
Web Service Discovery Mechanisms: Looking for a
Needle in a Haystack?

John Garofalakis1,2, Yannis Panagis1,2, Evangelos Sakkopoulos1,2,∗ and Athanasios
Tsakalidis1,2

1 Department of Computer Engineering & Informatics
School of Engineering, University of Patras

Rio Campus, 26500 Patras, Greece
{garofala, panagis, sakkopul, tsak}@ceid.upatras.gr

2 Research Academic Computer Technology Institute
Internet and Multimedia Technologies Research Unit

61 Riga Feraiou Str. 26110 Patras, Greece

Abstract. The introduction of software development via Web Services has been the
most significant web engineering paradigm, in the last years. The widely acknowl-
edged importance of the Web Services’ concept lies in the fact that they provide a
platform independent answer to the software component development question.
Equally important are the mechanisms that allow for Web Service discovery, espe-
cially as the latter has turn to an arduous task. This paper reviews the latest meth-
ods, architectures, models and concerns that have arisen in the Web Service Dis-
covery area.

1 Introduction

Web Services (abbr. WS) have emerged as a dominating set of recommendations and
standards (W3C, OASIS). They have marked current web engineering methodologies and
are ubiquitously supported by IT vendors and users. In short they are interoperable soft-
ware components that can be used in application integration and component based appli-
cation development. As the demand for WS consumption is rising, a series of questions
arise concerning the methods and procedures to discover the most suitable to use. In fact
there is much hiding behind the discovery of a Web Service. This work aims to examine
and analyze the different proposals in the area.

Initially a definition outline should be attempted of what discovery mechanisms stand
for. A first description of discovery mechanisms for service providers appears in [35] as
the match-making process. It is the process of finding an appropriate service provider for
a service requester through a middle agent [6]. It includes the following general steps: a)
Service providers advertise their capabilities to middle agents, b) middle agents store this
information, c) a service requester asks a middle agent whether it knows of service pro-
viders best matching requested capabilities and d) the middle agent, in order to reply,

∗ Corresponding author. Tel: +30 261 0960349. Authors appear in alphabetical order.

tries to match the request against the stored advertisements and returns a subset of stored
service providers’ advertisements.

A more up-to-date approach [4] defines the WS Discovery mechanism in a broader
sense as “the act of locating a machine-processable description of a WS that may have
been previously unknown and that meets certain functional criteria.“ It is a service re-
sponsible for the process of performing discovery, a logical role, which could be per-
formed by either the requester agent, the provider agent or some other agent.

Motivation and Obstacles. The main use of WSs up to now comprised the invocation
of services from distance, by sending and receiving messages. This situation however is
not efficient and the reasons are the needs suggested by the complicated applications,
which on the one hand require access to complicated WSs and on the other hand need to
be able to choose between an abundance of provided Web Services with the same func-
tionality. Since WSs found in repositories can be tagged with a wealth of information,
methods to narrow the discovery to those matching a particular technical fingerprint can
be quite complicated.

Web Service Discovery mechanisms allow access to service repositories that can
warehouse information about businesses, services and further details. In that sense such
mechanisms should be capable to retrieve a wide spectrum of information concerning the
service providers themselves beside their advertised services.

Moreover there is a need for dynamic discovery structures that will be always up-to-
date providing efficient and available Web Service choices. The discovery mechanism
should offer a number of capabilities, recognizable at both development and execution
time. During development, one may search a web service repository for information
about available services. At execution, client applications may use this repository to dis-
cover all instances of a web service that match a given interface.

The main obstacle affecting the Web Service Discovery mechanisms is heterogeneity
between services. A high level approach is considered by the emerging Web service ar-
chitecture [1]. Each examined solutions in this work try to overcome different aspects of
this heterogeneity in order to match the best Web Service available. The identification of
different kinds of heterogeneity gives an impression on what has to be considered in or-
der to avoid or mitigate them [20]:
− Technological heterogeneities (different platforms or different data formats).
− Ontological heterogeneity (domain-specific terms and concepts within services that

can differ from one another, especially when developed by different vendors).
− Pragmatic heterogeneity (different development of domain-specific processes and dif-

ferent conceptions regarding the support of domain-specific tasks).

Having in mind the above this work tries to critically present the existing solutions in
Web Service Discovery and set future goals. In section 2 the main players in the discov-
ery game are outlined. The architectural aspects are examined in section 3. The data
models facilitating discovery are discussed in section 4. Quality of Web Service provi-
sioning appears in section 5, before future steps and conclusions in section 6.

