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Abstract

Most proposals for quantum neural networks have skipped over the prob-
lem of how to train the networks. The mechanics of quantum computing
are different enough from classical computing that the issue of training
should be treated in detail. We propose a simple quantum neural network
and a training method for it. It can be shown that this algorithm works
in quantum systems. Results on several real-world data sets show that
this algorithm can train the proposed quantum neural networks, and that
it has some advantages over classical learning algorithms.

1 Introduction

Many quantum neural networks have been proposed [1], but very few of these proposals
have attempted to provide an in-depth method of training them. Most either do not mention
how the network will be trained or simply state that they use a standard gradient descent
algorithm. This assumes that training a quantum neural network will be straightforward and
analogous to classical methods. While some quantum neural networks seem quite similar
to classical networks [2], others have proposed quantum networks that are vastly different
[3, 4, 5]. Several different network structures have been proposed, including lattices [6]
and dots [4]. Several of these networks also employ methods which are speculative or
difficult to do in quantum systems [7, 8]. These significant differences between classical
networks and quantum neural networks, as well as the problems associated with quantum
computation itself, require us to look more deeply at the issue of training quantum neural
networks. Furthermore, no one has done empirical testing on their training methods to
show that their methods work with real-world problems.

It is an open question what advantages a quantum neural network (QNN) would have over
a classical network. It has been shown that QNNs should have roughly the same computa-
tional power as classical networks [7]. Other results have shown that QNNs may work best

with some classical components as well as quantum components [2].

Quantum searches can be proven to be faster than comparable classical searches. We lever-
age this idea to propose a new training method for a simple QNN. This paper details such a
network and how training could be done on it. Results from testing the algorithm on several
real-world problems show that it works.



2 Quantum Computation

Several necessary ideas that form the basis for the study of quantum computation are briefly
reviewed here. For a good treatment of the subject, see [9].

2.1 Linear Superposition

Linear superpositiotis closely related to the familiar mathematical principle of linear com-
bination of vectors. Quantum systems are described by a wave funtctioat exists in a
Hilbert space. The Hilbert space has a set of statgs, that form a basis, and the system

is described by a quantum state) = . c; |¢;). |+) is said to be coherent or to be in a
linear superposition of the basis statés, and in general the coefficients are complex.

A postulate of guantum mechanics is that if a coherent system interacts in any way with its
environment (by being measured, for example), the superposition is destroyed. This loss
of coherence is governed by the wave functioriThe coefficientg; are called probability
amplitudes, andc;|* gives the probability ofy)) being measured in the statg) . Note

that the wave function describes a real physical system that must collapse to exactly one
basis state. Therefore, the probabilities governed by the amplitydesst sum to unity. A
two-state quantum system is used as the basic unit of quantum computation. Such a system
is referred to as a quantum bit or qubit and naming the two si@temnd|1), it is easy to

see why this is so.

2.2 Operators

Operatorson a Hilbert space describe how one wave function is changed into another and
they may be represented as matrices acting on vectors (the ndtafiodicates a column

vector and thé-:| a [complex conjugate] row vector). Using operators, an eigenvalue equa-
tion can be writterd |¢;) = a; |¢;), wherea; is the eigenvalue. The solutiofis;) to such

an equation are called eigenstates and can be used to construct the basis of a Hilbert space
as discussed in Section 2.1. In the quantum formalism, all properties are represented as op-
erators whose eigenstates are the basis for the Hilbert space associated with that property
and whose eigenvalues are the quantum allowed values for that property. It is important
to note that operators in quantum mechanics must be linear operators and further that they
must be unitary.

2.3 Interference

Interferenceis a familiar wave phenomenon. Wave peaks that are in phase interfere con-
structively while those that are out of phase interfere destructively. This is a phenomenon
common to all kinds of wave mechanics from water waves to optics. The well known
double slit experiment demonstrates empirically that at the quantum level interference also
applies to the probability waves of quantum mechanics. The wave function interferes with
itself through the action of an operator — the different parts of the wave function interfere
constructively or destructively according to their relative phases just like any other kind of
wave.

