that
evaluates an unknown function f . The input is some n-bit string x and the
output is given by an m-bit string f(x). Quantumly, such a box can only
exist if it is reversible. To create a reversible box, the input (x) is output
together with f(x) and the black box looks like in Fig. 6:

To make the box reversible, an additional m-bit input y is added and
the output of the result is f(x) ⊕ y where ⊕ denotes bitwise addition mod
2. In particular, if y is fixed to be y = 0 . . . 0, the output is f(x). This
reversible box, when given to a classical machine, is no stronger than the

9

x

y

x

f (x) ⊕ y

f

Figure 6: A reversible black box for a function f : {0, 1}n −→ {0, 1}m.

corresponding simple non-reversible box that maps x to f(x). Note that this
box now induces a transformation on n+m-bit strings that can be described
by a permutation of the 2n+m possible strings; in particular it is unitary.

Deutsch’s algorithm With these notions in place we can give Deutsch’s
algorithm [14].

Problem: Given a black-box function f that maps one bit to one bit,
determine if the function is constant (f(0) = f(1)) or balanced (f(0) 6=
f(1)).

Note that classically, to solve this problem with a success probability
bigger than one half, a machine has to query the black box twice; both
f(0) and f(1) are needed. Deutsch’s ingenuity is to use interference of the
amplitudes of the quantum state such that only one query to the black box
suffices. The following circuit on two qubits gives the quantum algorithm.

|0〉

|1〉

H

H

f

H

1. 2. 3. 4.

qubit 1

qubit 2

0 - ”balanced”
1 - ”constant”

Figure 7: Deutsch’s circuit.

1. The qubits are initialized in |0〉 |1〉, the first ket denotes the qubit 1
and the second one qubit 2.

2. After the Hadamard transform is applied to each qubit, the state is
1
2 (|0〉+ |1〉) (|0〉 − |1〉).

3. After the invocation of the black box the state of the two qubits is

1
2

(|0〉 (|f(0)〉 − |f(0)⊕ 1〉) + |1〉 (|f(1)〉 − |f(1)⊕ 1〉)) .

10

Note that the state of the second qubit in this expression is± (|0〉 − |1〉);
the sign depends on the value of f(0) (resp. f(1)). The state can be
rewritten as

1
2

(
(−1)f(0) |0〉+ (−1)f(1) |1〉

)
(|0〉 − |1〉) .

4. After the last Hadamard is applied, the state of the first qubit becomes

1
2

(
(−1)f(0) (|0〉+ |1〉) + (−1)f(1) (|0〉 − |1〉)

)
,

which can be rewritten as

1
2

(
(−1)f(0) + (−1)f(1)

)
|0〉+

(
(−1)f(0) − (−1)f(1)

)
|1〉

. If the function is constant, this state is ± |0〉, if it is balanced, the
state is ± |1〉. The final measurement will completely distinguish these
two cases.

As a result, Deutsch’s algorithm saves one query compared to the best pos-
sible classical algorithm for this problem. One query might seem very little,
yet we will see how this algorithm has been generalized in several steps to
ultimately factor numbers.

Deutsch-Josza algorithm In a first step, Deutsch and Josza [16] gener-
alized Deutsch’s algorithm to give a problem where the quantum algorithm
gives more than just a single query advantage. It is, however, a promise
problem.

Problem: Given a black-box function f that maps n bits to one bit,
with the promise that the function is constant (f(x) = f(y)) or balanced
on exactly half the inputs (for all x there are exactly 2n−1 different y such
that f(x) 6= f(y)), determine which one is the case.

Note that classically, to solve this problem deterministically, one needs
2n−1 +1 queries in the worst case, as in the balanced case one might have to
query 2n−1 different y for some x before one finds a y such that f(x) 6= f(y).
The Deutsch-Josza algorithm solves this problem with one quantum query
with the following algorithm. The analysis of this algorithm is very similar
to Deutsch’s algorithm. The difference in the circuit is that the Hadamard
transform on one qubit is replaced with the tensor product of n Hadamard
transforms H⊗n on n qubits. Let us first analyze the action of H⊗n on a

11

|0〉

|1〉

H
⊗n

H

f

1. 3. 4.

qubits

qubit

|0〉
|0〉

... H
⊗n

1...n

n + 1



















00...0 - ”constant”

else - ”balanced”

2.

Figure 8: Deutsch-Josza algorithm.

basis state |x〉 (x is an n-bit string). The transformation induced by a single
Hadamard on a qubit i in the basis state |xi〉 can be written as

H |xi〉 =
1√
2
(|0〉+ (−1)xi |1〉) =

∑

yi∈{0,1}
(−1)xi·yi |yi〉

. Applying this to H⊗n with |x〉 = |x1 . . . xn〉 we get

H⊗n |x1 . . . xn〉

=
1√
2n


 ∑

y1∈{0,1}
(−1)x1·y1 |y1〉


⊗ . . .⊗


 ∑

yn∈{0,1}
(−1)xn·yn |yn〉




=
1√
2n

∑

y∈{0,1}n

(−1)x1·y1+...+xn·yn |y〉 =
1√
2n

∑

y∈{0,1}n

(−1)x·y |y〉 , (1)

where x·y is the inner product of the vectors x and y mod 2. The Hadamard
transform H and H⊗n are instances of a more general transformation, called
the Quantum Fourier transform (QFT). In our circuit H⊗n gives in step 2.
the state

1√
2n

∑

y∈{0,1}n

|y〉 1√
2

(|0〉 − |1〉) .