2 Roles in the Discovery Game: Description of Players

WS Discovery mechanisms include a series of registries, indexes, catalogues, agent-
based and Peer to Peer-P2P solutions. The most dominating among them is the Universal
Description Discovery and Integration-UDDI standard that is currently in version 3 [17].
It can be considered relatively mature as little has changed in depth since the first edition
of the standard. The different main players are presented in the following subsections in
order to have a first differentiation among the available solutions.

2.1 Catalogues

Web Service catalogues are the dominating technological basis for WS Discovery
mechanisms. They are specialized repositories which implement a specification frame-
work as metaschema. In particular, prior to the UDDI standard, organizations lacked a
common approach to publish information about their products and web services for their
customers and partners. UDDI established the first uniform method that included details
for integration of already existing systems and processes between business partners.

UDDI allows the enterprises to discover and share information with regard to the web
services and other electronic and non-electronic services that are registered in a registry.
A UDDI registry service is a WS that manages information about service providers, ser-
vice implementations, and service metadata. In order to find a web service using the
UDDI and much information regarding the required service is needed. The requirements
include key words, part of the service’s name and patience, in order to select the suitable
service through the results of the registry. The available search tools are very simple and
do not take into consideration any cross-correlations between web services and the quali-
tative characteristics of each web service, forcing the user to repeat the search from the
beginning using new key words.

The UDDI specifications include a) SOAP APIs that allow querying and publishing of
information, b) XML representation for the registry data model and the SOAP message
formats, c) WSDL interface definitions of the SOAP and d) APIs Definitions of various
technical models that facilitate category systems for identification and categorization of
UDDI registrations

Table 1. UDDI Registries’ Instances

Type Description
Public Querying and matching information is public to all web service con-

sumers. In that sense public UDDI appears to be a WS itself. Publish-
ing information into the registry is supported through secure channels
(e.g. https), but this does not spoil its public character. Data communi-
cation with other registries is supported.

Protected The notion of trust between collaborators characterizes this kind of
registries. Such registries are implemented within a closed-group envi-
ronment with monitored access to third parties. Administrative features
may be delegated to trusted parties. Data communication with other
registries is allowed only if explicitly specified.

Private It is about isolated registries fully secured. They are usually domain
specific registries in an internal network. Data communication with
other registries is not allowed.

Realization of a UDDI registry can have different end-user purposes (Table 1).
Using the above specifications, it is commonly recognized, though not specifically

mentioned, that there are three types of information supported by the catalogue. These
types included registration of white, yellow and green pages.

White pages include basic contact information and identifiers such as organization
name, address, contact information, and other unique ids.

Yellow pages describe a web service using different categorizations (taxonomies).
This way it is possible to discover a Web Service based upon its category.

Green pages include the technological information that describes the behaviors and
support functions of a Web Service.

Before proceeding to the P2P solution logic of WS Discovery the simplified imple-
mentation of an index should be included in the catalogue type. It is in short a list of ref-
erences for Web Services. Such compilations are neither authoritative nor validated. They
are usually harvested collections of published information by the service providers (usu-
ally using web spiders).

2.2 P2P-based Solutions

Peer to Peer (P2P) platforms provide a good arena for the Web Service Discovery
mechanisms’ implementations. A P2P overlay network provides an infrastructure for
routing and data location in a decentralized, self-organized environment in which each
peer acts not only as a node providing routing and data location service, but also as a
server providing service access. P2P can be considered a complete distributed computing
model. Recently proposed P2P systems include CAN [24], Pastry [26] and Chord [33].
The above systems arrange the network of peers to a ring. Nodes are assigned IDs drawn
from a global address space. Peers are also assigned a range of keys from the global ad-
dress space that they are responsible for. Each peer also stores auxiliary information in
order to appropriately route key lookups. Usually a key lookup is initiated at a peer. In
this case the peer consults its look-up table in order to successfully route the query to the
peer that stores the queried key. In the case of Chord routing with the aid of look-up ta-
ble, simulates binary search on the address space of all peers, thus a request in an N peer
network can be routed in ()NO log time.

Chord mainly has been adopted as the overlay P2P network distributed web service
architectures. The hosts in the P2P network publish their service descriptions to the over-
lay, and the users access the up-to-date Web Services. Architectural aspects are briefly
discussed in this section and the interested reader may want to continue in section 4.1 for
more details on data models.

