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Preface

In the background of any model of computation lies an assumption of a physical
computational device, a physical system, the controlled dynamics of which is
the computation. Classical models of computation tacitly assume an underlying
classical and usually rather simple physical system. However, the miniaturization
of electronic circuits on the one hand, and fundamental scientific questions on
the other, have in recent years put this tacit assumption into question, giving
birth to a rapidly growing field of quantum computation and information theory.
Information may thus be stored in quantum physical systems and processed by
controlling their dynamics.

The present volume contributes to this new field. It is a collection of revised
papers, originally presented at the international workshop QCL’2002 in Riga in
May 2002. The papers are grouped into two separate sections, Quantum Com-
putation, and, Learning, reflecting the fact that Quantum Learning - a goal of
our investigations - is still a field in the making. Let us very briefly review the
topics covered.

The simplest model of quantum computation is the quantum finite automa-
ton (QFA). There are several versions of this model, differentiated essentially by
the mode of data access (1-way, 2-way, or hybrid), the way the quantum states are
measured (measure-once or measure-many), the kind of quantum states admit-
ted (pure or mixed), and the criteria of input acceptance (isolated or non-isolated
cut-point).

Five of the presented papers fall into the category of general QFA theory,
which compares different QFA with one another, and with their classical, de-
terministic or probabilistic, counterparts. Golovkins and Kravtsev propose a
new class of probabilistic automata with doubly stochastic transition matrices;
this class is close, in a well-defined sense, to the QFA. Bonner, Freivalds and
Rasščevskis find a language for the recognition of which the number of states
required by a 1-way measure-many QFA is exponentially smaller than that re-
quired by a classical deterministic automaton; Midrijanis, on the other hand,
presents another language, for which the relation is roughly the opposite. Ozols
finds a language not recognized by deterministic automata, but recognized by
1-way measure-many QFA with non-isolated cut-point. Dubrovsky and Scegul-
naja compare QFA with pure states and QFA with mixed states with respect
to Boolean function computation and language recognition; they present a lan-
guage recognized by the QFA with mixed states with a better probability than
achievable by admitting pure states only.

Four authors consider QFA in a more specific context: V. Kravcevs, Lace and
Kuzmenko - for Boolean function computation, and Tervits - for undecidability
proofs. Kravcevs and Lace compare the performance of quantum and probabilis-
tic query automata (decision trees) on specific functions, Kuzmenko constructs
quantum automata for the computation of certain DNF forms in a single query,
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and Tervits constructs a QFA which recognizes a language of key importance to
an indecidability problem.

Two authors, Kuzmenko (Query Automata Minimization) and Luchko, con-
sider the problem of evolving a quantum automaton for a given task by means
of genetic algorithms.

There are three papers on classical learning. Tervits considers finite stan-
dardizability, proving that this type of learning is not much less powerful than
Gold’s identification in the limit. Kaulis studies the synthesis of logic formu-
lae from finite examples, obtaining necessary and sufficient conditions in many-
sorted first-order predicate logic with equality. Greizina and Grundmane take
up a special problem of Learning from Zero Information.

Finally, quantum learning is considered in the two papers by Bonner and
Freivalds. One of the papers discusses limited memory learning by 1-way QFA
in the ‘identification in the limit’ model, showing that it is more powerful than
its classical counterpart. The other paper reviews recent results on quantum
learning.

We thank all contributors, referees, and our Program Committee. We grate-
fully acknowledge financial sponsorship from several institutions, specified below
and in the papers, and in particular the initial support of the Swedish Institute
for our ML2000 project, which stared it all.

Richard Bonner
Rūsiņš Freivalds
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Probabilistic Reversibility

and its Relation to Quantum Automata

Marats Golovkins ? and Maksim Kravtsev??

Institute of Mathematics and Computer Science
University of Latvia, Riga, Latvia

marats@latnet.lv, maksims@batsoft.lv

Abstract. To study the relationship between quantum finite automata
and probabilistic finite automata, we introduce a notion of probabilistic
reversible automata (PRA), or doubly stochastic automata. We find that
there is a strong relationship between different possible models of PRA
and corresponding models of quantum finite automata. We also propose
a classification of reversible finite 1-way automata.

1 Introduction

Two models of probabilistic reversible automata (PRA) are examined in this
paper, namely, 1-way PRA and 1.5-way PRA. Presently, we outline the notions
applicable to both models in a quasi-formal way, including a general notion of
probabilistic reversibility; formal definitions are provided in further sections.

Introductory notions If not specified otherwise, we denote by Σ an input alpha-
bet of an automaton, Σ∗ then being the set of its finite words. Every input word
in Σ∗ is assumed enclosed within end-marker symbols # and $; it is therefore
convenient to also introduce a working alphabet Γ = Σ ∪ {#, $}. By Q we nor-
mally understand the set of states of an automaton. By L we understand the
complement of a language L ⊂ Σ∗. For an input word ω in #Σ∗$, we denote by
|ω| the number of symbols in ω, and by [ω]i, i = 1, 2, . . ., the i-th consecutive
symbol of ω, excluding end-markers.

Presented with a word ω on its input tape, a probabilistic automaton reads ω
one symbol at a time, each time changing state; the next symbol and next state

being determined only in probabilistic sense. In particular, we write q
S−→ q′,

S ⊂ Σ∗, if there is a positive probability of getting from state q to state q′ by
reading ω ∈ S. We define the configuration of an automaton as a triple c = 〈νqν′〉
with q ∈ Q and νν′ ∈ #Σ∗$; it is understood that the input tape head of
the automaton is above the first symbol in the word ν′. To make accessible

? Research partially supported by the Latvian Council of Science, grant No. 01.0354
and grant for PhD students; University of Latvia, K. Morbergs grant; European
Commission, contract IST-1999-11234

?? Research partially supported by the Latvian Council of Science, grant No. 01.0354
and European Commission, contract IST-1999-11234
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configurations of type 〈q#ω$〉, q ∈ Q, ω ∈ Σ∗, we assume that each word is
written on a circular tape, and that the next symbol after the right end-marker
$ is the left end-marker #; this precondition is also used for quantum finite
automata, see, for example, [KW 97].

Clearly, with a finite word ω ∈ #Σ∗$ on its input tape, a finite automa-
ton can access a set Cω of configurations of at most |ω||Q| elements. The set
C =

⋃
ω Cω of configurations with arbitrary input is, on the other hand, count-

ably infinite. A probabilistic automaton in configuration c ∈ Cω chooses its next
configuration according to a probability distribution pc on Cω, called a super-
position of configurations; in case of 1-way automata, for example, the letter to
be read next is determined, so superpositions involve states in Q only. The set
RCω of all real-valued functions on Cω is a real vector space, where elements
of Cω can be viewed as basis vectors; this basis is called the canonical basis. A
probabilistic automaton determines a linear endomorphism Aω of RCω , defined
by Aω(c) = pc for basis vectors c ∈ Cω; if defined consistently, the operators Aω,
ω ∈ Σ∗, extend to a linear endomorphism A of RC , called the transition- or the
evolution operator of the automaton.

Probabilistic reversible automata Consider Nayak’s model [N 99] of quantum
automata with mixed states, where evolution is characterized by a unitary ma-
trix, measurements are performed after each step, and POVM measurements
not allowed. If the result of every measurement is a single configuration, not a
proper superposition, we actually get a probabilistic automaton. Moreover, the
evolution matrices will then be doubly stochastic. This motivates us to call a
probabilistic finite automaton reversible if the matrix of its transition operator
in the canonical basis is doubly stochastic.

Word acceptance and language recognition We admit two natural notions of
word acceptance for reversible automata, speaking henceforth of C-automata
and DH-automata when referring to these notions:

Definition 1. Classical acceptance. An automaton accepts (rejects) a word clas-
sically, if its set of states consists of two disjoint subsets, of accepting and reject-
ing states, and the automaton enters an accepting (rejecting) state upon reading
the last symbol of the word.

Definition 2. Decide-and-halt acceptance. An automaton accepts (rejects) a
word ω in a decide-and-halt manner, if its set of states consists of three disjoint
subsets, of accepting, rejecting, and non-halting states, and, when processing ω,
the automaton halts as soon as it enters an accepting (rejecting) state.

We consider only bounded error language recognition; we define it in an
equivalent way to that in [R 63].

Definition 3. Let A be an automaton with alphabet Σ, L ⊂ Σ∗ - a language,
and let Pω denote the probability that a word ω ∈ Σ∗ is accepted by A. We say,
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1. an automaton A recognizes L with bounded error and interval (p1, p2) if
0 ≤ p1 = sup{Pω | ω /∈ L} < p2 = inf{Pω | ω ∈ L},

2. an automaton A recognizes L with probability p (p > 1
2) if A recognizes L

with interval (1 − p, p),
3. a class A of automata recognizes L with probability 1 − ε, if for every ε > 0

there exists an automaton A ∈ A, which recognizes L with interval (ε1, 1−ε2),
where ε1, ε2 ≤ ε.

Quantum finite automata We refer to several existing models of quantum fi-
nite automata (QFA): the measure-once [MC 97] (QFA-MC), the measure-many
[KW 97] (QFA-KW), and the enhanced [N 99] (QFA-N) model. We note that
QFA-MC are C-automata whereas QFA-KW and QFA-N are DH-automata.

Results Our results are presented in four subsequent sections. In Section 2, we
discuss properties of PRA C-automata (PRA-C). We show that the class of
languages recognized by PRA-C is closed under boolean operations, inverse ho-
momorphisms and word quotient, but it is not closed under homomorphisms.
We prove that PRA-C recognize the class of languages a∗1a

∗
2 . . . a

∗
n with proba-

bility 1− ε; this class can be recognized by QFA-KW but with worse acceptance
probabilities [ABFK 99]. It follows that QFA-N recognize this class of languages
with probability 1 − ε. Further, we exhibit a general class of regular languages
not recognizable by PRA-C, which in particular contains the languages (a, b)∗a
and a(a, b)∗; this class has strong similarities with the class of languages not rec-
ognizable by QFA-KW [AKV 00]. In Section 3 we prove that PRA DH-automata
do not recognize the language (a, b)∗a. In Section 4 we discuss some properties
of 1.5-way PRA and present an alternative notion of probabilistic reversibil-
ity, not connected with quantum automata. In the last Section 5 we propose a
classification of reversible automata: deterministic, probabilistic and quantum.

Finally, the Appendix contains background material on doubly stochastic fi-
nite Markov chains, and a treatment of probabilistic reversible automata without
end-markers. We show there that the use of end-markers does not affect the com-
putational power of PRA-C: for every PRA-C with end-markers recognizing a
language there is a PRA-C without end-markers recognizing the same language.

2 1-way probabilistic reversible C-automata

Definition 4. [1-way PRA-C] A 1-way finite probabilistic automaton (PA)
is specified by a finite set of states Q, a finite input alphabet Σ, and a transition
function

δ : Q× Γ ×Q −→ R[0,1],

where Γ = Σ ∪ {#, $} is the input tape alphabet of A and #, $ are end-markers
not in Σ; for all q ∈ Q and σ ∈ Γ , the transition function is required to satisfy:

∑

q′∈Q

δ(q, σ, q′) = 1. (1)
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A 1-way finite probabilistic automaton is a probabilistic reversible automaton
(PRA) if for all q ∈ Q and σ ∈ Γ ,

∑

q′∈Q

δ(q′, σ, q) = 1. (2)

A PRA-C is a PRA with classical word acceptance (Definition 1): there is an
initial state q0 ∈ Q, in which the processing of all words begins, and a set of
accepting states QF ⊆ Q, which determine whether the word is accepted upon
completed processing of the word’s last letter. All in all, a PRA-C is specified by
a tuple A = (Q,Σ, q0, QF , δ).

Note that for every input symbol σ ∈ Γ , the transition function of a 1-way finite
PA is determined by a |Q| × |Q| matrix Vσ with (Vσ)ij = δ(qj , σ, qi), assuming
a numbering of states. The conditions (1) and (2) then say that the matrices
Vσ, σ ∈ Γ , are column- and row-stochastic, respectively; if both conditions hold,
the matrices are doubly stochastic. We associate with a 1-way finite PA a linear
evolution operator A in RC by putting

Ac =
∑

q′∈Q

δ(q, σ, q′)〈νσq′ν′〉.

for c = 〈νqσν′〉 ∈ C, and extending to RC by linearity. It is immediate by (1) and
(2) that the infinite matrix of A in the canonical basis C is doubly stochastic.
This completes our formal definition of PRA-C.

2.1 Probability boosting

We consider language recognition by PRA-C in the sense of Definition 3.

Theorem 1. If a language is recognized by a PRA-C, it is recognized by PRA-C
with probability 1 − ε.

Proof. We follow the standard majority-voting argument. Let L be a language
recognized by PRA-C A = (Q,Σ, q0, QF , δ) with interval (p1, p2). Put p̄ = 1

2 (p1+
p2), and let Am be a system of m copies of A ‘working in parallel’, which accepts
a word when more than mp̄ automata in the system have accepted the word,
and otherwise rejects the word.

Take ω ∈ L. The automaton A accepts ω with probability pω ≥ p2. As
a result of reading ω, µω

m automata of the system accept the word, and the

rest reject it. The system has accepted the word, if
µω

m

m > p̄. Pick η0 so that

0 < η0 < p2 − p̄ ≤ pw − p̄. Estimate the probability that
µω

m

m > p̄:

P

{
µω

m

m
> p̄

}
≥ P

{
pω − η0 <

µω
m

m
< pω + η0

}
= P

{∣∣∣∣
µω

m

m
− pω

∣∣∣∣ < η0

}
. (3)

In case of m Bernoulli trials, Chebyshev’s inequality yields ([GS 97], p. 312):

P

{∣∣∣∣
µω

m

m
− pω

∣∣∣∣ ≥ η0

}
≤ pω(1 − pω)

mη2
0

≤ 1

4mη2
0

, (4)
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which implies

P

{∣∣∣∣
µω

m

m
− pω

∣∣∣∣ < η0

}
≥ 1 − 1

4mη2
0

. (5)

By (3) and (5),

P

{
µω

m

m
> p̄

}
≥ 1 − 1

4mη2
0

. (6)

Note that (6) holds for every ω ∈ L.
Take now ξ /∈ L. The automaton A accepts ξ with probability pξ ≤ p1. With

η0 as above, we then have 0 < η0 < p̄− p1 ≤ p̄− pξ and

P

{
µξ

m

m
> p̄

}
≤ P

{∣∣∣∣
µξ

m

m
− pξ

∣∣∣∣ ≥ η0

}
≤ 1

4mη2
0

. (7)

By (6) and (7), for every ε > 0, if we take n > 1
4εη2

0
, we get a system An

which recognizes L with interval (ε1, 1 − ε2), where ε1, ε2 < ε.
Now, simulate An by automaton A′ = (Q′, Σ, q′0, Q

′
F , δ

′) with the n-th Carte-
sian power of Q as Q′, q′0 = (q0, . . . , q0), Q

′
F consisting of elements with more

than np̄ entries in QF , and δ′ determined by the |Q|n × |Q|n matrix V ′
σ =⊗

1≤i≤n Vσ, the n-th tensor power of the transition matrices Vσ of A, σ ∈ Γ .
The tensor product of doubly stochastic matrices being doubly stochastic, the
automaton A′ is a PRA-C. ut

2.2 Languages recognized by PRA-C

Lemma 1. A language PRA-C recognizable with interval (p1, p2) is PRA-C rec-
ognizable with probability p, where p = p2

p1+p2
if p1 + p2 ≥ 1, and p = 1−p1

2−p1−p2
if

p1 + p2 < 1.

Proof. Assume a PRA-C A recognizing a language L with interval (p1, p2) has
n − 1 states. Consider first the case p1 + p2 > 1. Informally, having read the
end-marker symbol #, we simulate A with probability 1

p1+p2
and reject input

with probability p1+p2−1
p1+p2

. Formally, to recognize L with probability p2

p1+p2
, we

modify A by adding a new state qr /∈ QF , and adjusting the transition func-
tion so that δ(qr, σ, qr) = 1, σ 6= #, δ(q0,#, qr) = p1+p2−1

p1+p2
, and, δ(q0,#, q) =

1
p1+p2

δold(q0,#, q), q 6= qr.
The modified automaton has n states. Since end-marker symbol # is read

only once at the beginning of an input word, we can disregard the rest of transi-

tion function values associated with #; we put δ(q,#, q′) = 1−δ(q0,#,q′)
n−1 , q 6= q0.

The transition function meets the requirements of Definition 4 and the con-
structed automaton recognizes L with probability p2

p1+p2
. The case p1 + p2 < 1

is similar. Informally, having read end-marker symbol #, we simulate A with
probability 1

2−p1−p2
and accept input with probability 1−p1−p2

2−p1−p2
. ut

Lemma 2. If two languages are PRA-C recognizable with probability greater
than 2

3 each, then their intersection and union are PRA-C recognizable with
probability greater than 1

2 .
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Proof. Let Ai = (Qi, Σ, qi
0, Q

i
F , δ

i) be PRA-C recognizing language Li with
probability pi >

2
3 , i = 1, 2, and assume without loss of generality that p1 ≤ p2.

Informally, having read end-marker symbol #, with probability 1
2 we simulate the

automaton A1 and with the same probability we simulate the automaton A2. For-
mally, we construct a PRA-C C = (Q,Σ, q0, QF , δ) by first putting Q = Q1∪Q2,
q0 = qi

0, and, QF = Q1
F ∪ Q2

F , and then defining δ = δ1 ∪ δ2 with the excep-
tion that δ(q0,#, q) = 1

2δ
i(q0,#, q), q ∈ Q, and, δ(q′,#, q) = 1

N (1− δ(q0,#, q)),
N = |Q1| + |Q2| − 1, q, q′ ∈ Q, q 6= q0.

Write p̄ = 1
2 (p1 + p2). The automaton C recognizes the languages L1 ∩ L2

and L1 ∪ L2 with intervals (1 − a1, b1) and (1 − b2, a2), respectively, b1, b2 ≥
p̄, a1, a2 ≥ 1

2p1, both intervals being non-empty if p1, p2 >
2
3 . The conclusion

now follows by Lemma 1. ut

Theorem 2. The class of PRA-C recognizable languages is closed under inter-
section, union and complement.

Proof. Any two PRA-C recognizable languages are by Theorem 1 recognizable
with probability 1 − ε, and hence by Lemmas 1 and 2, the union and the in-
tersection of these languages are recognizable. If a language L is recognized by
a PRA-C A, then L is recognized by the automaton obtained from A by inter-
changing its accepting and rejecting states. ut

Theorem 3. Languages recognizable by PRA-C with probability 1 are recogniz-
able by permutation automata.

Proof. Let A be a PRA-C with state space Q which recognizes a language L ⊂
Σ∗ with probability 1. Write qω for the set of states accessed by A from state q
with positive probability upon reading a word ω ∈ Σ∗. Since A accepts words in
L with probability 1, and those not in L with probability 0, we must have either
qω ⊂ QF or qω ⊆ QF for all q ∈ Q,ω ∈ Σ∗; write q̃ω = 1 in the former case,

and q̃ω = 0 in the latter. Put q ∼ q′ iff q̃ω = q̃′ω for all ω ∈ Σ∗; clearly, ∼ is
an equivalence relation on Q. Define now a deterministic automaton D with the
set of equivalence classes [q] of ∼, q ∈ Q, as state space, transitions [q]σ = [qσ],
σ ∈ Σ, and accepting states [q] ⊂ QF . It should be clear that D simulates A, and
that its transition matrices are permutation matrices, the transition matrices of
A being doubly stochastic. ut

Theorem 4. The class of PRA-C recognizable languages is closed under inverse
homomorphisms.

Proof. Consider finite alphabets Σ,T , a homomorphism h : Σ∗ −→ T ∗, a lan-
guage L ⊆ T ∗ and a PRA-C A, which recognizes L. Modify the transition ma-
trices of A by putting Vσ = Vh(σ), σ ∈ Σ. The modified automaton recognizes
h−1(L) with the same interval as A. ut

Corollary 1. The class of PRA-C recognizable languages is closed under word
quotient.
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Proof. This follows from closure under inverse homomorphisms and presence of
end-markers #, $. ut
We note that the closure property under word quotient remains true also for
PRA-C without end-markers; see the Appendix for details.

Theorem 5. For every positive integer n, the language Ln = a∗1a
∗
2 . . . a

∗
n over

an alphabet {a1, a2, . . . , an} is PRA-C recognizable.

Proof. We construct a PRA-C A with n + 1 states; in the construction, we
employ the notation 1k and 1k for the k × k matrix and the k × 1 vector,
respectively, with all entries equal to one. The initial state q0 of A corresponds
to the probability distribution vector having 1 as its first entry. The transition
function is determined by the matrices

Vai
=

1

i
· 1i ⊕

1

n+ 1 − i
· 1n+1−i, i = 1, . . . , n; (8)

explicitly, Vai
has the matrices i−1 ·1i and (n+1− i)−1 ·1n+1−i on the diagonal,

and remaining entries zero. The accepting states are q0 . . . qn−1, and the only
rejecting state is qn.

If ω ∈ Ln, having read ω ∈ a∗1 . . . a
∗
k−1a

+
k , the automaton A is in probability

distribution k−1 · 1k ⊕ 0 · 1n+1−k, and hence ω is accepted with probability 1.
If ω /∈ Ln, consider k such that ω = ω1σω2, |ω1| = k, ω1 ∈ Ln and ω1σ /∈ Ln;

since all one-letter words are in Ln, k must be positive. Let at = [ω]k and as = σ.
We have 1 ≤ s < t ≤ n. Having read ω1 ∈ a∗1 . . . a

∗
t−1a

+
t , the automaton is in the

distribution t−1 · 1t ⊕ 0 · 1n+1−t. After that, having read as, the automaton is in
the distribution

(
1

s
· 1s ⊕

1

n+ 1 − s
· 1n+1−s) · (

1

t
· 1t ⊕ 0 · 1n+1−t),

which is equal to
1

t
· 1s ⊕

t− s

t(n+ 1 − s)
· 1n+1−s.

So the word ω1as is accepted with probability 1− t−s
t(n−s+1) . Since t−s

t(n−s+1) <
1
t ,

reading the symbols succeeding ω1as does not increase the accepting probability
by Lemma 7. Hence, to find the highest accepting probability p1 for words not
in Ln it is enough to maximize 1− t−s

t(n−s+1) over 1 ≤ s < t ≤ n; the maximum is

achieved for (s, t) = (k, k+1) if n = 2k, and (s, t) = (k, k+1) or (s, t) = (k+1, k+
2) if n = 2k+1, k ≥ 0. Hence p1 = 1− 1

(k+1)2 if n = 2k, and p1 = 1− 1
(k+1)(k+2)

if n = 2k + 1. All in all, A recognizes Ln with interval

(
1 − 1

b( n
2 )2c+n+1

, 1

)
,

and so, by Theorem 1, Ln is recognizable with probability 1 − ε. ut
Corollary 2. Quantum finite automata with mixed states (model of Nayak,
[N 99]) recognize Ln = a∗1a

∗
2 . . . a

∗
n with probability 1 − ε.

Proof. The matrices in (8) and their tensor powers all have unitary prototypes;
see Definition 9. ut
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2.3 Languages not recognized by PRA-C

Definition 5. We say that a regular language is of Type 0 if the following is
true for the minimal deterministic automaton recognizing this language: there
exist states q, q1 6= q2 and words x, y such that

1. qx = q1, qy = q2;
2. q1x = q1, q2y = q2;
3. ∀t ∈ (x, y)∗ ∃t1 ∈ (x, y)∗ q1tt1 = q1;
4. ∀t ∈ (x, y)∗ ∃t2 ∈ (x, y)∗ q2tt2 = q2.

Definition 6. We say that a regular language is of Type 2 if the following is
true for the minimal deterministic automaton recognizing this language: there
exist states q, q1 6= q2 and words x, y such that

1. qx = q1, qy = q2;
2. q1x = q1, q1y = q1;
3. q2x = q2, q2y = q2.

��
��

��
��

��
�� N� z

y

�
-

q

q1 q2

x y

t t
t1 t2

�U

x y

Fig. 1. Type 0 construction

��
��

��
��

��
�� BBN���

q

q1 q2

x y

��9XXz
x, yx, y

Fig. 2. Type 2 construction

Definition 7. We say that a regular language is of Type 1 if the following is
true for the minimal deterministic automaton recognizing this language: there
exist states q1 6= q2 and words x, y such that

1. q1x = q2, q2x = q2;
2. q2y = q1.

��
��

��
��
q1 q2 ��9

x
-

�

x

y
Fig. 3. Type 1 construction

Type 1 languages are exactly the languages that violate the partial order condi-
tion of [BP 99].
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Lemma 3. If A is a deterministic finite automaton with a set of states Q and
alphabet Σ, then ∀q ∈ Q ∀x ∈ Σ∗ ∃k > 0 qxk = qx2k.

Proof. We paraphrase a result from the theory of finite semigroups. Consider
a state q and a word x. Since number of states is finite, ∃m ≥ 0 ∃s ≥ 1
∀n qxm = qxmxsn. Take n0, such that sn0 > m. Note that ∀t ≥ 0 qxm+t =
qxm+txsn0 . We take t = sn0 −m, so qxsn0 = qxsn0xsn0 . Take k = sn0. ut

Lemma 4. A regular language is of Type 0 iff it is of Type 1 or Type 2.

Proof. It is obvious that a language of Type 2 is also of Type 0. Take now a lan-
guage L of Type 1 with states q′′1 , q

′′
2 and words x′′, y′′. To obtain a construction

of Type 0, take q = q1 = q′′1 , q2 = q′′2 , x = x′′y′′, y = x′′. That forms transitions
qx = q1, qy = q2, q1x = q1, q1y = q2, q2x = q1, q2y = q2. Hence L is of Type 0.
Finally, consider a language L of Type 0. By Lemma 3,

∃t∃b q1yb = qt and qty
b = qt;

∃u∃c q2xc = qu and qux
c = qu.

If q1 6= qt then by the 3rd rule of Type 0, ∃z qtz = q1, and so L is of Type 1. If
q2 6= qu then by the 4th rule of Type 0, ∃z quz = q2, and L is of Type 1. If q1 = qt
and q2 = qu, we have qxc = q1, qy

b = q2, q1x
c = q1y

b = q1, q2x
c = q2y

b = q2;
we get the construction of Type 2 by taking x′ = xc, y′ = yb. ut

Lemma 5. Regular languages of Type 2 are not PRA-C recognizable.

Proof. Assume A is a PRA-C recognizing a language L ⊂ Σ∗ of Type 2. Being
of Type 2, the language L is recognized by a deterministic automaton D with
particular three states q, q1, q2 such that q1 6= q2, qx = q1, qy = q2, q1x = q1,
q1y = q1, q2x = q2, q2y = q2, where x, y ∈ Σ∗. Furthermore, there exists ω ∈ Σ∗

such that q0ω = q, where q0 is the initial state of D, and there exists z ∈ Σ∗,
such that q1z is an accepting state and q2z is a rejecting state of D.

Denote the transition matrices of A corresponding to the words x, y, ω, z by
X,Y,W,Z, respectively. By Theorem 12, there exist an positive integer k such
that every state of Q is accessible from itself by Xk and by Y k. Consequently,
by Corollary 6 with S = (Xk, Y k)∗, the accessibility relation “q → q′ by some
T ∈ S” is an equivalence relation on Q, coinciding with the relation “q → q′ by
XkY k”. Put C = Y kXk and renumber the states if necessary; the matrix C is
then by Theorem 12 block diagonal, each block corresponding to an aperiodic
irreducible doubly stochastic Markov chain with states in the equivalence class
of its accessibility relation. It follows by Corollary 5 that the limit of Cm as
m → ∞ exists and is a block diagonal matrix J with blocks of form 1

p · 1p.

The accessibility by Y k being a refinement of the relation of accessibility by C,
the matrix Y k is also block diagonal with blocks refining those of C and J . So
JY K = J , and the limits of Z(Y KXK)mW and Z(Y KXK)mY KW as m → ∞
both equal ZJW . However, by construction of Type 2, ω(xkyk)mz ∈ L and
ωyk(xkyk)mz /∈ L, for all k and m. This is a contradiction. ut
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Lemma 6. Regular languages of Type 1 are not PRA-C recognizable.

Proof. The proof parallels that of Lemma 5. Consider a PRA-C A which rec-
ognizes a language L of Type 1. For the words x, y there is a constant k, such
that the probabilities of acceptance by A of the words ξ1 = ω(xk(xy)k)mz and
ξ2 = ω(xk(xy)k)mxkz are for large m arbitrarily close. But we can choose z so
that ξ1 ∈ L and ξ2 /∈ L. ut

Theorem 6. Regular languages of Type 0 are not PRA-C recognizable.

Proof. By Lemmas 4, 5, 6. ut

We note by Lemma 4 that the construction of Type 0 generalizes a construc-
tion proposed by [BP 99]. It is also easily noticed, that Type 0 construction
generalizes a construction proposed by [AKV 00]. The constructions of [BP 99]
and [AKV 00] characterize languages not recognized by measure-many quantum
finite automata of [KW 97].

Corollary 3. The languages (a,b)*a and a(a,b)* are not PRA-C recognizable.

Proof. Both languages are of Type 0. ut

Corollary 4. The class of languages recognizable by PRA-C is not closed under
homomorphisms.

Proof. Consider a homomorphism {a, b, c}∗ → {a, b}∗ which leaves a and b un-
changed and sends c to a. Reasoning as in the proof of Theorem 5, the language
(a, b)∗cc∗ is recognizable by a PRA-C. (Take n = 2, Va = Va1

, Vb = Va1
, Vc = Va2

,
and QF = {q1}.) However, by Corollary 3, the language (a, b)∗aa∗ = (a, b)∗a is
not recognizable. ut

3 1-way probabilistic reversible DH-automata

These automata are defined as in Definition 4, except that now the languages are
recognized in the decide-and-halt sense of Definition 2. The class of languages
recognized by PRA-C is a proper subclass of the languages recognized by PRA-
DH: the language a(a, b)∗, for example, is PRA-DH recognizable. However,

Theorem 7. The language (a,b)*a is not PRA-DH recognizable.