As before, at step 3. the state of the system on the first n qubits, is

|φ3〉 :=
1√
2n

∑

y∈{0,1}n

(−1)f(y) |y〉 .

If the function is constant, then this state is just the uniform superposition
over all bit strings (up to a global phase) and using Eq. (1) we see that the
state at step 4. is simply (−1)f(0) |0 . . . 0〉. If the final measurement gives
the all zero string the output of the algorithm is ”constant”. Otherwise the
overlap of our state of the first n qubits at step 4., H⊗n |φ3〉, with the state
|0 . . . 0〉 is 0, which means a measurement never gives the all zero string.

12

To see this, note that 〈0 . . . 0(H⊗n |φ3〉) = (〈0 . . . 0|H⊗n) |φ3〉 and let us
calculate the inner product of |φ3〉 with the Fourier-transform of the all zero
state:

〈
0 . . . 0|H⊗n

∣∣φ3〉

=
1
2n


 ∑

y1∈{0,1}n

〈y1 |




 ∑

y2∈{0,1}n

(−1)f(y2) |y2〉



=
1
2n

∑

y1∈{0,1}n

(−1)f(y1). (2)

Using that f is balanced we get that this sum is 0. Hence in case that f is
constant a measurement will always give the all zero string whereas in the
balanced case we will always get an outcome different from all zeroes. This
completes the analysis.

Note, that the speed-up achieved by the quantum algorithm from O(2n)
queries to 1 query only holds if we compare with a classical deterministic
machine. If the classical machine is allowed to be probabilistic, then the
classical query complexity reduces to O(1): If we query the function at
random then in the balanced case each of the two function values will be
seen with probability 1/2 and with very high probability we will see two
different function values after a constant number of queries.

5 Period finding

So far we have seen separations between classical and quantum complexity
that did not hold if we allowed for randomness. The following two algo-
rithms will give the first separations that hold even with randomness. They
both involve finding the period of some function. Indeed, most problems
where a quantum computer excels exponentially over the best known clas-
sical algorithm are of the period finding flavor1.

In the next algorithm a quantum computer solves a problem with an
exponential speed-up over the best classical probabilistic machine.

5.1 Simon’s algorithm

This algorithm of Simon [48] finds the “period” of a function.
1with the notable exception of certain quantum walk based separations, see e.g. [12]

13

Problem: Given a function from n bits to n bits with the promise that
there is an n-bit string a 6= 0 . . . 0 such that for all x, y f(x) = f(y) if and
only if y = x⊕ a, find a.

One can show that the best any classical probabilistic machine can do
is to query elements at random until a collision is found. The probability
of a collision for two randomly chosen elements is about 2−n, and a slightly
more elaborate analysis shows that the expected number of queries until a
collision happens among the queried elements is O(2n/2).

Interestingly, the quantum algorithm is very similar to the Deutsch-Josza
algorithm with the difference that there are now 2n qubits as input to the
black box and no Hadamard transforms on the second block of qubits, see
Fig. 9. This circuit implements a special case of what is called Quantum
Fourier Sampling.

|0〉

f

1. 2. 3. 4.

qubits

|0〉

|0〉
... QFT

1...n











qubits

n+1...2n ...

|0〉
|0〉

|0〉











H
⊗n

Figure 9: Simon’s algorithm - Quantum Fourier Sampling. In our algorithm
QFT = H⊗n. In general a QFT over a group G gives the Quantum Fourier
Sampling algorithm over G.

Note that there is a partition of the 2n input strings into two sets X and
X̄ = {x⊕ a|x ∈ X} with |X|, |X̄| = 2n−1, such that all the values f(x) are
distinct for x ∈ X and similarly for X̄. At step 3. the state is

1√
2n

∑

x∈{0,1}n

|x〉 |f(x)〉 =
1√

2n−1

∑

x∈X

1√
2

(|x〉+ |x⊕ a〉) |f(x)〉 .

A measurement of the qubits in the second register will yield one of the
2n−1 values of f(x) with equal probability and collapse the state of the first
register to 1√

2
(|x〉+ |x⊕ a〉) for a random x ∈ X. At step 4. the state

14

becomes

1√
2n+1

∑

y∈{0,1}n

(
(−1)x·y + (−1)(x⊕a)·y

)
|y〉

=
1√

2n+1

∑

y∈{0,1}n

(−1)x·y (1 + (−1)a·y) |y〉

=
1√

2n−1

∑

y:y·a=0

(−1)x·y |y〉 .

A measurement of the first register gives a random y = y1 such that a·y1 = 0.
We can now repeat this algorithm to obtain y2 with a · y2 = 0, y3 with
a · y3 = 0 and so on. These yi form a subspace of the n-dimensional vector
space of all n-bit strings (over GF (2)). If among the yi there are n−1 vectors
that are linearly independent (i.e. such that they span a space of dimension
n−1), then the equations a ·yi completely determine a 6= 0. But for each set
of yi that do not yet span a space of dimension n−1 the probability that the
next y will be outside the space is at least 1/2, because the space spanned
by them contains at most 2n−2 out of the 2n−1 possible y’s. Hence after
O(n) repetitions of the algorithm with a probability exponentially close to
1 we will have enough information to determine a.

5.2 Shor’s Factoring Algorithm

Conceptually it is now only a small step from Simon’s algorithm to Shor’s
algorithm for factoring. The first necessary observation is that in order to
find a factor of a number, it is sufficient to solve a problem called period
finding, the problem Shor’s algorithm [47] actually solves:

Problem (Period Finding): Given a function f : Z → Z and an integer
N with the promise that there is a period a ≤ N such that for all x, y,
f(x) = f(y) if and only if y ∈ {x, x± a, x± 2a, . . .}, find a.

