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Abstract

This paper addresses the problem of finding a
small and coherent subset of points in a given
data. This problem, sometimes referred to as
one-class or set covering, requires to find a
small-radius ball that covers as many data points
as possible. It rises naturally in a wide range
of applications, from finding gene-modules to
extracting documents’ topics, where many data
points are irrelevant to the task at hand, or in
applications where only positive examples are
available. Most previous approaches to this prob-
lem focus on identifying and discarding a pos-
sible set of outliers. In this paper we adopt an
opposite approach which directly aims to find a
small set of coherently structured regions, by us-
ing a loss function that focuses on local proper-
ties of the data. We formalize the learning task as
an optimization problem using the Information-
Bottleneck principle. An algorithm to solve this
optimization problem is then derived and ana-
lyzed. Experiments on gene expression data and
a text document corpus demonstrate the merits of
our approach.

1. Introduction

The goal of unsupervised learning is to extract concise de-
scriptions of data given empirical samples. However, one
is often only interested in modeling small parts of the data
and ignore its remaining irrelevant parts. This is for ex-
ample the case when the data consists of small groups of
coherently structured data points, and the rest of the data
are irrelevant or mere noise. It is a common scenario in
a variety of applications from detecting regions of inter-
est in images to finding subsets of co-expressed genes in
genome-wide experiments.
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A related problem is demonstrated by the task of informa-
tion retrieval by search engines. In this application, given
a query, a handful of documents is sought out of billions
of potential web pages. Unlike classification problems, re-
trieval systems are often trained only with word phrases
or documents marked as relevant, because it is difficult to
sample well the space of irrelevant documents. In practice,
users tend to consider only the first few pages retrieved by
search engines. As a result, a system that retrieves few doc-
uments that are all highly relevant, is preferred over a sys-
tem that retrieves a large collection of documents, many
of which are irrelevant, even if the larger collection suc-
ceeds to cover more relevant documents. From the point
of view of the trade-off between recall (retrieving most rel-
evant documents) vs. precision (retrieving only relevant
ones), this application favors high precision values.

In these two general scenarios, one looks for a small but
coherent subsets of data items, which can be achieved by
finding a small-radius ball that covers as many data points
as possible. This problem is known as one-class classifica-
tion (Tax & Duin, 1999), and has two opposite approaches
for its solution: Most previous approaches formulate the
task as a problem of outlier and novelty detection, in which
most of the samples are identified as relevant. Here we take
the opposite approach and try to identify a small subset of
relevant samples, rather than keep all but few outliers. As
we will see below, this “needle in a haystack” approach re-
quires a different formulation of the detection problem.

Current approaches to one-class classification use convex
cost functions that focus on large-scale structures in the
data: the cost is constant within the ball and grows linearly
on its outside (Schölkopf et al. (1995), Tax and Duin (1999)
and Ben-Hur et al. (2001) used the Euclidean distance). In
a related problem, introduced by Schölkopf et al. (2001),
the goal is to separate most of the samples from the origin
using a single hyper-plane. Recently, Crammer and Singer
(2003) generalized these approaches to the more general
family of Bregman Divergences. In all these formulations,
due to the convexity of the cost function, the solution con-
verges to the center of mass when the radius of the ball goes
to zero, thus ignoring any explicit local structures.



In order to model the fact that the distribution of the points
outside the cluster is not of interest, the current paper
takes the opposite approach: we use a cost function that
grows linearly inside the ball but is kept constant outside it.
This cost function is indifferent to the values of the “non-
interesting” samples. Flat cost outside the ball is therefore
expected to be better than linear cost when the interesting
samples are localized in a small region, or when there are
relatively few interesting samples. Unfortunately, this cost
function leads to a non-convex optimization problem, that
is harder to solve exactly. It is therefore necessary to de-
velop approximation algorithms for this problem.

This paper sets out to formalize this problem in the con-
text of an unsupervised learning problem: searching for a
compact, yet informative description of the data. We use
the Information Bottleneck approach (Tishby et al., 1999)
(IB) to formalize the learning task as an optimization prob-
lem. IB is a general framework that we use here mainly as
a tool. It allows us to formalize a stochastic description of
the solutions, and to adapt previously studied IB algorithms
for the current problem. We use here a previously stud-
ied generalization of IB to a rather wide family of distance
measures known as Bregman divergences. Since the Eu-
clidean distance is a special case of a Bregman divergence
our formulation can also be naturally combined with Mer-
cer kernels, in a manner similar to Schölkopf et al. (1995;
2001).

2. Formulation of the Optimization Problem

Assume we are given a set of m samples, {vx}m
x=1 ∈ Λm,

where the identity of a sample is indexed by the random
variable X (that is, x ∈ {1, . . . , m}). Λ can be a d di-

mensional space or simplex and p(x) def= p(X = x) is the
prior distribution over the samples. Our goal is to identify
a subset of meaningful samples from the large set of data
points, and we identify the meaningful points by the fact
that they are clustered together. The learning task is there-
fore to find a small body that covers as many samples as
possible. To keep the shape of this body simple, we focus
here on covering the points with a ball.