Proof. A PRA-DH automaton reading a sequence of a:s and b:s can halt only
with some probability p strictly less then one, so accepting and rejecting prob-
abilities may differ only by 1 − p, because any word belonging to the language
is not dependent on any prefix. Therefore for each ε > 0 we can find that after
reading of a prefix of certain length, the total probability to halt while continue
reading the word is less then ε. In this case we reason as in the proof of Lemma 5:
for words x, y take a constant k such that the probabilities of acceptance of the
words ω(xk(xy)k)mz and ω(xk(xy)k)mxkz are arbitrarily close for large m. ut
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4 Alternative approach to finite reversible automata and

1.5-way probabilistic reversible automata

Consider the transpose At of a probabilistic automaton A obtained by transpos-
ing A’s transfer function: δt(q1, σ, q2) = δ(q2, σ, q1). If At is a valid probabilistic
automaton, we may see A and At as probabilistic reversible automata. Gener-
ally, we propose to call an automaton A of some type weakly reversible if its
transpose At is an automaton of the same type. Note that the transpose of a
deterministic automaton (with transfer function taking values in the set {0, 1})
is still a deterministic automaton, not nondeterministic.

For 1-way probabilistic automata, the notions of weak reversibility and re-
versibility (the requirement that its transition matrix be doubly stochastic as ar-
ticulated in Definition 4), coincide. However, for 1.5-way probabilistic automata
about to be defined, the two notions differ.

Definition 8. [1.5-way PRA-C] A 1.5-way finite probabilistic automaton

(PA) is specified by a finite set of states Q, a finite input alphabet Σ, and a
transition function

δ : Q× Γ ×Q×D −→ R[0,1],

with Γ as in Definition 4 of 1-way PA, and D = {0, 1} indicating whether
automaton stays on the same position or moves one letter ahead on the input
tape. For all q ∈ Q and σ ∈ Γ , the transition function is required to satisfy the
condition:

∑

q′∈Q,d∈D

δ(q, σ, q′, d) = 1. (9)

A 1.5-way PA is a probabilistic weakly reversible automaton (PwRA) if for all
q ∈ Q and σ ∈ Γ ,

∑

q′∈Q,d∈D

δ(q′, σ, q, d) = 1. (10)

The 1,5-way PA is reversible (PRA) if for all q ∈ Q and σ1, σ2 ∈ Γ ,

∑

q′∈Q

δ(q′, σ1, q, 0) +
∑

q′∈Q,σ∈Γ

δ(q′, σ2, q, 1) = 1. (11)

A 1.5-way PRA-C (PwRA-C) is a 1.5-way PRA (PwRA-C) with classical word
acceptance (Definition 1): there is an initial state q0 ∈ Q, in which the processing
of all words begins, and a set of accepting states QF ⊆ Q, which determine
whether the word is accepted upon completed processing of the word’s last letter.

Theorem 8. The language (a,b)*a is recognizable by a 1.5-way weakly reversible
PRA-C.
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Proof. The Q = {q0, q1}, QF = {q1}, δ is defined as follows

δ(q0, a, q0, 0) = 1
2 δ(q0, a, q1, 1) = 1

2 δ(q1, a, q0, 0) = 1
2 δ(q1, a, q1, 1) = 1

2
δ(q0, b, q0, 1) = 1

2 δ(q0, b, q1, 0) = 1
2 δ(q1, b, q0, 1) = 1

2 δ(q1, b, q1, 0) = 1
2

δ(q0, $, q0, 1) = 1 δ(q1, $, q1, 1) = 1
It is easy to check that such automaton moves ahead according to the tran-

sition of the following deterministic automaton
δ(q0, a, q1, 1) = 1 δ(q1, a, q1, 1) = 1
δ(q0, b, q0, 1) = 1 δ(q1, b, q0, 1) = 1
δ(q0, $, q0, 1) = 1 δ(q1, $, q1, 1) = 1
So the probability of wrong answer is 0. The probability to be at the m-th

position of the input tape after n steps of calculation for m ≤ n is Cm
n . Therefore

it is necessary no more than O(n ∗ log(p)) steps to reach the end of the word of
length n (and so obtain correct answer) with probability 1 − 1

p . ut

5 A classification of reversible automata

We propose the following classification of finite 1-way reversible automata:

C-automata DH-automata
Deterministic
Automata

Permutation Automata
[HS 66,T 68] (DRA-C)

Reversible Finite Automata
[AF 98] (DRA-DH)

Quantum
Automata with
Pure States

Measure-Once Quantum
Finite Automata [MC 97]
(QRA-P-C)

Measure-Many Quantum
Finite Automata [KW 97]
(QRA-P-DH)

Probabilistic
Automata

Probabilistic Reversible
C-automata (PRA-C)

Probabilistic Reversible
DH-automata (PRA-DH)

Quantum Finite
Automata with
Mixed States

not considered yet
(QRA-M-C)

Enhanced Quantum
Finite Automata [N 99]
(QRA-M-DH)

Language class problems have been solved for DRA-C, DRA-DH, QRA-P-
C, for the remaining types they are still open. Every type of DH-automata
may simulate the corresponding type of C-automata. Generally, language classes
recognized by C-automata are closed under boolean operations (though this is
open for QRA-M-C), while DH-automata are not (though this is open for QRA-
M-DH and possibly for PRA-DH).

Definition 9. We say that a unitary matrix U is a prototype for a doubly
stochastic matrix S, if |Uij |2 = Sij (∀i, j).

Note that not every doubly stochastic matrix has a unitary prototype; take
for example, the three-by-three matrix with zeros along the dexter diagonal and
all remaining entries equal to 1

2 .

In the Introduction, we touched upon the relation between PRA-C and QRA-
M-DH (and hence, QRA-M-C). Due to the example above, we do not know
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whether every PRA-C can be simulated by QRA-M-C, or whether every PRA-
DH can be simulated by QRA-M-DH. The following results are however straight-
forward.

Theorem 9. If all matrices of a PRA-C have unitary prototypes, then the PRA-
C may be simulated by a QRA-M-C and by a QRA-M-DH.

Theorem 10. If all matrices of a PRA-DH have unitary prototypes, then the
PRA-DH may be simulated by a QRA-M-DH.

6 Appendix A: Doubly stochastic Markov chains

We briefly recall some background material on finite Markov chains; see, for
example, [KS 76]. A Markov chain with n states q1, . . . , qn is determined by an
n× n (column-) stochastic matrix A, ie a matrix with non-negative entries Aij ,
in which the elements of every column sum up to one. If Aij = p > 0 then a
state qi is accessible from a state qj in one step with a positive probability p. Of
course, the matrix of Markov chain depends on the numbering of the states; if
the states are renumbered, its rows and columns must also be renumbered.

A state qj is accessible from qi (denoted qi → qj) if there is a positive
probability to get from qi to qj (possibly in several steps). States qi and qj
communicate (denoted qi ↔ qj) if qi → qj and qj → qi. A state q is ergodic
if ∀i q → qi ⇒ qi → q; otherwise the state is called transient. A Markov chain
without transient states is called irreducible if for all qi, qj qi ↔ qj ; otherwise the
chain is reducible. The period of an ergodic state qi ∈ Q of a Markov chain with
a matrix A is defined as d(qi) = gcd{n > 0 | (An)ii > 0}. An ergodic state qi
is called aperiodic if d(qi) = 1; otherwise it is periodic. A Markov chain without
transient states is called aperiodic if all its states are aperiodic; otherwise the
chain is called periodic. A probability distribution X of a Markov chain with
a matrix A is called stationary, if AX = X. A Markov chain is called doubly
stochastic, if its transition matrix is a doubly stochastic matrix.

Theorem 11. An irreducible and aperiodic Markov chain with matrix A has a
unique stationary probability distribution Z, and An → (Z, . . . , Z) as n → ∞;
consequently, AnX → Z as n→ ∞ for all probability distribution vectors X.

Corollary 5. If a doubly stochastic Markov chain with an m ×m matrix A is
irreducible and aperiodic, then An → 1

m · 1m as n → ∞, and, consequently,
AnX → 1

m · 1m as n → ∞, for all probability distribution vectors X; here 1m

and 1m stand for the m×m matrix and the m× 1 vector, respectively, with all
entries equal to one.

A square matrix A is irreducible if there is no permutation matrix P such
that P−1AP consists of two proper square sub-matrices along the diagonal, all
remaining entries above the diagonal being zero. A square matrix A is com-
pletely reducible if there is a permutation matrix P such that P−1AP is block
diagonal with irreducible blocks. Note that a completely reducible matrix may
be irreducible.
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Theorem 12. The transition matrix of a finite doubly stochastic Markov chain
is completely reducible. Equivalently, the accessibility relation q → q′, q, q′ ∈ Q,
is an equivalence relation on the state space Q.

Proof. This is a well known fact; an elementary argument for the second state-
ment is included for completeness.

The transitivity of → holds trivially for any Markov chain. For reflexivity,
assume there is a state q0 such that the set Q0 of all states accessible from q0
does not contain q0. Say Qq0

has k elements; clearly k > 0. Let A′ be the sub-
matrix of A indexed by the states in Qq0

. A column j of A′ must include all
non-zero elements of the corresponding column of A since, by the transitivity of
→, the states accessible from qj ∈ Q0 are accessible from q0. Hence A′ is column-
stochastic, and summing its entries ‘columns first’ yields k. On the other hand,
a row of A′ indexed by a state accessible in one step from q0 does not include all
the nonzero elements of the corresponding row of A. Since A is row-stochastic,
summing the entries of A′ ‘rows first’ yields a number strictly less than k. This
is a contradiction, hence → is reflexive. For the symmetry of →, write q → q′

as a sequence of one-step transitions, show the symmetry of each of these by
rephrasing the above argument, and use transitivity. ut

Hence, a doubly stochastic Markov chain has no transient states; it is either
periodic or aperiodic, either reducible or irreducible.

Corollary 6. Let S be a semi-group of doubly stochastic matrices acting on a
state space Q. Then the accessibility relation “q → q′ by some A ∈ S” is an
equivalence relation on Q. Furthermore, if S is generated by a finite number of
matrices A1, . . . , AN under each of which every state in Q is accessible in one
step from itself, then the product matrix A = A1 · . . . · AN induces the same
accessibility relation on Q as the semigroup S.

Proof. Only the second statement needs an argument, and only in one direction.
Let q′ be accessible from q by an element Ak1

1 · . . . · AkN

N of S in m steps. For
every step, there is a sequence of states q1, q2, . . . , qN+1, such that qi → qi+1 by
Aki

i , and hence also by Aki in one step, since every state is accessible from itself
in one step by every Ai, i = 1, . . . N . If follows that q → q′ by A in m ·

∑
i ki

steps. ut

For completeness, we end this Section with an elementary lemma used in the
proof of Theorem 5.

Lemma 7. Let A be a finite row-stochastic matrix. Then, for all real vectors X,
all entries of the product AX are contained in the interval [min(X),max(X)].

Proof. For a matrix A with non-negative entries, the vector 1 with all entries
equal to one is an eigenvector of A with eigenvalue one if (and only if) A is row-
stochastic. The conclusion now follows from the defining inequality min(X) ·1 ≤
X ≤ max(X) · 1.
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7 Appendix B: End-marker theorems for PRA-C

We denote a PRA-C with both end-markers as #,$-PRA-C. We denote a PRA-C
with left end-marker only as #-PRA-C.

Theorem 13. Let A be a #,$-PRA-C, which recognizes a language L. There
exists a #-PRA-C which recognizes the same language.

Proof. Suppose A = (Q,Σ, q0, QF , δ), where |Q| = n. A recognizes L with inter-
val (p1, p2). We construct the following automaton A′ = (Q′, Σ, q0,0, Q

′
F , δ

′) with
mn states. Informally, A′ equiprobably simulates m copies of the automaton A.

Q′ = {q0,0, . . . , q0,m−1, q1,0, . . . , q1,m−1, . . . , qn−1,0, . . . , qn−1,m−1}.
If σ 6= #, δ′(qi,k, σ, qj,l) =

{
δ(qi, σ, qj), if k = l
0, if k 6= l.

Otherwise, δ′(q0,0,#, qj,l) = 1
mδ(q0,#, qj), and if qi,k 6= q0,0, δ

′(qi,k,#, q) =
1−δ′(q0,0,#,q)

mn−1 . Function δ′ satisfies the requirements (1) and (2) of Definition 4.
We define Q′

F as follows. A state qi,k ∈ Q′
F if and only if 0 ≤ k < mp(qi),

where p(qi)
def
=

∑
q∈QF

δ(qi, $, q).

Suppose #ω$ is an input word. Having read #ω, A is in superposition
n−1∑
i=0

aω
i qi. After A has read $, #ω$ is accepted with probability pω =

n−1∑
i=0

aω
i p(qi).

On the other hand, having read #ω, A′ is in superposition 1
m

m−1∑
j=0

n−1∑
i=0

aω
i qi,j .

So the input word #ω is accepted with probability p′ω = 1
m

n−1∑
i=0

aω
i dmp(qi)e.

Consider ω ∈ L. Then p′ω = 1
m

n−1∑
i=0

aω
i dmp(qi)e ≥

n−1∑
i=0

aω
i p(qi) = pω ≥ p2.

Consider ξ /∈ L. Then p′ξ = 1
m

n−1∑
i=0

aξ
i dmp(qi)e <

n−1∑
i=0

aξ
i p(qi) + 1

m

n−1∑
i=0

aξ
i =

pξ + 1
m ≤ p1 + 1

m .
Therefore A′ recognizes L with bounded error, provided m > 1

p2−p1
. ut

Now we are going to prove that PRA-C without end-markers recognize the
same languages as #-PRA-C automata.

If A is a #-PRA-C, then, having read the left end-marker #, the automa-
ton simulates some other automata A0, A1, . . . , Am−1 with positive probabilities
p0, . . . , pm−1, respectively. A0, A1, . . . , Am−1 are automata without end-markers.
By pi,ω, 0 ≤ i < m, we denote the probability that the automaton Ai accepts
the word ω.

We prove the following lemma first.

Lemma 8. Suppose A′ is a #-PRA-C which recognizes a language L with inter-
val (a1, a2). Then for every ε, 0 < ε < 1, exists a #-PRA-C A which recognizes
L with interval (a1, a2), such that

a) if ω ∈ L, p0,ω + p1,ω + . . .+ pn−1,ω >
a2n
1+ε



16 Marats Golovkins and Maksim Kravtsev

b) if ω /∈ L, p0,ω + p1,ω + . . .+ pn−1,ω <
a1n
1−ε .

Here n is the number of automata without end-markers, being simulated by A,
and pi,ω is the probability that i-th simulated automaton Ai accepts ω.

Proof. Suppose a #-PRA-C A′ recognizes a language L with interval (a1, a2).
Having read the symbol #, A′ simulates automata A′

0, . . . , A
′
m−1 with probabil-

ities p′0, . . . , p
′
m−1, respectively. We choose ε, 0 < ε < 1.

By Dirichlet’s principle ([HW 79], p. 170), ∀ϕ > 0 exists n ∈ IN+ such that
∀i p′in differs from some positive integer by less than ϕ.

Let 0 < ϕ < min
(

1
m , ε

)
. Let gi be the nearest integer of p′in. So |p′in−gi| < ϕ

and
∣∣∣p

′

i

gi
− 1

n

∣∣∣ < ϕ
ngi

≤ ϕ
n . Since |p′in − gi| < ϕ, we have

∣∣∣∣n−
m−1∑
i=0

gi

∣∣∣∣ < ϕm < 1.

Therefore, since gi ∈ IN+,
m−1∑
i=0

gi = n.

Now we construct the #-PRA-C A, which satisfies the properties expressed
in Lemma 8. For every i, we make gi copies of A′

i. Having read #, for every

i A simulates each copy of A′
i with probability

p′

i

gi
. The construction of V# is

equivalent to that used in the proof of Lemma 2. Therefore A is characterized
by doubly stochastic matrices. A recognizes L with the same interval as A′, i.e.,
(a1, a2).

Using new notations, A simulates n automata A0, A1, . . . , An−1 with proba-
bilities p0, p1, . . . , pn−1, respectively. Note that ∀i

∣∣pi − 1
n

∣∣ < ϕ
n . Let pi,ω be the

probability that Ai accepts the word ω.
Consider ω ∈ L. We have p0p0,ω + p1p1,ω + . . . + pn−1pn−1,ω ≥ a2. Since

pi <
1+ϕ

n , 1+ϕ
n (p0,ω + p1,ω + . . .+ pn−1,ω) > a2. Hence

p0,ω + p1,ω + . . .+ pn−1,ω >
a2n

1 + ϕ
>

a2n

1 + ε
.

Consider ξ /∈ L. We have p0p0,ξ + p1p1,ξ + . . . + pn−1pn−1,ξ ≤ a1. Since
pi >

1−ϕ
n , 1−ϕ

n (p0,ξ + p1,ξ + . . .+ pn−1,ξ) < a1. Hence

p0,ξ + p1,ξ + . . .+ pn−1,ξ <
a1n

1 − ϕ
<

a1n

1 − ε
.

ut
Theorem 14. Let A be a #-PRA-C, which recognizes a language L. There ex-
ists a PRA-C without end-markers, which recognizes the same language.

Proof. Consider a #-PRA-C which recognizes a language L with interval (a1, a2).
Using Lemma 8, we choose ε, 0 < ε < a2−a1

a2+a1
, and construct an automaton A′

which recognizes L with interval (a1, a2), with the following properties.
Having read #, A′ simulates A′

0, . . . , A
′
m−1 with probabilities p′0, . . . , p

′
m−1,

respectively. A′
0, . . . , A

′
m−1 are automata without end-markers. A′

i accepts ω with
probability p′i,ω. If ω ∈ L, p′0,ω + p′1,ω + . . .+ p′m−1,ω >

a2m
1+ε . Otherwise, if ω /∈ L,

p′0,ω + p′1,ω + . . .+ p′m−1,ω <
a1m
1−ε .

That also implies that for every n = km, k ∈ IN+, we are able to construct
a #-PRA-C A which recognizes L with interval (a1, a2), such that
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a) if ω ∈ L, p0,ω + p1,ω + . . .+ pn−1,ω >
a2n
1+ε ;

b) if ω /∈ L, p0,ω + p1,ω + . . .+ pn−1,ω <
a1n
1−ε .

A simulates A0, . . . , An−1. Let us consider the system Fn = (A0, . . . , An−1).
Let δ = 1

2 (a1 + a2). Since ε < a2−a1

a2+a1
, a2

1+ε > δ and a1

1−ε < δ. As in the proof of
Theorem 1, we define that the system accepts a word, if more than nδ automata
in the system accept the word.

Let us take η0, such that 0 < η0 <
a2

1+ε − δ < δ − a1

1−ε .

Consider ω ∈ L. We have that
n−1∑
i=0

pi,ω >
a2n
1+ε > nδ. As a result of reading ω,

µω
n automata in the system accept the word, and the rest reject it. The system

has accepted the word, if
µω

n

n > δ. Since 0 < η0 <
a2

1+ε − δ < 1
n

n−1∑
i=0

pi,ω − δ, we

have

P

{
µω

n

n
> δ

}
≥ P

{∣∣∣∣∣
µω

n

n
− 1

n

n−1∑

i=0

pi,ω

∣∣∣∣∣ < η0

}
. (12)

If we look on
µω

n

n as a random variable X, E(X) = 1
n

n−1∑
i=0

pi,ω and variance

V (X) = 1
n2

n−1∑
i=0

pi,ω(1−pi,ω), therefore Chebyshev’s inequality yields the follow-

ing:

P

{∣∣∣∣∣
µω

n

n
− 1

n

n−1∑

i=0

pi,ω

∣∣∣∣∣ ≥ η0

}
≤ 1

n2η2
0

n−1∑

i=0

pi,ω(1 − pi,ω) ≤ 1

4nη2
0

.

That is equivalent to P

{∣∣∣∣
µω

n

n − 1
n

n−1∑
i=0

pi,ω

∣∣∣∣ < η0

}
≥ 1 − 1

4nη2
0
. So, taking into

account (12),

P

{
µω

n

n
> δ

}
≥ 1 − 1

4nη2
0

. (13)

On the other hand, consider ξ /∈ L. So
n−1∑
i=0

pi,ξ <
a1n
1−ε < nδ. Again, since

0 < η0 < δ − a1

1−ε < δ − 1
n

n−1∑
i=0

pi,ξ,

P

{
µξ

n

n
> δ

}
≤ P

{∣∣∣∣∣
µξ

n

n
− 1

n

n−1∑

i=0

pi,ξ

∣∣∣∣∣ ≥ η0

}
≤ 1

4nη2
0

. (14)

The constant η0 does not depend on n and n may be chosen sufficiently large.
Therefore, by (13) and (14), the system Fn recognizes L with bounded error, if
n > 1

2η2
0
.

Following a way identical to that used in the proof of Theorem 1, it is possible
to construct a single PRA-C without end-markers, which simulates the system
Fn and therefore recognizes the language L. ut
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Abstract. Rabin [Rab63] proved that any language accepted by a prob-
abilistic automaton with an isolated cutpoint is also accepted by some
deterministic automaton. He showed, furthermore, that a probabilistic
automaton with n states, r accepting states, and radius of isolation δ, has
an equivalent deterministic automaton with no more than (1+ r

δ
)n states.

However, it remained an open problem to find a concrete language for
which the deterministic automaton would really need such a large num-
ber of states. Freivalds [Fre82] succeeded in constructing a probabilistic
automaton with n states, for which the smallest equivalent deterministic
automaton requires Ω(2

√
n) states, and, using his automaton as sub-

routine, Ambainis [Amb96] constructed a probabilistic automaton with
n states for which the smallest equivalent deterministic automaton has

Ω(2
n log log n

log n ) states. Rasščevskis [Ras00] constructed a probabilistic au-
tomaton with n states, for which any equivalent deterministic automaton
has Ω(2n) states. We have found that Rasščevskis’ construction can be
adapted to prove size advantages of quantum finite automata over the
deterministic ones. This new construction turns out to be slightly better
than a previously proved result by Ambainis and Freivalds [AF98].

1 Introduction

Kondacs and Watrous [KW97] introduced both 1-way and 2-way quantum finite
automata (QFA), with emphasis on the more powerful 2-way automata. However,
the model of 2-way QFA contradicts the idea of a system with small quantum
mechanical part - it allows superpositions of the head of the QFA at different
input locations; indeed, using such superpositions was the main idea in the proof
[KW97] that 2-way QFA are more powerful than classical finite automata. Hence,
to implement a 2-way QFA, we must represent the whole input in quantum form;
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?? Research supported by Grant No.01.0354 from the Latvian Council of Science, by

the Swedish Institute, Project ML-2000, and by the European Commission, Contract
IST-1999-11234 (QAIP)
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otherwise, the QFA would show to the environment which input symbol is being
read, and its superposition would decohere. This may be very expensive, as the
number of required quantum bits is linear in the size of input.

Hence, we think that more attention should be given to the study of 1-way
QFA. This is a very reasonable model of computation and it is easy to see how
it can be implemented. The finite dimensional state space of a QFA corresponds
to a system with finitely many particles. Each letter has a corresponding unitary
transformation on the state space. A classical device can read symbols from the
input and apply the corresponding transformations to the quantum mechanical
part. In fact, several practical experiments in quantum computing can be viewed
as building such systems.

The results about 1-way QFA in [KW97] were quite pessimistic. It was shown
that the class of languages recognized by 1-way QFA is a proper subset of regular
languages. We continue to investigate 1-way QFA and show that, despite being
very limited in some situations, they can perform quite well in other situations.

Our first results compare 1-way QFA and 1-way reversible automata. Clearly,
the latter are a special case of the former; in particular, they cannot recognize
all regular languages. The question then is whether 1-way QFA are more pow-
erful than 1-way reversible automata. Interestingly, the answer depends on the
accepting probability of a QFA. It was proved by Ambainis and Freivalds [AF98]
that if a QFA gives correct answer with a large probability (greater than 7

9 ), then
the QFA can be replaced by a 1-way reversible deterministic finite automaton.
However, this is not true for 0.68... and smaller probabilities. This effect was in-
vestigated in much detail by Ambainis and Ķikusts in [AK01]. It was found that

if a QFA gives correct answer with a probability greater than 52+4
√

7
81 = 0.7726...,

then the QFA can be replaced by a 1-way reversible deterministic finite automa-
ton. On the other hand, there is a language which can be recognized by a QFA

with probability 52+4
√

7
81 but cannot be recognized by any reversible deterministic

finite automaton.
It was shown by Ambainis and Freivalds that QFA can be much more space-

efficient than deterministic and even probabilistic finite automata. Namely, to
check whether the number of letters received from the input is divisible by a
prime p, a 1-way QFA may need only log p states (this is equivalent to log log p
bits of memory), while any deterministic or probabilistic finite automaton needs
p states (log p bits of memory). We think that this space-efficient quantum al-
gorithm may be interesting for designing other quantum algorithms as well.

2 Definitions and earlier results

Following [TB73], we define a probabilistic automaton as a triple < Q,X, π >,
where Q and X are finite alphabets (states and input, respectively), and π (the
transition probability function) is a mapping on the product X×Q×Q into the
unit interval [0, 1] such that

∑
q∈Q π(a, q′, q) = 1 for all q′ in Q.

The construction of concrete languages for which the size of deterministic
automata exceeds the size of all equivalent probabilistic automata has proved
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to be quite a complicated problem. Freivalds [Fre82] constructed probabilistic
finite automata with n states for which the smallest equivalent deterministic
automaton contains Ω(2

√
n) states. The problem of constructing probabilistic

automata with n states such that any equivalent deterministic automaton con-
tains an states still remains open.

Ambainis [Amb96] constructed a language accepted by a probabilistic au-
tomaton with n states, and such that any deterministic automaton accepting
this language has Ω(2n/ log n) states. He considered the language Lm in an al-
phabet with m letters, consisting of all words, which contain each letter of the
alphabet exactly m times.

Rasščevskis [Ras00] constructed a language accepted by a probabilistic au-
tomaton with n states, and such that any deterministic automaton accepting
this language has 2n states. However, this result is not as strong as it may seem:
while Ambainis used probabilistic automata with probability bounded away from
1
2 , Rasščevskis used probabilistic automata with unbounded probability.

In the present paper, we modify Rasščevskis’ construction in order to get
impressive size advantages of quantum finite automata over the deterministic
ones. Since Rasščevskis’ result [Ras00] was presented at a small conference in
Sweden with limited distribution of proceedings, we include a section describing
his construction.

We consider 1-way QFA as defined in [KW97]. Namely, a 1-way QFA is a
tuple M = (Q,Σ, δ, q0, Qacc, Qrej) where Q is a finite set of states, Σ is an input
alphabet, δ is a transition function, q0 ∈ Q is a starting state and Qacc ⊂ Q
and Qrej ⊂ Q are sets of accepting and rejecting states. The states in Qacc and
Qrej are called halting states and the states in Qnon = Q − (Qacc ∪ Qrej) are
called non-halting states. Additional symbols # and %, not belonging to Σ, are
used as left and right endmarker, respectively. The working alphabet of M is
Γ = Σ ∪ {#,%}.

A superposition of M , generically denoted by the letter ψ, is any element of
l2(Q), the linear space of all complex valued functions on Q. For q ∈ Q, we let
|q〉 denote the unit vector with value 1 at q and 0 elsewhere. All elements of
l2(Q) can be expressed as linear combinations of the vectors |q〉.

The transition function δ maps Q × Γ × Q into the complex field C. The
value δ(q, a, q′) is the coefficient of |q′〉 in the superposition of states to which M
goes from |q〉 after reading the symbol a. For a ∈ Γ , we let Va denote the linear
transformation on l2(Q) defined by

Va |q〉 =
∑

q′∈Q

δ(q, a, q′) |q′〉.

We require all Va to be unitary.
The computation of a QFA starts in the superposition |q0〉. Then transfor-

mations corresponding to the left endmarker #, the letters of the input word x,
and the right endmarker %, are successively applied.

A transformation corresponding to a symbol a ∈ Γ consists of two steps.
First, Va is applied is applied to the current superposition ψ, resulting in a new
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superposition ψ′ = Vaψ. Then, ψ′ is observed with respect to the observable
Eacc ⊗Erej ⊗Enon, where Ei is the linear subspace of l2(Q) spanned by |q〉 for
q ∈ Qi, i ∈ {acc, rej, non}. This observation gives x ∈ Qi with probability equal
to the amplitude of the orthogonal projection Piψ

′ of ψ′ onto Ei. As a result of
the observation, the superposition ψ′ collapses to one of the projections Piψ

′,
i ∈ {acc, rej, non}; if i = acc, the input x is accepted; if i = rej, the input x is
rejected; if i = non, the transformation corresponding to the next letter in x is
applied to Pnonψ

′.
We regard the composition PiVaψ as reading a letter a in superposition ψ.

We put V ′
a = PnonVa, and for a word x = a1 . . . ak, we put Vx = Vak

. . . Va1
and

V ′
x = V ′

ak
. . . V ′

a1
. Further, we let ψx denote the non-halting part of the QFA’s

configuration after reading the word x. It is easy to see that for any word x and
letter a, ψxa = V ′

a(ψx).
Ambainis and Freivalds [AF98] considered, for prime p, the languages Lp in

a single letter consisting of all words of length divisible by p.

Theorem 1. For any ε > 0, there is a QFA with O(log p) states recognizing Lp

with probability 1 − ε.

Theorem 2. Any deterministic 1-way finite automaton recognizing Lp has at
least p states.

The number of states needed by a 1-way probabilistic finite automaton to
recognize a language is often close to the logarithm of the number of states
needed by a deterministic automaton [Amb96,Fre82]. However, this is not the
case with Lp.

Theorem 3. [AF98] Any 1-way probabilistic finite automaton recognizing Lp

with probability 1/2 + ε, for a fixed ε > 0, has at least p states.

Corollary 1. [AF98] There are languages, for the recognition of which the num-
ber of states needed by a probabilistic automaton is exponential in the number of
states needed by a 1-way QFA.