Reduction from Factoring to Period Finding Let us assume that we
want to factor the number N . Once we have an algorithm that gives one
factor q of N , we can restart the algorithm on q and N/q; we obtain all
factors of N after at most log N iterations. Assume N is odd and not a
power of a prime (both conditions can be verified efficiently and moreover
in these cases it is easy to find a factor of N). First, we select a random
1 < y < N and compute GCD(y, N) (this can be done efficiently using the
Euclidean algorithm). If this greatest common divisor is larger than 1 we

15

have found a non-trivial factor of N . Otherwise, y generates a multiplicative
group modulo N . This group is a subgroup of Z∗N , the multiplicative group
modulo N . The order of this group is determined by the factors of N (and
is unknown to us). The smallest integer a such that ya ≡ 1 mod N , known
as the order of y, is the period of the function fy(x) = yx mod N . This
function can be viewed as a function over Z.

Invoking now the period finding algorithm we can determine a. If a is
even then N |(y a

2 + 1)(y
a
2 − 1). We know that N - (y

a
2 − 1) (a

2 is not the
period of fy), so if N - (y

a
2 + 1) then N must have a common factor with

each of (y
a
2 ± 1) and we can determine it by computing GCD(N, y

a
2 − 1).

It remains to be shown that with probability at least 1/2 over the choice of
y both conditions are satisfied, i.e., both a is even and N - (y

a
2 + 1). This

can be shown using the Chinese Remainder Theorem (see e.g. [37, 41, 42]).

In what follows we focus on solving the period finding problem. We use
essentially the same quantum circuit as in Simon’s algorithm Fig. 9, namely
Quantum Fourier Sampling with an appropriate definition of the Quantum
Fourier transform.

Definition: The Quantum Fourier transform over ZM , the cyclic group
of numbers mod M , implements the unitary

QFT : |x〉 −→ 1√
M

∑

y∈ZM

ωx·y |y〉 ,

where ω = e
2πi
M is an M th root of unity.

Notice that the QFT over Z2 is just the Hadamard transform on one
qubit, and in general the transformation H⊗n in Deutsch-Josza and in Si-
mon’s algorithms implements the QFT over the group Zn

2 . The Fourier
transform in that case is just a tensor product of single qubit unitaries. The
ingenious part of Shor’s algorithm is to show that the QFT over ZM is also
implementable efficiently, i.e., in time polynomial in log M , by a quantum
circuit.

Implementation of the QFT Note that the QFT implements an M×M
unitary matrix with entries ωx·y. A naive classical algorithm that computes
each entry separately and then sums the appropriate rows to compute each
of the amplitudes

∑
y ωx·y will require O(M2) steps. However, there is a well

known trick to speed up the evaluation of all these sums: The classical Fast
Fourier transform (FFT) takes only time O(M log M) for this task. For ease
of presentation let us assume that M = 2n. To evaluate ωx·y = exp(2πix·y

2n),

16

let us expand x in binary notation x = xn−12n−1 +xn−22n−2 + · · ·+x12+x0

and similarly for y. In the product x · y we can ignore all terms divisible by
2n as they do not contribute to the exponent. Now

x · y
2n

= yn−1(.x0)+yn−2(.x1x0)+yn−3(.x2x1x0)+ · · ·+y0(.xn−1xn−2 . . . x0).

The terms in parenthesis are binary expansions, e.g. .x2x1x0 = x22−1 +
x12−2 + x02−3. The amplitude

∑

y∈ZM

ωx·y =


 ∑

yn−1∈{0,1}
e2πiyn−1(.x0)


 . . .


 ∑

y0∈{0,1}
e2πiy0(.xn−1xn−2...x0)




can now be evaluated sequentially in time O(log M) for each of the M values
of x.

Quantum parallelism improves this drastically. We can write

1√
M

∑

y∈ZM

ωx·y |y〉 =
1√
2n

(
|0〉+ e2πi(.x0) |1〉

)
⊗

(
|0〉+ e2πi(.x1x0) |1〉

)
⊗

· · · ⊗
(
|0〉+ e2πi(.xn−1...x1x0) |1〉

)
.

Fig. 10 shows a circuit that implements this transformation on Z8. The

|x0〉

|x1〉

|x2〉 H R1 R2

H R1

H |y2〉

|y1〉

|y0〉

Figure 10: QFT on Z8. An element of Z8 is represented in binary notation x =
x2x1x0, y = y2y1y0.

Hadamard on qubit xi can be thought of as performing |xi〉 → (|0〉 +
e2πi(.xi) |1〉). The conditional rotations Rd give a phase of eiπ/2d

to the
qubit on which they act whenever the control qubit is in the state |1〉. The
obvious generalization of this circuit to n qubits has 1

2n(n+1) = O(log2 M)
gates.

Shor’s algorithm for period finding With this implementation of the
QFT in place we can analyse the algorithm in Fig. 9 for period finding.
We need to chose the integer M over which the QFT is performed. For

17

our problem (a ≤ N) we chose M = 2n to be a power of 2 such that
N2 < M ≤ N4.

For the moment, let us make the simplifying assumption that the period
a divides M . At step 2. the first register is in a uniform superposition over
all elements of ZM . As in Simon’s algorithm the state at step 3. after the
measurement of the second register is

√
a

M

(
|x〉+ |x + a〉+ . . . +

∣∣∣∣x +
(

M

a
− 1

)
a

〉)
|f(x)〉 (3)

for some random x ∈ ZM . The QFT transforms the state of the first n
qubits into
√

a

M

∑

y∈ZM




M/a−1∑

j=0

ω(x+ja)y


 |y〉 =

√
a

M

∑

y∈ZM

ωxy




M/a−1∑

j=0

ωjay


 |y〉 .