In [14] an architecture called P2P-based Web service Discovery (PWSD) was pre-
sented. The authors use a Chord P2P protocol as overlay, consisting of Service Peers
(SP). Each SP is mapped to several Logical Machines (Different Machines corresponding
to the same hardware). Each Logical Machine maintains the necessary interfaces to map
and search WSs in the P2P network. Service Descriptions as well as queries are hashed
and routed in the Chord network.

The Speed-R system [32], is a WS storage and retrieval system that uses ontologies
and a P2P infrastructure. Some nodes in the P2P subsystem are assigned registries, which
in turn partitioned according to their specific domain. An ontology is assigned to each
domain. The P2P system is based on JXTA [9] implementation. Its architecture is based
on role assignment to peers (for example some nodes have undertaken the role of control-
ling updates and propagating them), thus their system may suffer from single point fail-
ure.

Closing this section, catalogues and P2P solutions are the major players in Web Ser-
vice Discovery. Realization of these mechanisms includes several different flavors that
follow in the sections below.

3 Architecture: Aspects and Approaches

There are types of WS Discovery approaches based on different architectural perception.
In the next sections we distinguish the WS mechanisms according to a) the level of
automation they provide, b) topological issues in terms of network involvement, c) com-
pliance with standards & recommendations and d) platforms available.

3.1 Manual Procedures vs. Intelligent Automation

An early approach on this type of categorization appears in [4]. Web service discovery,
carried out manually (e.g. by implementers during built-time) but also automatically (e.g.
by self-assembling applications during run-time), is a three phase-process consisting of
Web service search, Web service assessment and selection of Web services for the con-
figuration process.

Under manual discovery, a requester human uses a discovery service (typically at de-
sign time) to locate and select a service description that meets the desired functional and
other criteria. Under intelligent automated discovery, a requester agent performs and
evaluates this task, either at design time or run time.

The several UDDI processes and mechanisms cover solely operational aspects of the
UDDI cloud, data management, and replication aspects. They are designed and are suit-
able for dealing with explicitly published changes to the registry data, which are typically
done by operators or publishers. While these processes can be regarded as an approach to
automatically handle changes in the registry, they do not represent a solution for the
problem of dynamic service invocation or fault tolerance.

A more careful approach, as proposed in [13], is to postpone the decision of which
service to bind to until execution time by querying UDDI for the access points of services
that are known to implement this WSDL.

3.2 Centralized vs. Decentralized Solutions

Centralized Services. A registry is an authoritative, centrally controlled store of in-
formation. The recommended representative of this category is the UDDI registry
[17]. A lightweight version of a registry is the centralized service of indexes. Index

is a compilation or guide to information that exists elsewhere. It is not authorative
and does not centrally control the information that it references. The key difference
between the two approaches is not just the difference between a registry itself and
an index. Indeed, UDDI could be used as a means to implement an individual index:
just spider the Web, and put the results into a UDDI registry. Rather, the key differ-
ence is one of control: Who controls what and how service descriptions get discov-
ered? In the registry model, it is the owner of the registry who controls this. In the
index model, since anyone can create an index, market forces determine which in-
dexes become popular. Hence, it is effectively the market that controls what and
how service descriptions get discovered. [4]
Decentralized Solutions. There is one primitive, though well-known and widespread,
network decentralization approach. Publicly available UDDI nodes connected together
form a service that, while appearing to be virtually a single component, is composed of
an arbitrary number of operator nodes. They are called the UDDI cloud or federation
[25]. An operator node is responsible for the data published at this node: in UDDI terms,
it is the custodian of that part of the data.

Data consistency issues are resolved by the invocation of data replication procedures,
inherent in the UDDI. Re-querying the registry faces invocation failures caused by static
service caching

More elaborated decentralized solutions have also been proposed. These systems [29],
[32] build on Peer-to-Peer (P2P) technologies and ontologies to publish and search for
Web Services descriptions. A Peep-to-Peer solution (P2P) is also proposed in [14]. They
present a Peer-to-Peer (P2P) indexing system and associated P2P storage that supports
large-scale, decentralized, real-time search capabilities. Agent based solutions include
[15]. This approach aims to describe an environment called DASD (DAML Agents for
Service Discovery) where WS requesters and providers can discover each other with the
intermediary action of a Matchmaking service.

Distant ancestors of the distributed lookup registries are the Whois++ [36] and rWhois
[27] look-up protocols. Both protocols provide online look-up of individuals, network or-
ganizations, key host machines etc. Their key attribute is their hierarchical and distrib-
uted architecture, in a similar vein but different context with the contemporary decentral-
ized lookup protocols.