3 Probabilistic vs. deterministic automata

In this section, we describe Rasščevskis’ result [Ras00]. Consider the language
Ln in the alphabet {a, b} of two letters, consisting of all words of length at least
n, which have a as the n-th letter from the end.

Lemma 1. Any deterministic finite automaton recognizing Ln has at least 2n

states.

Proof. There are exactly 2n words of length n. Any two of these differ on at
least one letter; suppose the first such letter is the m-th one. Now, if we add
sequence of m − 1 letters to each of the two words, then one of the new words
should be accepted but the other rejected. Any deterministic finite automaton
recognizing Ln must therefore remember any of the 2n words differently, thus
having at least 2n states. ut
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Consider now, for any natural n, a probabilistic finite automaton U = Un

with initial state S, accepting states A and Qn, and working states Q0,Q1, ...,
Qn−1. From S, without reading any input, U passes to A with probability 1

2 − δ,
and to Q0 with probability 1

2 +δ; the variable δ is actually the radius of isolation
for U , and for U to work correctly, we will need δ ≤ 1

4e(n+1) . From A, U passes

to A on any input. From Q0, on input a, U passes to Q0 with probability x, and
it passes to Q1 with probability 1 − x (the value of x is for now free to choose,
but the optimal value will turn out to be n

n+1 ); on input b, the automaton stays
in Q0. From Qi, 1 ≤ i < n, U passes to Qi+1, and from Qn, it passes to Q0.

Lemma 2. U rejects words not in Ln with probability 1
2 − δ.

Proof. For the accepting states A and Qn, the probability of A is always 1
2 − δ

and the probability of Qn equals the probability of state Q1 of n− 1 inputs ago.
But, as the probability of Q1 is 0 if last input is b (if the last input was a, the
n-th letter from the end of the word l would be a, contradicting l /∈ Ln), the
probability of Qn is always zero. ut
Lemma 3. The probability in state Q0 is never less than ( 1

2 + δ)xn.

Proof. Assume the input word has less than n letters. At the beginning proba-
bility at the state Q0 is and after each letter the input automaton passes from
Q0 to Q0 with probability at least x. Hence the probability of Q0 is at least
( 1
2 + δ)xn and as k < n, it is more than (1

2 + δ)xn.
Assume now the input word has n or more letters. Denote by pi the proba-

bility of the state Qi, 0 ≤ i ≤ n, for this word with the last n letters removed (in
other words, the same word n inputs ago). The probability of the state Q0 now
is then obviously bounded from below by the sum p(x) = p0x

n +
∑

1≤i≤n pix
i−1.

The bound is attained if the last n input letters are all a; in any other case Q0

passes to Q0 with probability 1 instead of x, but

p(x) ≥ (p0 + p1 + · · · + pn)xn = (
1

2
+ δ)xn.

ut
Lemma 4. U accepts words in Ln with probability at least 1

2 − δ.

Proof. Suppose that n inputs ago the probability of the state Q0 was p. If l ∈ Ln,
the probability of Q1 of n − 1 inputs ago was p(1 − x). But the probability of
Qn equals the probability of Q1 of n − 1 inputs ago. Hence it equals p(1 − x).
As Qn and A are accepting states and the probability of A is always 1

2 − δ and
p > ( 1

2 − δ)xn, the automaton U accepts the word l with probability at least

1

2
− δ + p(1 − x) ≥ 1

2
− δ + (

1

2
+ δ)xn(1 − x).

For this number to be grater than 1
2 +δ, we need ( 1

2 +δ)xn(1−x) > 2δ; it would
be enough if xn(1 − x) > 4δ. For fixed n, the last left-hand expression attains
its maximum in the interval [0, 1] at x = n

n+1 . For this value of x, we may take

any δ less than 1
4e(n+1) <

1
4 ( n

n+1 )n 1
n+1 . ut
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Theorem 4. There exists a probabilistic finite automaton with n states, iso-
lated cutpoint and radius of isolation Ω(n−1) such that the smallest equivalent
deterministic finite automaton contains Ω(2n) states.

Proof. Consider the automaton U with n states (it accepts the language Ln−3).
Then any equivalent deterministic automaton would have at least 2n−3 states
but the probabilistic automaton constructed above works correctly with radius
of isolation equal to 1

4e(n−2) . ut

4 Quantum vs. deterministic automata

Consider the language L consisting of words x1x2x3 . . . xl in the alphabet {a, b}
such that among the symbols xl−n+1, xl−2n+1, xl−3n+1, . . . , xl−mn+1 there is an
odd number of symbols a, where m is an integer such that l −mn+ 1 > 0 and
l − (m+ 1)n+ 1 ≤ 0.

Lemma 5. Any deterministic finite automaton recognizing the language L has
at least 2n states.

Proof. For arbitrary symbol xk, we describe the set xk−2n+1, xk−n+1, xk−2n+1,
xk−3n+1, . . . , xk−mn+1 as the predecessors of the symbol xk. For every symbol in
{xl, xl−1, xl−2, . . . , xl−n+1} the automaton is to remember whether or not there
is an odd numbers of symbols a in the set of the predecessors. ut
Lemma 6. There is a quantum finite automaton with 2n+1 non-halting states
and 2n+ 1 halting states recognizing the language L with a bounded error.

Proof. Let q0 be the initial state, and let q1, q2, q3, . . . , q2n be the remaining non-
halting states. When the start-marker comes in, the computation is directed to

the states q1, q2, q3, . . . , qn with equal amplitudes ( n2−2n
4n2−8n+4 )

1
2 each, and with

the amplitude ( n−2
2n−2 )

1
2 to an accepting state.

When the symbol b comes in, the states q1, q2, q3, . . . , qn are changed cycli-
cally, and so are the states qn+1, qn+2, qn+3, . . . , q2n.

When the symbol a comes in, the same transformation is performed with one
exception: q1 is followed by qn+2, and qn+1 is followed by q2.

When the end-marker comes in, the state qn+1 is followed by the only ac-
cepting state, and all the remaining states q1, q2, q3, . . . , qn, qn+2, qn+3, . . . , q2n

are followed by 2n− 1 different rejecting states, respectively.
If the input word is in the language, the probability to accept it at the very

first step is n−2
2n−2 , and the probability to accept it after reading the end-marker

is ( n2−2n
4n2−8n+4 )

1
2 . If the input word is not in the language, the probability to reject

it is (n− 1) n2−2n
4n2−8n+4 = n−2

2n−2 . ut
This results in our main theorem.

Theorem 5. For any natural n there is a language recognized with bounded
error by some quantum finite automaton with 4n + 2 states, but not recognized
by any deterministic finite automaton with less than 2n states.
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Abstract. We consider the computation of total Boolean functions by
deterministic, probabilistic, and quantum decision trees. The complexity
of a Boolean function is in each case defined in terms of the least number
of queries to an oracle, required for its computation. We exhibit some
Boolean functions that can be computed by probabilistic and quantum
decision trees with high probability of correct answer, and use fewer
queries than deterministic decision trees.

1 Introduction

We consider the computation a Boolean function f of a vector x = (x1, . . . , xN )
of binary variables, with x treated as a black-box (or oracle); here and henceforth
we only consider total functions with no fictive variables. Calling the oracle on i
returns the value of xi; such a call is called a query. We measure the complexity
of a algorithm for computing f by the number of queries it makes; clearly, the
aim is to make as few queries as possible.

A classical deterministic algorithm for computing f by oracle queries is often
called a decision tree, as it can be represented by a binary tree with queries
as nodes, each node branching out by the outcome of the query (0 or 1), the
leaves of the tree representing the function values, f(x) = 0 or f(x) = 1. The
complexity (or cost) of such an algorithm is the number of queries made in the
worst case of x; this is the depth of the tree. By decision tree complexity of
f , denoted D(f), we understand the cost of the shortest decision tree, which
computes f .

Computing f by oracle queries may be randomized by choosing queries with
probabilities conditional on the outcome of a previous query. We may then define
the probabilistic decision tree complexity of f , generically denoted R(f), as the
minimum of the expected numbers of queries over all probabilistic decision trees
computing f , in the worst case of x; here, we have the choice of computing f
exactly, or with bounded error.

A quantum decision tree (or quantum network) is the quantum analogue of a
classical decision tree, where queries and other operations are made in quantum
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superposition. Such a network may be represented as a sequence of unitary
transformations; the quantum decision tree complexity of f is then defined in
terms of the least number of such transformations.

A natural task is to compare deterministic, probabilistic, and quantum deci-
sion tree complexities of a Boolean function. Consider, for example, the function
OR(x) = x1 ∨ . . . ∨ xN . It is well known that the least number of queries for
computing OR by classical deterministic algorithms is N , and for probabilis-
tic algorithms, it is Θ(N). Grover [8] discovered a quantum algorithm, which
allows computing OR with small error probability with only Θ(

√
N) queries,

and it was shown in [3, 4, 11] that this number is asymptotically optimal. For
total Boolean functions, the Grover quadratic speed-up is also the best quantum
speed-up known; see [10] for a discussion of the simple Boolean functions OR,
AND, XOR.

In this paper, we consider more complex Boolean functions, and construct
probabilistic and quantum decision trees for their computation, the latter with
a quantum speed-up.

2 Definitions

We adopt the usual set-up [10, 8, 50, 10]. Given a vector x = (x1, . . . , xN ) of N
Boolean variables and a Boolean function f : {0, 1}N → {0, 1}, the problem is
to compute f(x) by calling an oracle; classically, an oracle receives an index i
and outputs the value of the i-th variable xi; such a call to the oracle is called
a query. We consider three models of computation of a Boolean function.

A deterministic decision tree for f is a rooted directed binary tree, in which
the nodes are queries, and the leaves, labelled 0 or 1, represent the outcomes
f(x) of the computation. Each query has two outgoing edges, labelled by its
outcome. A path from the root to a leaf of the tree is a sequence of queries, the
choice of a subsequent query determined by the outcome of the previous one.

A probabilistic decision tree for f is a rooted directed tree (not necessarily
binary), in which each inner node is a query, and the leaves, labelled 0 or 1,
represent the outcomes of computation. The edges leaving the root are labelled
with the (non-zero) probabilities of choosing their target queries at the first
step of computation. The edges leaving a query have double labels (ξ, p), the
first representing the outcome of the query, the second being the (non-zero)
probability of choosing the target query of the edge; the probabilities of all the
edges leaving a node sum up to one.

A quantum decision tree (or quantum network) is a quantum analogue of a
probabilistic decision tree (every probabilistic decision tree may be represented as
a quantum decision tree, but not conversely), where queries and other operations
are made in quantum superposition. Such a decision tree may be represented as
finite sequence U1, O1, U2, O2, . . ., where Ui are arbitrary unitary transfor-
mations, and Oj are unitary transformations corresponding to the queries to
the oracle. The computation ends with a measurement of the final state. The
measurement gives the probability of receiving the value of the function f(x).
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A randomized algorithm exactly computes f(x) if on any input x it outputs
f(x) with probability 1. A randomized algorithm computes f(x) with bounded
error if it outputs f(x) with probability at least 1

2 + ε for some ε > 0. By D(f),
PE(f), P2(f), QE(f), Q2(f), we denote the least number of queries required
by deterministic, exact probabilistic, probabilistic with bounded-error, quan-
tum exact, quantum bounded-error algorithms, respectively. For example, for
OR(x) = x1∨ . . .∨xN we have D(f) = N , P2(f) ∈ Θ(N), and Q2(f) ∈ Θ(

√
N).

Note that the complexity of a Boolean function measured by the number of
queries does not capture the complexity of any auxiliary computational steps
normally performed in the computation.

The Hamming weight of x, denoted by |x|, is the number of 1:s in x. A
Boolean function f is symmetric if permuting the input does not change the
function value (i.e. f(x) depends on |x| only). For such f let fk = f(x) for
|x| = k; and define

Γ (f) = min{|2k −N + 1| : fk 6= fk+1, 0 ≤ k < N}.

Roughly, Γ (f) is low if fk ‘jumps near the middle’. Recall:

Theorem 1. [10] If f(x1, . . . , xN ) is non-constant and symmetric, then Q2(f) ∈
Θ(
√
N(N − Γ (f))).

For the sequel, an obvious but clarifying remark may be in order. A Boolean
function f of N binary variables is nothing but a dichotomy of {0, 1}N , and
hence the computation of f is nothing but the recognition of the finite language
f−1(1). We may thus use the language of automata, in which a word x is accepted
or rejected if and only if f(x) = 1 or f(x) = 0, respectively.

3 Some Boolean functions and their decision trees

3.1 The function AND

To begin with, consider the function AND(x1, x2) = x1 ∧ x2. There is a deter-
ministic decision tree for AND containing two queries: we ask about the first
variable, and, if the answer is 1, we make a query about the second variable.

A probabilistic decision tree computing AND with bounded error 1
3 is ob-

tained as follows; we use the language of automata in the description. From the
root, we go to the rejecting state (0-leaf) with probability 1

3 , and with equal
probabilities 1

3 we pass to the two nodes querying the oracle about xk, k = 1, 2.
If the answer of a query is 1, we go to the accepting state (1-leaf) with probability
1; if the answer is 0, we go to the rejecting state with probability 1. The results
are summarized in Table 1: we accept in case x1 = x2 = 1 with probability 2

3 ;
we reject in case x1 = x2 = 0 with probability 1; and we reject in all other cases
with probability 2

3 .
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x y p1 p0

00 0 0 1
01 0 1

3
2
3

10 0 1
3

2
3

11 1 2
3

1
3

Table 1. Probabilities pk = pk(x) of output k, k = 0, 1, for our probabilistic decision
tree computing the function y = AND(x).

So, we obtain P2(AND) = 1 with probability 2
3 of correct answer. A quantum

decision tree, which we are about to describe, also gives Q2(AND) = 1, but with
a better probability. It works as follows. From the root, we go to a state q3 with
amplitude 1√

3
, and query x1 and x2 with equal amplitudes 1√

3
. For each of the

two queries xk, if the answer to xk is 0, we go to a state qk with conditional
amplitude −1; if the answer is 1, we go to the state qk with conditional amplitude
+1. Next, we perform the Hadamard transform

H =

(
1√
2

1√
2

1√
2
− 1√

2

)
(1)

on the states q1 and q2, and receive states q4, q5. Then, we perform the Hadamard
transform on the states q4 and q3, the first outcome state being accepting one,
but the second outcome state and state q5 being rejecting states. The results
are summarized in Table 2: we accept in the case x1 = x2 = 1 with probability
6+

√
2

12 , we reject in the case x1 = x2 = 0 with the same probability, and we reject
in all other cases with probability 5

6 .

x y A(q5) A(q6) A(q7) p1 p0

00 0 0 −2+
√

2√
12

−2−
√

2√
12

6−4
√

2
12

6+4
√

2
12

01 0 − 2√
6

1√
6

− 1√
6

1
6

5
6

10 0 2√
6

− 1√
6

− 1√
6

1
6

5
6

11 1 0 2+
√

2√
12

2−
√

2√
12

6+4
√

2
12

6−4
√

2
12

Table 2. Probabilities pk = pk(x) of output k, k = 0, 1, and amplitudes A(qk) for our
quantum decision tree computing the function y = AND(x).

We conclude that quantum decision trees may work better than probabilistic
decision trees.

3.2 The function v

Consider the function v(x) = (x1, x2, x3) which is equal to one if and only if the
count of 1:s in x is at least two. It is easy to see that D(v) = 3.

Theorem 2. There is a probabilistic decision tree with two queries computing
v with probability 3

5 .
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Proof. We go to the accepting state with probability 2
5 and with probabilities

1
5 we query the oracle about two variables xk and x(k+1) mod 3, k = 1, 2, 3; if
both variables are 1 then we go to the accepting state with local probability 1,
otherwise we go to the rejecting state with local probability 1

5 . We accept in
the cases x1 = x2 = x3 with probability 3

5 . We reject in all other cases with
probability 3

5 . ut
Theorem 3. There is a quantum decision tree with two queries computing v
with probability 2

3 + ε.

Proof. We go to the state q0 with amplitude 1
2 and query oracle about x1 and

x2, x1 and x3, x2 and x3, with amplitudes 1
2e

0, 1
2e

2πi
3 , 1

2e
4πi
3 , respectively. If

both variables are 1, we go to states q1, q2, q3, respectively, with conditional
amplitude +1; if not, we to the state qk with conditional amplitude −1. Next,
we perform quantum Fourier transform

1√
3



e0 e0 e0

e0 e
2πi
3 e

4πi
3

e0 e
4πi
3 e

2πi
3


 (2)

on the states q1, q2, q3, receiving states q4, q5, q6. Then, we perform the Hadamard
transform on the states q0 and q6. The first outcome state and states q4, q5 are
accepting, the second outcome state is rejecting.

The results are summarized in Table 3. We reject in all cases when at least

two variables are 0 with probability (1+
√

3
2
√

2
)2 = 4+2

√
3

8 > 7
8 . We accept in cases

when exactly two variables are 1 with probability greater than 2
3 , and we accept

when all the variables are 1 with probability greater than 7
8 . ut

x A(q4) A(q5) A(q7) A(q4) p1 p0

|x| = 1 0 0 1−
√

3
2
√

2
1+

√
3

2
√

2
< 1

8 >
7
8

011 −1
2
√

3
− 1

2 i
−1
2
√

3
+ 1

2 i
−1+

√
3

2
√

6
1+

√
3

2
√

6
> 2

3 <
1
3

101 −1
2
√

3
+ 1

2 i
−1
2
√

3
− 1

2 i
−1+

√
3

2
√

6
1+

√
3

2
√

6
> 2

3 <
1
3

110 1√
3

1√
3

−1+
√

3
2
√

6
1+

√
3

2
√

6
> 2

3 <
1
3

111 0 0 1+
√

3
2
√

2
1−

√
3

2
√

2
> 7

8 <
1
8

Table 3. Probabilities pk = pk(x) of output k, k = 0, 1, and amplitudes A(qk) for our
quantum decision tree computing the function y = AND(x).

3.3 The function V

Consider now the function V (x) = (x1, . . . , xN ), N = 2p + 1, which is equal to
one if and only if the count of 1:s in x is at least p + 1. We get no remarkable
speed-up.

Theorem 4. Q2(V ) ∈ Θ(N).

Proof. The function V (x) = (x1, . . . , xN ) is symmetric. Invoke Theorem 1, ob-
serving that vk 6= vk+1 only when k = (N − 1)/2, and hence Γ (V ) = 0. ut
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3.4 The function JN

Put JN (x1, . . . , xN ) = (x1 ∧ . . . ∧ xN ) ∨ (x̄1 ∧ . . . ∧ x̄N ). Freivalds and Lace [7]
gave a quantum decision tree with one query computing J3 with probability 2

3 .
We improve this:

Theorem 5. There is a quantum decision tree with one query computing J3

with probability 8
9 .

Proof. We query xk, k = 1, 2, 3, with amplitudes 1√
3
; if the answer is 0, we go

to the state qk with conditional amplitude −1; if the answer is 1, we go to the
state qk with conditional amplitude +1. Next, we perform the quantum Fourier
transform (2) on the states q1, q2, q3. The first outcome state is accepting, the
other two states are rejecting. We accept if x1 = x2 = x3 with probability 1, we
reject in all other cases with probability 8

9 . ut

Theorem 6. Q2(JN ) ∈ Θ(
√
N).

Proof. The function f = JN is symmetric. Invoke Theorem 1, observing that
Γ (f) = N − 1 since fk 6= fk+1 only when k = 0 or k = N − 1, and in both cases
|2k −N + 1| = N − 1. ut
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Abstract. Decision trees (query algorithms) are tools for computing
Boolean functions by asking for the values of Boolean variables. A nat-
ural complexity measure is the number of queries. It is well known that
some Boolean functions may be computed by probabilistic and quantum
decision trees with fewer queries than required by deterministic decision
trees. We examine this phenomenon in some examples.

1 Introduction

Recently it has become clear that a quantum computer could in principle solve
certain problems faster than a conventional computer. A quantum computer is
a device which takes full advantage of quantum mechanical superposition and
interference. Building an actual quantum computer is probably far off in the
future.

The Boolean decision trees model is the simplest model of computation of
Boolean functions. In this model, the primitive operation made by an algorithm
is the evaluation of a Boolean input variable. The cost of a (deterministic) al-
gorithm is the number of variables it evaluates in a worst case input. It is easy
to find the deterministic complexity of all explicit Boolean functions (for most
functions it is equal to the number of variables).

The black-box model of computation arises when one is given a black-box
containing an N -tuple of Boolean variables x = (x1, x2, ..., xn). The box supplies
output xi on input i. We wish to determine a property of x, i.e. a function
f : {0, 1}n → {0, 1}, accessing the xi:s only through the black-box. Such a
black-box access is called a query. We want to compute such properties using as
few queries as possible.

For example, to determine whether or not x contains at least one 1, we
compute the property OR(x) = x1∨ ...∨xn. It is well known that the number of
queries required to compute OR by any classical (deterministic or probabilistic)
algorithm is Θ(n). Grover [7] discovered a remarkable quantum algorithm, which

? Research supported by Grant No.01.0354 from the Latvian Council of Science, Con-
tract IST-1999-11234 (QAIP) from the European Commission, and the Swedish In-
stitute, Project ML2000
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makes queries in superposition, and can be used to compute OR with small error
probability using only O(

√
n) queries.

In this paper, we give probabilistic decision trees for OR(x) and AND(x)
with isolated cut point using only one query. In the quantum case, we give three
quantum decision trees, which are all better than their deterministic counterpart.

2 Definitions

We follow closely Hajnal [9] and Vereshchagin [12].

Definition 1. A (deterministic) decision tree is a binary tree with labels on
each node and edge. Each inner node is labelled by a query. One of the two edges
leaving the node is labelled 0, the other is labelled 1. The two labels represent the
two possible answers to the query. The two subtrees at a node describe how the
algorithm proceeds after receiving the corresponding answer. Each leaf is labelled
0 or 1. These labels give the output, i.e. the value of the function.

Clearly, each truth-assignment to the variables determines a unique path, the
computation path, from the root to a leaf of the tree. The Boolean function
computed by the decision tree takes the label at this leaf as its value on the
given input.

Definition 2. Let cost(A, x) be the number of queries asked when the decision
tree A is executed on input x. This is the length of the computation path forced
by x. The worst case complexity of A is maxx cost(A, x); it is the depth of the
tree. The decision tree complexity of a Boolean function f is

C(f) = min
A

max
x

cost(A, x),

where the minimum is taken over all decision trees A computing the function f .

So the cost of a computation is just the number of queries asked. We ignore the
time needed for the generation of queries and the computation of the output.

A randomized decision tree is a rooted, not necessarily binary, tree. Each of
its inner nodes is labelled by a variable, i.e. by a query. The edges leaving a node
are labelled 0 or 1. The subtrees which can be reached from a given node by an
edge labelled 0 are the possible continuations of the algorithm after receiving the
answer 0. The role of the edges labelled 1 is symmetric. During the execution of
the algorithm the next step is chosen randomly.

We use the simplest convention when we require that the algorithm always
gives the correct answer. Using the second formalization of the randomized de-
cision tree, it computes a function f if the distribution is non-zero only on
deterministic trees computing f .

Definition 3. Let A1, . . . , AN be the set of all deterministic decision trees com-
puting the function f . Let R = p1, . . . pN be a randomized decision tree computing



34 Lelde Lāce

f , where pi is the probability of Ai. The cost of R on input x is cost(R, x) =
Σipicost(Ai, x). The randomized decision tree complexity of a function f is

CR(f) = min
R

max
x

(R, x),

where the minimum is taken over all randomized decision trees computing the
function f .

For the basic notions of Quantum Computation we refer the monographs by
Gruska [8], Nielsen and Chuang [11], and Hirvensalo [10]. A quantum computer
performs a sequence of unitary transformations U1, U2, . . ., UT on a complex
Hilbert space, called the state space. The state space has a canonical orthonormal
basis which is indexed by the configurations s of some classical computer M . The
basis state corresponding to s is denoted by |s〉. The initial state φ0 is a basis
state. At any point in time t, 1 ≤ t ≤ T , the state φt is obtained by applying Ut

to φt−1. At time T , we measure the state φT .
We define a quantum decision tree following Deutsch and Jozsa [4] and

Buhrman et al [3]. For input length n, the initial state φ0 is independent of the
input x = x0x1 . . . xn. We allow arbitrary unitary transformations independent
of x. In addition, we allow A to make quantum queries. These are transformation
Ux taking the basis state |i, b, z〉 to |i, b⊕ xi, z〉, where:

– i is a binary string of length logn denoting an index in the input x,
– b is the contents of the location where the result of the oracle query will be

placed,
– z is a placeholder for the remainder of the state description,

and the comma denotes concatenation.
We define the cost of A to be the largest number of times a query transfor-

mation Ux is performed; all other transformations are free.
We want to compute a function f : {0, 1}n → {0, 1} using as few queries

as possible (on the worst-case input). We distinguish between three different
error models. In the case of exact computation, an algorithm must always give
the correct answer f(x) for every x. In case of bounded-error computation, an
algorithm must give the correct answer f(x) with probability ≥ 2

3 for every x. In
the case of zero-error computation, an algorithm is allowed to give the answer
‘don’t know’ with probability ≤ 1

2 , but if outputs an answer (0 or 1), then this
must be the correct answer.

3 Probabilistic decision trees

Theorem 1. There is a bounded error probabilistic decision tree computing the
function f(x1, x2) = x1 ∨ x2 with probability 3

5 .

Proof. We reject with probability 1
5 . Simultaneously we query x1 and x2 with

probability 2
5 . If the answer is 1, we accept. If the answer is 0, we accept and
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reject with probability 1
2 .

x1 x2 1 0
0 0 2/5 3/5
0 1 3/5 3/5
1 0 3/5 2/5
1 1 4/5 1/5

ut

Theorem 2. There is a bounded error probabilistic decision tree computing the
function f(x1, x2, . . . xn) = x1 ∨ x2 ∨ . . . ∨ xn with probability n+1

2n+1 .

Proof. We reject with probability 1
2n+1 . Simultaneously we query x1,x2,...xn

with probability 2
2n+1 . If the answer is 1, we accept. If the answer is 0, we accept

and reject with probability 1
2 . The decision tree is symmetric, hence the result

does not depend on order of variables.

x1, x2...xn 1 0
000..00 n/2n+1 n+1/2n+1
100..00 n+1/2n+1 n/2n+1
110..00 n+2/2n+1 n-1/2n+1

... ... ...
111..10 2n-1/2n+1 2/2n+1
111..11 2n/2n+1 1/2n+1

The worst cases are the first and the second lines in table. Cut-point size is
1

2n+1 . ut

Theorem 3. There is a bounded error probabilistic decision tree computing the
function f(x1, x2, . . . xn) = x1 ∧ x2 ∧ . . . ∧ xn with probability n+1

2n+1 .

Proof. We accept with probability 1
2n+1 . Simultaneously we query x1,x2,...xn

with probability 2
2n+1 . If the answer is 0, we reject. If the answer is 1, we accept

and reject with probability 1
2 . The decision tree is symmetric, hence the result

does not depend on the order of variables.

x1, x2...xn 1 0
000..00 1/2n+1 2n/2n+1
100..00 2/2n+1 2n-1/2n+1

... ... ...
111..10 n/2n+1 n+1/2n+1
111..11 n+1/2n+1 n/2n+1

The worst cases are the last and the second last lines in table. Cut-point size is
1

2n+1 . ut
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4 Quantum decision trees

For the functions OR, AND, PARTY, and MAJORITY, Beals et al [2] obtain
the bounds in the table below.

exact zero-error bounded-error

OR,AND N N Θ(
√

(N))
PARITY N/2 N/2 N/2
MAJORITY Θ(N) Θ(N) Θ(N)

Theorem 4. There is a quantum decision tree with one query computing the
function f(x1, x2) = x1 ∨ x2 with probability 5

6 .

Proof. First, we go to the states Q1 with probability 1√
3

and Q2 with probability
√

2√
3
. In state Q1 we query each xi with amplitude 1√

2
. If the answer is 1, the query

algorithm does to the state q1i with conditional amplitude +1. If the answer is
0, the query algorithm goes to the state q1i with conditional amplitude -1. In
state Q2 we query each xi with amplitude 1√

2
. If the answer is 1, the query

algorithm does to the state q2i1 . If the answer is 1, the query algorithm does
to the state q2i0 . Hence the distribution of amplitudes between q11,q12,q211

,q210
,

q221
and q220

is as follows

x1 x2 q11 q12 q211
q210

q221
q220

0 0 − 1√
6
− 1√

6
0 + 1√

3
0 + 1√

3

0 1 − 1√
6

+ 1√
6

0 + 1√
3

+ 1√
3

0

1 0 + 1√
6
− 1√

6
+ 1√

3
0 0 + 1√

3

1 1 + 1√
6

+ 1√
6

+ 1√
3

0 + 1√
3

0

After that we apply the Hadamard transform
(

1√
2

1√
2

1√
2
− 1√

2

)

to states q11 and q12, and the unitary transformation



1√
2

0 1√
2

0

0 1√
2

0 1√
2

1√
2

0 − 1√
2

0

0 1√
2

0 − 1√
2




to states q211
,q210

, q221
and q220

. We get the amplitudes

x1 x2 qr1 qr2 qr3 qr4 qr5 qr6

0 0 − 1√
3

0 0 +
√

2√
3

0 0

0 1 0 − 1√
3

+ 1√
6

+ 1√
6
− 1√

6
+ 1√

6

1 0 0 + 1√
3

+ 1√
6

+ 1√
6

+ 1√
6
− 1√

6

1 1 + 1√
3

0 +
√

2√
3

0 0 0
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(**).
We accept in states qr2,qr3,qr5 and qr6 and reject in state qr4, but in state

qr1 we go to the states qr10 and qr11 with probability 1√
2
. The state qr11 is an

accepting state and the state qr10 is a rejecting state.

x1 x2 qr11[1] qr10[0] qr2[1] qr3[1] qr4[0] qr5[1] qr6[1]

0 0 − 1√
6

− 1√
6

0 0 +
√

2√
3

0 0

0 1 0 0 − 1√
3

+ 1√
6

+ 1√
6

− 1√
6

+ 1√
6

1 0 0 0 + 1√
3

+ 1√
6

+ 1√
6

+ 1√
6

− 1√
6

1 1 + 1√
6

+ 1√
6

0 +
√

2√
3

0 0 0

Measuring all these states, we get the result:

x1 x2 1 0
0 0 1/6 5/6
0 1 5/6 1/6
1 0 5/6 1/6
1 1 5/6 1/6

ut

Theorem 5. There is a quantum decision tree with one query computing the
function f(x1, x2) = x1 ∧ x2 with probability 5

6 .