Since a divides M , we have that whenever ωay 6= 1, i.e., whenever y /∈
{0,M/a, 2M/a, . . . , (a− 1)M/a}

M
a
−1∑

j=0

(ωay)j =
1− ωMy

1− ωay
= 0.

This implies that in Eq. (4) the amplitudes of basis states |y〉 for y not a
multiple of M/a are zero. Consequently the state at step 4. is a superposi-
tion over all y ∈ {0,M/a, 2M/a, . . . , (a− 1)M/a} and a measurement gives
a uniformly random y = cM/a. To extract information about a we need
to solve y/M = c/a. Whenever c is coprime to a (which can be shown to
happen with reasonable good probability Ω(1/ log log a)) we can write y/M
as a minimal fraction; the denominator gives a.

In the (more likely case) that a does not divide M it is not hard to
see that the same algorithm will give with high probability a y such that
|y/M − c/a| ≤ 1/2M for some 0 ≤ c < a. But two distinct fractions with
denominator at most N must be at least 1/N2 > 1/M apart, so c/a is the
unique fraction with denominator at most N within distance 1/2M from
y/M and can be determined with the continued fraction expansion.

Note, that in Shor’s algorithm the function fy(x) = yx mod M is not
given by a black box, but needs to be computed every single time. This
could be difficult since the exponent x is very large. However, using the
binary expansion of x and repeated squaring, it is not hard to see that there
exists a classical subroutine for computing fy in time polynomial in log M .
As a result Shor’s algorithm gives a factor of N with high probability in
time polynomial in log N .

18

6 Grover’s Algorithm

The second milestone in quantum algorithm design is Grover’s algorithm
for unstructured search [28, 29]. The problem of unstructured search is
paradigmatic for any problem where an optimal solution needs to be found in
a black box fashion, i.e., without using the possible structure of the problem:

Problem: Given a Boolean black box function fw : {0, 1}n → {0, 1} which
is equal to 0 for all inputs except one (“marked item” w), find the marked
item w.

Classically, a deterministic algorithm needs to make 2n − 1 queries to
identify w in the worst case and a probabilistic algorithm still needs O(2n)
queries. Grover gave a quantum algorithm that solves this problem with
O(
√

2n) queries and this is known to be the best possible. Grover’s algorithm
can hence speed up quadratically any algorithm that uses searching as a
subroutine.

Grover’s quantum algorithm applies the subroutine of Fig. 11 about
√

2n

times. Here, the n-qubit gate C[P] denotes a controlled phase; it flips the

|0〉−|1〉√
2

H
⊗n

fw

1. 2. 3.

qubits

qubit

...
1...n



















ancilla

H
⊗n

C[P]

Figure 11: Subroutine in Grover’s algorithm

sign of all basis states except for the all zero state. Its action can be concisely
written as C[P] = 2 |0 . . . 0〉〈0 . . . 0| − In, where In denotes the identity on
n qubits. This operation is conjugated by the Hadamard transform, which
maps |0 . . . 0〉 to the uniform superposition |Ψ〉 = 1√

2n

∑
x∈{0,1}n |x〉. So the

net operation between steps 1. and 2. can be written as RΨ = 2 |Ψ〉〈Ψ|−In.
It is sometimes called diffusion or reflection around the mean, because it flips
the amplitude of a state around its “mean” 1√

2n . The operation between

steps 2. and 3. with the ancillary qubit set to 1√
2
(|0〉 − |1〉) is similar to

Fig. 8; it gives a phase of (−1)f(x) to the basis state |x〉. In our case only
f(w) is nonzero and so only the phase of |w〉 is flipped. This operation can
be written as Rw = In − 2 |w〉〈w|. It is called reflection around w. Grover’s

19

algorithm first applies H⊗n to the state |0 . . . 0〉 and then iterates T times
the subroutine RwRΨ of Fig. 11.

Note that with input |Ψ〉 the subroutine in Fig. 11 leaves invariant
the subspace spanned by |Ψ〉 and |w〉. Inside this space it acts as a real
rotation with angle φ, where φ ≈ sinφ = 1√

2n . After T time steps the state
has rotated from |Ψ〉 towards the nearly orthogonal |w〉 by an angle Tφ.
Choosing T = bπ

2

√
2nc gives a state that has overlap with |w〉 very close to

1. A measurement now gives w with very high probability.
It is not hard to see that this algorithm also works in the case of k

marked items in the database; in this case its running time is O(
√

2n

k).

7 Other Algorithms

Developments in quantum algorithm design after Shor’s and Grover’s algo-
rithms can be loosely grouped into three categories: algorithms that general-
ize Shor’s algorithm (Hidden Subgroup algorithms), algorithms that perform
some version of unstructured search (”Grover-like” algorithms) and a few
algorithms that don’t fit into either of these categories. We mention here
only a small selection of new quantum algorithms and techniques.

7.1 The Hidden Subgroup problem

Shor’s algorithm can be seen as an instance of a more general problem, the
Hidden Subgroup Problem. The function f in the period finding problem,
viewed over ZM , is constant on sets {x, x + a, ...} for each x and distinct
on disjoint such sets; if a divides M it is constant on cosets x + 〈a〉 of the
subgroup of ZM generated by a and distinct on different such cosets.

Definition: The Hidden Subgroup Problem (HSP) - given a function f :
G → R on a group G, and a subgroup H < G such that f is constant on
(left) cosets of H and distinct for different cosets, find a set of generators
for H.