3.3 Complying with Recommendations vs Overriding them

Following the UDDI standard. In order to enrich the UDDI specification, information
that is required for the procurement of WS is added to the administrative information sec-
tions, namely white and yellow pages [13]. When performance is a requisite, data are in-
cluded on the quality of service (e.g. expected meantime between failures, maximum re-
sponse time, maximum data throughput, and so on), which are crucial to assess its
applicability. In order for discovery to be able to query about security of a Web service,
security details have to be included as well (see also Section 5.1).

A further aspect to discovery is that of applying improvements to the green pages
[20]. The behavior of Web services (strictly speaking of its particular methods) has to be
documented by specifying the pre- and post-conditions of the methods that are being pub-
lished to their interfaces. Thereby, designing by contract [24] is supported. A pre-

condition expresses the constraints under which an invoked method returns correct re-
sults. A post-condition describes the state resulting from a method’s execution and thus
guarantees that it will satisfy certain conditions. Constraints regarding the ordered invo-
cation of Web service methods can occur between Web services. They are called coordi-
nation constraints and help configuring a Web service on the basis of application proc-
esses.
Introduction of other approaches. Though providing basic support for remote service
invocation, UDDI does not support dynamic service invocation within a network of dis-
tributed services. Active UDDI’s [11] basic approach is an extension of the existing
UDDI infrastructure without requiring changes to the data structures or the APIs them-
selves but using a totally new web service that plays the role of a man-in-the-middle.
This solution provides a proxy based approach in order to dynamically provide registry
updates.

A different use for Web Service discovery is presented in [16]. In order to build an
open, large-scale and inter-operable, multi-agent system in the context of Grid comput-
ing, an attempt to integrate agent technologies with Web Services is made. The Grid
problem is defined as flexible, secure, coordinated resource sharing, among dynamic col-
lections of individuals, institutions and resources [7]. An extension of UDDI registry is
used, with additional information (meta-data) about agents and an ontology-based pat-
tern-matching in order to accommodate the kind of searching that is required to locate an
agent service according to the performative it supports. The proposed extension of UDDI
contains WSDL descriptions of all agents that have been registered. In this way dynamic
discovery and invocation of services by software through common terminology and
shared meaning is enabled.

Fig. 1 presents the above mentioned approaches according to their architecture.

Fig. 1. Categorization based on the architectural approach

3.4 Industrial Platforms

Following the surge for WS Discovery, major industrial implementation platforms have
included search facilities. Windows 2003 has a UDDI server preinstalled with the OS,
whereas many J2EE vendors build UDDI instances into their application servers (see
[13]).

Java 2 Enterprise Edition (J2EE). Sun Microsystems is positioning its Java API for
XML Registries (JAXR) as a single general purpose API for interoperating with multiple
registry types. JAXR allows its clients to access the Web Services provided by a Web
Services implementer exposing Web Services built upon an implementation of the JAXR
specification.

Microsoft .NET. At first, Microsoft had the discovery of Web Services with DISCO
in the form of a discovery (DISCO) file. A published DISCO file is an XML document
with links to other resources describing the Web Service. Since the wide spread adoption
of UDDI, however, Microsoft has supported it in order to maximize interoperability be-
tween solutions in what is, after all, a set of specifications for interoperability. In addition
to providing a .NET UDDI server, the UDDI SDK provides support for Visual Studio
.NET and depends on the .NET framework. Products such as Microsoft Office XP offer
support for service discovery through UDDI.

Java-Based APIs. The UDDI specifications do not directly define a Java-based API
for accessing a UDDI registry. The Programmer's API specification only defines a series
of SOAP messages that a UDDI registry can accept. Thus, a Java developer who wishes
to access a UDDI registry can do so in a number of ways: 1) using Java-based SOAP API
2) Using a custom Java-based UDDI client API or 3) Using JAXR

4 Data Models for Web Services

An important aspect of the Web Services discovery concerns the issue of the way the
Services themselves are modeled. The term model in this context refers to the representa-
tion of Web Services, a process that takes place before their discovery. In this section we
present two alternative viewpoints: the Information Retrieval approach and the Semantics
approach.