Proof. The decision tree is similar to the last decision tree (see until the mark
(**)). We accept in states qr3 and reject states qr4, qr5 and qr6, but in state
qr1 we go to the states qr10 and qr11 with probability 1√

2
. The state qr11 is an

accepting state and the state qr10 is a rejecting state.

x1 x2 qr11[1] qr10[0] qr2[0] qr3[1] qr4[0] qr5[0] qr6[0]

0 0 − 1√
6

− 1√
6

0 0 +
√

2√
3

0 0

0 1 0 0 − 1√
3

+ 1√
6

+ 1√
6

− 1√
6

+ 1√
6

1 0 0 0 + 1√
3

+ 1√
6

+ 1√
6

+ 1√
6

− 1√
6

1 1 + 1√
6

+ 1√
6

0 +
√

2√
3

0 0 0

Measuring all these states, we get the result:

x1 x2 1 0
0 0 1/6 5/6
0 1 1/6 5/6
1 0 1/6 5/6
1 1 5/6 1/6

ut

Theorem 6. [5] There is a quantum decision tree with one query computing
the function j(x1, x2, x3) = (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3) with probability 8

9 .
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Proof. We query xk, k = 1, 2, 3, with amplitudes 1√
3
e0, 1√

3
ei 2π

3 , 1√
3
ei 4π

3 , respec-

tively. If the answer is 0, we go to the state qk with conditional amplitude -1. If
the answer is 1, we go to the state qk with amplitude +1. Next, we perform the
Fourier transform 



1√
3
e0 1√

3
e0 1√

3
e0

1√
3
e0 1√

3
ei 2π

3
1√
3
ei 4π

3

1√
3
e0 1√

3
ei 4π

3
1√
3
ei 2π

3




On the states q1, q2, q3, the first two outcome states are rejecting, the last is
accepting.

x1 x2 x3 q1[0] q2[0] q3[1]

0 0 0 − 1
3e

0 − 1
3e

i 2π
3 − 1

3e
i 4π

3 − 1
3e

0 − 1
3e

i 4π
3 − 1

3e
i 2π

3 − 1
3e

0 − 1
3e

0 − 1
3e

0

0 0 1 − 1
3e

0 − 1
3e

i 2π
3 + 1

3e
i 4π

3 − 1
3e

0 − 1
3e

i 4π
3 + 1

3e
i 2π

3 − 1
3e

0 − 1
3e

0 + 1
3e

0

0 1 1 − 1
3e

0 + 1
3e

i 2π
3 + 1

3e
i 4π

3 − 1
3e

0 + 1
3e

i 4π
3 + 1

3e
i 2π

3 − 1
3e

0 + 1
3e

0 + 1
3e

0

1 1 1 1
3e

0 + 1
3e

i 2π
3 + 1

3e
i 4π

3
1
3e

0 + 1
3e

i 4π
3 + 1

3e
i 2π

3
1
3e

0 + 1
3e

0 + 1
3e

0

Measuring all these states, we get the result:

x1 x2 x3 q1[0] q2[0] q3[1]
0 0 0 0 0 1
0 0 1 4/9 4/9 1/9
0 1 1 4/9 4/9 1/9
1 1 1 0 0 1

We accept in the cases x1 = x2 = x3 = 0 and x1 = x2 = x3 = 1 with probability
1. We reject in all the other cases with probability 8

9 . ut
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A Quantum Single-Query Automaton
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Abstract. We construct a quantum query automaton, which computet
the Boolean function

f4(x1, x2, x3, x4) = (x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x3 ∧ x4) ∨ (x4 ∧ x1)

with a single query. We also indicate how to generalize this construction
for more general Boolean functions in DNF form, with k ≥ 4 disjunctions
and one or two variables in each conjunction term.

1 Introduction

For the definition of quantum query automata, see [25]. Complexity measures,
limitations and algorithms for quantum query automata are discussed in [4, 2,
10, 5]. Here, we build an automaton, which computes the Boolean function

f4(x1, x2, x3, x4) = (x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x3 ∧ x4) ∨ (x4 ∧ x1) (1)

in a single query, with probability 5
9 .

Recall briefly the connection of decision trees (devices for computing Boolean
functions) and finite automata (devices for language recognition). Specifying a
Boolean function of n binary variables is obviously the same as specifying the
finite language in {0, 1}n where the function takes on value 1, so Boolean function
computation and finite language recognition are one and the same problem. For
the function (1), for example, the corresponding language consists of all binary
words of length four with at least two cyclically consecutive letters equal to one.

A deterministic decision tree computing f is then a direct encoding of a corre-
sponding automaton: the paths through the tree are the computational paths of
the automaton taken on different inputs, each path ending in an accepting state
1 or rejecting state 0. The probabilistic case is also straightforward, as it simply
introduces a probability distribution over each of the two classes of determinis-
tic computing devices. In the quantum case, the decision tree for computing a
Boolean function is defined in terms of a finite quantum (query) automaton [25]
by specifying for every input word x ∈ {0, 1}n a unitary operator

Ax = UTOxUT−1 . . . OxU1OxU0, (2)

? Research supported by contract IST–1999–11234 (QAIP) from the European Com-
mision and grant no. 01.0354 from the Latvian Council of Science.
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where all Ut, 0 ≤ t ≤ T , and Ox are unitary, acting on some CN , in which the
superpositions of the letters in an input word are a tensor factor. The output
of computation is the result of measurement of the final superposition Axz0, z0
being a fixed initial superposition, with respect to two subspaces representing
the binary outcomes.

For the automaton, which we we are about to construct, T = 1; the operators
U0, Ox, U1, and the final measurement operators will be described in terms of
their action on tensor factors of the superposition space.

2 Quantum query automaton for f4

2.1 Structure

The structure of the automaton is depicted in Figure 1 on page 46. There, the
circles represent queries xk, where the amplitude is moved to outgoing states, de-
pending on the outcome of the query, 1 ≤ k ≤ 4. The squares in the first column
symbolize the application of 2× 2 unitary matrix Q, followed by a measurement
of the result. The rectangles in the third column stand for the application of a
3×3 matrix M . When a new state is introduced inside the tree, it has a starting
amplitude of 0 (for example, in q3, q6, q15).

The matrix Q is of form

Q = Qb =

( √
b

√
1 − b√

1 − b −
√
b

)
; (3)

for the pre-calculated value b = 4
9 ,

Q = Q 4
9

=

(
2
3

√
5

3√
5

3 − 2
3

)
. (4)

The matrix M is a product of two rotations in 3-space, M = AB, where A
rotates in the first two co-ordinates by π

4 , and B rotates in the first and the third

co-ordinates by an angle α such that cosα =
√

7
3 and sinα =

√
2

3 . It is easily
verified that

M =




√
14
6 −

√
2

2 − 1
3√

14
6

√
2

2 − 1
3√

2
3 0

√
7

3


 . (5)

2.2 Recognition probabilities

The matrix Q is applied only when a query x returns 0; it will act only on the
vector (1, 0). So, in this case, the result 1 has probability b, and the result 0 has
probability 1 − b.

The following list contains all possible inputs and outputs for the matrix M .
When probabilities of outcome 1 and 0, respectively, are calculated, we take into
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account all subtrees which begin at the matrix M . For the states q16, q17, q18,
and q25, for example, putting v = (q16, q17, q18) and v′ = vM , the probability of
outcome 1 is |v′1|2 + 1

2 |v′3|2.

case x1x2 v = (q16, q17, q18 vM prob. of 1 prob. of 0
]1 00 (0, 0, 0) (0, 0, 0) 0 0

]2 01 (0, 1
2
√

2
, 0) (

√
7

12 ,
1
4 ,− 1

6
√

2
) 1

18
5
72

]3 10 ( 1
2
√

2
, 0, 0) (

√
7

12 ,− 1
4 ,− 1

6
√

2
) 1

18
5
72

]4 11 ( 1
2
√

2
, 1

2
√

2
, 0) (

√
7

6 , 0,− 1
3
√

2
) 2

9
1
36

Matrix Q has only one input and output case:

case x1 v = (q2, q3) vQ prob. of 1 prob. of 0

]5 0 ( 1
2 , 0) ( 1

3 ,
√

5
6 ) 1

9
5
36

Finally, we list all input combinations (x values), and the corresponding final
result probabilities (cyclically shifted combinations are considered identical, e.g.
0110 = 0011).

x cases in use prob. of 1 prob. of 0
0000 ]5 ]5 ]5 ]5 4

9 ( 1
9 + 1

9 + 1
9 + 1

9 ) 5
9 ( 5

36 + 5
36 + 5

36 + 5
36 )

1000 ]2 ]3 ]5 ]5 ]5 4
9 ( 1

18 + 1
18 + 1

9 + 1
9 + 1

9 ) 5
9 ( 5

72 + 5
72 + 5

36 + 5
36 + 5

36 )
1100 ]4 ]2 ]3 ]5 ]5 5

9 ( 2
9 + 1

18 + 1
18 + 1

9 + 1
9 ) 4

9 ( 1
36 + 5

72 + 5
72 + 5

36 + 5
36 )

1010 ]2 ]3 ]2 ]3 ]5 ]5 4
9 (4 1

18 + 1
9 + 1

9 ) 5
9 (4 5

72 + 5
36 + 5

36 )
1110 ]2 ]3 ]4 ]4 ]5 6

9 ( 1
18 + 1

18 + 2
9 + 2

9 + 1
9 ) 3

9 ( 5
72 + 5

72 + 1
36 + 1

36 + 5
36 )

1111 ]4 ]4 ]4 ]4 8
9 ( 2

9 + 2
9 + 2

9 + 2
9 ) 1

9 ( 1
36 + 1

36 + 1
36 + 1

36 )

Comparing the probabilities we see that for all words with at least two let-
ters 1 in succession, the probability of outcome 1 is at least 5

9 ; otherwise, the
probability of 0 is also also at least 5

9 .

3 Discussion

3.1 Finding Q and M

How were the matrixes Q and M found? Have a look at the first table: there are
two input states1 for matrix M , and each of them can have amplitude 1

2
√

2
or 0.

We need a transformation that gives a higher probability of outcome 1 than 0,
p(1) > p(0), when the input vector is ( 1

2
√

2
, 1

2
√

2
) (let us call it the ‘good case’),

but p(1) < p(0) for all other cases: ( 1
2
√

2
, 0) and (0, 1

2
√

2
) (call this the ‘bad case’).

Denote p(1) by g in the good case, g > 1
2 , and by b in the bad case, b < 1

2 .
If there are only bad cases, then the total probability of the result 0 is 1− b.

But, if there is at least one good case, the total probability of 1 should be greater

1 At this moment, the third additional state, e.g. q15, is not taken into account.
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than half, in spite of all other cases being bad. So, g should be big enough, to
compensate b in other places.

Let the radius of isolation of the automaton be ε (then the error is 1
2 − ε).

The worst case when result 1 must be given is a state ( 1
2
√

2
, 1

2
√

2
) at one matrix

M (hence, the sum of the squares of amplitude moduli is 1
8 + 1

8 = 1
4 ), and bad

cases in all other places (sum of squares of moduli is 1 − 1
4 = 3

4 ). This gives the
inequality

1

4
g +

3

4
b ≥ 1

2
+ ε. (6)

Note that this is the worst case; if there is one ‘good case’, say the input is 0111,
we have a weaker inequality: 1

2 g + 1
2 b ≥ 1

2 + ε, and, for example, 1111 will give
a still weaker inequality 1 g ≥ 1

2 + ε.
Similarly, the constraint for all bad cases (result 0) is

b ≤ 1

2
− ε. (7)

It only remains to find the largest possible ε, and out of that, the values of g
and b. Necessary probability ratio can be found with unitary rotations. All input
cases for the matrix M are listed in the first table, above; we may omit the case
]1, (0, 0), as the allocation of the probabilities of the results 1 and 0 occurs then
in other places (M does not change anything in case ]1). Write vectors in the
form (x, y); after a transformation, we will measure the result 1 at x, and the
result 0 at y.

We need the x co-ordinate of a case ]4 vector to be greater than in all other
cases. To achieve this, rotate a vector by π

4 ; now the ratio p(1) : p(0) in case ]4
is 1 : 0, but in all other cases it is 1

2 : 1
2 (g = 1, b = 1

2 ).
We need b < 1

2 . Add a new state z and make a rotation in the x, z plane (there
is no difference in which direction we rotate). As a side effect, there appears an
amplitude sin2 α in the z-variable. We can distribute it equally between results
1 and 0.

Now the ratio p(1) : p(0) is (cos2 α + 1
2 sin2 α) : 1

2 sin2 α in case ]4, while in

cases ]2 and ]3, it is (1
2 cos2 α+ 1

4 sin2 α) : (1
2 + 1

4 sin2 α). Case ]4 is ‘good’, hence

g = cos2 α+
1

2
sin2 α =

1

2
+

1

2
cos2 α, (8)

but cases ]2 and ]3 are ‘bad’, hence

b =
1

2
cos2 α+

1

4
sin2 α =

1

4
+

1

4
cos2 α. (9)

Inserting these into (6) and (7), respectively, we can bound α

3

5
+

16

5
ε ≤ cos2 α ≤ 1 − 4ε. (10)

This gives an estimate on ε:

ε ≤ 1

18
. (11)
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For the maximum radius of isolation ε = 1
18 (giving the correct result with

probability 5
9 ), the estimate (10) gives, up to a choice of sign, cosα =

√
7

2 and

sinα =
√

2
3 , and hence, by (6) and (7), g = 8

9 and b = 4
9

The cases the matrix Q operates on are always ‘bad’, so Q should distribute
probabilities p(1) and p(0) with ratio p(1) : p(0) equal to b : 1 − b, that is,
(1, 0)Q = (

√
b,
√

(1 − b)); an appropriate matrix Q is thus of form (3), which,
for b = 4

9 is the matrix (4).

3.2 Generalizations

This algorithm can be generalized. For any Boolean function, which can be
represented in disjunctive normal form (DNF) with one or two arguments in
each conjunction, we can build a single-query quantum automaton. As for the
case of f4, there will be a matrix M for each conjunction term of the DNF. Let
k be the number of terms in the DNF, which is also the number of matrices M .
Then inequality (6) now takes the form

g
1

k
+ b(1 − 1

k
) ≥ 1

2
+ ε. (12)

Inserting (8) and (9), together with (7), this gives

k − 1

k + 1
+

4k

k + 1
ε ≤ cos2 α ≤ 1 − 4 ε, (13)

recovering (10) if k = 4. This gives, as previously (11), an estimate on ε:

ε ≤ 1

4k + 2
. (14)

Taking, as previously, the largest value ε = 1
4k+2 in (13) gives cos2 α = 2k−1

2k+1 and

sin2 α = 2
2k+1 , and hence, by (8) and (9), g = 2k

2k+1 and b = 1
2k+1 .
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Fig. 1. The structure of the single-query automaton
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Abstract. We exhibit a class of languages not recognized by determinis-
tic finite automata (DFA), but recognized by 1-way measure-many quan-
tum finite automata (QFA) with non-isolated cut-point.

1 A class of languages not recognized by DFA

Let N be the set of all non-negative integers, and let πQ be the set of all rational
multiples of π.

Lemma 1. For any real α, β such that α /∈ πQ, the sequence cos(αn+β), n ∈ N,
is dense in the interval [−1, 1].

Proof. It is known and straightforward that for α /∈ πQ the sequence eiαn, n ∈ N,
is dense (indeed, uniformly distributed) in the complex unit circle; the conclusion
follows by rotating the circle by eib and projecting it onto the real axis.

Theorem 1. Let α, β be a real numbers, α /∈ πQ, let K be a subset of the
interval [−1, 1]. Define a language over the alphabet {a} by

L = Lα,β,K = {an : n ∈ N, cos(nα+ β) ∈ K}.

If K is not dense in [−1, 1], then L is not recognized by any deterministic finite
automaton.

Proof. Clearly, the sequence of states taken on by a deterministic finite au-
tomaton (DFA) A upon reading a long enough word an will eventually become
periodic; let the length of the period be N . Hence, for n large enough, if A ac-
cepts a word an it will also accept all words an+kN , k ∈ N. But, by Lemma 3,
the sequence cos((n+ kN)α) = cos(k(Nα) +nα), k ∈ N, is dense in [−1, 1], and
since K is not dense in [−1, 1], some of the words an+kN will not be in L. ut

Remark. If K contains the interval (−1, 1), the condition cos(nα+ β) ∈ K is
empty, and hence Lα,β,K = {an : n ∈ N} is trivially recognized by DFA.

? Research supported by Grant No.01.0354 from the Latvian Council of Science, Con-
tract IST-1999-11234 (QAIP) from the European Commission.
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2 Recognition by QFA with non-isolated cut-point

An (probabilistic) automaton is said to recognize a language L with non-isolated
cut-point p (p ∈ [0, 1]) if it accepts every ω ∈ L with probability p(ω) > p, and
it accepts every ω /∈ L with probability p(ω) < p.

For real a, denote by ρa the two-by-two symmetric matrix with both terms
on the diagonal equal to cos a, and the remaining terms equal to i sin a, i =

√
−1.

It is easy to verify that ρaρb = ρa+b, and, in particular, ρn
a = ρan, n ∈ N.

Proposition 1. For any real α, β such that α /∈ πQ, and any non-negative p1,
p2, p3, such that p1 + p2 + p3 ≤ 1, there exists a 1-way measure-many quantum
finite automaton, which accepts words an over a one-letter alphabet {a} with
probability p(an) = p3 + p2 + (p1 − p2) cos2(nα+ β), n ∈ N.

Proof. Consider a QFA with four states: q1 and q2 - non-halting, q3 - accepting,
and q4 - rejecting. Define the (unitary) transition matrices U], Ua, and U$, cor-
responding to the left end-marker ], the symbol a, and the right end-marker $,
respectively, as follows.

The first row of U] is any real vector z = (z1, z2, z3, z4) of norm one such
that z2

j = pj , j = 1, 2, 3; the remaining rows of U] are arbitrary subject to
the unitarity condition. The matrix Ua = ρα ⊗ I2, ie Ua has blocks ρα and the
2-dimensional identity matrix I2 on the sinister diagonal, and the remaining
entries are zero. Finally, the matrix U$ has similar blocks as Ua, but on the
dexter diagonal: the right uppermost block is ρβ , the left lowermost block is I2,
and the remaining entries are zero.

To describe the operation of the automaton, it will be convenient to write
vectors x = (x1, x2, x3, x4) in the form x = (x′, x′′) with x′ = (x1, x2) and
x′′ = (x3, x4).

Let the initial distribution of amplitudes be v = (1, 0, 0, 0). After reading
the left end-marker ], the distribution of amplitudes becomes vU] = z. At this
moment, the probabilities of an acceptance and rejection are equal to p3 and
p4, respectively, and, up to normalization, new distribution of amplitudes is
(z1, z2, 0, 0) = (z′, 0). Since vectors of this form are acted upon only by the first
block ρα of Ua, the subsequent n-fold reading of the symbol a will result in mul-
tiplying the vector z′ = (z1, z2) of the first two amplitude coordinates by the ma-
trix ρn

α = ρnα, the two other coordinates remaining zero. Note, that all interme-
diate measurements are trivial, giving zero probabilities to acceptance/rejection,
and not changing the amplitude distribution. Finally, the reading of the right
end-marker $ sends a distribution (x′, 0) to (0, ρβx

′); consequently the final dis-
tribution after having read the word ]an$ will be (0, ρβρnαz

′) = (0, ρnα+βz
′).

Hence, the total probability of acceptance of the word an will be

p3 + |z3 cos(nα+ β) + iz2 sin(nα+ β)|2 = p3 + p2 + (p1 − p2) cos2(nα+ β),

as claimed. ut

Before stating the main theorem, we make a technical observation needed in
its proof.
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Lemma 2. If α, β are real numbers such that α+β /∈ πQ and α−β /∈ πQ, then
cos2 α 6= cos2 β.

Proof. Write cos2 α− cos2 β as a product of the sine and cosine functions of the
angles α+β

2 and α−β
2 . ut

Theorem 2. For every p ∈ (0, 1) there exists a language, which can be recog-
nized by some 1-way measure-many quantum finite automaton with non-isolated
cut-point p, but cannot be recognized by any deterministic finite automaton.

Proof. Let A = Ap1,p2,p3,α,β be an automaton ascertained by Proposition 1.
Clearly, a necessary condition for A to accept a language over the one-letter
alphabet {a} with non-isolated cut-point p, is that the probability of acceptance
p(an) of words an never equals p :

p(an) = p3 + p2 + (p1 − p2) cos2(nα+ β) 6= p (1)

for all n ∈ N. Choose real α /∈ πQ, b ∈ Q, β = α + πb, and z1 6= z2. Condition
(1) now reads:

cos2(nα+ α+ πb) 6= p− (p3 + p2)

p1 − p2
. (2)

By Lemma 2, condition (2) will hold if its right side can be written as cos2 θ for
some θ ∈ πQ. To this effect, ensure that

p3 + p2 < p < p3 + p1, (3)

so the right side of (2) lies in the interval (0, 1); it is clear by a density argument
that for suitable pk satisfying (3) a θ ∈ πQ may be found.

Let L = {an : n ∈ N, p(an) > p}. Clearly, A recognizes L with non-isolated
cut-point p. Since another way of writing p(an) > p is cos2(nα + β) > cos2 θ,
and cos2 θ > 0, Theorem 3 applies, and hence the language L is not recognized
by any deterministic finite automaton. ut

3 Open problems

We have exhibited a class of languages not recognizable by DFA, but recognizable
by MM-QFA with non-isolated cut-point.

Given such a language, it is natural to look for simplest possible QFA of this
type, which recognize it. In particular, we would like to know whether all the
elements of the matrices of the QFA could be of form (a + bi)(cosα + i sinβ),
with a, b real and α, β /∈ πQ.

Another open problem is the existence of a language not recognized by proba-
bilistic finite automata, but recognized with non-isolated cut-point by MM-QFA.
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The Complexity of Probabilistic versus

Quantum Finite Automata
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Institute of Mathematics and Computer Science
University of Latvia, Riga, Latvia

mgatis@inbox.lv

Abstract. A language Ln is presented, which is recognizable by a prob-
abilistic finite automaton with O(log2n) states with probability 1−ε, for
all ε > 0, and by a deterministic finite automaton with O(n) states, but
any quantum finite automaton recognizing Ln needs 2Ω(n/ log n) states.

1 Introduction

Probabilistic finite automata (PFA) generalize deterministic finite automata
(DFA), and many authors, for example [2, 5, 7, 4], researched the advantages
of PFA over DFA. On the other hand, it is known [3, 2] that the size of reversible
and quantum finite automata (RFA and QFA, respectively) recognizing some
regular (i.e. recognizable by DFA) languages grows almost exponentially. And
so, Ambainis et al [3] write:

Another open problem involves the blow up in size while simulating
a 1-way PFA by a 1-way QFA. The only known for doing this is by
simulating the PFA by a 1-way QFA and then simulating the DFA by
a QFA. Both simulating a PFA by a DFA [7, 5, 6], and simulating DFA
by a QFA (this paper) can involve exponential or nearly exponential
increase in size. This means that the straightforward simulation of a
probabilistic automaton by a QFA (described above) could result in a
doubly-exponential increase in size. However, we do not known of any
examples where both transforming a PFA into a DFA and transforming
a DFA into a QFA cause big increases of size. Better simulations of PFA
by QFAs may well be possible.

Presently we address this problem.

2 Definitions and known results

We define 1-way QFA (further in the text simply QFA) as in [2, 3]. This model,
first introduced in [1], is not the most general one, but it is easy to implement

? Research supported by Grant No.01.0354 from the Latvian Council of Science, and
Contract IST-1999-11234 (QAIP) from the European Commission.
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and to deal with. A QFA has a finite set of basis states Q, consisting of tree parts:
accepting states (Qacc), rejecting states (Qrej) and non-halting states (Qnon).
One of the states, qini, is distinguished as the starting state. Inputs to a QFA
are words over a finite alphabet Σ. We shall also use the symbols ø and $ that
do not belong to Σ to denote the left and the right end marker, respectively.
The set Γ = Σ ∪ {ø, $} denotes the working alphabet of the QFA. To each
symbol σ ∈ Γ , corresponds a unitary transformation Uσ on the space CQ.

At any time, the state of a QFA is a superposition of basis states in Q. The
computation starts in the superposition |qini〉. Then, the transformations corre-
sponding to the left end marker ø, the letters of the input word x, and the right
end marker $, are applied in succession to the state of the automaton, unless
a transformation results in acceptance or rejection of the input. A transforma-
tion consists of two steps: First, Uσ is applied to |ψ〉, the current state of the
automaton, to obtain the new state |ψ′〉. Then, |ψ′〉 is measured with respect to
the observable Eacc ⊕Erej ⊕Enon, where Ei is the linear span in CQ of the set
{|q〉 : q ∈ Qi}, i ∈ {acc, rej, non}. The probability of observing Ei is equal to the
squared norm of the projection of |ψ′〉 onto Ei. On measurement, the state of
the automaton ‘collapses’ to the projection onto the space observed, i.e., it be-
comes equal to the projection, normalized to a unit superposition. If we observe
Eacc (or Erej), the input is accepted (or rejected). Otherwise, the computation
continues, and the next transformation, if any, is applied.

A QFA is said to accept (or recognize) a language L with probability p > 1
2

if it accepts every word in L with probability at least p, and rejects every word
not in L with probability at least p.

A RFA is a QFA with only the elements 0 and 1 in its transition matrices.
A PFA is defined essentially as a QFA but with stochastic, instead of unitary,
transition matrices. A DFA is a PFA with only 0 and 1 in the matrices. The size
of a finite automaton is defined as the number of its (basis) states. More exact
definitions can be found, for example, in [2].

Ambainis and Freivalds [2] give a language L×
n consisting of a single word an

in a single-letter alphabet, and prove:

Theorem 1. Any DFA recognizing L×
n has at least n states, but, for any ε > 0,

there is a PFA with O(log2 n) states recognizing L×
n with probability 1 − ε.

Proof. We briefly sketch the idea. The first part is evident. To prove the second
part, Freivalds [5] used the following construction. O( log n

log log n ) different primes

are employed and O(log n) states are used for every employed prime. At first,
the automaton randomly chooses a prime p, and the remainder modulo p of the
length of an input word is found and compared with the standard. Additionally,
once in every p steps a transition to a rejecting state is made with a ‘small’
probability proportional to p

n . The number of used primes suffices to assert that,
for every input of length less than n, most of primes p give remainders different
from the remainder of n modulo p. The ‘small’ probability is chosen to have the
rejection high enough for every input length N such both N 6= n and ε-fraction
of all the primes used have the same remainders modulo p as n. ut
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Ambainis et al [3] introduce the following definition:

Definition 1. A function f : {0, 1}m × R 7−→ C2n

serially encodes m classi-
cal bits into n qubits with p success, if for any i ∈ {1, . . . , n} and b[i+1,n] =
bi+1 . . . bn ∈ {0, 1}n−i, there is a measurement Θi,b[i+1,n]

that returns 0 or 1, and
has the property that for all b ∈ {0, 1}m the probability that Θi,b[i+1,n]

|f(b, r)〉 = bi
is at least p.

They prove:

Theorem 2. Any quantum serial encoding of m bits into n qubits with constant
success probability p > 1/2 implies n ≥ Ω( m

log m ).

They also define an r-restricted 1-way QFA for a language L as a 1-way QFA that
recognizes L with probability p > 1/2, and which halts with non-zero probability
before seeing the right end marker only after it has read r letters of the input.
They prove:

Theorem 3. If there is a 1-way QFA with S states recognizing a language L
with probability p, then there is an r-restricted 1-way QFA with O(rS) states
that recognizes L with probability p.

3 Results

The proof of Theorem 4 below will use the following lemma:

Lemma 1. The language L1 = {ω ∈ {0, 1}∗ : ∃x, y ∈ {0, 1}∗ : ω = x00y} is rec-
ognizable by DFA.

Proof. Consider an automaton with five states q0, q1, q2, qacc and qrej , and with
transitions defined by: f(q0, 0) = q1, f(q0, 1) = q0, f(q1, 0) = q2, f(q1, 1) = q0,
f(q2, 0) = f(q2, 1) = q2, f(q0, $) = f(q1, $) = qrej , and f(q2, $) = qacc. ut

Theorem 4. For all k ≥ 1, n = 2k, define the languages

Ln = {ω ∈ {0, 1}n : ∃x, y ∈ {0, 1}∗ : ω = x00y}.

Then,

0. There is a RFA (hence also a QFA, a PFA and a DFA) recognizing Ln.

1. Any RFA that recognizes Ln, has at least 2O(n) states.

2. Any QFA that recognizes Ln with probability p > 1/2, has at least 2Ω( n
log n

)

states.

3. Any DFA that recognizes Ln, has at least O(n) states.

4. For any ε > 0, there is a PFA with O(log2 n) states recognizing Ln with
probability 1 − ε.
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Proof. 0. Every finite language is recognizable by some RFA, and Ln is a finite
language.

1. Let M be a RFA recognizing Ln. We give M the word a11a21a31 . . . ak1,
ai ∈ {0, 1}. It is obvious that M cannot decide what to answer until the end
of the word. It is also clear that M must branch at every ai. Indeed, if for
some i the automaton did move to the same state after reading ai = 0 as after
reading ai = 1, then we could feed it 01n−2i as the remaining symbols in the
two words, only one of which is in Ln but both lead to the same final state.
When M branches at ai, we say that it ‘remembers’ this bit. But could it merge
(‘forget’) afterwards? No, because merging states upon reading an input symbol
is forbidden by reversibility, and merging states upon reading different input
symbols is excluded for the same reason that causes branching. It then follows
that M remembers all the k bits ai, and the total number of its states is thus at
least 2k.