The HSP is an important problem. An efficient algorithm for the group
ZM yields an efficient factoring algorithm. It is also a component of an
efficient algorithm for the discrete logarithm over ZM . Discrete logarithm
is another cryptographic primitive in classical cryptography which would
be broken by a quantum computer. Quantumly, a slight generalization of
Shor’s algorithm gives an efficient algorithm for HSP for all Abelian groups.
Kitaev [36, 38, 37] developed a quantum algorithm for the Abelian Stabilizer

20

problem, another instance of the Hidden Subgroup Problem, using phase es-
timation, which corresponds in a way to the quantum Fourier transform and
also solves the HSP over Abelian groups. Using the Abelian HSP Hallgren
[30] gives a polynomial time quantum algorithm for Pell’s equation, a num-
ber theoretic problem known to be at least as hard as factoring. Among
other applications of the HSP, Friedl et al. [26] solve the hidden translation
problem: given two functions f and g defined over some group Zn

p such that
f(x) = g(x + t) for some hidden translation t, find t.

One of the most interesting challenges since Shor is to design quantum
algorithms for the non-Abelian HSP. For instance, an efficient solution for
the symmetric group Sn (permutations of n elements) would give an efficient
algorithm for the Graph Isomorphism problem: to determine whether two
given graphs are equal up to permutation of the vertices. Another important
problem is the HSP over the dihedral group DN (the group of symmetries
of a regular N -gon). A solution in this case would give an algorithm for the
shortest vector problem in a lattice; this reduction was shown by Regev [43].
The shortest vector problem is at the base of several classical cryptographic
schemes designed as an alternative to those based on factoring or discrete
logarithm.

In the context of the HSP over any group, Ettinger, Høyer and Knill [20]
showed that a polynomial amount of coset states of the form

1√
|H|

∑

h∈H

|x + h〉 |f(x)〉

(compare with Eq. (3)) are enough to information theoretically obtain all
the information about the hidden subgroup H. However, to extract this
information they need exponential amount of time in the worst case; hence
this algorithm is not efficient in general. For the HSP over the dihedral
group D2n Kuperberg [39] gives a quantum algorithm that runs in time
2O(

√
n), a quadratic improvement in the exponent over [20] (and over any

classical algorithm). There has been a lot of effort in analyzing the per-
formance of Quantum Fourier Sampling (Fig. 9), when the QFT is the
Fourier transform over the group G, when the hidden subgroup H is a sub-
group of G. In the case of the symmetric group the (non-Abelian) QFT is
efficiently implementable by a quantum computer [7]; however a series of pa-
pers [32, 27, 34, 40] showed that this approach to the problem cannot work
(in the case of measurements of one or two and recently [31] even Ω(n log n)
copies of the state in step 4. in Fig. 9). It is an open question whether
there are any efficient quantum algorithms for the HSP using other tools,
not necessarily based on the QFT.

21

7.2 Search Algorithms

Several quantum algorithms that use Grover’s search as a subroutine have
been found and shown to have a polynomial speed up over their classi-
cal counterparts. For example, Brassard et al. [10] give a quantum algo-
rithm for the problem of finding collisions in a k-to-1 function. For a k-to-1
black box function f the task is to find a collision, i.e., two inputs x 6= y
such that f(x) = f(y). The idea is to first classically query a set K of
size |K| = (N/k)1/3 and check it for collisions, which can be done with
O((N/k)1/3) queries. If a collision is found the algorithm outputs it and
stops, otherwise we set up a Grover search for a function f defined out-
side K that is 1 iff there is a collision with an element in K. In that case
there are (k − 1)|K| ≈ k2/3N1/3 “marked items” and Grover’s search runs
in time

√
N/(k2/3N1/3) = (N/k)1/3. So the total number of queries of this

algorithm is O((N/k)1/3), better than any classical algorithm.
Other applications of Grover’s algorithm include deciding whether all

elements in the image of a function on N inputs are distinct [11], which can
be done in time O(N3/4) with Grover’s algorithm as a subroutine. Note that
recently a better quantum algorithm based on quantum walks has been given
for this problem [4] (see next section). In [19] optimal quantum algorithms
for graph problems such as (strong) connectivity, minimum spanning tree
and shortest path are given using Grover’s search.

7.3 Other Algorithms

Most known quantum algorithms are based on either the QFT or Grover’s
search. A few quantum algorithms fall outside these two frameworks. One
such remarkable algorithm is for searching in an ordered list, a problem that
classically takes time log2 N + O(1). Two quantum algorithms have been
given for this problem, both based on binary trees. The best known algo-
rithm by Farhi et al. [22] finds a good quantum algorithm on a small subtree
and then recurses, running with 0.526 log2 N queries. A very appealing al-
gorithm was given by Høyer et al. [33] using the Haar-transform on the
binary tree with log3 N + O(1) ≈ 0.631 log2 N + O(1) queries; a very inter-
esting application of alternative efficient quantum transformations outside
the QFT.

22

8 Recent Developments

We have seen that two types of quantum algorithms dominate the field, those
that implement a version of the Hidden Subgroup problem or use the QFT
and those that use a version of Grover’s search. Recently, two alternative
trends have entered the field, which we will briefly outline.