4.1 The Information Retrieval approach

The simplest Data Model is the Catalogue/Keyword Based. This model is followed by
the legacy UDDI Standard and the discovery mechanism it supports. In a nutshell, the
textual description that accompanies each Web Service is stored in the UDDI catalogue
along with the tModel that provides the Service functionality. The retrieval stage com-
prises a user or a search program, entering a query to the catalogue. The query consists of
keywords, which are matched against the stored descriptions. The matched Web Services
are then returned as a candidate answer set and the user browses them in order to find
which one of them really suits her needs or, what tends to be a frequent case, resubmits
another query.

The above approach followed by the current UDDI registries, resembles the classic
Boolean Information Retrieval model [2]. Despite its simplicity and ease of implementa-
tion, it suffers from either lots of returned results or very few returned ones.

A mainly architectural drawback of the approach is the fact that usually a centralized
registry hosts the majority of descriptions and thus receives millions of requests being
thus a bottleneck point. Decentralized proposals are discussed in section 3.2

An elegant approach to tackle the inadequacy of keyword-based Web Service Discov-
ery was proposed in [28]. The key concept in their approach is to represent service de-
scriptions as document vectors, a dominant approach in the IR field (see [2]). A descrip-

tion text, thus, corresponds to a vector d
r

in the vector space spanned by all the terms
used in all Service description texts. They go one step further by representing all the
document vectors, as columns in a term-document matrix A.

Another IR technique is afterwards applied, which transforms the matrix A achieving a
representation of the document collection by its more significant semantic concepts, or
what is called Latent Semantic Indexing (LSI) [3]. This method is observed and proved to
be able to return documents of the modelled text collection, which are more closely re-
lated to the semantics of the expressed query, regardless of exact matching or not with
the query terms.

When applying LSI to the discovery of Web Service they observed that description
vectors resulting from the transformation of the original matrix, were mapped more
closely to the vector space representation of the query, than the respective representations
of plain keyword-based descriptions.

A Web Service modelled as d-dimensional vectors, can also be thought of as a point in
d-dimensions. In that respect a geometric data structure for indexing multidimensional
data can be deployed in indexing and querying Web Services. Instead of transferring the
problem to high-dimensions, Schmidt and Parashar [30], use a transformation, which in-
jectively maps points in higher dimensions, to numbers. This transformation is called
space-filling curve. Many space-filling curves have been proposed (see [8]), but among
those, the Hilbert curve has the important property that adjacent intervals are mapped to
nearby regions in d-dimensions.

In the system of Schmidt and Parashar [30], a unique ID is generated for each Web
Service, through the Hilbert curve mapping. The IDs are then stored in a Chord [33] of
Web Service Peers. Thus, the storage and retrieval of WS inherits the load balancing ca-
pability and the dynamic nature of Chord. The main advantage of the model followed by
[30] is that it can efficiently support partial match queries. These queries are realized ef-
ficiently mainly due to the clustering properties of Hilbert curve. The querying procedure
is further enhanced, by some query optimization heuristics.

Li et. al. [14] combine keyword matching with P2P storage presenting a system that
also maps the XML Service Descriptions over a P2P Network, using distributed hashing.
In that sense peers act both as service providers and request generators. The XML Ser-
vice Descriptions are parsed in order to extract service keywords and keywords are
hashed with the MD5 hash function. The underlying P2P Network Protocol is also Chord
[33] and the modified system is called XChord. Chord’s distribution policy is enforced to
route the generated hash descriptions to nodes. A Web Service query starting at a peer
node, is also decomposed into keywords which are subsequently sought for using the
Chord searching principle. XChord is proved more stable, load balanced and less space
consuming according to the conducted experiments.

4.2 Semantics approach

Some recent work has focused on performing semantic matching for Web Services Dis-
covery. This development is increasingly significant since it seems to be able to tackle
some of the UDDI catalogue inadequacies. The predominant problem is the restrictions
posed by keyword matching that do not allow retrieval of WS with similar functionality;
two WSDL descriptions can be used to describe the same Service but with different
words. However, when modeling web services with ontologies the semantic representa-
tion of concepts and their relations can be exploited and thus semantic matching to be
performed. Semantic descriptions of Web Services can be obtained with the use of
DAML-S [5] or OWL-S [21] languages.