2. We use the technique introduced by [3]. Let M be any n-restricted QFA
accepting Ln with probability p > 1

2 . The following claim formalizes the intuition
that the state of M after n symbols of form a11a21a31 . . . ak1 have been read is
an ‘encoding’ of the {ai} (for RFA, deterministic, we used the term ‘remember’).

Claim. There is a serial encoding of k bits into CQ, and hence into dlog |Q|e
qubits, where Q is the set of basis states of M .

Proof of Claim. Let Qacc and Qrej be the sets of accepting and rejecting states,
respectively. Let Uσ be the unitary operator of M corresponding to the symbol
σ ∈ {0, 1,ø, $}. We define an encoding f : {0, 1}k −→ CQ of k-bit strings into
unit superpositions over the basis states of M by letting |f(x)〉 be the state
of M after the input string a11a21a31 . . . ak1, ai ∈ {0, 1}, has been read. We
assert that f is a serial encoding. To show this, we exhibit a suitable measure-
ment for the aith bit for every i ∈ {1, . . . k}. Let, for y ∈ {0, 1}n−2i+1, Vi(y) =
U$U

n−2i
1 U0U

−1
y1
U−1

y2
...U−1

yn−2i−1
U−1

yn−2i
U−1

yn−2i+1
. The ith measurement then con-

sists of first applying the unitary transformation Vi(1ai+11 . . . 1ak1) to |f(x)〉,
and then measuring the resulting superposition with respect to Eacc ⊗ Erej ⊗
Enon. Since for words of form a11a21...1ai01n−2i, membership in Ln is decided
by the ai, and because such words are accepted or rejected by then n-restricted
QFA M with probability at least p only after the entire input has been read, the
probability of observing Eacc if ai = 0, or Erej if ai = 1, is at least p. Thus, f
defines a serial encoding, as claimed. ut

It then follows from Theorem 2 that dlog |Q|e = Ω( k
log k ), but k = n

2 , hence

|Q| = 2Ω( n
log n

). From Theorem 3 it follows that any quantum automaton that

recognizes Ln also requires 2Ω( n
log n

) states.
3. Easy.
4. The PFA Q in Theorem 1 has one rejecting (qrej), one accepting (qacc), one

initial (qini) state, and many non-halting states qi. We build PFA Q′ recognizing
language Ln with one rejecting (q′rej), one accepting(q′acc), one starting (q′ini)
state, and several non-halting states q′i,0, q

′
i,1 and q′i,2, where i is an index of a

state of Q. For every transition from state qi to state qj with probability p for
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the input symbol a (we denote this by f(qi, a, qj , p)) there are six transitions in
Q′ (denoted by f ′):

1. f ′(q′i,0, 1, q
′
i,0, p)

2. f ′(q′i,0, 0, q
′
i,1, p)

3. f ′(q′i,1, 1, q
′
i,0, p)

4. f ′(q′i,1, 0, q
′
i,2, p)

5. f ′(q′i,2, 1, q
′
i,2, p)

6. f ′(q′i,2, 0, q
′
i,2, p)

For every f(qini, ø, qi, p), there is f ′(q′ini, ø, q
′
i,0, p); for every f(qi, a, qrej , p) there

are f ′(q′i,k, x, q
′
rej , p), k ∈ {0, 1, 2}, x ∈ {0, 1}, and for every f(qi, $, qrej , p)

there are f ′(q′i,k, $, q
′
rej , p), k ∈ {0, 1, 2}; and for any f(qi, $, qacc, p) there are

f ′(q′i,2, $, q
′
acc, p), f

′(q′i,0, $, q
′
rej , p), f

′(q′i,1, $, q
′
rej , p).

Informally, we make three copies of states in Q and their meaning is similar
to those of the automaton of Lemma 1. The automata answer in parallel two
questions: is the length of an input word n?, and, are there any adjacent zeroes
in it? It is obvious that the accepted words are those with both answers ‘yes’. ut

4 Conclusion

We have shown that quantum automata must be sometimes almost doubly expo-
nentially larger than equivalent classical automata. A related question, however,
remains. As shown by Ambainis and Freivalds [2], any language accepted by a
QFA with high enough probability can be accepted by a RFA which is at most
exponentially larger that a minimal DFA accepting the language. It thus follows
that Theorem 4 is close to maximal gap between probabilistic and quantum
automaton with high enough probability of success (as precisely computed by

Ambainis and Ķikusts [8] - greater than 52+4
√

7
81 = 0.7726...) But the situation

is not clear when we allow smaller probability of correctness. The author does
not now of any lower or upper bound in this case.

Acknowledgement. I would like to thank Rūsiņš Freivalds for suggesting
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5. R. Freivalds. On the growth of the number of states of determinization of proba-
bilistic automata. Avtomatika i Viscislitelnaja Tehnika, 1982, N.3, pp. 39-42. (in
Russian)

6. M. O. Rabin. Probabilistic Automata. Information and Control, 6(1963), pp. 230-
245.

7. A. Ambainis. The complexity of probabilistic versus deterministic finite automata.
Proc. ISAAC’96, Lecture Notes in Computer Science 1178, 1996, pp. 233-237.
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for Undecidability Proofs
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Abstract. We use ideas from [Fr78] to construct a 2-tape quantum finite
automaton for a language that was supposed to be crucially important
to prove undecidability of the emptiness problem for 2-tape quantum fi-
nite automata recognizing languages with fixed probability of the correct
result exceeding 2

3
.

1 Introduction

A rather interesting effect was recently discovered. Bonner, Freivalds and Gailis
[BFG00] proved that for 1-way 2-tape quantum finite automata (2-QFA) recog-
nizing a language with a known probability 2

3 of the correct result it is undecid-
able whether the recognizable language is empty. However it is unknown whether
the same emptiness problem remains undecidable in the case if the probability
of the correctness exceeds 2

3 .

Bonner, Freivalds and Rikards [BFR00] proved that for 1-way finite automata
with a counter recognizing a language with a known probability 2

3 of the correct
result it is undecidable whether the recognizable language is empty. However it
is unknown whether the same emptiness problem remains undecidable in the
case if the probability of the correctness exceeds 2

3 .

Freivalds and Winter [FW01] proved that for 1-way finite state transducers
computing an input-output relation with a known probability 2

3 of the correct
result it is undecidable whether the recognizable relation is empty. However it is
unknown whether the same emptiness problem remains undecidable in the case
if the probability of the correctness exceeds 2

3 .

We have not succeeded to solve any of these open problems. However we
have discovered that in the case of 1-way 2-tape finite automata a language
that was considered crucially important for proving the undecidability result for
probabilities exceeding 2

3 is recognizable by probabilistic and quantum 2-tape
finite automata with arbitrarily high probability 1 − ε.

? Research supported by Grant No.01.0354 from the Latvian Council of Science, Con-
tract IST-1999-11234 (QAIP) from the European Commission, and the Swedish In-
stitute, Project ML-2000
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2 Lemma for joining unlimited number of counters

Let N denote the set of all non-negative integers, Z denote the set of all integers
and let X denote an arbitrary set. Let n ∈ N . Let P be a function X → {0, 1}
and F be a function X ∗ {1, 2, . . . , n} → Z. We call the pair of functions 〈P, F 〉
dispersive if for all x ∈ X the following holds:

1. P (x) =⊃ (∀u, v ∈ {1, 2, . . . , n})(F (x, u) = F (x, v)).
2. P (x) =⊃ (∀u, v ∈ {1, 2, . . . , n})(u 6= v ⊃ (F (x, u) 6= F (x, v)).

Let n ∈ N and k ∈ N and for every I ∈ {1, 2, . . . , k} a disperse pair of func-
tions (Pi : X → {0, 1};Fi : X ∗ {1, 2, . . . , n} → Z). We denote the family
{F1, F2, . . . , Fn} by F . We consider the following random value Sf (x). For ar-
bitrary I ∈ {1, 2, . . . , k} a random number Yi is taken which is distributed
equiprobably in {1, 2, . . . , n} and every Yi is statistically independent from other
Yj . Then

Sf (x) =

k∑

i

Fi(x, yi).

Lemma 1. [Freivalds [Fr78]] Let n ∈ N and k ∈ N and for every i ∈ {1, 2, . . . , k}
a disperse pair of functions (Pi : X → {0, 1}; Fi : X ∗ {1, 2, . . . , n} → Z). Let

F = {F1, F2, . . . , Fn}. Then for arbitrary x ∈ X if
∏k

i Pi(x) = 1 there is z ∈ Z

such that Sf (x) = z with probability 1 and if
∏k

i=1 Pi(x) = 0 there is not a single
z such that the probability of Sf (x) = z would exceed 1

2 .

Proof. The first assertion is evident. To prove the second assertion we follow
[Fr78]. We assume that i ∈ {1, 2, . . . , k} is hold Pi(x) = 0. Then, by the second
property of a dispersive pair of functions, the values Fi(x, 1), Fi(x, 2), ..., Fi(x, n),

are all different. Random value Sf (x) is denoted as the sum
∑k

j=1 Fj(x, yj)
including Fi(x, yi) and every Yi is statistically independent from al other Yj .
But for arbitrary z ∈ Z and arbitrary set

{F1(x, y1), . . . , Fi−1(x, yi−1, Fi+1(x, yi+1, . . . , Fk(x, yk)}

the sum
∑k

j=1 Fj(x, yj) can equal z no more than one of the n possible values
Yi. ut

3 Possibilities of multi-tape finite automata

We define the language C2 consisting of all possible pairs of words

(0l(k−1), {0l10l10l1 . . . 10l20l)︸ ︷︷ ︸
k times

, }

type, where l ≥ 1, k ≥ 2. (The second word in the pair contains k − 2 entries of
letter 1 and k entries of subword 0l).
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Theorem 1. (1) For arbitrary ε > 0 there is a 2-tape probabilistic finite automa-
ton recognizing C2 such that it accepts every pair of words in C2 with probability
1 and rejects every pair of words in ¬C2 with probability 1 − ε. (2) C2 does not
belong to the Boolean closure of languages recognizable by 2-tape deterministic
finite automata.

Proof. (1) Let n be the non-negative integer 1
n < ε. The automaton can easily

test if the pair of words belong to language

D2 = {(0s, 0l110l21 . . . 10lk−120lk) | s, k, l1, l2, . . . , lk ∈ N}.

Provided X ∈ D2, the automaton performs a calculation defined by the following
family of dispersive pairs of functions {(Pi, Fi)}, where i ∈ {1, 2, . . . , k − 1}.

Pi(x) = 1 if li = li+1, and Pi(x) = 0 if (m,n) = 1.

Fi(x, y) =
li ∗ y + li+1 ∗ (n+ 1 = y)

n+ 1
.

Let F = (F1, f2, . . . , Fn). Then

Sf (x) =
k−1∑

i=1

li ∗ yi + li+1(n+ 1 − yi)

n+ 1
.

The probabilistic finite automaton processing pairs of words

X = (0s, 0l110l21 . . . 10lk−120lk)

gradually takes random numbers y1, y2, . . . , yk−1 (no more than two at a time)
with equal probability and being independent in set {1, 2, . . . , n} and does next
calculations. While second head goes through 0l1 for distance of n+ 1 cells, the
first head goes through y + i cells. The first head goes through l1y1

n+1 cells all the

time. While the second head goes through 0lj where 2 ≤ j ≤ k − 1, at moment
it reads n+ 1 cells the first head goes through (n+ 1− yj−1 + yj cells. The first

head goes through
lj∗(n+1−yj−1

n+1 +
lj∗yj

n+1 cells in all the time. While the second

head goes through 0lk , at moment it reads n+ 1 cell the first head goes through

(n+ 1− yk−1) cells. In all time the first head goes through
lj∗(n+1−yj−1

n+1 cells. If
the first head has finished going through word 0s at the same time the second
head has finished the word, if S = Sf (x) the automaton accepts pair x, otherwise
it is rejected. Since every pair of functions from family {(pi, Fi)} is disperse we
use Lemma 1 to provide required possibility of the automaton.

(2) Assume the contrary. We denote language c2 by f(L
(2)
1 , . . . , L

(2)
n ) where

f - Boolean operation and by L
(2)
1 , . . . , L

(2)
n languages of pairs of the words rec-

ognized by two-head deterministic finite automaton M1, . . . ,Mn. We denote the
number of inside position of these automata by a1, . . . , an and max{a1, . . . , an}
by a. We note that the first head actually can not read but only finds out if
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it has reached the end of the word. We denote an + 3 by k, 3an + 1 by l and
consider how automata M1, . . . ,Mn process pair of words

X = (0l∗(k−1), 0l1 . . . 10l20l),

belonging to language C2. We consider the internal state of automataM1, . . . ,Mn

when the second head is reading first letter of each set of zeros. Each set of zeros
we compare to vector of distances (q1, . . . , qn). Number of zero sets is an + 3,
number of any probable vectors do not exceed an. So there are two such sets of
zeros no one being first or last and all automata M1, . . . ,Mn start going through
these sets at the same internal state. It follows that the second, the third, etc.
letters of both sets of zeros will be read by automata in equal states. We call
these sets of zeros marked. Since the number of se of zeros is large comparing
with number of states, the states will be repeated recurrently, but we must say,
with different periods. As the number of automata is finite, there is the least
multiple p of these periods. Value p is common period for all the automata and
do not exceed an. We consider work of automata M1, . . . ,Mn with pair of words

y = 3D(0l∗(k−1), 0l1 . . . 10l10l−p10l1 . . . 10l1 = 0l+p10l1 . . . 10l20l),

differing from pair x. The first set is shortened for p, second is extended for p.
Pair y /∈ C2, but no automata M1, . . . ,Mn distinguish pair y from pair x. When
the reading of the word by second head is ended it has the same internal state
and the first head has covered the same distance. It follows that y and x belongs

to the same languages L
(2)
1 , . . . , L

(2)
n . So C2 6= f(L

(2)
1 , . . . , L

(2)
n ). Contradiction.

ut
Theorem 2. (1) For arbitrary ε > 0 there is a 2-tape quantum finite automaton
recognizing C2 such that it accepts every pair of words in C2 with probability 1
and rejects every pair of words in ¬C2 with probability 1 − ε. (2) C2 does not
belong to the Boolean closure of languages recognizable by 2-tape deterministic
finite automata.

Proof. (1) This part of the proof simulates the corresponding part of the proof of
Theorem 1. However the random branching at the needed places is substituted
by Quantum Fourier Transform. For prime values of the parameter p, QFT is
defined by the following matrix.




1√
p (e0) 1√

p (e0) 1√
p (e0) . . . 1√

p (e0)

1√
p (e

2pπ
p ) 1√

p (e
2(p−1)π

p ) 1√
p (e

2(p−2)π

p ) . . . 1√
p (e

2π
p )

1√
p (e

4pπ
p ) 1√

p (e
4(p−1)π

p ) 1√
p (e

4(p−2)π

p ) . . . 1√
p (e

4π
p )

1√
p (e

6pπ
p ) 1√

p (e
6(p−1)π

p ) 1√
p (e

6(p−2)π

p ) . . . 1√
p (e

6π
p )

. . . . . . . . . . . . . . .
1√
p (e

(p−1)pπ

p ) 1√
p (e

(p−1)(p−1)π

p ) 1√
p (e

(p−1)(p−2)π

p ) . . . 1√
p (e

(p−1)π

p )




If the pair of words is in the language, the automaton reaches an accepting state
on all the computation paths. If the pair of words is not in the language, the
automaton rejects it on most of computation paths. ut
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Abstract. We consider two computational models, pure states quantum
automata and quantum automata with mixed states, and show that the
latter can recognize certain languages better than the former. We also
compare the two types of automata with respect to the complexity of
Boolean function computation.

1 Introduction

The computational power of the quantum mechanism is often superior to both
deterministic and probabilistic classical models. There exists a quantum algo-
rithm, introduced by Deutsch and Jozsa [7], which computes XOR function with
two arguments making only one oracle call. Grover’s quantum algorithm [8] for
database search requires O(

√
n ) oracle calls, as compared to O(n) calls required

in deterministic search; the algorithm yields the same complexity of computa-
tion with bounded error for AND and OR functions of n arguments. In the
presence of promises about the input, some quantum algorithms can achieve ex-
ponential speed-up over the classical ones, for example, Simon’s algorithm [13].
Without any promises, however, as shown by Beals et al [5], the gap between
quantum and classical (that is, deterministic or probabilistic) algorithms is at
most polynomial.

In this mote, we consider two computational models: quantum automata with
pure states, and with mixed states. The model with mixed states allows a quan-
tum system to be in several superpositions of states with some probability. Using
this model, Ambainis [1, 2] improved the lower bounds for query algorithms.

We produce a Boolean function of six binary variables, which can be com-
puted by quantum automata with mixed states using two oracle calls. For this
function, Ambainis’ bounds yield at least Ω(

√
6) calls for pure states automata,

an inconclusive bound.
? Research supported by Grant No.01.0354 from the Latvian Council of Science, and

Contract IST-1999-11234 (QAIP) from the European Commission.
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We also show that the language the language a+ over a two letter alphabet,
consisting of all words of form an, n > 0, recognizable by pure state 1-way

finite quantum automata with probability at most 52+4
√

7
81 = 0.7726 . . . [4], can

be recognized by Najak’s [11] mixed state automata with probability arbitrarily
close to one.

2 Preliminaries

We refer to Gruska [9] for basic facts on quantum computation. Here, we consider
the complexity of computation of a Boolean function f : {0, 1}N −→ {0, 1} in
the (black-box) quantum query model, as described in [5] and [1]. In this model,
a quantum computation with T queries is a sequence

U0 −→ O −→ U1 −→ O −→ . . . −→ UT−1 −→ O −→ UT

of unitary transformations, with Ui arbitrary and independent of the input val-
ues, and O is a query transformation. There are two natural and equivalent
ways of defining O. We may let O perform the XOR operation on the i-th bit
queried: |i, b, z〉 −→ |i, b⊕ xi, z〉, where 1 ≤ i ≤ dlogNe, b is a working bit, and
z stands for all the other bits. Alternatively, we may change phase depending
on xi: |i, b, z〉 to (−1)b∗xi |i, b, z〉. The computation starts in some state |q0〉, the
transformations U0, O, U1, . . . O, UT are applied, and the final state is measured,
outputting the rightmost bit as the value of the function f . The algorithm com-
putes f with bounded error, if for every input value x, the probability of correct
answer f(x) is at least 1 − ε for some fixed ε < 1

2 . It is usual to take ε = 1
3 .

There are several methods for estimating lower bounds for quantum algo-
rithms. Most popular are the classical adversary method [6, 12], which tries to
alternate the input without affecting the output; the method of using polyno-
mials [5]; and quantum adversary method [1, 2], that runs on superposition of
inputs and estimates the number of queries needed to achieve entanglement be-
tween the algorithm and the oracle work spaces.

3 Results

3.1 Function computation

Let f be the Boolean function of six binary variables xi, 1 ≤ i ≤ 6, which equals
one if and only if x1x2 = x3x4 = x5x6 (equality of words).

Theorem 1. There is a quantum automaton with mixed states, which computes
f with bounded error using exactly two oracle queries.

Proof. Consider a quantum automaton with mixed states, working as follows. It
starts in three superpositions of states q10, q20 and q30 with probability 1

3 each.
Then, each of the three branches computes a part of the function corresponding
to the three conditions x1x2 = x3x4, x3x4 = x5x6, and x1x2 = x5x6. Examine,
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Fig. 1. The work of the first branch

for example, the work of the first branch, depicted as a graph in Figure 1. In
this graph, all unmarked edges carry the amplitude 1/

√
2 with the exception of

the two lowermost edges where the amplitude is reversed to −1/
√

2.

We check the condition x1x2 = x3x4 by computing the function x1 ⊕ x3 ∨
x2 ⊕ x4 containing two XOR operations. Consequently, the branch consists of
two XOR operations, the second one linked to the accepting state of the first
one. Since a XOR operation can be processed with a single oracle call, see [7],
making two XOR operations one after another requires two oracle.

All in all, a word x1x2 . . . x6 satisfying the defining conditions for f is ac-
cepted with probability 1, otherwise it is rejected with probability 2

3 . ut

It would be interesting to know the lower bound on the number of queries used
by a pure state quantum automaton computing our function f . Using Ambainis’
results [1, 2], and specifically Theorem 2 in [1], we only obtain a bound in the
inconclusive form Ω(

√
6).

3.2 Language recognition

We turn to the question whether allowing mixed states in 1-way quantum finite
automata (QFA) may result in a higher probability of language recognition, than
when using pure states only.

1-way QFA with pure states were studied by Kondacs and Watrous [10]. It
is rather simple and very limited in its computational power: it only recognizes
a proper subclass of the regular languages. One of the non-recognizable lan-
guages is {0, 1}∗1. For some other languages there exist proven upper bounds
for recognition probabilities; for example, for the language a+ over a two letter
alphabet, consisting of all words of form an, n > 0, the (sharp) upper bound is
52+4

√
7

81 = 0.7726 . . . [4].
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1-way QFA with mixed states (QFAMS) were introduced by Najak [11] as
enhanced QFA. They allow not only the collective measurements of the accept-
ing, rejecting, and non-halting sets of states, but also individual measurements
of each non-halting state. The measurements are performed after every letter
read.

Theorem 2. For any ε > 0 there exist a 1-way QFAMS (enhanced QFA) which
recognizes the language a+ with probability 1 − ε.

Proof. Consider an automaton A with n working states q0, . . ., qn−1, of which q0
is a starting state; n− 1 accepting states qa1, . . ., qan−1; and n rejecting states
qr0, . . ., qrn−1. In total, there are n+ 2 measurement operators: one for each of
the non-halting states, one for the set of accepting states, and one for the set of
rejecting states.

The transition matrices of A: Ua, Ub, and U$, corresponding to the letters a,
b, and the right delimiter $, are defined as follows. Ua operates as the quantum
Fourier transform [9] in the subspace of working states; in particular, any ‘point’
superposition centered at a working state is mapped by Ua into a uniform super-
position of all working states. Ub maps all the working states to rejecting states.
U$ maps the initial state q0 to a rejecting state, and all the other n− 1 working
states to respective accepting states.

The automaton works as follows. When started, it is in state q0. If, at this
moment, the b or $ is read from the tape, the automaton rejects with probabil-
ity 1; if a is read, the operator Ua is applied and the resulting superposition is
measured using all the n + 2 measurement operators. After the measurement,
the automaton is any of the working states with probability 1

n . The reading of
subsequent a:s does not alter the state distribution, because states collapse on
non-halting measurements, and the quantum Fourier transform re-distributes
them uniformly. So, when $ is finally read, the automaton accepts with proba-
bility 1 − 1

n , which is the probability that the state is q0. Obviously, 1
n can be

made arbitrary small by taking the number n of states of the automaton large
enough. ut

4 Conclusion

We have looked for advantages of mixed states automata over pure states au-
tomata. We have considered a function that can be computed by both types of
automata with comparable query complexity. We have also presented a mixed
states automaton that violates the upper bound for language recognition proba-
bilities for pure states automata, showing that the mixed states model is in some
cases more powerful.
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Abstract. We introduce algorithms which search for the best random-
ized (probabilistic) and quantum query automata for a given Boolean
function. Some results obtained with these algorithms, are reported. The
main idea is to construct a general form of an automaton with a bound
on the number of queries, where all parameters are variable, and then to
apply an optimization algorithm to find the automaton that evaluates a
given function with best probability.

1 Randomized query automata

1.1 The structure

We consider randomized query automata (RQA) computing Boolean functions
of n binary variables x1, . . ., xn. If the number of queries in the computation is a
priori bounded by an integer N , every such automaton is naturally represented
in a standard form of a tree T of depth 2N + 2, as follows. The root of T is a
branching node: it links, with specified probability weights, to all the admissible
query nodes xk, 1 ≤ k ≤ n. Each of these query nodes links in turn to two new
branching nodes, the links weighted by the outcome of the query (0 or 1). In
turn, each of the new branching nodes links, with specified probability weights,
to all query nodes not present in its backward path to the root. After N steps
of this construction, the terminal branching nodes each link to two leaves of the
tree, labelled 0 or 1, representing the outcome of a computation.

On input x, the automaton follows a path through the tree T : it randomly
selects the first query, conditionally on its outcome it randomly selects the sec-
ond query, etc, until all N queries have been executed, after which it randomly
outputs 0 or 1. Thus, every path through T is a sequence of alternating queries
and random branching (‘coin flipping’). For example, for n = 4 arguments and
N = 2 queries, there are 4× 2× 3× 2× 2 = 96 different computational paths in
the tree.

Thus, the search for a RQA for computing a given function in a bounded
number of queries is reduced to the search for the probability weights in the tree
which represents it.

? Research supported by contract IST–1999–11234 (QAIP) from the European Com-
mision and grant no. 01.0354 from the Latvian Council of Science.
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1.2 How to seek the probabilities

The large number of variables suggests random search. The simplest approach
is to start from some initial automaton and iteratively making small random
changes in order to increase its value, here defined as the probability of correct
answer in the worst case of input data. There are natural choices of the initial
automaton: a random choice (all probabilities are chosen randomly), a symmetric
automaton (all probabilities are equal), or some good automaton found manually.

Note that the optimization is constrained - the sum of all probabilities in a
branching must remain equal to one - so any change violating this condition must
be followed by normalization (changes respecting the constraints are rotations
of branching probabilities by small angles; these may be easily implemented for
pairs of probabilities, but there is an extra computational cost).

The main problem of this form of random search, as it is well known, is the
possible existence of multiple local maxima of the value function. If we allow
only ‘good’ changes, which instantly increase the value of RQA, we are likely
to end up with a local but not global maximum. To address this problem, it
is customary to keep some ‘bad’ changes as well, as it is done, for example, in
genetic programming.

1.3 Genetic approach

Consider an RQA as an individual, a collection of n RQA - as a population. The
next generation of the population is created by crossing some individuals and
mutating some of the resulting children - of all c children, only n are selected into
the next generation. The ways of crossing, mutating and selecting are ambiguous.

Crossing two parents might, for example, consist in swapping two of their
randomly chosen subtrees - the genes; naturally, by the fixed tree structure of
all RQA under consideration, the swapped subtrees must be of equal depth.

A mutation need not be a small change. We may mutate a tree node, but we
may also delete subtrees (genes) and generate them anew. All mutations should
not be of equal probability: the ‘heavy’ mutations, for example, which completely
rebuild a RQA, should occur relatively rarely.

To select a new generation, a suitable algorithm is ‘a tournament’. We select
t RQA from c candidate children, and choose the best among them. This is being
repeated until we collect all n RQA for the next generation. If we choose t close
to c, this will be almost the same as selecting n best RQA (there is then a risk
of degeneration - of getting struck in a local extremum). If t = 1, then choice
is completely random, and there are few chances to improve the population. So,
the value of t should be chosen appropriately; if n = 100, for example, a suitable
t may be of the order 10.

Results This method suggests that the function

f(x1, x2, x3, x4) = (x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x3 ∧ x4) ∨ (x4 ∧ x1) (1)
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cannot be computed by RQA with two queries and probability higher than 3
4 .

However, negative results achieved in this way should be interpreted with cau-
tion. The chance that 3

4 may be just a local extremum is minimized, but not
excluded.

2 Quantum query automata

2.1 The structure

Quantum query automata (QQA) are defined similarly to RQA, but with prob-
abilities replaced by complex amplitudes. We recall a universal definition [25]:
‘A quantum computation with T queries is just a sequence of unitary transfor-
mations

U0 → O → U1 → O → . . .→ UT−1 → O → UT (2)

The Uj ’s can be arbitrary unitary transformations that do not depend on the
input bits x1, . . . , xn. O are query (oracle) transformations. To define O, we
represent basis states as |i, b, z〉, where i consists of logN bits, b is one bit, and
z consists of all other bits. Then, O maps |i, b, z〉 to |i, b ⊕ xi, z〉 (i.e., the first
logN bits are interpreted as an index i for an input bit xi and this input bit
is XOR-ed on the next qubit). We use Ox to denote the query transformation
corresponding to an input x = (x1, . . . , xn).” As the ‘tree structure’ is not fixed
here, we must limit the number of states, so the size of the matrices representing
the operators U and O is pre-defined. It must thus be pre-calculated to be large
enough to allow to find the automaton, but not too large for efficiency reasons.
We need at least (2n)T states.

There is an alternative definition of QQA due to Ambainis [4]: ‘ ... Also, we
can define that O maps |i, b, z〉 to (−1)bx|i, b, z〉 (i.e., instead of XOR-ing xi on an
extra qubit, we change phase depending on xi). It is well known that both defi-
nitions are equivalent ...’. This definition reduces the number of states required,
as the operation of changing phase requires additional state when simulated by
XOR-ing.

2.2 The algorithm

We use the same technique as for RQA, only instead of subtrees, we take as
genes the individual matrixes from (2), or all matrixes in (2) to the right of a
selected matrix. Mutations will differ for matrixes U and O. In the first case,
mutations are unitary transformations on randomly selected matrix U . It is also
possible to mutate not an entire matrix, but only a part of it, for example, by
multiplying it with a 2 × 2 unitary matrix tensored with an identity matrix;
this mutation will change only two columns in U . 2× 2 unitary matrixes can be
generated in different ways, for example, by customizing the following patterns:

(
cosφ eiα − sinφ eiβ

sinφ eiχ cosφ eiδ

)
(3)
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where α+ δ = β + χ, or,

(
cosφ eiα+χ − sinφ eiα+δ

sinφ eiβ+χ cosφ eiβ+δ

)
(4)

with α, β, δ, χ arbitrary.
Larger mutations are also needed, but a ‘big’ unitary matrix can be obtained

by combining several 2×2 matrixes. Sine and cosine are fast to compute for small
angles, if pre-calculated (reasonable amount of computer memory is enough to
store a table for quick calculating of sinα and cosα for 0 < α < 5◦ with, say, 16
decimal digits of precision. After many mutations, matrices may lose unitarity
due to accumulation of errors. This problem can be fixed in two ways: first, after
multiplying matrixes, we can store not only the result, but also both source
matrixes, to be used in subsequent multiplications. Second, we can unitarize
matrixes from time to time; unitarization is orthogonalization of the column
space and normalization, and can be done by the usual Gram-Schmidt procedure.
In spite of this process having complexity O(n3), it is affordable if not done too
often.