2.4 Entanglement

Entanglement is the potential for quantum systems to exhibit correlations that cannot be
accounted for classically. From a computational standpoint, entanglement seems intuitive
enough —itis simply the fact that correlations can exist between different qubits — for exam-
ple if one qubit is in the1) state, another will be in thig) state. However, from a physical

standpoint, entanglement is little understood. The questions of what exactly it is and how



it works are still not resolved. What makes it so powerful (and so little understood) is the
fact that since quantum states exist as superpositions, these correlations exist in superpo-
sition as well. When coherence is lost, the proper correlation is somehow communicated
between the qubits, and it is this “communication” that is the crux of entanglement. Mathe-
matically, entanglement may be described using the density matrix formalism. The density
matrix p,, of a quantum statey) is defined agp,, = |¢) (1| For example, the quantum
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product. On the other hang,, can not be factorized. States that can not be factorized are
said to be entangled, while those that can be factorized are not. There are different degrees
of entanglement and much work has been done on better understanding and quantifying it
[10, 11]. Finally, it should be mentioned that while interference is a quantum property that
has a classical cousin, entanglement is a completely quantum phenomenon for which there
is no classical analog. It has proven to be a powerful computational resource in some cases
and a major hindrance in others.

can be factorized ag: = where® is the normal tensor

To summarize, quantum computation can be defined as representing the problem to be
solved in the language of quantum states and then producing operators that drive the system
(via interference and entanglement) to a final state such that when the system is observed
there is a high probability of finding a solution.

2.5 An Example — Quantum Search

One of the best known quantum algorithms searches an unordered database quadratically
faster than any classical method [12, 13]. The algorithm begins with a superposition of
all N data items and depends upon an oracle that can recognize the target of the search.
Classically, searching such a database require¥) oracle calls; however, on a quan-

tum computer, the task requires o/ N) oracle calls. Each oracle call consists of a
guantum operator that inverts the phase of the search target. An “inversion about average”

operator then shifts amplitude towards the target state. Aftér /N repetitions of this
process, the system is measured and with high probability, the desired datum is the result.

3 A Simple Quantum Neural Network

We would like a QNN with features that make it easy for us to model, yet powerful enough
to leverage quantum physics. We would like our QNN to:

e use known quantum algorithms and gates

e have weights which we can measure for each node



e work in classical simulations of reasonable size
e be able to transfer knowledge to classical systems

We propose a QNN that operates much like a classical ANN composed of several layers
of perceptrons — an input layer, one or more hidden layers and an output layer. Each layer
is fully connected to the previous layer. Each hidden layer computes a weighted sum of
the outputs of the previous layer. If this is sum above a threshold, the node goes high,
otherwise it stays low. The output layer does the same thing as the hidden layer(s), except
that it also checks its accuracy against the target output of the network. The network as a
whole computes a function by checking which output bit is high. There are no checks to
make sure exactly one output is high. This allows the network to learn data sets which have
one output high or binary-encoded outputs.
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Figure 1: Simple QNN to compute XOR function

The QNN in Figure 1 is an example of such a network, with sufficient complexity to com-
pute the XOR function. Each input nodis represented by a registés),. The two hidden
nodes compute a weighted sum of the inplitg,, and|¢),,, and compare the sum to a
threshold weight|t)),,. If the weighted sum is greater than the threshold the node goes
high. The|3), represent internal calculations that take place at each node. The output layer
works similarly, taking a weighted sum of the hidden nodes and checking against a thresh-
old. The QNN then checks each computed output and compares it to the target itput,

sending|<p>j high when they are equivalent. The performance of the network is denoted

by |p), which is the number of computed outputs equivalent to their corresponding target
output.

At the quantum gate level, the network will requitéblm + m?) gates for each node of
the network. Here is the number of bits used for floating point arithmetid ),  is the
number of bits for each weight and is the number of inputs to the node [14]-[15].