8.1 Quantum Walks

One of the biggest breakthroughs in classical algorithm design was the in-
troduction of randomness and the notion of a probabilistic algorithm. Many
problems have good algorithms that use a random walk as a subroutine. To
give just one example, the currently best algorithm to solve 3SAT [46] is
based on a random walk. With this motivation in mind, quantum analogues
of random walks have been introduced. There exist two different models
of a quantum walk, the continuous-time model introduced in [23] and the
discrete time model of [1, 5]. The continuous model gives a unitary trans-
formation directly on the space on which the walk takes place. The discrete
model introduces an extra coin register and defines a two-step procedure
consisting of a “quantum coin flip” followed by a coin-controlled walk step.
The quantities important for algorithm design with random walks are their
mixing time – the time it takes to be close to uniformly distributed over
the domain – and the hitting time – the expected time it takes to hit a
certain point. These quantities have been analyzed for several graphs in
both the continuous and the discrete model. It turns out that a quantum
walk can speed up the mixing time up to quadratically with respect to its
classical counterpart; so the classical and quantum performance are polyno-
mially related. The hitting behavior of a quantum walk, however, can be
very different from classical. It has been shown that there are graphs and
two vertices in them such that the classical hitting time from one vertex to
the other is polynomial in the number of vertices of the graph, whereas the
quantum walk is exponentially faster. Using this idea in [12] an (artificial)
problem is constructed for which a quantum walk based algorithm gives a
provable exponential speed-up over any classical probabilistic algorithm. It
is open whether quantum hitting times can be used to speed up classical
algorithms for relevant problems.

Based on this work a quantum walk algorithm has been introduced in
[45] for the problem of finding a marked vertex in a graph. The idea is very
simple: the algorithm starts in the uniform superposition over all vertices.
At each step it performs a quantum walk; there are two local rules for the

23

walk, at an unmarked vertex the walk proceeds as usual, but at a marked
vertex a different transition rule is applied (usually at an unmarked vertex
a quantum coin is flipped and at a marked vertex it is not flipped). It turns
out that after some time the amplitude of the state concentrates in the
marked item(s); a measurement finds a marked item with high probability.

This algorithm solves Grover’s problem on a graph. Why do we need a
quantum walk search if we have Grover’s algorithm? It turns out that there
are situations when the diffusion step RΨ of Grover’s algorithm cannot be
implemented efficiently (because the local topology of the database does not
allow for it, because of limitations on the quantum gates or because it is too
costly in a query setting). A quantum walk only makes local transitions and
can be more advantageous. One example is the search for a marked item
in a 2 dimensional database. In this case Grover’s algorithm requires

√
N

queries, but to shift amplitude form one item of the database to another
on the grid takes an additional

√
N steps on average per query. The net

complexity of the algorithm becomes
√

N · √N = N and the quantum
advantage is lost. The quantum walk algorithm has been shown to find a
marked item in time O(

√
N log N) [6].

A second example of the superiority of the quantum walk search over
Grover’s algorithm has been given in [4]. Ambainis uses a quantum walk
to give an improved algorithm for element distinctness, which runs in op-
timal time O(N2/3); thus improving over Grover-based algorithms for this
problem (which runs in time O(N3/4), see Sec. 7). Several new quantum
walk based algorithms with polynomial improvements over Grover-based
algorithms have followed suit. For references on quantum walks see [35, 3].

8.2 Adiabatic Quantum Algorithms

Another recent alternative for algorithm design has been the introduction of
adiabatic quantum algorithms by Farhi et al. [21]. The idea is the following:
many optimization and constraint satisfaction problems can be encoded into
a sum of local Hamiltonians H =

∑
i Hi such that each term Hi represents a

local constraint. The groundstate of H violates the smallest number of such
constraints and represents the desired optimal solution. In order to obtain
this state, another Hamiltonian H ′ is chosen such that the groundstate of
H ′, |Φ′〉, is easy to prepare. An adiabatic algorithm starts in the state |Φ′〉
and applies H ′. The Hamiltonian is then slowly changed from H ′ to H,
usually in a linear fashion over time, such that the Hamiltonian at time t is
given by H(t) = (1− t/T)H ′ + (t/T)H. Here T is the total runtime of the
algorithm. If this is done slowly enough, the adiabatic theorem guaranties

24

that the state at time t will be the groundstate of H(t), leading to the
solution, the groundstate of H, at time T . The instantaneous groundstate
of the system is ”tracked”. But how slow is slow enough? The adiabatic
theorem gives bounds on the speed of change of H(t) such that the state
stays close to the groundstate. These bounds are determined by the energies
of the Hamiltonian H and by the inverse gap of the Hamiltonians H(t).
The gap of a Hamiltonian is the energy difference between its groundstate
and first excited state, or the difference between its smallest and second
smallest eigenvalue when viewed as a matrix. To design an efficient adiabatic
algorithm, one has to pick H and H ′ such that the gap of H(t) at all times
t is at least inverse polynomial in the size of the problem.

Farhi et al. set up adiabatic algorithms for NP -complete problems like
3SAT [21]. It has been impossible so far to determine the gap analytically
and the number of qubits in numerical simulations is limited. However, this
approach seems promising, even though there is now mounting evidence that
an adiabatic algorithm cannot solve NP -complete problems efficiently. For
instance, quantum unstructured search has been implemented adiabatically
and shown to have to same run-time as Grover’s algorithm [44, 13].

It is not hard to see that an adiabatic algorithm can be simulated ef-
ficiently with a quantum circuit [21] – one needs to implement a time-
dependent unitary that is given by a set of local Hamiltonians, each one
acting only on a few qubits. Recently it has been shown [2] that also any
quantum circuit can be simulated efficiently by an appropriate adiabatic al-
gorithm; hence these two models of computation are essentially equivalent.
This means that a quantum algorithm can be designed in each of the two
models. The advantage of the adiabatic model is that it deals with gaps
of Hermitian matrices, an area that has been widely studied both by solid
state physicists and probabilists. Hopefully this new toolbox will yield new
algorithms.