Results One of the results is that function (1) can be computed by QQA with
one query and probability of correct answer at least 0.637539.
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Abstract. I discuss the idea of using genetic programming for build-
ing a quantum finite automaton (QFA) for a predefined language. The
problems to solve include: describing a QFA population, defining genetic
operations on QFA, and, finding a fitness function.

1 Quantum finite automata

A one-way quantum finite automaton (QFA) A is specified by a finite (input)
alphabet Σ, a finite set Q of states, an initial state q0 ∈ Q, two disjoint sets
Qa ⊆ Q and Qr ⊆ Q of accepting and rejecting states1, respectively, and a
transition function δ : Q × Γ × Q → C[0,1], where Γ = Σ ∪ {#, $} is the tape
alphabet of A, and # and $ are left and right markers not in Σ. The evolution
of A is specified by unitary operators Vσ, σ ∈ Γ , acting on the complex linear
space CQ. For details, see [Gr99], for example.

We order the states in Q, representing the initial vector as (1, 0, . . . , 0). The
evolution is then at each step realized by multiplying a state vector by a transi-
tion matrix. There are two types of QFA: those that stop upon reaching a halting
state with non-zero amplitude, and those that read the whole input word and
stop only upon reading the end marker $. The type affects only the fitness func-
tion.

2 Genetic operations

Genetic operations may by done directly on the unitary transition matrices defin-
ing QFA. The advantage of doing this is easy QFA evaluation, the disadvantage
is precision loss while generating QFA and the resulting difficulty to preserve
unitarity.

Alternatively, unitary matrices being exponentials of the Hermitian ones,
genetic operations may be applied to Hermitian matrices. Simple genetic op-
erations preserving the Hermitian property are possible, hence the automatic
preservation of unitarity of automaton transition matrices. However, it may be
difficult to evaluate a QFA in terms of its Hermitian matrices.
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2.1 Operations on unitary matrices

Two kinds of mutation operation on unitary matrices U are natural to consider:
(i) multiplication of U by a unitary matrix, and, (ii) arbitrary perturbation of
U followed by an orthonormalization of its columns.

Operations of the first kind contain in particular the operations of interchang-
ing two rows or two columns of U ; the complexity of this is O(n3). They also
contain rotation transformations of a state vector of an automaton in one of the
plains in its state space CQ; for random rotation angle generation, exponential
scale could be used, α = π

2β
M , where β is a random number in the interval [0; 1]

and M is positive integer. The complexity of rotation is O(n).
Operations of the second kind may further consider random order selection

in the orthogonalization process. The complexity of these operations is O(n3).
One of the main ideas of genetic programming is genetic information ex-

change between population individuals. This is the crossing operation. Here,
genetic information is the set of transition matrices of a QFA. As crossing oper-
ation, we may then take the exchange of two transition matrices Vσ and V ′

σ of
randomly selected automata A and A′, for a randomly selected σ ∈ Γ .

2.2 Operations on Hermitian matrices

Every unitary matrix U may be written in the form U = exp iH, where H is
a Hermitian (self-adjoint) matrix, H† = H. As mutation of H we may take
the exchange of any of its elements with the corresponding adjoint element. As
crossing, we could take the exchange of suitable submatrices of two transition
matrices of randomly selected automata for a randomly selected σ ∈ Γ ; However,
the complexity of this is at least O(n3) and the results are harder to interpret
than for unitary operators.

3 Fitness function

The fitness function is the most complicated part of the design. It should dis-
criminate between good and bad automata, but not between automata, which
are about equally good.

In general, a fitness function cannot test every QFA on all words. It could
be reasonable to initially generate a large number of words with end markers,
some in the target language and some not, and to test QFA on subsets of these,
arbitrarily chosen at every selection stage. A subset of tests could be generated
starting with an empty set each time, or changed a little on every new selection
stage.

4 Selection

There are three basic ways to build the selection function [Kr02]:
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Roulette Wheel. The probability of a QFA to be thrown out from a population
depends on its fitness: the greater the fitness, the greater the probability. Two
QFA with equal fitness have equal chances to be thrown out of the population.

Tournament. Three QFA are randomly selected and their ratings are com-
pared. The best one goes to the next generation. Two others take tournament
again.

Like Love. Two random selections are done. The first selects one QFA; let it
be X. The second selects randomly a set Y of QFA; it could contain all automata
butX. The automata in Y are compared toX, and the first better thanX passes
to the next generation; if there are no such, X passes.

5 Open problems

I only mention the problem of effective representation of QFA matrices (as a set
of rotations, for example), and the problem of effective test generation.
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Abstract. This paper continues the research of the synthesis of formu-
las of many-sorted first order predicate logic with equality, from finite
examples. Necessary and sufficient conditions for synthesisability and
uniformity are given.

1 Introduction

This paper continues the research started in [1], where we considered a UML class
diagram synthesis problem ([2, 3]) and generalized it to synthesis of formulas of
many-sorted first order logic with equality (further in text simply ‘logic’) from
finite examples. The precise definition of the synthesis problem was based on
the notion of language uniformity. It was shown in [1] that not all languages
are uniform and that not all uniform languages can be synthesized, but only
necessary conditions for uniformity and sufficient conditions for synthesisability
were found. Presently, we give necessary and sufficient conditions for uniformity
and synthesisability, along with new concepts necessary for proofs.

2 Definitions and notation

To make this paper self-contained, we recall some definitions from [1]:
A signature Σ is a tuple < C,A >, where C is a finite set of class names,

and A is a finite set of association names with fixed arity and argument types
(class names); from now on, let a signature Σ be fixed.

A language L is a (possibly infinite) set of logic formulas in the given signature
containing at least one false formula.

An example s is a finite non-empty model in the given signature. Two exam-
ples s1 and s2 are considered equal iff they can be mapped as annotated graphs
preserving class and relation name correspondence, as depicted in Fig. 1.

The size |s| of example s is the total number of objects and links in it.
A sample sequence S =< s1, s2, · · · > is an infinite subsequence of (possibly

repeating) examples from the given signature. For each sample sequence there is
a corresponding sample set consisting of all examples from the sequence. Though
a sample sequence is always infinite, the corresponding sample set can be finite,
as the sequence may contain repetitions.

? Research supported by Grant No. 02.0002.1.1 from Latvian Council of Science.
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a1 : A

a2 : A

b1 : BR

x1 : A

x2 : A

y1 : B

R

Fig. 1. Mapping of examples

The set of all examples on which the formula f is true is denoted by Ef .
Formulas f1 and f2 are equal iff Ef1

= Ef2
. Ef lets us depict formula f in diagram

by a sample set. However, for clarity, instead of writing Ef , we will write f .
A formula f covers an example s (f → s) iff f is true on s, i.e. when s ∈ Ef .

The fact that a formula f does not cover an example s is denoted by f 9 s. The
coverage concept can be extended to sets of examples and formulas. We thus say
say that a formula f covers a sample set S (f → S) iff f is true on every sample
s ∈ S (i.e. S ⊆ Ef ), and, a set of formulas F covers a sample set S (F → S) iff
every formula f ∈ F is true on every sample s ∈ S.

3 Strongest formula

There exists an obvious solution for the synthesis problem – the identically
true formula T . To obtain nontrivial results we must constrain the result of
the synthesis algorithm. As such constraint we choose the minimization of the
example set covered by resulting formula. To make this idea precise, we introduce
the notion of the strongest formula.

Definition 1. Formula f1 is stronger than formula f2 (f1 < f2) iff Ef1
⊂ Ef2

as shown on Fig. 2.

Further, we write f1 ≤ f2 when f1 is stronger than or equal to f2, and, f1 ÷ f2
when f1 is not comparable with (neither equal to, nor stronger or weaker than)
f2, as in Fig. 3.

Definition 2. A formula f from language L is strongest for sample set S iff it
covers S and L does not contain any other formula f ′ stronger than f covering
S.

There can be more than one strongest formula for a given language and sample
set, as illustrated by Fig. 4; let ML

S denote the set of all strongest formulas for
sample set S and language L.
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f1 f2

Fig. 2. Formula f1 is stronger than f2 (f1 < f2)

f1 f2

Fig. 3. Incomparable formulas f1 ÷ f2

Sf1

f2

f3

Fig. 4. Strongest formulas
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4 Uniformity

Definition 3. A language L is uniform iff for every sample set S it has exactly
one strongest formula, i.e. ∀S|ML

S | = 1.

Given a uniform language L, denote by µL
S the single strongest formula for

the sample set S; in other words, ML
S = {µL

S}, then.
It was shown in [1] that there exists both uniform and nonuniform languages.

We also proved some necessary conditions for uniformity. In this paper, we prove
necessary and sufficient conditions for uniformity. To do this, we introduce sev-
eral additional concepts.

Definition 4. A sample set K is an intersection of (probably infinite) set of
formulas F = {f1, f2, . . . } iff:

∀f ∈ F (f → K), (1)

and,
∀x /∈ K∃f ∈ F (f 9 x) . (2)

In other words, K =
∏

f∈F Ef .

Definition 5. A formula f ′ is an intersection of the set set of formulas F =
{f1, f2, . . . } iff the sample set Ef ′ is an intersection of F .

It may be noted that this definition allows for a set of formulas to intersect on
a false formula (which covers empty set). This is the reason why, by convention,
the false formula is an element of every language.

Theorem 1. A language L is uniform iff it contains true formula T , and, the
intersection of any subset of formulas F ⊆ L is also a formula in L.

Proof. First we prove that these are necessary conditions, i.e. if any of them do
not hold, then L is not uniform.

If L does not contain T , then it cannot cover sample set containing all ex-
amples from the given signature. So in this case L cannot be uniform.

Next, assume that L is uniform, and contains a subset of formulas F ⊆ L
such that F intersects on sample set K, but not on any formula from L (i.e.
∀f ∈ L(Ef 6= K)). However, as L is uniform, K has the strongest formula µL

K .
Since µL

K covers K and no formula f ∈ L has Ef = K, then K is proper subset
of EµL

K
. Therefore there exists an example s such that

s ∈ EµL
K

and s /∈ K . (3)

Figure 5 illustrates this construction.
Now applying (2) to the sample s we get that

∃f ∈ F (f 9 s) . (4)
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Kf1

f2

µL
K

s

Fig. 5. Nonuniform intersection

From (3), (4) we see that µL
K � f . Thus there exists some formula f which by

(1) covers K and is stronger than or incomparable to the strongest formula for
K. This is a contradiction, and our assumption of uniformity of L is wrong. The
necessity of both uniformity conditions is thus proved.

Next, we prove that these are sufficient conditions, i.e. that if both uniformity
conditions hold for a language, then it is uniform.

Assume the contrary, that both uniformity conditions hold for L, but it is not
uniform. This means there exists a sample set S having several or no strongest
formulas.

First, consider a case when S has several (mutually incomparable) strongest
formulas F = {f1, f2, . . . }. According to uniformity conditions F intersects on
some formula f ′ ∈ L, as depicted on Fig. 6.

f1
f2S

f ′

Fig. 6. Intersection of strongest formulas

S ⊆ Ef ′ , otherwise ∃s ∈ S such that s /∈ Ef ′ , and by (2) ∃f ∈ F (f 9 s),
from what follows f 9 S, which is a contradiction as f → S because it is the
strongest formula for S. Thus

f ′ → S . (5)

It can also be seen that ∀f ∈ F (Ef ′ ⊆ Ef ) (since f → Ef ′ by (1)) and no f ∈ F
equals f ′ (or this f would be stronger than other formulas from F , but they are
incomparable). Therefore ∀f ∈ F (Ef ′ ⊂ Ef ) and
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∀f ∈ F (f ′ < f) . (6)

Together (5) and (6) show that there exists formula f ′ covering S that is
stronger than any of the strongest formulas for S. This is a contradiction, so
such set F cannot exist.

Finally consider a case when S does not have any strongest formula. This is
possible either when no formula from L covers S (not possible as L contains T ),
or for any formula f → S exists a stronger formula g ∈ L such that g < f and
g → S.

Assume that the latter case is possible, and construct a bset F of all formulas
from L covering S. F intersects on some formula f ′ ∈ L. Similarly as shown
above, f ′ → S.

According to our assumption there should exist some g ∈ L such that g < f ′

and g → S. From g < f ′ follows that

Eg ⊂ Ef ′ . (7)

On the other hand g ∈ F as g → S. Therefore according to (1) g → Ef ′ and

Ef ′ ⊆ Eg . (8)

It can be seen that (7) and (8) contradict each other and our assumption is
wrong. Thus sufficiency of uniformity conditions is also proved. ut

5 Synthesis

Definition 6. An algorithm AL is a synthesis algorithm for a uniform language
L iff for every sample sequence S =< s1, s2, s3, · · · > the following holds. For
each initial fragment Si =< s1, s2, s3, . . . , si > the algorithm AL computes some
formula fi ∈ L such that fi → Si; there exists natural n such that ∀i > n(fi =
fn), and, fn = µL

S .

Definition 7. A language L is synthesisable iff there exists a synthesis algo-
rithm AL for L.

In [1] it was shown that there are some unsynthesisable languages, but only
the sufficient conditions for synthesisability were given. Presently, we give nec-
essary and sufficient conditions for synthesisability of uniform languages.

Theorem 2. A computably enumerable uniform language L is synthesisable iff
it does not contain an infinite subsequence of weakening formulas F

f1 < f2 < f3 < . . . . (9)

To prove the sufficiency of this condition we need the following lemmas:
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Lemma 1. Given a uniform language L, the strongest formulas for two sample
sets S1 and S2 such that S1 ⊂ S2 have the following property:

µL
S1

≤ µL
S2

. (10)

Proof. Assume the contrary – there exists two such sample sets S1 and S2 such
that S1 ⊂ S2 for whom

µL
S1
> µL

S2
(11)

or

µ2
S1

÷ µL
S2

. (12)

By definition µL
S2

→ S1, so (11) is not true.

S1 S2µL
S1

µL
S2

Fig. 7. Case µL
S1

÷ µL
S2

Formula (12) is also false, otherwise, due to the uniformity condition, we
could find another formula f covering S1 stronger than µL

S1
, which is impossible

as µL
S1

already is the strongest formula.
So our assumption is incorrect and the lemma is proved. ut

Lemma 2. Given a uniform language L and two sample sets S1 ⊂ S2, if there
exists formula f ∈ L such that f → S1 and f 9 S2 then µL

S1
is strictly stronger

than µL
S2

:

µL
S1
< µL

S2
. (13)

Proof. Assume the contrary – there exists two such sample sets S1 ⊂ S2 and
formula f ∈ L such that f → S1 and f 9 S2, but

µL
S1

≮ µL
S2

. (14)

According to Lemma 1 µL
S1

≤ µL
S2

, so together with (14) we get

µL
S1

= µL
S2

. (15)
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S1

S2

µL
S1

= µL
S2

f

Fig. 8. Formula f → S1 and f 9 S2

This is illustrated in Fig. 8.

As f → S, then by definition µL
S1

≤ f , which we can now substitute to

µL
S2

≤ f due to (15). Also by definition µL
S2

→ S2, which combined with µL
S2

≤ f
leads to f → S2. But this is a contradiction, so the lemma is proved. ut

Proof of the Theorem 2. First we prove necessity of the synthesisability condi-
tion – if L contains subsequence (9) then it cannot be synthesisable.

We assume L is synthesisable but contains a sequence of formulas f1 < f2 <
f3 < . . . , and then construct a sample sequence S on which any possible synthesis
algorithm AL breaks down.

We will construct S starting with one example and then adding new examples
to the initial fragment of S. Here and further in proof such initial fragment of
S with i elements we denote by Si. Along with the construction of Si we will
maintain index k(i) with the following property: Si is covered by fk(i), but is
not covered by any of fk(i)−1, fk(i)−2, . . . (i.e. ∀x > 0(fk(i)−x 9 Si)). This is
illustrated by Fig. 9.

f1 fk(i)−1 Si fk(i)

Fig. 9. Relation between Si and k(i)
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Initially we choose k(i) = 1 and S1 = {s1} such that s1 ∈ Ef1
. Then we

apply following recursive procedure to get Si+1 from Si – feed Si into AL and
depending on the result f :

1. if f < fk(i) then choose the next example si+1 from the set Efk(i)
\ Ef and

k(i+ 1) = k(i);

2. if f = fk(i) then choose the next example si+1 from the set Efk(i)+1
\ Efk(i)

and k(i+ 1) = k(i) + 1, finally

3. if f > fk(i) then si+1 = si and k(i+ 1) = k(i).

So any synthesis algorithm will either never converge on any result (due to
option 1 and 2), or it will converge on some formula which is not the strongest
for S (option 3). Therefore such algorithm cannot be synthesis algorithm for L,
and L is not synthesisable.

Next we prove sufficiency of the synthesisability condition – if L does not
contain the subsequence (9) then AL exists and L is synthesisable. For the rest
of the proof we assume that L has been enumerated as f1, f2, . . . , fi, . . . .

Consider an algorithm AL, which performs the following steps on the input
sequence Si =< s1, s2, . . . , si >:

1. Finds the index li of first formula fli such that fli → Si. This step will finish,
as every uniform language contains at least T .

2. Computes the set Pi ⊆ L containing all formulas f1, f2, . . . , fmax(li,i). If L is
finite and has less than i elements, then Pi = L.

3. Computes the set Ri ⊆ Pi such that Ri → Si. Ri will not be empty as it
will contain at least fli .

4. For each f ∈ Ri computes the sample set Ei(f) ⊆ Ef which contain all
examples covering f of size i and smaller.

5. Finds the set of the locally strongest formulas Mi ⊆ Ri such that

∀f ∈Mi@f ′ ∈ Ri(Ei(f) ⊃ Ei(f
′)) . (16)

Mi will not be empty, as Ri is not empty.

6. Return ri ∈Mi with the minimal index according to enumeration of L.

To prove that this is a synthesis algorithm for L we assume that S is fixed,
and consider two mutually exclusive cases which characterize the way examples
are ordered in S:

– “significant” examples are scattered throughout S, and after any n examples
we can find some example showing one of our hypotheses (formulas in Ri)
is wrong. This is equivalent to the statement that for every n there will be
some Ri (i > n) that cannot cover sample set Sj (obviously i < j):

∀n∃i > n∃j(Ri 9 Sj) ; (17)
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– after certain number n the sample subsequence Sn contains all “significant”
examples, and for every sequence Si longer than n Ri will cover the whole
S (or any subsequence Sj of it, which is the same):

∃n∀i > n∀j(Ri → Sj) . (18)

First we can show that (17) is false. Choose arbitrary n1. According to (17)
there exists corresponding i1, Ri1 , j1 and Sj1 . Thus we can build infinite se-
quence, each time choosing jk for the next nk+1.

As Rik
does not cover Sjk

, then there is some formula f ∈ Rik
such that

f 9 Sjk
. But according to construction of AL Rik

covers Sik
and any subset

of it, so f → Sik
and Sik

must be a proper subset of Sjk
. Hence according to

Lemma 2 µL
Sik

< µL
Sjk

. On the other hand, as jk = nk+1 < ik+1 then Sjk
⊂ Sik+1

and according to Lemma 1 µL
Sjk

≤ µL
Sik+1

. Combining those equations we can

build an infinite sequence:

µL
Si1

< µL
Sj1

≤ µL
Si2

< µL
Sj2

≤ µL
Si3

< . . . (19)

which contains a subsequence

µL
Si1

< µL
Si2

< µL
Si3

< . . . . (20)

But this contradicts with synthesisability condition, so (17) is false.
Therefore (18) is true. As stated above, it is equivalent to

∃n∀i > n(Ri → S) . (21)

So after some sample set Sn output of AL will cover the whole S. Now we have
to prove that this output will eventually stabilize on strongest formula of L.

By k we denote the index of µL
S in the enumeration of L (i.e. µL

S = fk).
Since µL

S covers any subset of S, then according to construction of AL for each
i > k(µL

S ∈ Ri). So for any input with size max(n, k) or longer the set Ri

will contain µL
S , and µL

S will be stronger than any other fromula from Ri as all
formulas from Ri cover S. Last thing we have to prove is that we can separate
µL

S from Ri.
By definition of the strongest formula

∀fi ∈ L(fi → S ⇒ EµL
S
< Efi

) , (22)

and for every fi → S there exists an example pi such that fi covers pi, but µL
S

does not. Thus, if on step 4 of AL we construct sets Ex(µL
S) and Ex(fi) large

enough to include pi, we will see that fi is weaker.
In fact, for AL to return µL

S all we have to check is that all formulas prior
to µL

S in enumeration (i.e. with indexes less than k) and covering S are weaker
than µL

S . Therefore we introduce m = maxi<k |pi|. Obviously

∀i < k∀j > m(fi → S ⇒ Ej(µ
L
S) ⊂ Ej(fi)) . (23)
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So for any input with size max(n, k,m) or longer Mi will contain no formula
with index less than k, either because it does not cover S, or because it is weaker
than µL

S . Thus µL
S will be first element in Mi and AL will return it.

So the sufficiency of the synthesisability condition is also proved. ut

6 Conclusions

In this paper we have defined and explored notions of the strongest formula, lan-
guage uniformity, and, synthesisability. We have proved necessary and sufficient
conditions for uniformity and synthesisability.

In summary, a language is synthesisable if it is computably enumerable, it
contains the true formula, the intersection of any subset of language formulas is
also a formula, and, it contains no infinite sequence of weakening formulas. These
conditions hold for quite a broad class of languages, including such important
languages as UML class diagrams with four multiplicity constraints 1, 0..1, 1..∗,
0..∗.

We finally note that these results for logic formulas can be easily generalized
for recursive predicates.
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Abstract. Freivalds and Smith [FS92] proved that probabilistic lim-
ited memory inductive inference machines can learn some classes of total
recursive functions with probability 1, which cannot be learned by de-
terministic limited memory inductive inference machines. We introduce
quantum limited memory inductive inference machines as quantum fi-
nite automata used as inductive inference machines. Our main result
shows that quantum limited memory inductive inference machines can
learn classes of total recursive functions not learnable by any determin-
istic, and not even by probabilistic, limited memory inductive inference
machines.

1 Introduction

E. M. Gold, in a seminal paper [Gold67], defined the notion of identification in
the limit. This definition concerned learning by algorithmic devices now called
inductive inference machines (IIMs). An IIM inputs the graph of a total recur-
sive function, an ordered pair at a time, and while doing so, outputs computer
programs. Since we will only discuss the inference of total recursive functions,
we may assume, without loss of generality, that the input is received by an IIM
in its natural domain increasing order, f(0), f(1), · · · . An IIM, on input from
a function f will output a potentially infinite sequence of programs p0, p1, · · · .
The IIM converges if either the sequence is finite, say of length n+1, or there is
a program p such that pi = p for all but finitely many i. In the former case, we
say that the IIM converges to pn, and in the latter case, to p. In general, there
is no effective way to tell when, and if, an IIM has converged.

Following Gold, we say that an IIM M identifies a function f in the limit
(written: f ∈ EX(M)), if, when M is given the graph of f as input, it converges
to a program p that computes f . If an IIM identifies some function f , then some
form of learning must have taken place, since, by the properties of convergence,
only finitely much of the graph of f was known by the IIM at the (unknown)

? Research supported by Grant No.01.0354 from the Latvian Council of Science, Con-
tract IST-1999-11234 (QAIP) from the European Commission, and the Swedish In-
stitute, Project ML-2000.
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point of convergence. The terms infer and learn will be used as synonyms for
identify. Each IIM will learn some set of recursive functions. The collection of
all such sets, over the universe of effective algorithms viewed as IIMs, serves
as a characterization of the learning power inherent in the Gold model. This
collection is symbolically denoted by EX (for explanation) and is rigorously
denoted by EX = {U |∃M(U ⊆ EX(M))}. Similarly, we say that an IIM M
identifies a function f finitely (written: f ∈ FIN(M)), if, when M is given the
graph of f as input, it outputs exactly one program p that computes f , and then
the machine stops. FIN = {U |∃M(U ⊆ FIN(M))}.

These collections are set-theoretically compared with the collections that
arise from other models, which we discuss below. Many intuitions about machine
learning have been gained by working with Gold’s model and its derivatives. For
a more detailed explanation of this influence we refer to the paper by Arikawa
and Mukouchi [AM95].

In the next section we describe the variants of Gold’s model examined in this
paper.

2 Limited memory learning

A study of inference machines with limited memory (the current guess and the
next one, or selected data only) was initiated by Wiehagen [Wieh76] and pursued
by Arikawa and his students [AH87,AN91], by Wiehagen and Zeugmann [WZ94],
and others. The conclusion reached in this research was that restricting the data
available to the inference machine also reduces its learning potential.

We use models as close as possible to the one in the conference paper [FS92]
by Freivalds and Smith, later incorporated into a larger journal paper [FKS95].

To insure an accurate accounting of the memory used by an IIM, we will
henceforth assume that each IIM receives its input in such a way that it is
impossible to back up and reread some input after another has been read. To
circumvent the use of coding techniques, the memory used will be measured
in bits, as opposed to integers. Under these conventions, we say that a set
U ⊆ LEX(M) iff there is a constant c such that for any f ∈ U , M uses no
more than c bits of memory, exclusive of the input, and f ∈ EX(M). One for-
malization of this notion considers the memory limited IIMs as Turing machines
with input tape and work tape. The input tape is read only once (one way) and
the work tape has only c bits of storage capacity. An equivalent formalization
is to view memory limited IIMs as finite automata. The collection of all sets of
functions inferable by limited memory inference machines is denoted by LEX,
where LEX = {U |∃M(U ⊆ LEX(M)}.

A few more technical definitions are needed. Natural numbers (N) will serve
as names for programs. The function computed by program i will be denoted
by φi. It is assumed that φ0, φ1, · · · , forms an acceptable programming sys-
tem [Rog87]. Sometimes it will be convenient to represent a total function by a
sequence of values from its graph. Such a representation is called a string repre-
sentation. So, for example, the sequence 012043∞ represents the (total) function
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equal to zero if x = 0 or 3 ≤ x ≤ 6, equal to one if 1 ≤ x ≤ 2, and equal to three
otherwise. The function in this example has two blocks of consecutive 0’s, one
of length 1 and the other of length 4.

In order to get a rough idea of the relative learning power of LEX type
inference, we will employ the set of functions of finite support and the set of
self describing functions. These sets were introduced in [BB75] and used in
[Fre91,FKS95a] to separate various classes of learnable sets of functions. Let U0 =
{f |f is recursive and ∀∞x(f(x) = 0))} and U1 = {f |f is recursive and φf(0) =
f}.

The following propositions were proved in [FS92]:

Proposition 1. U1 ∈ LEX.

Proposition 2. U0 /∈ LEX.

Proposition 3. LEX ⊂ EX.

Probabilistic inductive inference machines were introduced in [Pitt89] and
studied further in [PS88]. A probabilistic inductive inference machine is an IIM
that makes use of a fair coin. Formally speaking, one needs to introduce identi-
fiability with a specific coin outputting 0 with probability α, and outputting 1
with probability 1−α, and to show that identifiability with any specific α is no
less powerful than identifiability with α = 1

2 . Hence, in our notation, we denote
only the probability of the correct result but not the α in the coin. We say that
f ∈ PrEX(M) if M learns f with probability p, 0 ≤ p ≤ 1. The collection
PrEX〈p〉 is defined to be {U |∃M(U ⊆ PrEX(M)〈p〉)}. Pitt [Pitt89] showed
that for p > 1

2 , PrEX〈p〉 = EX. Limiting the memory available to a probabilis-
tic IIM, according to our conventions, gives rise to the class PrLEX〈p〉.

Freivalds and Smith [FS92] proved that probabilistic limited memory ma-
chines can learn with probability 1 a class which cannot be learned by any
deterministic limited memory machine:

Theorem 1. [FS92] There is a class U of total recursive functions such that
U ∈ PrLEX〈1〉 \ LEX.

This is somewhat surprising since ‘with probability 1’ is often considered as
an equivalent to ‘deterministic’ (which it is not, of course).

It seems that a more natural definition of limited memory inductive inference
machines would involve the notion of finite automata introduced by Blum, Shub
and Smale [BSS89]. The BSS-automata can process arbitrarily large integers but
they cannot distinguish large numbers. These automata can store integers in a
finite number of registers and move the integers from one register to another. In
our case (when these automata are used as inductive inference machines), the
new definition gives additional possibility to output target function values stored
at earlier moments. However this modified definition would again produce the
same result as Theorem 1. This is a direct consequence of the fact that the class
of functions considered in Theorem 1 deterministically cannot be learned even
by the modified limited memory inductive inference machines.
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Our main results relate to deterministic (LFIN) and probabilistic (PrLFIN)
limited memory finite learning of recursive functions. This means that the result
is to be produced after a finite number of steps, and the learning process termi-
nates after this output(finite learning) and the learning is done by finite memory
inductive inference machines. Strangely enough, we have found no published re-
sults on finite learning by limited memory inductive inference machines.

3 Quantum finite automata

Quantum finite automata were introduced by Kondacs and Watrous [KW97]
(another but much weaker definition was considered by Moore and Crutchfield
[MC00], the technical report version of which was published the same year).
Informally, quantum automata are very similar to probabilistic automata, but
use unitary instead of stochastic transition matrices. Formally, 1-way quantum
finite automaton (QFA) is a tuple

M = (Q,Σ, δ, q0, Qacc, Qrej)

where Q is a finite set of states, Σ is an input alphabet, δ is a transition function,
q0 ∈ Q is a starting state and Qacc ⊂ Q and Qrej ⊂ Q are sets of accepting and
rejecting states. The states in Qacc and Qrej are called halting states and the
states in Qnon = Q − (Qacc ∪ Qrej) are called non-halting states. # and $ are
symbols that do not belong to Σ. We use # and $ as left and right endmarker,
respectively. The working alphabet of M is Γ = Σ ∪ {#, $}.