Paolucci et. al. [22] present a framework to allow WSDL and UDDI perform semantic
matching. Web Services are modeled as ontologies, or Service Profiles as they are called,
with the use of the DAML-S [5]. Typically, a Service Profile contains information for the
Actor (provider), Functional Attributes like Geographic Location and Functional De-
scriptions such as inputs outputs of the service. By maintaining ontology hierarchies, it is
possible to perform semantic matching, which is subsequently performed by exploiting
the subsumption capabilities of DAML. In order to combine ontologies with the UDDI
Registry, the authors define a separate layer the DAML-S Matchmaker. The matchmaker
does not extend any of the UDDI page categories, but it is treated as an add-on, which un-
dertakes semantic matching and the mapping of ontologies to UDDI Descriptions. Seman-
tic matching especially when using DAML-S has several advantages. First of all it pro-
vides matching flexibility, because results are returned that can differ syntactically with
the input query. It also provides accuracy since no matching is performed unless this is
derived from the hierarchy and finally the concept of matching degree can be supported.

A recent development was the introduction of a new language, OWL-S, to combine
semantic annotation of Web Services with their discovery and invocation with WSDL
and SOAP (see [34]). This approach has led to the OWL-S Matchmaker module.

The approach of adding DAML extensions to UDDI descriptions is also adopted by
[31]. Instead of providing a separate layer, they perform a simpler construct by enabling
both WSDL descriptions and UDDI registrations contain semantic information. This in-
formation is simply a mapping between WSDL entries and DAML+OIL ontologies. In
the case of UDDI, different tModels are provided to represent functionality, input output,
etc. A matching procedure that uses templates and exploits semantic descriptions to pro-
vide semantic matching is performed.

Moreau et. al. [16] also perform some kind of semantic matching but in a different
context. They describe agents performing Grid computations, as WSs. Hence, they trans-
form agent ontologies into XML and semantic matching is performed by validating struc-
turally expressed queries against agent description schemas. In the approach of [15] a
combination of semantic annotation of web services and agent-based publishing and dis-
covery is followed.

Interesting implementation frameworks for semantic matching are proposed in [10]
and [20]. The first paper provides a framework that uses ontologies to discover (“bind” in
that case) the web services that best match a specific operation domain (desired set of op-
erations). The available data are represented with domain ontologies and the available
operations, with operation ontologies. Generalization relationships on both models are
encoded in XML formats and so are binding relationships. Binding can thus be per-

formed by a binding ontology that decides what fits where according to binding relations.
Overhage in [20] proposes the implementation of semantic descriptions as an extension
of the UDDI protocol, termed as E-UDDI. E-UDDI introduces “blue pages”, sections that
contain semantic descriptions of Web Services; the latter are implemented in DAML-S.
The model described in [20], also provides extensions to the green page section of the
UDDI, by adding the capability to define constraints in the WS execution sequence.
However E-UDDI seems to be more a vision than an implementable system.

Fig. 2, presents a brief taxonomy of Discovery Models.

Fig. 2: Taxonomy of discovery models with respect to Scalability and Matching
Flexibility

5 Quality of Web Service Provisioning

The Quality of WS Provisioning (abbr. QoWS), is an issue which was more or less set
aside in most the work in WS area. Therefore, neither concrete definition nor globally ac-
cepted notions of QoWS exist. Some recent work however, breaks new ground, in an at-
tempt to define some of the QoWS parameters and methods of delivery.

5.1 QoWS parameters

Ran [23], Ouzzani [19] and Ouzzani-Bouguettaya [18] highlight the predominant parame-
ters that define the Quality of Web Service. We will refer only to the most important of
them, due to space limitations.

Computational behavior We are interested in parameters such as: Execution Attrib-
utes (e.g. Latency, Accuracy, Throughput), Security (Encryption, Authentication etc.),
Privacy (is there any privacy policy implemented?), Availability (the probability of the
service being available).

Business Behavior Mainly referring to Execution Cost (how much will a single exe-
cution cost?) and Reliability of the service publishing company.

Metadata Constraints Constraints that have to be followed regarding UDDI/WSDL
parameters such as location, specific companies etc.

The necessary modifications of the tModel to include QoWS characteristics are also
described in [23].

5.2 QoWS Provisioning

The need for QoWS Provisioning has emerged in complex Web Service applications. In a
typical scenario a user is executing a complex query which is transparently translated to a
set of WSs, which may have to be executed in a specific order. This execution sequence
is also referred to as execution plan. A single WS in this plan can possibly be provided by
more than one distinct access points. The goal in this case is to select the best execution
plan in order to maximize the delivered QoWS.

In order to select the proper execution plan for the delivery according to quality con-
straints, it is proposed in [18],[19] to assess each of the QoWS parameters by a quantity
called the quality distance. Quality distance dQi, effectively computes the distance be-
tween the advertised and the delivered quality of a service i. The quality distance for an
execution plan is given by Eqn. (1).

