

TUTORIAL 2

Exercises 11.2-1

Suppose we use a hash function h to hash n distinct keys into an array T of length m . Assuming simple uniform hashing, what is the expected number of collisions? More precisely, what is the expected cardinality of $\{\{k, l\} : k \neq l \text{ and } h(k) = h(l)\}$?

Exercises 16.3-2

What is an optimal Huffman code for the following set of frequencies, based on the first 8 Fibonacci numbers?

a:1 b:1 c:2 d:3 e:5 f:8 g:13 h:21

Can you generalize your answer to find the optimal code when the frequencies are the first n Fibonacci numbers?

Exercises 24.3-2

Give a simple example of a directed graph with negative-weight edges for which Dijkstra's algorithm produces incorrect answers. Why doesn't the proof of [Theorem 24.6](#) go through when negative-weight edges are allowed?

Exercises 24.3-6

Let $G = (V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \{0, 1, \dots, W\}$ for some nonnegative integer W . Modify Dijkstra's algorithm to compute the shortest paths from a given source vertex s in $O(WV + E)$ time.

Exercises 24.3-7

Modify your algorithm from [Exercise 24.3-6](#) to run in $O((V + E) \lg W)$ time. (*Hint:* How many distinct shortest-path estimates can there be in $V - S$ at any point in time?)

Exercises 25.2-4

As it appears above, the Floyd-Warshall algorithm requires $\Theta(n^3)$ space, since we compute for $i, j, k = 1, 2, \dots, n$. Show that the following procedure, which simply drops all the superscripts, is correct, and thus only $\Theta(n^2)$ space is required.

```
FLOYD-WARSHALL' (W)
1  $n \leftarrow \text{rows}[W]$ 
2  $D \leftarrow W$ 
3 for  $k \leftarrow 1$  to  $n$ 
4   do for  $i \leftarrow 1$  to  $n$ 
5     do for  $j \leftarrow 1$  to  $n$ 
6       do  $d_{ij} \leftarrow \min(d_{ij}, d_{ik} + d_{kj})$ 
7 return  $D$ 
```

Exercises 28.2-4

V. Pan has discovered a way of multiplying 68×68 matrices using 132,464 multiplications, a way of multiplying 70×70 matrices using 143,640 multiplications, and a way of multiplying 72×72 matrices using 155,424 multiplications. Which method yields the best asymptotic running time when used in a divide-and-conquer matrix-multiplication algorithm? How does it compare to Strassen's algorithm?

Exercises 28.2-6

Show how to multiply the complex numbers $a + bi$ and $c + di$ using only three real multiplications. The algorithm should take a, b, c , and d as input and produce the real component $ac - bd$ and the imaginary component $ad + bc$ separately.