The work of a probabilistic one-way finite automaton can be described by
the distribution of probabilities of all the internal states of the automaton at
the current moment. This distribution can be imagined as a row-vector (ξi) of
probabilities ξi to be in the state qi, 1 ≤ i ≤ s = |Q|. When the next input symbol
is read from the input, this row-vector is multiplied to a stochastic matrix (ηij),
1 ≤ i, j ≤ s. Finally, when all the input word has been read from the input,
the probabilities of all the accepting states are totalled. We say that the word is
accepted, if the total of these probabilities exceeds 1

2 .
Similarly, the work of a quantum one-way finite automaton can be described

by the distribution of amplitudes (being complex numbers) of all the internal
states of the automaton at the current moment. This distribution can be imag-
ined as a row-vector (ξi) of complex numbers, |ξi|2 being the probability to be
in the state qi, 1 ≤ i ≤ s = |Q|. When the next input symbol is read from
the input, this row-vector is multiplied to a unitary matrix (ηij), 1 ≤ i, j ≤ s.
This gives us the distribution of amplitudes of all the internal states at the next
moment. However, in contrast with probabilistic automata, the transformation
of the distribution of amplitudes consists of two steps. First, the old row-vector
is multiplied to the unitary matrix corresponding to the symbol read from the
input. Second, all the halting states are measured, i.e. the new amplitude α is
replaced by 0 but the value |α|2 is added to the total probability of acceptance
(if the halting state is an accepting one) or it is added to the total probability
of rejection (if the halting state is a rejecting one).
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When an input word x is processed by a quantum finite automaton, we total
the probabilities to accept this word at all moments (including that when the
end-marker $ is read from the input). We say that the word is accepted, if
the total of these probabilities exceeds 1

2 . Just as in the case of probabilistic
finite automata, most of the research on quantum automata concerns language
recognition with probability p strictly exceeding 1

2 .
Kondacs and Watrous [KW97] proved that quantum finite automata recog-

nize fewer languages than deterministic finite automata.

Theorem 2. ([KW97]) Every language recognized by 1-way QFA with probabil-
ity p > 1

2 is recognizable by some deterministic FA as well. The converse does
not hold: the language {0, 1}∗1 recognized by a deterministic FA but not by any
1-way QFA with probability p > 1

2 .

On the other hand, Ambainis and Freivalds [AF98] proved that the size
of quantum finite automata can be exponentially smaller than the size of any
equivalent deterministic or even probabilistic finite automata recognizing the
same language.

4 Quantum learning

Our goal is to consider Gold type identification in the limit by limited memory
quantum inductive inference machines. However, it is difficult to find a model
of learning, for which quantum learning would give advantages over classical
(deterministic or probabilistic) learning. Indeed, it is an easy observation that
all functions computable by quantum computers are recursive, and hence no
advantages of quantum learning can be proved if unrestricted calculations are
allowed. This is why we considered limited memory learning.

By Theorem 2, quantum finite automata are strictly less powerful than deter-
ministic finite automata. Does this mean that quantum limited memory learning
is also less powerful than the deterministic one? No.

Our concept of learning is very much limited. Since our inductive inference
machine is only a finite automaton but the values of the target function f can
be arbitrarily large integers, our machine can only distinguish among the values
0, 1, 2, and, ‘a larger integer’. The machine can output only the current value
of the target function. (In a more general case, using BSS-type finite automata
[BSS89], it would be possible to output an input value previously stored in one
of the registers of the IIM.) However the model turns out to be powerful enough
to show the advantage of quantum learning over deterministic and probabilistic
learning.

We say that f ∈ QLFIN(M) if the quantum limited memory inductive
inference machine M learns f with probability p, 0 ≤ p ≤ 1. The collection
QLFIN〈p〉 is defined to be {U |∃M(U ⊆ QLFIN(M)〈p〉)}.

Our main result below shows that quantum limited memory inductive infer-
ence machines can learn classes of total recursive functions not learnable by any
deterministic limited memory inductive inference machines.
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5 Results

For a numerical function f , introduce the working notation u = |f−1(0)| and
v = |f−1(1)|, i.e. u is the number of values x where f(x) = 0, and v is the
number of values x where f(x) = 1.

Definition 1. Let Vε be the class of all total recursive functions f such that: (i)
f(0) = 2, (ii) for some z = zf , f(y) < 2 for all y < z, f(y) > 2 for y = z and
for y = z + 1, and, f(y) = 2 for all y > z + 1, and, (iii) either cos2 u < ε and
cos2 v > 1 − ε, and f(z) is a program to compute the function f , or, cos2 v < ε
and cos2 u > 1 − ε, and f(z + 1) is a program to compute the function f .

Let 〈m,n〉 be the standard pairing function for one-to-one correspondence
between pairs of natural numbers and natural numbers, see [Rog87].

Theorem 3. (Smullyan [Rog87]) For arbitrary total recursive functions g and
h, there exist m and n such that φm = φg(〈m,n〉) and φn = φh(〈m,n〉).

This well-known double recursion theorem of Smullyan will be used in the proof
of the next theorem.

Theorem 4. The class Vε is not in LFIN.

Proof. Assume to the contrary that Vε ∈ LFIN(M). Let w be the number of the
states of the finite automaton serving as our inductive inference machine, and
put c = w!. Hence, if the automaton receives a sequence of zeros (or a sequence
of ones) as part of the input values of the target function f , the automaton
repeats its internal states with period not exceeding w. The automaton is thus
not able to notice the presence or absence of any subsequence of zeros, the length
of which is a multiple of c.

It is well-known (Theorem 6.3 in [Niv67]) that for ξ irrational, the sequence
ξ, 2ξ, 3ξ, · · · , is uniformly distributed modulo 1. Since π is well-known to be
irrational (e.g. Cor. 2.6 in [Niv67]), it follows that the sequences cos2m and
sin2m, m = 1, 2, . . ., are dense in the interval [0, 1]. Hence, for arbitrary n0

there is k > 1 such that cos2 n < ε and sin2 n > 1 − ε, with n = n(n0, c) =
n0 + kc. Similarly, for arbitrary m0 there is k > 1 and such that cos2m > 1 − ε
and sin2m < ε, with m = m(m0, c) = m0 + kc. Note that n(n0, c) > n0 and
m(m0, c) > m0.

Now choose n0 and m0 so that cos2 n0 > 1 − ε and cos2m0 < ε. Using the
double recursion theorem (Theorem 3) we construct a pair of total recursive
functions f(x) and g(x) such that

f(x) = φd(x) =





2 if x = 0
0 if 1 ≤ x ≤ n0

1 if n0 + 1 ≤ x ≤ n0 +m0

d if x = n0 +m0 + 1
e if x = n0 +m0 + 2
2 if x > n0 +m0 + 2
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and

g(x) = φe(x) =





2 if x = 0
0 if 1 ≤ x ≤ n(n0, ε)
1 if n(n0, ε) + 1 ≤ x ≤ n(n0, ε) +m(m0, ε)
d if x = n(n0, ε) +m(m0, ε) + 1
e if x = n(n0, ε) +m(m0, ε) + 2
2 if x > n(n0, ε) +m(m0, ε) + 2

The function f is in Vε because cos2 n0 > 1 − ε and cos2m0 < ε, and d is a
correct program for f . The function g is in Vε because cos2 n(n0, c) < ε and
cos2m(m0, c) > 1 − ε, and e is a correct program for g. The functions f and g
are different since f(n0 + 1) = 1 and g(n0 + 1) = 0 (since n(n0, c) > n0).

On the other hand, the finite automaton is not able to distinguish between
f and g. ut

Theorem 5. The class Vε is not in PrLFIN( 1
2 + δ) for any δ > 0.

Proof. Assume to the contrary that there is a δ > 0 and a probabilistic inductive
inference machine M with a finite memory such that Vε is in PrLFIN( 1

2 + δ).
Denote by s the number of the internal states of M . Denote by f [b] the initial
fragment f(0), f(1), f(2), · · · , f(b) of the target function f ∈ Vε. Let f [b] and
g[p] be two initial fragments of functions in Vε. Adapting an argument of Rabin
[Rab63], we consider the probabilities ξ1, ξ2, ξ3, · · · , ξs, to enter the states 1, 2,
3, · · · , s, after processing the initial fragment f [b] of the target function f . We
consider also the probabilities ζ1, ζ2, ζ3, · · · , ζs, to enter the states 1, 2, 3, · · · , s,
after processing the initial fragment g[p] of the target function g. Suppose that
that h(j), h(j + 1), · · · , h(z), h(z + 1), h(z + 2), is a continuation of functions
f and g such that the functions

F (x) = φh(z+1) =





f(0) if x = 0,
f(1) if x = 1,
f(2) if x = 2,
· · ·
f(b) if x = b,
h(j) if x = b+ 1,
h(j + 1) if x = b+ 2,
h(j + 2) if x = b+ 3,
· · ·
h(z) if x = z + b+ 1 − j,
h(z + 1) if x = z + b+ 2 − j,
h(z + 2) if x = 0z + b+ 3 − j,
2 if x > 0z + b+ 3 − j
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G(x) = φh(z+2) =





g(0) if x = 0,
g(1) if x = 1,
g(2) if x = 2,
· · ·
g(b) if x = p,
h(j) if x = p+ 1,
h(j + 1) if x = p+ 2,
h(j + 2) if x = p+ 3,
· · ·
h(z) if x = z + p+ 1 − j,
h(z + 1) if x = z + p+ 2 − j,
h(z + 2) if x = 0z + p+ 3 − j,
2 if x > 0z + p+ 3 − j

are in the class Vε. Denote by ψ1, ψ2, ψ3, · · · , ψs, the probability to output
h(z + 1) if the inductive inference machine starts in the states 1, 2, 3, · · · , s,
respectively, and processes the fragment h(j), h(j+1), · · · , h(z), h(z+1), h(z+2),
of the target function. Then the probability to output the value h(z + 1) when
processing the target function F equals

ξ1ψ1 + ξ2ψ2 + · · · + ξsψs >
1

2
+ δ.

The probability to output the value h(z+1) when processing the target function
G equals

ζ1ψ1 + ζ2ψ2 + · · · + ζsψs <
1

2
− δ.

By subtraction, we get

(ξ1 − ζ1)ψ1 + (ξ2 − ζ2)ψ2 + · · · + (ξs − ζs)ψs > 2δ,

hence,
|ξ1 − ζ1| + |ξ2 − ζ2| + · · · + |ξs − ζs| > 2δ.

We see that if the fragments f [b] and g[p] are distinguishable by a fragment
h(j), h(j + 1), · · · , h(z), h(z + 1), h(z + 2), then their vectors of probabilities
ξ1, ξ2, ξ3, · · · , ξs, and, ζ1, ζ2, ζ3, · · · , ζs, are remote in a suitable metric of
the s-dimensional space. Hence, at most (1+ δ−1)n−1 pairwise indistinguishable
fragments f [b] are possible. (See the calculation in [Rab63]). The rest of our
proof copies the proof of Theorem 4, only by c we now denote the number
((1 + δ−1)n−1)! ut

Theorem 6. For arbitrary ε the class Vε is in QLFIN〈1 − ε〉.

Proof. The automaton has four non-halting non-output states {q1, q2, q3, q4}
(with q1 as the initial state), four halting output states {q6, q7, q9, q10} (when the
current input value is output), and two non-halting non-output states {q5, q8}
used only at the very end of the inference.
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When defining our class Vε we denoted by u the number of zero-values of the
function in the class Vε, and we denoted by v the number of one-values of the
function.

We construct our automaton to have the following properties.

When the first value ‘two’ is read from the input, the distribution of the
amplitudes for the non-halting states becomes

(
1√
2
, 0,

1√
2
, 0, 0, 0, 0, 0, 0, 0).

After u zeros and v ones are read from the input, the distribution of the ampli-
tudes for the non-halting states becomes

(
1√
2

cosu,
1√
2

sinu,
1√
2

cos v,
1√
2

sin v, 0, 0, 0, 0, 0, 0).

After the reading the first input ‘larger than two’ the distribution of the ampli-
tudes becomes

(0, 0, 0, 0,
1√
2

cosu,
1√
2

sinu,
1√
2

cos v,
1√
2

sin v, 0, 0).

At the states q6 and q7 the current input value f(z) is output, at the states
q5 and q8 no output is produced. After reading the second input ‘larger than
two’, the states q5 and q8 are followed by the states q9 and q10, respectively,
with output of the current input value f(z+1) and termination of the inference
process.

To get these properties, our automaton has the following unitary matrices
corresponding to the input symbols 2, 0, 1, L (where L stands for ‘larger than
two’):




1√
2

0 1√
2

0 0 0 0 0 0 0
1√
2

0 − 1√
2

0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1



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


cos 1 sin 1 0 0 0 0 0 0 0 0
sin 1 − cos 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1







1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 cos 1 sin 1 0 0 0 0 0 0
0 0 sin 1 − cos 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1







0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0




It follows from the definition of the class Vε that after the first value ‘larger
than 2’ there follows another one. It follows also that either (cosu)2 < ε and
(cos v)2 > 1−ε, and f(z) is a program to compute the function f , or (cos v)2 < ε
and (cosu)2 > 1 − ε, and f(z + 1) is a program to compute the function f . ut

6 Conclusions

Our paper relates both to learning theory and to quantum computation. We do
not pretend to have discovered new effective machine learning algorithms per-
formed by quantum computers. We were interested in theoretical capabilities
and limitations of various learning models. It turns out that there are learning
problems for which quantum algorithms have advantages over classical (deter-
ministic or probabilistic) ones. Such advantages have already been discovered in
papers on quantum computation [Shor94,AF98]. The results in this paper show
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that quantum learning differs rather much from quantum computation. Quan-
tum finite automata can recognize only languages recognizable by deterministic
finite automata [KW97] but our results show there exist classes learnable by
quantum finite automata but not learnable by deterministic finite automata. It
may seem that our Theorem 5 is based on using quantum finite automata with
very special parameters. What happens if a practical implementation of such an
automaton has a slight error in the parameters? A more careful analysis shows
that almost always quantum automata have advantages over their deterministic
counterparts. It was essential in our Theorem 5 that the angle used in our ma-
trices for the input symbols 0 and 1 is irrational with respect to π. However this
is true for nearly all possible angles (the probability to have such an angle is 1,
the probability to have angle which is not irrational with respect to π equals 0).
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[BFS98] J. Bārzdiņš, R. Freivalds and C. H. Smith. A Logic of Discovery. Lecture
Notes in Artificial Intelligence 1532, Springer, 1998, pp. 401-402.

[BB75] L. Blum and M. Blum. Toward a mathematical theory of inductive inference.
Information and Control, 1975, v.28, No. 2, pp. 125-155.

[BSS89] L. Blum, M. Shub and S. Smale. On a theory of computation and complexity
over the real numbers: NP-completeness, recursive functions and universal ma-
chines. Bulletin of the American Mathematical Society, v. 21, 1989, pp. 1-46.

[Fre91] R. Freivalds. Inductive inference of recursive functions: qualitative theory. Lec-
ture Notes in Computer Science 502, Springer, 1991, pp. 77-110.

[FS92] R. Freivalds and C. H.Smith. Memory limited inductive inference machines.
Lecture Notes in Computer Science 621, Springer, 1992, pp. 19-29.

[FKS95] R. Freivalds, E. B. Kinber and C. H. Smith. On the impact of forgetting on
learning machines. Journal of the ACM, v.42, No.6, 1995, pp. 1146-1168.

[FKS95a] R. Freivalds, E. B. Kinber and C. H. Smith. On the intrinsic complexity of
learning. Information and Computation, v.123, No 1, 1995, pp. 64-71.

[Gold67] E. M. Gold. Language identification in the limit. Information and Control, v.
10, 1967, pp. 447-474.

[KW97] A. Kondacs and J. Watrous. On the power of quantum finite state automata.
Proc. 38th IEEE Conference on Foundations of Computer Science, 1997, pp. 66-75.

[MC00] C. Moore and J. Crutchfield. Quantum automata and quantum grammars.
Theoretical Computer Science, v.237, 2000, pp. 275-306.

[Niv67] I. Niven. Irrational Numbers. The Carus Mathematical Monographs, vol. 11.
The Mathematical Association of America, 1967.



96 Richard Bonner and Rūsiņš Freivalds
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Capabilities of Finite Standardization

Gints Tervits?

Institute of Mathematics and Computer Science
University of Latvia, Riga, Latvia

Abstract. It was presumed that finite standardizability is a type of
inductive inference only slightly more powerful than finite identifiability.
Two theorems are proved to show that finite standardizability is, quite to
the contrary, only slightly less powerful than identifiability in the limit.

1 Introduction

Inductive inference is the term used for reconstruction of programs from sample
computations. It is the part of computational learning theory heavily based on
the recursive functions theory. Started by the well-known paper [Go 67] nowa-
days inductive inference is the most developed part of computational learning
theory (see the survey [AS 83] and the monograph [JORS 99]). Far from devel-
opment of effective machine learning algorithms, inductive inference has actively
supplied the practitioners with ideas on how to learn, what to learn, what diffi-
culties to avoid.

The most widely used inference type is EX (explanatory identification).

Definition 1. Let U be a class of total recursive functions and ϕ be a Gödel
numbering of all 1-argument partial recursive functions. U is called identifiable
in the limit (U ∈ EX) if and only if there is a partial recursive strategy S such
that for arbitrary f ∈ U , there is i ∈ N such that ϕi = f and S(f [n]) = i for
almost all n ∈ N .

Gold [Go 67] proved that the class R of all the total recursive functions is
not identifiable in the limit (R /∈ EX). Since then many generalizations and
restrictions of EX-identifiability have been considered, see [WZ 95] for a survey.
The most popular restriction of EX is finite identifiability.

Definition 2. Let U be a class of total recursive functions and ϕ be a Gödel
numbering of all 1-argument partial recursive functions. U is called finitely iden-
tifiable (U ∈ FIN) if and only if there is a recursive functional F on U such
that ϕF (f) = f for arbitrary f ∈ U .

? Research supported by Grant No.01.0354 from the Latvian Council of Science, Con-
tract IST-1999-11234 (QAIP) from the European Commission, and the Swedish In-
stitute, Project ML-2000
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Studying inductive inference of minimal programs Freivalds [Fr 75] found
that a certain criterion becomes simple and natural if we consider counterparts
for FIN (where the recursive functional is replaced by an effective operation),
and EX (where the strategy working in the limit is replaced by a limit-effective
operation).

Definition 3. A functional F on U (of U → N type) is called effective operation
if there is a partial recursive function ψ such that, for arbitrary ϕx ∈ U ,

1. F (ϕx) defined ⇔ ψ(x) defined,
2. F (ϕx) defined ⇒ (F (ϕx) = ψ(x)).

Definition 4. A class U of total recursive functions is called finitely standard-
izable (U ∈ FSTAND) if and only if there is an effective operation F on U such
that, for arbitrary f ∈ U , ϕF (f) = f .

It is easy to see that U ∈ FIN implies U ∈ FSTAND. There is a classical
theorem suggesting the reverse also might take place.

Theorem 1. [Kreisel, Lacombe, Shoenfield [KLS 57]] F is a total effective op-
eration on R if and only if F is a total recursive functional on R.

Since standardizability is performed by a total effective operation, one might
suggest that FSTAND = FIN . However, FSTAND 6= FIN , as it was proved in
[FKW 84]. Since then the notion of standardizability was used by many authors,
but it was always supposed that FSTAND is only ‘slightly’ larger than FIN .
We disprove this belief in this paper.

Constructive ordinals were used as a measure of the number of mindchanges
in the EX-identification process. The precise definition is too long for this paper
and we refer to [FS 93]. The idea however is simple. The inductive inference
machine has a special ‘counter’ containing arbitrary constructive ordinal (for
instance, arbitrary natural number, since natural numbers are the smallest or-
dinals). At every mindchange the content of the counter is diminished, and after
a finite number of steps the counter can become empty. After that moment new
mindchanges are not allowed.

Nearly all EX-identifiable classes of total recursive functions are also EX-
identifiable with an ordinal-bounded mindchange complexity. Hence only compli-
cated classes are EX-identifiable without any ordinal bound. We have managed
to prove that there is a finitely standardizable class of total recursive functions
which is very complicated in this sense, namely, it cannot be EX-identified with
an ordinal-bounded number of mindchanges. However every finitely standardiz-
able class is EX-identifiable.

The notions and notation not explained here can be found in [Ro 67].

2 Results

Freivalds, Alberts, and Smith [FAS96] proved the following theorem.
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Theorem 2. [FAS96] If a class U of total recursive functions is finitely stan-
dardizable, then U is identifiable in the limit.

Proof. Let ψ be the partial recursive function defining an effective operation F
such that, for arbitrary f ∈ U , (F (f) = u) implies (ϕu = f). We fix a concrete
procedure of computation of ψ, and this allows us to describe the number of
steps of the computation for specific values ψ(x). We use Dom χ to denote the
domain of a function χ.

The following instructions describe how to compute an auxiliary partial re-
cursive function η(x, y, z, k).

Compute ψ(y). If ψ(y) is not defined, then η(x, y, z, k) is not defined as well.
If ψ(y) is computed, then perform x steps of computation to compute ψ(z). If
ψ(z) is not computed in x steps, then η(x, y, z, k) = ϕy(x). If ψ(z) is computed
in at most x steps, then check whether or not ψ(z) = ψ(y). If the equality does
not hold, then define η(x, y, z, k) = ϕy(x). If the equality holds then denote the
number of steps for the computation of ψ(z) by w (please notice that w < x);
compute the values of ϕy and ϕk until ϕy(t) and ϕk(t) are computed for all
t ≤ w (if this never happens, then η(x, y, z, k) is not defined). After that check

whether or not ϕ
[w]
y = ϕ

[w]
k . If they are not equal, then η(x, y, z, k) is not defined.

If they are equal, then η(x, y, z, k) = ϕk(x).

Using the s-m-n theorem [Ro 67] we obtain a total recursive function h(y, z, k)
such that ϕh(y,z,k)(x) = η(x, y, z, k). We have:

ϕh(y,z,k) =





nowhere
defined , if ψ(y) is not

defined;
ϕy , if ψ(y) is defined,

and ψ(z) is not
defined;

ϕy , if ψ(y) and ψ(z)
are defined, and
ψ(y) 6= ψ(z);

ϕk , if ψ(y) and ψ(z)
are defined, ψ(z)
is computed in w
steps, ψ(z) = ψ(y),
{0, 1, 2, . . . , w} ⊆
Dom ϕy, and

ϕ
[w]
y = ϕ

[w]
k ;

ϕ
[w]
y , otherwise
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By the recursion theorem [Ro 67], there is a total recursive function n(y, k)
such that:

ϕn(y,k) =





nowhere
defined , if ψ(y) is not

defined;
ϕy , if ψ(y) is defined,

and either ψ(n(y, k))
is not defined, or
ψ(n(y, k)) 6= ψ(y);

ϕk , if ψ(y) and ψ(n(y, k))
are defined, ψ(n(y, k))
is computed in w
steps, ψ(n(y, k)) =
ψ(y), {0, 1, 2, . . . , w}
⊆ Dom ϕy, and

ϕ
[w]
y = ϕ

[w]
k ;

ϕ
[w]
y , otherwise (where w

is the number of
steps in computation
of ψ(z)).

By w′(y, k) we denote the precise number of steps of computation of ψ(n(y, k)).
We notice some properties of n(y, k) and w′(y, k).

First, if ϕy is a total recursive function in U , and ψ(y) is defined, then for
arbitrary k, w′(y, k) is defined (otherwise ϕn(y,k) would have been equal ϕy, but
ψ(y) is defined and ϕy ∈ U) and ψ(n(y, k)) = ψ(y) (the same argument).

Second, if ϕy is a partial recursive function such that ψ(y) is defined, ψ(n(y, k))

equals ψ(y), and ϕk is a total recursive function in the class U such that ϕ
[w′(y,k)]
k

equals ϕ
[w′(y,k)]
y , then ψ(k) is defined, and ψ(k) = ψ(y) (in this case ϕn(y,k) equals

ϕk, and ϕk ∈ U , hence ψ(n(y, k)) = ψ(k), and ψ(n(y, k)) = ψ(y)).
Put w(y, v) = maxk≤v w

′(y, k). It follows by the above properties (‘first’ and
‘second’) that:

A) for arbitrary y, if ϕy is a total recursive function in U , and ψ(y) is defined,
then, for arbitrary k and v, the values ψ(n(y, k)) and w(y, v) are defined,
and ψ(n(y, k)) = ψ(y);

B) for arbitrary y, v, if ϕy is a partial recursive function such that ψ(y) and
w(y, v) are defined, and for arbitrary s ≤ v, ψ(n(y, s)) = ψ(y) holds, and if

k ≤ v and ϕk is a function in the class U such that ϕ
[w(y,v)]
k = ϕ

[w(y,v)]
y , then

ψ(k) = ψ(y).

We now define a recursively enumerable set M of triples of integers. The triple
〈a, b, c〉 is in M if there is a y such that ψ(y) = c, w(y, b) is defined, ϕy(0), ϕy(1),
. . . ϕy(w(y, b)) are defined, for arbitrary s ≤ b, the equality ψ(n(y, s)) = ψ(y) = c

holds, and a equals the canonical index of the graph of ϕ
[w(y,b)]
y .

We will prove that for arbitrary f ∈ U and for arbitrary natural number c:
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1. (F (f) = c) ⇒ [(∀b)(∃a)(∃x)(〈a, b, c〉 ∈ M & a = τf [x])],

2. [(∃b) (∃a) (∃x) (〈a, b, c〉 ∈ M & b ≤ minϕ(f) & a = τf [x])] ⇒ F (f) = c.

We prove 1). Let ϕy be a function in U , and F (ϕy) = c, i. e. ψ(y) = c. It
follows from A) that, for arbitrary v, k, the values w(y, k) and ψ(n(y, k)) are
defined, and ψ(n(y, k)) = ψ(y) = c. By the definition of M, for arbitrary b, the
set M contains the triple 〈a, b, c〉, where a is the canonical index of the graph of

ϕ
[w(y,b)]
y .

We prove 2). Let the triple 〈a, b, c〉 be in M, k ≤ b, ϕk ∈ U , and a be a
canonical index of the graph of some initial fragment of the function ϕk. Then
by the definition of M, there is a y such that ψ(y) = c, w(y, b) is defined,
ϕy(0), ϕy(1), . . . , ϕy(w(y, b)) defined, and, for arbitrary s ≤ b the equalities

ψ(n(y, s)) = ψ(y) = c and ϕ
[w(y,b)]
y = ϕ

[w(y,b)]
k hold. Then it follows from B)

that ψ(k) = c, i. e. F (ϕk) = c.

We define an auxiliary recursive functional F ′(f, t) on U×N . For computation
of F ′(f, t) enumerate M until a triple 〈a, t, c〉 is found where a is canonical
index of an initial fragment of the function f , and c is an integer. Then we
define F ′(f, t). It follows from 1) and 2) that, for arbitrary f ∈ U and arbitrary
t ≥ minϕ(f), the equality F ′(f, t) = F (f) holds.

Finally, for the identification in the limit of arbitrary f ∈ U , follow the sub-
sequent instructions. To output the t-th hypothesis, compute in parallel F ′(f, z)
for various z ≥ t, and output the first obtained value. It is easy to see that at
most minϕ(f) hypotheses can differ from F (f). ut

This theorem was supplemented in [FAS96] by the following theorem.

Theorem 3. There is a class U of total recursive functions such that:

1. U is finitely standardizable,

2. the number of mindchanges to identify the class U in the limit cannot be
restricted by any fixed constant.

We strengthen this in the following way.

Theorem 4. There is a class U of total recursive functions such that:

1. U is finitely standardizable,

2. U is not identifiable in the limit with any ordinal-bounded mindchange com-
plexity.

Proof. A non-empty class U of total recursive functions and effective operation
on U will be constructed such that:

a) for arbitrary f ∈ U , the value of F (f) is a correct ϕ-index of the function f ,

b) for arbitrary initial fragment f [x] of an arbitrary function f ∈ U there is a
different function g ∈ U with the same initial fragment g[x] = f [x].
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1. We prove that the assertion 2) of the theorem is implied by a) and b).
Assume that U is identifiable in the limit with α mindchanges (where α

is a constructive ordinal) and the identification is performed by an inductive
inference machine M. Take an arbitrary f0 ∈ U and consider the performance of
M when processing f0. At some moment M produces the first hypothesis h1 on
f0. The hypothesis was produced by M based only on a finite initial fragment

f
[x]
0 of f0. At this moment the ordinal α is diminished and substituted by an

α1 < α. It follows from b) that there is a function f1 ∈ U such that f
[x]
1 = f

[x]
0

but the first hypothesis h1 is not a correct ϕ-index for f1.
Now consider the performance of M when processing f1. The machine M

produces the first hypothesis h1 (based on the same f
[x]
1 = f

[x]
0 ) and later (since

M is correct on f1) M produces the second hypothesis h2 (based on a finite

initial fragment f
[y]
1 ), and at this moment the ordinal α1 is diminished and

substituted by an α2 < α1. It follows from b) that there is a functional f2 ∈ U
such that f

[y]
2 = f

[y]
1 but the second hypothesis h2 is not a correct ϕ-index for

f2.
Continuing this argument we get arbitrarily long sequence of descending con-

structive ordinals α, α1, α2, . . .. However this contradicts the essential properties
of ordinals. This completes the proof of 2).

2. We construct the class U and the effective operation F with the properties
a), b). Every function in the class U is a function differing from some constant
only for a finite number of values of the argument.

We construct simultaneously the class U and a recursively enumerable set T
of pairs 〈a, b〉 (to be used for the definition of the effective operation). In the
process of the construction some functions will be placed into an auxiliary class
U ′. If a function gets into U ′, it can be removed from U ′ or it can stay in U ′

forever. If a function is removed, it never returns to U ′. The class U consists of
all the functions such that they stay in U ′ forever. By a0a1 . . . ana

∞ we denote
the function

f(x) =





a0 , if x = 0;
a1 , if x = 1;
· · ·
an , if x = n;
α , if x > n.