() ∑∑
∈∈









−+−=

negQoWSi iiposQoWSi
ii aQpQ

aQpQQoWSdist 11

(1)

In the above pos and neg are the sets of QoWS parameters that one wishes to maximize
or minimize, respectively. For example response time and execution time need to be
minimized while availability needs to be maximized. Moreover, pQi and aQi represent
provisioned and advertised values for parameter i, respectively. Actually, Eqn. 1 provides
with a rating of how close the execution of a WS is to its advertised value.

The above rating will influence the choice of the optimal execution plan. Hence, an
objective function F(p) (Eqn. 2) is defined for each execution plan p.















−

−
+

−

−
= ∑∑

∈∈ posQ ii

ii

negQ ii

ii

ii
QQ

QQ
QQ
QQ

pF
minmax

min

minmax

max

)(
(2)

where Qi denotes the measured value for a parameter and Qi

max (Qi

min) the maximum
(minimum) value over all available choices for service i. The F(p) function can be further
tuned by weighting appropriately each sum term according to the rating that the corre-
sponding parameter receives from Eqn. 1. Subsequently, optimization techniques are em-
ployed to discover the optimum execution plan that will maximize F(p) and thus deliver
QoWS.

We must also note that the DAML-S based architecture, mentioned in [22], includes
some QoWS parametres of “Metadata Constraint” category, as part of their defined on-
tologies. Semantic matching is subsequently taking these parametres into account in or-
der to computed the matching degree, however this procedure is tacitly assumed.

6. Conclusions

The Web Service Discovery mechanisms appearing above strive to achieve a set of goals
to enhance efficiency in the matching and binding procedure. Among others, discovery
mechanisms should enable search and assessment solely based on a Web Service‘s outer
view. Assessment is based on multi-criteria decision-making [12].

Furthermore, focus should be given on defining QoWS metrics. This is important so as
to refine WS Discovery mechanisms in order to reach minimum standards in perform-
ance, security and availability in the matching & binding results. Support of load balanc-
ing in the WSs delivery starting at the moment of choosing one will then be possible.
This can boost performance especially at situations with excessively increased workload
is met.

The work on Discovery mechanisms should try to reach resulting structures not only
applicable to WSs, but web-based or other software components in general. This would
require introducing some additional specifications about the platform, the system re-
quirements, the type of reuse, the type of code, and the scope of supply [20]. These speci-
fications could be added within the administrative information. Consequently, even a uni-
fied specification of software components could eventually be achieved (which could be
the basis for future component catalogues & CASE tools).

Concluding this discussion, several approaches have been discussed using different
view-points. Beside UDDI, emerging decentralized aspects such as P2P solutions are
promising. Enhancement of data models is also possible by elaborating both IR tech-
niques and ontologies, especially when taking into account that research about the Se-
mantic Web is particularly popular. WS Discovery mechanisms have a role even more
important than Web searching, because they facilitate the need for collaboration among
business processes and consumers over widely accepted Web standards.

Acknowledgements

The authors wish to thank the anonymous referees, whose insightful comments have
helped at improving the presentation of this paper.

References

1. Austin, D., Barbir, A., Ferris, C., Garg, S. (eds.): Web Service Architecture Requirements. W3C
Working Group Notes (2004) http://www.w3.org/TR/wsa-reqs

2. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval, Addison-Wesley, (1999)
3. Berry, M. W., Dumais, S. T., and O'Brien, G. W.: Using linear algebra for intelligent information

retrieval. SIAM Review, 37(4). (1995) 573-595
4. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion M., Ferris, C., Orchard, D. (eds.):

Web Services Architecture. W3C WG Note. http://www.w3.org/TR/ws-arch/
5. DAML-S Coalition: DAML-S: Web Service Description for the Semantic Web, Proc. 1st Int'l Se-

mantic Web Conf. (ISWC 02), 2002.
6. Decker, K., Sycara, K., Williamson, M.: Middle-Agents for the Internet. Proc. 15th IJCAI. Na-

goya, Japan. (1997) 578-583

7. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid. Enabling scalable virtual
organizations. International Journal of Supercomputer Applications. (2001)

8. Gaede, V., Gunther, O.: Multidimensional Access Methods. ACM CSUR, 30(2). (1998)
9. Gong L., "JXTA: A Network Programming Environment". IEEE Internet Computing, (5)3:88-95,