The overall network works as follows on a training set. In our example, the network has
two input parameters, so all training examples will have two input registers. These are
represented g&),, to |a), ,. The target answers are kept in registérs , to|$2),,. Each
hidden or output node has a weight vector, representedjy each vector containing
weights for each of its inputs. After classifying a training example, the regigtérsand

|), reflect the networks ability to classify that the training example. As a simple measure
of performance, we incremefyi) by the sum of ally),. When all training examples have
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Figure 2: QNN Training

been classifiedp) will be the sum of the output nodes that have the correct answer through-
out the training set and will range between zero and the number of training examples times
the number of output nodes.

4 Using Quantum Search to Learn Network Weights

One possibility for training this kind of a network is to search through the possible weight
vectors for one which is consistent with the training data. Quantum searches have been
used already in quantum learning [16] and many of the problems associated with them
have already been explored [17]. We would like to find a solution which classifies all
training examples correctly; in other words we would liké = n x m wheren is the
number of training examples amd is the number of output nodes. Since we generally do
not know how many weight vectors will do this, we use a generalization of the original
search algorithm [18], intended for problems where the number of solutisnsmknown.

The basic idea is that we will pliy) into a superposition of all possible weight vectors and
search for one which classifies all training examples correctly.

We start out withly)) as a superposition of all possible weight vectors. All other registers
(18), ¢), |p)), besides the inputs and target outputs are initialized to the [$taté\Ve

then classify each training example, updating the performance regjisteBy using a su-
perposition we classify the training examples with respect to every possible weight vector
simultaneously. Each weight vector is now entangled \yithn such a way thalfp) corre-
sponds with how well every weight vector classifies all the training data. In this case, the
oracle for the quantum search|js = n * m, which corresponds to searching for a weight
vector which correctly classifies the entire set.

Unfortunately, searching the weight vectors while entangled {yithwould cause un-
wanted weight vectors to grow that would be entangled with the performance metric we
are looking for. The solution is to disentangle) from the other registers after inverting

the phase of those weights which match the search criteria, basgd.ofo do this the
entire network will need to be uncomputed, which will unentangle all the registers and set
them back to their initial values. This means that the network will need to be recomputed



each time we make an oracle call and after each measurement.

There are at least two things about this algorithm that are undesirable. First, not all training
data will have any solution networks that correctly classify all training instances. This
means that nothing will be marked by the search oracle, so every weight vector will have
an equal chance of being measured. It is also possible that even when a solution does
exist, it is not desirable because it over fits the training data. Second, the amount of time
needed to find a vector which correctly classifies the training s8{ig2°/t), which has
exponential complexity with respect to the number of bits in the weight vector.

One way to deal with the first problem is to search until we find a solution which covers an
acceptable percentageg,of the training data. In other words, the search oracle is modified
to be|p) > n x m * p. The second problem is addressed in the next section.

5 Piecewise Weight Learning

Our quantum search algorithm gives us a good polynomial speed-up to the exponential task
of finding a solution to the QNN. This algorithm does not scale well, in fact it is exponential

in the total number of weights in the network and the bits per weight. Therefore, we propose
a randomized training algorithm which searches each node’s weight vector independently.

The network starts off, once again, with training examplegin the corresponding an-
swers in|Q), and zeros in all the other registers. A node is randomly selected and its
weight vector,|¢),, is put into superposition. All other weight vectors start with random
classical initial weights. We then search for a weight vector for this node that causes the
entire network to classify a certain percentggef the training examples correctly. This is
repeated, iteratively decreasipguntil a new weight vector is found. That weight is fixed
classically and the process is repeated randomly for the other nodes.

Searching each node’s weight vector separately is, in effect, a random search through the
weight space where we select weight vectors which give a good level of performance for
each node. Each node takes on weight vectors that tend to increase performance with some
amount of randomness that helps keep it out of local minima. This search can be terminated
when an acceptable level of performance has been reached.

There are a few improvements to the basic design which help speed convergence. First,
to insure that hidden nodes find weight vectors that compute something useful, a small

performance penalty is added to weight vectors which cause a hidden node to output the
same value for all training examples. This helps select weight vectors which contain useful

information for the output nodes. Since each output node’s performance is independent
of the performance or all output nodes, the algorithm only considers the accuracy of the

output node being trained when training an output node.

