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Abstract:

Imagine a computer whose memory is exponentially larger than its apparent physical size; a
computer that can manipulate an exponential set of inputs simultaneously; a computer that computes
in the twilight zone of Hilbert space. You would be thinking of a quantum computer. Relatively few
and simple concepts from quantum mechanics are needed to make quantum computers a possibility.
The subtlety has been in learning to manipulate these concepts. Is such a computer an inevitability
or will it be too difficult to build?

In this paper we give a tutorial on how quantum mechanics can be used to improve computation. Our
challenge: solving an exponentially difficult problem for a conventional computer---that of factoring
a large number. As a prelude, we review the standard tools of computation, universal gates and
machines. These ideas are then applied first to classical, dissipationless computers and then to
quantum computers. A schematic model of a quantum computer is described as well as some of the
subtleties in its programming. The Shor algorithm [1,2] for efficiently factoring numbers on a
quantum computer is presented in two parts: the quantum procedure within the algorithm and the
classical algorithm that calls the quantum procedure. The mathematical structure in factoring which
makes the Shor algorithm possible is discussed. We conclude with an outlook to the feasibility and
prospects for quantum computation in the coming years.

Let us start by describing the problem at hand: factoring a number N into its prime factors (e.g., the
number 51688 may be decomposed as 2% x 7 3 13 3 T1). A convenient way to quantify how

quickly a particular algorithm may solve a problem is to ask how the number of steps to complete the
algorithm scales with the size of the “input” the algorithm is fed. For the factoring problem, this
input is just the number N we wish to factor; hence the length of the input is log. V. (The base of the

logarithm is determined by our numbering system. Thus a base of 2 gives the length in binary; a base
of 10 in decimal.) "Reasonable’ algorithms are ones which scale as some small-degree polynomial in
the input size (with a degree of perhaps 2 or 3).

On conventional computers the best known factoring algorithm runs in
{exp[(64/9)/2(In N)3(1nln N)2/3])steps [3]. This algorithm, therefore, scales

exponentially with the input size log V. For instance, in 1994 a 129 digit number (known as

RSA129 [37) was successfully factored using this algorithm on approximately 1600 workstations
scattered around the world; the entire factorization took eight months [4]. Using this to estimate the
prefactor of the above exponential scaling, we find that it would take roughly 800,000 years to factor
a 250 digit number with the same computer power; similarly, a 1000 digit number would require
10%® years (significantly lon ger than the age of the universe). The difficulty of factoring large
numbers is crucial for public-key cryptosystems, such as ones used by banks. There, such codes rely
on the difficulty of factoring numbers with around 250 digits.
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Recently, an algorithm was developed for factoring numbers on a quantum computer which runs in
({ (log, N)?¥£) steps where € is small [1]. This is roughly quadratic in the input size, so factoring a

1000 digit number with such an algorithm would require only a few million steps. The implication is
that public key cryptosystems based on factoring may be breakable.

To give you an idea of how this exponential improvement might be possible, we review an
elementary quantum mechanical experiment that demonstrates where such power may lie hidden [5].
The two-slit experiment is prototypic for observing quantum mechanical behavior: A source emits
photons, electrons or other particles that arrive at a pair of slits. These particles undergo unitary
evolution and finally measurement. We see an interference pattern, with both slits open, which
wholely vanishes if either slit is covered. In some sense, the particles pass through both slits in
parallel. If such unitary evolution were to represent a calculation (or an operation within a
calculation) then the quantum system would be performing computations in parallel. Quantum
parallelism comes for free. The output of this system would be given by the constructive interference
among the parallel computations.
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