9 Exercises

1. Classical Reversible Computation: We have seen that using the 3-bit
Toffoli gate one can compute any Boolean function (Toffoli gates are
universal). Is there a universal set of 1- and 2-bit gates? If yes, give
it, if no, prove your answer.

2. Universality: Give an implementation of the n-qubit gate C[P] in
Grover’s algorithm (C[P] = 2 |0 . . . 0〉〈0 . . . 0| − In in terms of the ele-
mentary 1- and 2 qubit gates from the universal set {X, PI/8,H, CNOT}

25

(see Sec. 1).

3. Bernstein-Vazirani algorithm [9]: Give a quantum algorithm for the
following problem. Given a function fa : {0, 1}n −→ {0, 1}, fa(x) =
a · x(=

∑n
i=1 aixi) for some a ∈ {0, 1}n, find a with one query only.

How many queries are needed in a classical deterministic algorithm?
In a classical probabilistic algorithm?

4. QFT with bounded precision: Quantum gates cannot be implemented
with perfect precision. Define the error of a gate U that is supposed to
implement V as E(U, V) := max|v〉:‖|v〉‖=1 ||(U −V)|v〉||. We have seen
an implementation of the QFT over ZN with about 1

2 log2 N gates.
a) Show: If each gate in the QFT is implemented with error at most
ε for some ε > 0, then this circuit approximates the QFT with error
O(log2 N/ε).
b) Give a circuit with only O(log N log log N) gates that for any c > 1
approximates the QFT to within error 1/ logc N .

5. Grover with several marked items: First, compute the run-time of
Grover’s algorithm when there are exactly k marked items and k is
known in advance. Then, give an algorithm for Grover’s problem when
the number of marked items is not known.

6. Minimum Finding [18]: Given N distinct integers, design a quan-
tum algorithm that finds their minimum with O(

√
N log N) queries.

Hint: Pick a random element and use O(log N) rounds. In each round
use Grover’s search to replace this element with another one that is
smaller.

References

[1] D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani. Quantum walks
on graphs. In Proc. 33th ACM Symp. on the Theory of Computing
(STOC), pages 50–59, 2001.

[2] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and
O. Regev. Adiabatic quantum computation is equivalent to standard
quantum computation. In Proc. 45th Annual IEEE Symp. on Founda-
tions of Computer Science (FOCS), pages 42-51, 2004.

[3] A. Ambainis. Quantum search algorithms (survey). SIGACT News,
35(2):22–35, 2004.

26

[4] A. Ambainis. Quantum walk algorithm for element distinctness. In
Proc. 45th Annual IEEE Symp. on Foundations of Computer Science
(FOCS), pages 22–31, 2004.

[5] A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Watrous. One-
dimensional quantum walks. In Proc. 33th ACM Symp. on the Theory
of Computing (STOC), pages 60–69, New York, NY, 2001.

[6] A. Ambainis, J. Kempe, and A. Rivosh. Coins make quantum walks
faster. In Proc. 16th ACM-SIAM Symp. on Discrete Algorithms
(SODA), pages 1099–1108. 2005.

[7] R. Beals. Quantum computation of Fourier transforms over symmet-
ric groups. In Proc. 29th ACM Symp. on the Theory of Computing
(STOC), pages 48–53, 1997.

[8] Ch. Bennett. Logical reversibility of computation. IBM J. Res. De-
velop., 17:5225, 1973.

[9] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM
Journal on Computing, 26:1411, 1997.

[10] G. Brassard, P. Hoyer, and A. Tapp. Quantum cryptanalysis of hash
and claw-free functions. In Proc. of Third Latin American Symposium
on Theoretical Informatics (LATIN), number 1380 in LNCS, pages 163–
169, 1998.

[11] H. Buhrman, C. Dürr, M. Heiligman P. Høyer, F. Magniez, M. San-
tha, and R. de Wolf. Quantum algorithms for element distinctness.
In Proceedings of 15th IEEE Conference on Computational Complex-
ity. Extended version in SIAM Journal of Computing, 34(6):1324-1330,
2005.

[12] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A.
Spielman. Exponential algorithmic speedup by a quantum walk. In
Proc. 35th ACM Symp. on the Theory of Computing (STOC), pages
59–68, 2003.

[13] W. van Dam, M. Mosca, and U. Vazirani. How powerful is adiabatic
quantum computation? In Proc. 42nd Annual IEEE Symp. on Foun-
dations of Computer Science (FOCS), pages 279–287, 2001.

27

[14] D. Deutsch. Quantum theory, the church-turing principle and the uni-
versal quantum computer. Proc. Roy. Soc. London Ser. A, 400:97–117,
1985.

[15] D. Deutsch, A. Barenco, and A. Ekert. Universality in quantum com-
putation. Proc. Roy. Soc. London Ser. A, 449:669, 1995.

[16] D. Deutsch and R. Jozsa. Rapid solution of problems by quantum
computation. In Proc. Roy. Soc. London, volume 439 of A, pages 553–
558, 1992.

[17] D. P. DiVincenzo. Two-bit gates are universal for quantum computa-
tion. Phys. Rev. A, 51(2):1015–1022, 1995.

[18] C. Dürr and P. Høyer. A quantum algorithm for finding the minimum.
Technical report. http://xxx.lanl.gov/abs/quant-ph/9607014.