6 Results

We first consider the canonical XOR problem. Each of the hidden and the output nodes

are thresholded nodes with three weights, one for each input and one for the threshold. For
each weight 2 bits are used. Quantum search did well on this problem, finding a solution

in an average of 2.32 searches.

The randomized search algorithm also did well on the XOR problem. After an average of
58 weight updates, the algorithm was able to correctly classify the training data. Since this
is a randomized algorithm both in the number of iterations of the search algorithm before
measuring and in the order which nodes update their weight vectors, the standard deviation
for this method was much higher, but still reasonable. In the randomized search algorithm,



an epoch refers to finding and fixing the weight of a single node.

We also tried the randomized search algorithm for a few real-world machine learning prob-
lems: lenses, Hayes-Roth and the iris datasets [19]. The lenses data set is a data set that
tries to predict whether people will need soft contact lenses, hard contact lenses or no con-
tacts. The iris dataset details features of three different classes of irises. The Hayes-Roth
dataset classifies people into different classes depending several attributes.

# Weight Weight Output Training
Data Set Qubits Epochs Updates Accuracy Accuracy Backprop
Iris 32| 23,000 225 98.23%]| 97.79% 96%
Lenses 42 | 22,500 145| 98.35%| 100.0% 92%
Hayes-Roth 68 | 5 x 10° 9,200| 88.76%| 82.98% 83%

Table 1: Training Results

The lenses data set can be solved with a network that has three hidden nodes. After between
a few hundred to a few thousand iterations it usually finds a solution. This may be because
it has a hard time with 2 bit weights, or because it is searching for perfect accuracy. The
number of times a weight was fixed and updated was only 225 for this data set. The iris data
set was normalized so that each input had a value between zero and one. The randomized
search algorithm found the correct target for 97.79% of the output nodes.

Our results for the Hayes-Roth problem were also quite good. We used four hidden nodes
with two bit weights for the hidden nodes. We had to normalize the inputs to range
from zero to one once again so the larger inputs would not dominate the weight vectors.
The algorithm found the correct target for 88.86% of the output nodes correctly in about
5,000,000 epochs. Note that this does not mean that it classified 88.86% of the training
examples correctly since we are checking each output node for accuracy on each train-
ing example. The algorithm actually classified 82.98% of the training set correctly, which
compares well with backpropagation’s 83% [20].

7 Conclusions and Future Work

This paper proposes a simple qguantum neural network and a method of training it which
works well in quantum systems. By using a quantum search we are able to use a well-
known algorithm for quantum systems which has already been used for quantum learning.
The algorithm is able to search for solutions that cover an arbitrary percentage of the train-
ing set. This could be very useful for problems which require a very accurate solution. The
drawback is that it is an exponential algorithm, even with the significant quadratic speedup.

A randomized version avoids some of the exponential increases in complexity with problem
size. This algorithm is exponential in the number of qubits of each node’s weight vector
instead of in the composite weight vector of the entire network. This means the complexity
of the algorithm increases with the number of connections to a node and the precision of
each individual weight, dramatically decreasing complexity for problems with large num-
bers of nodes. This could be a great improvement for larger problems. Preliminary results
for both algorithms have been very positive.

There may be quantum methods which could be used to improve current gradient descent
and other learning algorithms. It may also be possible to combine some of these with a
guantum search. An example would be to use gradient descent to try and refine a compos-
ite weight vector found by quantum search. Conversely, a quantum search could start with
the weight vector of a gradient descent search. This would allow the search to start with an



accurate weight vector and search locally for weight vectors which improve overall perfor-
mance. Finally the two methods could be used simultaneously to try and take advantage of
the benefits of each technique.

Other types of QNNs may be able to use a quantum search as well since the algorithm
only requires a weight space which can be searched in superposition. In addition, more
traditional gradient descent techniques might benefit from a quantum speed-up themselves.
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