By {a0a1 . . . an} we denote the canonical index of the string a0a1 . . . an. By
s(a0a1 . . . an) we denote a ϕ-index of the function

g(x) =





a0 , if x = 0;
a1 , if x = 1;
· · ·
an , if x = n;
an , if x > n.

obtained from {a0a1 . . . an} by usage of some fixed uniform procedure.
The construction of U and T is organized in stages.
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STAGE 0. The functions 0∞ and 1∞ are placed in U ′ and the pairs 〈{0}, 0〉,
〈{1}, 0〉 are placed into T . Go to Stage 1.

STAGE n+ 1. Assume by induction that every pair 〈a, b〉 placed into T at
Stage n is of form 〈{a0a1 . . . an}, n〉 and it corresponds to a function a0a1 . . . ana

∞
n

placed into U ′. We also assume by induction that at the end of Stage n U ′ does
not contain any functions different from those corresponding to pairs placed into
T at Stage n.

We compute
ϕ0(0)
ϕ1(0), ϕ1(1)
· · ·
ϕn(0), ϕn(1), . . . , ϕn(n)

n steps of computation each. After that we consider all the pairs placed into U ′

at Stage n. When considering the pair 〈{a0a1 . . . an}, n〉 we test whether or not
there is a k ≤ n such that:

(i) computation of all ϕk(0), ϕk(1), . . ., ϕk(k) terminates in at most n steps,
(ii) ϕk(0) = a0, ϕk(1) = a1, . . ., ϕk(k) = ak,
(iii) (∃l)((k ≤ l ≤ n) & (ai−1 6= ai))

If such a k exists, then the function a0a1 . . . ana
∞
n is removed from U ′. If such

a k does not exist, the function a0a1 . . . ana
∞
n remains in U ′, and we place the

following pairs into T :

〈{a0a1 . . . anan}, n+ 1〉
〈{a0a1 . . . an(an + 1)}, n+ 1〉
〈{a0a1 . . . an(an + 2)}, n+ 1〉
· · ·
〈{a0a1 . . . an(an + n+ 3)}, n+ 1〉,

and we additionally place the following n+ 3 functions into U ′:

a0a1 . . . an(an + 1)
∞

a0a1 . . . an(an + 2)
∞

· · ·
a0a1 . . . an(an + n+ 3)

∞

Go to Stage (n+ 2).
Now we prove that the class U is nonempty. Indeed, the functions 0∞ and

1∞ cannot be removed from U ′ because of (iii).
We define the effective operation by defining a partial recursive function

ψ(x). To compute this value, in parallel generate the pairs in T , and compute
ϕx(0), ϕx(1), . . .. Let the pair

〈{a0a1 . . . an}, b〉 ∈ T

be the first pair (according to our parallel computation) such that ϕ
[n]
x = a0a1 . . . an

and x ≤ b. Let m be the largest integer m ≤ n such that am = am+1 = · · · = an.
Then we define ψ(x) = s(a0a1 . . . am).
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Now we prove that ψ defines an effective operation on U . (Please notice that
ψ does not define an effective operation on R.)

Let ϕx ∈ U . If ϕx is a constant function ϕx(t) = a then, by our definition,
ψ(x) = s(a), i. e. ψ(x) does not depend on the particular ϕ-index of the function.
If ϕx is a non-constant function, then ϕx = a0a1 . . . ana

∞
n+1. Assume that in this

notation n is chosen such that an 6= an+1. In this case x ≥ n+ 1 (otherwise the
function would have been removed from U ′). However for all b ≥ n+ 1 the pair
〈{a0a1 . . . ab}, b〉 compatible with the function ϕx leads to representation

a0a1 . . . ab = a0a1 . . . anan+1 . . . ab

with an+1 = an+2 = · · · = ab. This implies ψ(x) = s(a0a1 . . . an).
Now we prove the property b) of the class U . Let the function f = a0a1 . . . ana

∞
n+1

be in U (an 6= an+1), and let f [x] be the initial fragment from the property b).
If x ≥ n+ 1, then at Stage x the functions

a0a1 . . . anan+1 . . . ax−1(ax + 1)
∞

a0a1 . . . anan+1 . . . ax−1(ax + 2)
∞

· · ·
a0a1 . . . anan+1 . . . ax−1(ax + x+ 2)

∞

are placed into U ′.
At least one of these x+2 functions is such that its minimum ϕ-index exceeds

x+1. This function g is different from f , and it is never removed from U ′. Hence
this function is in U , and g[x] = f [x].

If x < n + 1, then consider the function f = a0a1 . . . ana
∞
n+1 ∈ U and the

functions
a0a1 . . . ax(ax + 1)

∞

a0a1 . . . ax(ax + 2)
∞

· · ·
a0a1 . . . ax(ax + x+ 3)

∞

placed into U ′ at Stage x+ 1. At least one of these x+ 3 functions is such that
its minimum ϕ-index is at least x + 1. Hence this function g is never removed
from U ′, and g[x] = f [x]. ut
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Abstract. We survey papers on problems of learning by quantum com-
puters. The quest of quantum learning, as that of quantum computation,
is to produce tractable quantum algorithms in situations, where tractable
classical algorithms do not exist, or are not known to exist. We see es-
sentially three papers [18, 92, 93], which in this sense separate quantum
and classical learning. We also briefly sample papers on quantum search,
quantum neural processing, and quantum games, where quantum learn-
ing problems are likely to appear.
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1 Introduction

It is not unnatural, at least historically, to see learning as a quantification of feed-
back - a famous concept, so eloquently launched by Wiener [121] half a century
ago, on which the edifice of Cybernetics was to be constructed. Wiener’s ideas,
recall, concerned the behavior, of ‘man’ and ‘machine’ alike, and specifically its
dynamic improvement by interactive evaluation. In computational perspective,
roughly, a learner is (a mathematical model of) a computer, a behavior is a
mathematical object such as a computer program, and learning is an algorithm,
which modifies the behavior. To evaluate the behavior, the learner is placed more
or less explicitly in a context of an economic game, a learning environment.

Clearly, learning depends on the underlying model of computation. In re-
cent years, computation by quantum physical systems has been recognized as
a phenomenon of fundamental scientific interest with promising pragmatic po-
tential; see any of the introductory texts [50, 53, 66, 69, 83]. Hence the interest
of quantum learning. The ultimate quest here is to produce tractable quantum
algorithms in situations, where tractable classical learning algorithms do not
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exist, or are not known to exist. Welcome side effects may be expected from un-
avoidable formal revision of learning models to deal with the often un-intuitive
quantum case.

Quantum learning is a theory in the making and its scientific production is
rather fragmented. To set a background for its discussion let us symbolically
recall some basic notions of classical learning and the intuition behind them.

An agent feels its environment through its sensors, a collection of functions
of the state of the world. For any value of its sensors, the agent computes a
response - a state of its effectors. The computation produces an input-output
function f ; this is the agent’s behavior. For example, if the admissible output is
a single binary variable, we talk of the agent making a decision or recognizing a
concept. We could equate the agent’s behavior with its knowledge, though this
usually entails considerations of the internal implementation of f .

The agent is capable of different behaviors fα, some better than others. For
example, a behavior could be determined by a neural network, the parameters α
expressing the weights of neural connections and neural threshold values. Or, it
could be computed by a programα run on a classical or quantum computer. The
agent learns (or is being trained) by successively improving its behavior through
feed-back until satisfactory (target) behavior is reached. The problem of learning
(for us, who design and train the agent) is to ascertain which behaviors the agent
is capable of, to evaluate behaviors, and to see whether satisfactory behavior can
effectively be learned under specified conditions; clearly, the balance of the value
of behavior against its learning costs is crucial here.

Learning theory is thus in broad perspective a border area of computer sci-
ence and economics, concerned with effective construction of strategies for (or
by) economic agents, where the net value of a strategy includes all computation
and information costs. This concept of learning is approached from the side of
economics by learning in games [44], and from the side computer science by rein-
forcement learning [101]. A related approach incorporates learning into decision
processes [17, 43, 102, 120]. Other models of learning in economics are surveyed
in [100]. One may also mention machine learning [73], part of the field of artifi-
cial intelligence, which falls into this general category but is largely an empirical
science.

In a first approximation, however, it is not unnatural to separate economics
and computing. Economic theory then provides target behaviours, and the com-
putational sciences study their learnability; it is then tacitly assumed that the
more accurate the learning, the higher its economic value. Under this simplifica-
tion, learning theory is about effective, exact or approximate, identification of a
mathematical object by drawing on available data about the object; it is then a
mathematical subject in its own rights and independent of its pragmatic roots.
The usual duality considerations now enter.

In a computational approach, one may study algorithms, which construct
a target object from data; this has the advantage that little a priori knowl-
edge about the object is needed, the learning being considered successful if the
output of an algorithm stabilizes. This approach has been formalized by Gold
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[46] under the banner of identification in the limit. It is by necessity formal, al-
most exclusively used in theoretical work [59] and in formal applications such as
logic programming [15]. It is akin to the conceptual framework of Kolmogorov-
Solomonoff algorithmic information theory [68].

Alternatively, if a priori knowledge about the object is available, one may
study how this knowledge increases in function of incoming object data, until
the object has been identified with required accuracy. This is the information-
theoretic approach, initiated by Shannon [97], now also known as the theory
of search [2]. It uses probabilistic methods and often goes under the banner
of statistical learning theory [107]. Not formally computational, it’s practical
application range is wide, intersecting with that of classical statistics [77].

Though pragmatically quite different, the two approaches are essentially dual
to one another in a formal mathematical sense, for example, along the ideas of
‘formal concept analysis’ [45], modulo computational complexity of encoding ob-
jects and processing [7, 65]. It is consequently common practice to derive sample
complexity bounds for the convergence of learning algorithms by information-
theoretic methods. This is the point of departure of computational learning
theory (CoLT), originally supplying sample bounds for neural network training
[8, 64, 118]. It rests on the concept of probably approximate convergence (PAC)
introduced into learning by Valiant [106], and builds on the theory of empirical
processes [84] and uniform central limit theorems [33]. Here, the insistence on
the uniformity of the convergence of learning with respect to the distribution of
learning data reduces the a priori knowledge of the learning context, essentially
to a specification of a class to which the target of learning is to belong.

2 Quantum learning today

None of the introductory texts [50, 53, 66, 69, 83] on quantum computation and
information theory mentions quantum learning. We did find one book with ‘quan-
tum learning’ in the title [86], but largely a popular discussion. At the time of
writing, the search of the Los Alamos preprint archive at http://xxx.lanl.gov/
archive/quant-ph/ for ‘learning’ returned five papers, and the NEC server http:
//citeseer.nj.nec.com/ cs returned thirteen papers to ‘quantum learning’. Clearly,
‘learning’ is still a relatively new term in the world of quantum computation.

Before discussing the key papers, we note two early papers [28, 29] from
1995 and 1997 by Chrisley, non-mathematical discussions signalling an interest
in quantum learning in cognitive science. We also note several papers [108–
110, 113–115] by Ventura and Martinez from the years 1997-2000, investigating
quantum learning, largely in connection with neurocomputing; of these, perhaps
most interesting are [109, 110], in that they consider quantum learning (of DNF
in n Boolean variables) by classical example oracle (and claim learning time
O(2

n
2 )).

There is also a paper [80] by Pearson et al, where classical learning in form
of a genetic algorithm was employed to control a quantum physical system in
laser photochemistry.
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Few mathematical papers address quantum learning expressly. Apart from
our paper [18] in the present collection, on identification in the limit by quan-
tum finite automata, all such papers consider learning of Boolean functions with
either a quantum membership oracle or a quantum example oracle. Quantum
computation relative to oracles was taken up by Berthiaume and Brassard [16]
already in 1992, but it appears the first to use quantum oracles in learning were
Bshouty and Jackson (1995) [23, 24]. They defined a quantum extension QEX
of the classical example oracle EX, and showed that the class DNF is effectively
PAC learnable by a quantum Turing machine using QEX with uniform exam-
ple distribution; this was interesting, as no classical such algorithm was known
to exist (that the DNF class is classically efficiently learnable from member-
ship queries was shown by Jackson [57] a year earlier). There is also a recent
technical follow-up paper by Jackson et al [58], containing in particular a lower
sample complexity bound for quantum PAC learning of DNF under the uniform
distribution.

This work was recently put into broader perspective in the lucid paper [93]
of Servedio and Gortler (2001), which we presently relate at some length. They
consider two standard learning models of Boolean functions: exact learning from
membership queries, due to Angluin [6], and PAC learning from examples, due
to Valiant [106]. In both models, the point of departure is a class F =

⋃
n Fn of

Boolean functions, Fn ⊂ {0, 1}n, n ≥ 1, and a black-box (oracle) access to a fixed
function f ∈ F . A learning algorithm for the class F makes calls to the oracle,
and, on the basis of received information, iteratively computes a hypothesis
h ∈ F , which estimates f . The oracle could be classical (c) or quantum (q), and
so could be the computation of h; hence, formally, four combinations are possible:
c-c, c-q, q-c, and, q-q, say. Servedio and Gortler relate query complexity bounds
for the c-c and the q-q algorithms for the Angluin and the Valiant models;
of the remaining two cases, c-q is clearly more interesting, but it seems still
uninvestigated (apart from the earlier mentioned papers [109, 110] of Ventura
and Martinez).

Recall first the well-known c-c case. In the membership query model [6], a
classical (probabilistic) learning algorithm L accesses f through a ‘membership
oracle’ MQf , which, upon a query x ∈ {0, 1}n, returns the bit f(x). The algo-
rithm L is said to learn F from membership queries exactly, if, for every n ≥ 1
and f ∈ Fn, L calls MQf a number of times and outputs with probability
at least 2

3 a hypothesis h which coincides with f , that is h(x) = f(x) for all
x ∈ {0, 1}n; the maximum number T (n) of oracle calls that L ever makes is the
sample complexity of L.

In the example model [106], the access to f is through an ‘example oracle’
EX(f, p), where p is a collection of probability distributions pn over {0, 1}n,
n ≥ 1; for any value of n, when queried, EX(f, p) returns a string x, f(x), with
x ∈ {0, 1}n picked randomly under the distribution pn. A classical algorithm
L is a PAC learning algorithm for F , if, for all probability distributions p, for
all n ≥ 1, 0 < ε, δ < 1, f ∈ Fn, if L is given n, ε, δ and access to EX(f, p),
then with probability at least 1 − δ the algorithm L outputs a hypothesis h for
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which the probability under p that h(x) 6= f(x) is at most ε. The maximum
number T (n, ε, δ) of calls to EX(f, p) that L ever makes for any f ∈ Fn and any
probability distribution pn over {0, 1}n is the sample complexity of L.

For the q-q case, Servedio and Gortler define quantum extensions QMQf

and QEX(f, p) of the classical oracles MQf and EX(f, p), and use quantum
circuits for the computation [31]; for a lucid introduction to the latter see eg [66].
Roughly, a quantum query for f ∈ F is an application of a unitary transformation
Of representing f , and a quantum learning algorithm L for F is, for every
f ∈ F , a composition L(f) of quantum queries Of intertwined with quantum
gates depending on F only, which acts on some initial superposition ψ0, and,
upon a measurement of the final superposition L(f)(ψ0), outputs f with a good
probability.

Specifically, the quantum membership query oracle QMQf is the quantum
black-box oracle for f , a quantum gate well-studied in the quantum network
model for computing Boolean functions [4, 25, 10]. In this model, a computation
is a sequence of unitary transformations (‘gates’) of a complex vector space
CN , N = 2n+1+m, consisting of superpositions of all admissible data (x, y) ∈
{0, 1}n × {0, 1} and some working states z ∈ {0, 1}m; a designated pair z′, z′′

of working states serves as an output 1 q-bit space M = Cz′ × Cz′′. For f ∈
Fn, the transformations Of representing calls to the oracle QMQf are of the

form f̂ ⊗ Im, where f̂ is defined by the permutation (x, y) 7→ (x, y ⊕ f(x)) of
data, ⊕ denoting addition modulo 2, and Im is the identity on the working
states. A quantum algorithm L for learning F =

⋃
n Fn exactly by quantum

membership queries is, for every n ≥ 1, a sequence (‘network’) of T = T (n) gates
U0, U1, . . . , UT and an initial superposition ψ0 ∈ CN , such that, for all f ∈ Fn,

the gate L
(f)
n = UTOfUT−1Of · · ·U1OfU0 transforms ψ0 into a superposition ψf ,

which, for every x ∈ {0, 1}n, upon measurement with respect to the subspace
Cx ⊗M , yields (x, f(x)) with probability at least 2

3 . The function T (n) is the
quantum sample complexity of L.

The quantum example oracle QEX(f, p) in [93] is that of Bshouty and Jack-
son [23, 24]: a call to QEX(f, p) is a quantum gate Of , as above, but which
maps the initial superposition of states to a superposition, in which each state
(x, f(x)), x ∈ {0, 1}n, has the amplitude

√
p(x). Skipping minor technical de-

tails, a quantum PAC learning algorithm for F is essentially a family of quantum
networks L indexed by n ≥ 1 and 0 < ε, δ < 1, which, for every f ∈ F , making
T (n, ε, δ) calls to QEX(f, p), with probability at least 1− δ output a function h
such that the probability under p that h(x) 6= f(x) is at most ε. The quantum
sample complexity of the PAC algorithm L is the function T (n, ε, δ).

Servedio and Gortler show in [93] that quantum and classical learning are
polynomially equivalent in terms of sample complexity. They prove that any
class F of Boolean functions, which is quantum exact learnable from quantum
membership queries with sample complexity T (n) is also classically exact learn-
able from membership queries with sample complexity O(nT 3(n)). They also
prove a corresponding theorem for PAC learning with the bound O(nT (n)).
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However, these seemingly discouraging results do not make quantum learning
uninteresting. Indeed, it is also observed in [93], and further developed by Serve-
dio in [92], that, under some plausible assumptions, quantum learning is compu-
tationally strictly more efficient than classical learning. The observation in [93]
builds on two negative classical learning results of Kearns and Valiant [65] and
Angluin and Kharitonov [7], conditional on the hardness of factoring Blum inte-
gers. If there is no polynomial-time classical algorithm factoring Blum integers,
then by [65] there is a family of Boolean functions which is not efficiently clas-
sically PAC learnable, and by [7] there is a family of Boolean functions which is
not efficiently classically exact learnable from membership queries. However, by
the famous quantum factoring algorithm of Shor [98], both classes are efficiently
quantum learnable in the corresponding sense. In [92], this result is strength-
ened, with the same conclusion for exact learning from membership queries but
conditional on the much weaker assumption that any one-way function exists, a
belief widely held in public-key cryptography.

There are two other papers we found on quantum learning, [90] by Sasaki
and Carlini, and [105] by Tucci. It seems however fair to say that the theory of
quantum learning, which contrasts classical theory, is today essentially limited
to the four papers [18, 24, 92, 93], two of which study the learning of DNF.

3 Related work

Quantum search It is clear that the notions of learning and search are related,
though the exact nature of their relationship is often left to interpretation. In
computational context, it is common to see learning as a stronger notion: while
search aims at finding an item x satisfying a condition f(x) = y, learning aims
at determining this condition completely, ie at the computation of f(x) for all x
in the domain of f . Thus, for example, we search for an instance of a concept,
but we learn the concept by finding all its instances.3

Quantum search is today a broad field of investigation, which we here only
very briefly touch upon; the basics may be found in the expositions [53, 66, 83]. It
essentially began in 1996 with Grover’s now famous result on quadratic quantum
speed-up for unstructured search [47]: while classical search for an item in an
unsorted database of N items4 requires on average no less than N

2 queries, for

quantum search O(
√
N) queries suffice. For a simple geometric explanation of

this algorithm, see Section 8.1 in Kitayev et al [66]. Grover’s original algorithm
has later been refined in various ways, by Grover himself and others, e.g. [20, 19,
49, 48], and analyzed from various angles, e.g. [26, 74, 89].

Grover’s algorithm computes the indicator function of the item searched for,
in the quantum gate black-box computational model. It was shown earlier (1994)
by Bennett et al [14] that faster unstructured search is not possible in this model.

3 Note here the tacit assumption about the ‘local nature’ of the oracle (eg membership
or example); learning turns to search in the presence of a ‘global’ oracle defined on
concepts, for example, telling us whether a candidate concept is the right one or not.

4 Our distinction between learning and search in this case disappears.
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Black-box quantum gate computation of boolean functions has been much
investigated, see the survey paper of Buhrman and de Wolf [25]. In particular, it
has been shown by Beals et al [10] that quantum speed-up in the computation of
a total boolean function is at most polynomial: ‘if a quantum algorithm computes
some total boolean function f with bounded error usingN black-box queries then
there is a classical deterministic algorithm that computes f exactly with O(N6)
queries’; see also Ambainis [4]. Quantifying the distinction between learning
and search, this stands in sharp contrast with computation of partial boolean
functions (when the black box satisfies a particular promise): by earlier work of
Simon (1994) [99] and Deutch and Jozsa (1992) [32], exponential quantum speed-
up is then possible. The role of promise in quantum black-box computation is
discussed in the recent paper [21] by Brazier and Plenio.

As a side comment, in view of the decisive role of the oracle in quantum
black-box computation and in the related learning models, we note an interesting
observation made by Kashevi et al [62]: two quantum oracles containing the same
classical information may differ exponentially in terms of the size of the register,
in the number of calls required to simulate one another.

Though quadratic speed-up of search may in practice be decisive5, it is not
of much help in general search problems, as the size of a search space is ex-
ponential in the number of variables, which define it. A standard way of deal-
ing with this situation is to introduce a cost function on the search space and
seek near-optimal solutions, trading precision for tractability. The recent work
of Trugenberger [104] follows this idea, first appearing in [56], and proposes a
‘quantum annealing’ probabilistic search heuristic, the accuracy of which de-
pends on a temperature parameter, but not on the size of the search space.
See also Hogg [54, 55] for related discussions of quantum combinatorial search.
Quantum search for optimal solution was investigated by Durr and Hoyer [34],
employing Grover’s search in an algorithm, and yielding the optimal quadratic
speed-up over classical methods.

Quantum algorithms for basic unstructured search, as well as for more gen-
eral combinatorial search problems, have also been considered in other models of
quantum computation. In one such model, proposed by Fahri and Gutman [41], a
time-independent Hamiltonian controls the evolution of the quantum computer.
In another model, considered in [30, 87], of computation by adiabatic evolution
[40], the quantum computer evolves according to a time-varying Hamiltonian.
A related model, considered by Childs et al [27], ‘uses only a sequence of mea-
surements to keep the computer near the ground state of a smoothly varying
Hamiltonian’.

Quantum neural networks Classical neurocomputing has been an important
source of inspiration for learning theory; computational learning theory, for ex-
ample, is naturally packaged with neural network learning [8]. In the words
of Ezhov [38], ‘the exponential increase of resources ... [the use of exponential

5 For example, as observed in [19], Grover’s algorithm ‘cracks the Data Encryption
Standard (DES)’.
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number of hidden neurons and their interconnections to realize an arbitrary
Boolean function] ... turns neurotechnology to reject the goal of precise function
realization and faces it with the problem of function approximation using not
programming but learning on the restricted set of samples’. Could one expect
similar quantum development?

It may be too early to speculate. A relatively recent account of the state of
quantum neurocomputing may be found in volume 128 (2000) of Information
Sciences, which in particular contains papers [3, 11, 36, 79, 103, 117]. We briefly
account for other papers we found. Among early papers we find Kak [60] and
Chrisley [29], essentially discussing concepts. Ventura et al take up varied as-
pects of prospective quantum neurocomputation in a series of papers [108, 111,
112, 114–116], in particular the question of associative quantum memory; their
mathematical techniques largely rely on modifications of Grover’s search algo-
rithm. Ezhov [39] considers function approximation using a single quantum neu-
ron, in [37] he looks at pattern recognition, and in [38] he discusses quantum
neural processing with respect to interference and entanglement. We also found
papers of Morel [75], Shafee [94–96], Andrecut and Ali [5], and Behrman et al
[12].

We conclude that the subject of quantum neural processing still awaits con-
solidation in its conceptual, practical, and mathematical treatments. It is not
even clear at present what is to be considered a quantum neural network, in
the sense of a mathematical model of a physically feasible and computation-
ally adequate computing device. It therefore seems premature to try formulate
connections of quantum neurocomputing with learning theory.

Quantum intelligence, decisions, and games Put into economic context, a process
of learning or search is often a decision process involving actions which affect
the learning, and, conversely, most real decision processes involve learning or
search. The interplay of learning and acting (‘exploration versus exploitation’)
is classically modelled by Markov decision processes [17, 102] and ‘reinforcement
learning’ [101], and conceptually falls under the heading of ‘learning in games’
[44]. The learning of decision strategies is treated in less technical language as
induction of decision trees [88], and is a standard tool in the machine learning
community [73]. Learning problems of this kind have in recent decades attracted
considerable interest in theoretical and operational economics [1, 9, 22, 42, 43, 52,
119].

While quantum counterparts of reinforcement learning or learning in games
do not seem to have yet been considered, we do now have quantum Markov pro-
cesses [76], quantum decisions [122], quantum intelligence [61], quantum robots
[13], and, most of all, quantum games [35, 67, 63, 70–72, 81, 82]. Practical consid-
erations temporarily aside, there is no shortage here of interesting problems to
be put into quantum setting. Besides hoping for quantum computational speed-
up, one may here trade computational complexity as a measure of hardness of
problems, for economic feasibility of their solutions, turning heuristics for hard
problems into theorems.
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4 Prognosis

Any survey of a field of investigation invites speculations as what will happen in
the field in the future. We try to refrain from this, but nevertheless note three
major trends of development, which quantum models of learning cannot ignore.

First and foremost, and as our account clearly suggests, quantum learning
is bound to develop as a side effect of progressing investigations of quantum
models of computation and quantum information theory. For example, learning
algorithms in the adiabatic evolution model are likely to appear.

Second, it has classically always been the case that pragmatic aspects of com-
putation have had decisive influence on learning problems studied. Learning in
games, economic search, genetic algorithms, reinforcement learning, incremental
learning, instance-based learning, etc., are likely to find quantum counterparts.

Finally, there is the direction towards mathematical unification of learning
models, to encompass both the classical and the quantum cases. This may at
present feel rather distant as not even classical learning has yet found proper
systematization. In a longer perspective, however, unification is inevitable for
communication between the growing number of diverse groups of investigators.
We note with interest progresses on logical foundations of quantum mechanics,
aiming at a coherent view on both the classical and the quantum theories.

Note. In the References below, arXiv refers to the site http://xxx.lanl.gov/ and
SiteSeer refers to the NEC site http://citeseer.nj.nec.com/
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Learning from Zero Information

Madara Greiziņa and L̄ıga Grundmane
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University of Latvia, Riga, Latvia?

Abstract. We consider a new type of learning from ‘seemingly no in-
formation’ and introduce a natural complexity measure of this learning.
It turns out that probabilistic learning may be of much less complexity.

1 Introduction

This paper originates from a problem proposed at the 21st Latvia Open Math-
ematics Olympiad (1994) [AB98].

Three persons A,B and C sit around a table. C declares: I have in mind
two subsequent positive integers. One of them is . . . (tells secretly only
to A), and continues: The other one is . . . (tells secretly only to B).
After that, a discussion goes on between A and B:
A. I don’t know and I can’t know these numbers.
B. I don’t know and I can’t know these numbers.
A. Now I know these numbers.
These three statements were true. Which numbers had C in mind?

Had C told 1 to A, his first statement would be false. Hence C told something
else to A. Hence B has additional information ‘C has not told 1 to A’. Had C
told 1 or 2 to B, his first statement would be false. Hence C has told something
else to A. Since the second statement by A was ‘Now I know these numbers’,
the only possibility is ‘3’ and ‘4’.

This example is a bit surprising since A and B seemingly receive no infor-
mation. However it was found in cryptography that zero-knowledge is a notion
to be defined more precisely [Sa90].

2 Deterministic learning

In the problem described in our Introduction a specific relation

R(x, y) = (∃z | x = z and y = z + 1)

? Research supported by Grant No.01.0354 from the Latvian Council of Science, Con-
tract IST-1999-11234 (QAIP) from the European Commission, and the Swedish In-
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was used. The person C announced that he has guessed two positive integers
x, y such that R(x, y). The considered game describes a new kind of complexity,
namely, how many repetitions of the phrase ‘I don’t know and I can’t know these
numbers’ is needed to determine the guess uniquely. We saw in the Introduction
that the guess ‘3’ and ‘4’ can be determined by 2 repetitions. It is obvious that
n repetitions determine the guess ‘n+ 1 and n+ 2’.

Theorem 1. For arbitrary relation R(x, y) such that R(x, y) well-orders the set
of all the positive integers there are infinitely many positive integers n such that
there is a m with R(n,m) and to describe this pair of integers one needs no less
than n− 1 repetitions.

Theorem 2. For arbitrary relation R(x, y) such that R(x, y) does not well-order
the set of all the positive integers there are positive integers n such that there is
a positive integer m such that R(n,m) but the pair (n,m) cannot be described
uniquely.

3 Probabilistic learning

Theorem 3. Let R(x, y) be an arbitrary relation such that there is a constant
k such that for arbitrary positive integer n there are no more than k distinct
values of m such that R(n,m). Let R(x, y) partially order the set of all positive
integers. Then there are infinitely many positive integers n such that there is a
m with R(n,m) and to describe this pair of integers with probability 1

k one needs
no less than const× log n repetitions.

Theorem 4. For arbitrary positive integer k there is relation R(x, y) such that:

– there is a constant k such that for arbitrary positive integer n there are no
more than k distinct values of m such that R(n,m),

– for all positive integers n such that there is an m with R(n,m), and this pair
of integers can be described with probability 1

k in const× log n repetitions.

References

[AAFS01] A. Ambainis, K. Aps̄ıtis, R. Freivalds and C. H. Smith. Hierarchies of proba-
bilistic and team FIN-learning. Theoretical Computer Science, v. 261, No. 1, 2001,
pp. 91-117.
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