May/June 2001.
10. Hu, Z.: Using Ontology to Bind Web Services to the Data Model of Automation Systems Re-

vised Papers from the NODe 2002 Web and Database-Related Workshops on Web, Web-
Services, and Database Systems. (2002) 154 – 168

11. Jeckle, M., Zengler, B.: Active UDDI - an Extension to UDDI for Dynamic and Fault-Tolerant
Service Invocation, Revised Papers from the NODe 2002 Web and Database-Related Workshops
on Web, Web-Services and Database Systems , LNCS. (2003) 91-99

12. Konito, J.: A Case Study in Applying a Systematic Method for COTS Selection. In: Proc., 18th
Int. Conf. on Soft. Eng. (ICSE). IEEE Computer Society Press (1996) 201–209

13. Lacey, P.: Uddi & Dynamic Web Service Discovery. http://www.ddj.com/articles/2004
14. Li, Y., Zou, F., Wu, Z., Ma, F.: PWSD: A Scalable Web Service Discovery Architecture Based

on Peer-to-Peer Overlay Network, In Proc. APWeb04, LNCS 3007. (2004) 291-300
15. Montebello, M., C. Abela, C.: DAML Enabled Web Services and Agents in the Semantic Web.

Revised Papers from the NODe 2002 Web and Database-Related Workshops on Web, Web-
Services and Database Systems , LNCS. (2003) 46 – 58

16. Moreau, L., Avila-Rosas, A., Dialani, V., Miles, S. and Liu, X. Agents for the Grid: A Compari-
son with Web Services (part II: Service Discovery). In Proceedings of Workshop on Challenges
in Open Agent Systems , Italy. (2002) 52-56

17. OASIS UDDI Specifications TC - Committee Specifications http://www.oasis-
open.org/committees/uddi-spec/doc/tcspecs.htm

18. Ouzzani M., Bouguettaya A.: Efficient Access to Web Services. IEEE Internet Computing,
March/April (2004) 34-44

19.Ouzzani, M., Efficient Delivery of Web Services, PhD Thesis, Virginia Polytechnic. (2004)
20. Overhage, S.: On Specifying Web Services Using UDDI Improvements. 3rd Annual Interna-

tional Conference on Object-Oriented and Internet-based Technologies, Concepts, and Applica-
tions for a Networked World Net.ObjectDays, Germany (2002)

21. OWL-S Specifications, http://www.daml.org/services/owl-s/1.0/
22.Paolucci, M., Kawamura, T., Payne, T. R., Sycara, K.: Semantic Matching of Web Services Ca-

pabilities. In Proceedings of the 1st Int. Semantic Web Conference (ISWC2002). (2002)
23. Ran S.: A Model for Web Services Discovery with QoS, ACM, ACM SIGecom Exchanges, Vol-

ume 4 , Issue 1 Spring. (2003) 1 - 10.
24. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-addressable

network. Proceedings of ACM SIGCOMM`01, San Diego, September (2001)
25. Rompothong, P., Senivongse, Tw.: A Query Federation of UDDI Registries, ISICT (2003)
26. Rowstron, A., Druschel, P.: Pastry: scalable, decentralized object location and routing for large-

scale peer-to-peer systems. Proc. of the 18th IFIP/ACM Middleware,Germany. (2001)
27. rWhois RFC, http://rfc.net/rfc2167.html
28. Sajjanhar, A., Hou, J., Zhang, Y.: Algorithm for Web Services Matching, In Proc. APWeb 2004,

Lecture notes in Computer Science 3007, Springer Verlag, (2004) 665-670
29.Schlosser, M., Sintek, M., Decker, S., Nejdl, W.: A scalable and ontology-based P2P infrastruc-

ture for semantic web services. Proc. 2nd Int. Conf. P2P’02, Sweden. (2002) 104–111.
30. Schmidt, C., Parashar, M. A.: Peer-to-Peer Approach to Web Service Discovery. World Wide

Web: Internet and Web Information Systems, 7. (2004) 211-229
31. Sivashanmugam, K., Verma, K., Sheth, A. P., Miller, J. A.: Adding Semantics to Web Services

Standards. Proceedings of the Int. Conf. on Web Services, ICWS '03. (2003) 395-401
32. Sivashanmugam, K., Verma, K., Mulye, R., Zhong, Z., and Sheth, A.: Speed-R: Semantic P2P

environment for diverse Web Service registries,
http://webster.cs.uga.edu/~mulye/SemEnt/Speed-R.html. (2004)