[19] C. Dürr, M. Heiligman, P. Høyer, and M. Mhalla. Quantum query
complexity of some graph problems. In Proc. of 31st International Col-
loquium on Automata, Languages, and Programming (ICALP), number
3142 in LNCS, pages 481–493, 2004.

[20] M. Ettinger, P. Høyer, and E. Knill. Hidden subgroup states are almost
orthogonal. Information Processing Letters, 91(1):43–48, 2004.

[21] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and
D. Preda. A quantum adiabatic evolution algorithm applied to ran-
dom instances of an NP-complete problem. Science, 292(5516):472–476,
2001.

[22] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. Invariant quantum
algorithms for insertion into an ordered list. Technical report, lanl-
arXive quant-ph/9901059, 1999.

[23] E. Farhi and S. Gutmann. Quantum computation and decision trees.
Phys. Rev. A, 58:915–928, 1998.

[24] R. Feynman. Simulating physics with computers. Internat. J. Theoret.
Phys., 21:467–488, 1982.

[25] R. Feynman. Quantum mechanical computers. Optics News, 11:11–21,
February 1985.

28

[26] K. Friedl, G. Ivanyos, F. Magniez, M. Santha, and P. Sen. Hidden
translation and orbit coset in quantum computing. In Proc. of 35th
ACM Symp. on Theory of Computing (STOC), pages 1–9, 2003.

[27] M. Grigni, L. Schulman, M. Vazirani, and U. Vazirani. Quantum me-
chanical algorithms for the nonabelian hidden subgroup problem. In
Proc. 33th ACM Symp. on Theory of Computing (STOC), pages 68–
74, 2001.

[28] L. Grover. A fast quantum mechanical algorithm for database search.
In Proc. 28th ACM Symp. on Theory of Computing (STOC), pages
212–219, 1996.

[29] L.K. Grover. Quantum mechanics helps in searching for a needle in a
haystack. Phys. Rev. Lett., 79:325, 1997.

[30] S. Hallgren. Polynomial-time quantum algorithms for pell’s equation
and the principal ideal problem. In Proc. 34th ACM Symp. on Theory
of Computing (STOC), pages 653–58, 2002.

[31] S. Hallgren, C. Moore, M. Roetteler, A. Russell, P. Sen Limits of
Quantum Coset States for Graph Isomorphism. In Proc. 38th ACM
Symp. on Theory of Computing (STOC), pages 604–17, 2006.

[32] S. Hallgren, A. Russell, and A. Ta-Shma. Normal subgroup reconstruc-
tion and quantum computation using group representations. In Proc.
32nd ACM Symp. on Theory of Computing (STOC), pages 627–635,
2000.

[33] P. Høyer, J. Neerbeck, and Y. Shi. Quantum complexities of ordered
searching, sorting and element distinctness. Algorithmica, 34(4):429–
448, 2002. Special Issue in Quantum Computation and Cryptography.

[34] J. Kempe and A. Shalev. The hidden subgroup problem and permuta-
tion group theory. In Proc. 16th ACM-SIAM Symp. on Discrete Algo-
rithms (SODA), pages 1118-1125, 2005.

[35] J. Kempe. Quantum random walks - an introductory overview. Con-
temporary Physics, 44(4):302–327, 2003.

[36] A. Kitaev. Quantum measurements and the abelian stabilizer problem.
arXive preprint lanl quant-ph/9511026, 1995.

29

[37] A.Y. Kitaev, A.H. Shen, and M.N. Vyalyi. Classical and Quantum
Computation. Number 47 in Graduate Series in Mathematics. AMS,
Providence, RI, 2002.

[38] A.Yu. Kitaev. Quantum computations: Algorithms and error correc-
tions. Russian Math. Surveys, 52:1191–1249, 1997.

[39] G. Kuperberg. A subexponential-time algorithm for the dihedral hidden
subgroup problem. SIAM Journal of Computing, 35(1): 170-188 (2005)

[40] C. Moore, A. Russell, and L. Schulman. The symmetric group defies
strong Fourier sampling. In Proc. 46th Annual IEEE Symp. on Foun-
dations of Computer Science (FOCS), pages 479-490, 2005.

[41] M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, Cambridge, UK, 2000.

[42] J. Preskill. Quantum information and computation, Lecture notes.
http://www.theory.caltech.edu/people/preskill/ph229/, 1998.

[43] O. Regev. Quantum computation and lattice problems. In Proc. 43rd
Annual IEEE Symp. on Foundations of Computer Science (FOCS),
pages 520–529, 2002.

[44] J. Roland and N. Cerf. Quantum search by local adiabatic evolution.
Phys. Rev. A, 65:042308, 2002.

[45] N. Shenvi, J. Kempe, and K.B. Whaley. A quantum random walk
search algorithm. Phys. Rev. A, 67(5):052307, 2003.

[46] U. Schöning. A probabilistic algorithm for k-SAT and constraint sat-
isfaction problems. In 40th Ann. Symp. on Foundations of Computer
Science, pages 410–414. IEEE, 1999.

[47] P.W. Shor. Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM J. Comp., 26(5):1484–
1509, 1997. preliminary version in Proceedings of the 35th Ann. IEEE
Symp. on the Foundations of Computer Science (FOCS), pages 124–
134, 1994.

[48] D. Simon. On the power of quantum computation. SIAM J. Comp.,
26(5):1474–1483, 1997. preliminary version in Proc. 26th ACM Symp.
on Theory of Computing (STOC), pages 116–123, 1994.

30

[49] T. Toffoli. Reversible computing. In W. de Bakker and J. van Leeuwen,
editors, Automata, Languages and Programming, page 632. Springer,
New York, 1980.

31