We take a probabilistic approach and define C to be the
event of being assigned to the ball. This binary event
C ∈ {TRUE,FALSE}, has a joint distribution with the
samples p(C, x), and we denote by q(C|x) the probabil-
ity that the sample indexed by x is assigned to the ball.
This probability can be thought to reflect our belief that
the specific sample vx is “interesting”. We also define the
marginal q(C) =

∑
x q(C|x)p(x). Note that we allow soft

assignment of a sample to the ball, when q(C|x) is neither
strictly zero or one. As will be discussed below, our formu-
lation allows to control the level of assignment’s softness
and to reduce it to the hard limit where the assignment of

each sample is dichotomous.

The goal is to find a ball with radius R that is centered at
a representative vector w ∈ Λ such that it covers as many
samples as possible. The distance measures that we con-
sider are Bregman divergences, which for the sake of clar-
ity will be defined and discussed in the next section. At this
point we treat them as generic distance measures denoted
by BF (vx‖w). Clearly, the value of R strongly effects the
solution: The smaller the value of R is, less samples will
be assigned to the ball. We first treat the case where R is
constant and known, and discuss the more general case be-
low. For any value of R, a solution to the problem is a set
of probabilities q(C|x) for all x and a center of a ball w.

To formalize the learning task as an optimization prob-
lem we use the Information Bottleneck framework (IB)
(Tishby et al., 1999). IB is an elegant formulation for reg-
ularized unsupervised learning, that aims to extract a sim-
ple, yet meaningful, representation C of a given data X .
It is usually formalized as an optimization problem that
trades off between two terms: One that measures how com-
pact the representation is I(C;X), and another, I(C;Y ),
that measures how informative it is about an additional
given variable Y . Both terms are formally quantified us-
ing the same functional, the Shannon mutual information

I(X;Y ) def=
∑

x,y p(x, y) log( p(x,y)
p(x)p(y) ).

The current paper uses an alternative, yet mathematically
equivalent, formulation of the IB principle. The accuracy
of representation is measured here using the average distor-
tion between the data and its compact representation. In the
context of the one-class problem, the learning task is writ-
ten as a minimization of the tradeoff between two terms

min
q(C|x),w

βD(C,w;X) + I(C;X) (1)

where I(C;X) is the mutual information between X and
C, and β is a free parameter which determines the tradeoff
between the model’s accuracy and simplicity.

The first term D is an average distortion,

D(C,w;X) =
∑

x

p(x)D(C|x,w;vx) (2)

D(C|x,w;vx) = q(C|x)BF (vx‖w) + (1−q(C|x))R .

For each sample vx, the distortion term D(C|x,w;vx) av-
erages terms that correspond to hard assignments of the
sample. When q(C|x) = 1 (vx is certain to be assigned
to the ball) the assignment is penalized with a loss equal to
the divergence between vx and w. When q(C|x) = 0 (vx

is certain not to be assigned to the ball) the assignment is
penalized with a constant loss R.

The second term of Eq. (1) provides a measure of how
strongly the model C compress the data. To compress the



structures in X to a simpler representation, we wish to
choose a ball that removes information about the specific
identity of the points. This becomes clear when rewriting
I(C;X) = h(X) − h(X|C) where h(·) is the differential
entropy. Since h(X) is a constant, minimizing the informa-
tion is equivalent to maximizing the entropy h(X|C) which
is the fundamental measure of uncertainty about X .

To simplify the form of the optimization problem
we can rewrite the distortion term of Eq. (2) as∑

x p(x) [q(C|x)BF (vx‖w) + (1 − q(C|x))R] =∑
x p(x)q(C|x) (BF (vx‖w) − R) + R

∑
x p(x) . The

second term is constant because both R and p(x) are given
and thus can be omitted without affecting the mathematical
properties of the distortion term.

We therefore consider the optimization problem of the
combined terms

min
q(C|x),w

F (q(C|x),w) = I(X;C) (3)

+β
∑

x

p(x)q(C|x) (BF (vx‖w) − R)

subject to q(C|x) ∈ [0, 1] ∀x

Since the objective function contains a product of two vari-
ables (q(C|x)BF (vx‖w) , where both q(C|x) and w are
parameters) it is not convex, hence the optimization prob-
lem is not convex either.

3. Properties of the solution

We now turn to describe the properties of the optimal solu-
tion of Eq. (3). We follow the derivation of (Tishby et al.,
1999), use some algebraic manipulation, and obtain the fol-
lowing set of self-consistent equations which describe the
optimal solution. The first equation describes the marginal
over C

q(C) =
∑

x

p(x)q(C|x) . (4)

The second equation describes the location of the centroid
w in terms of the input samples vx and the probabilities
q(C|x),

w =
1

q(C)

∑
x

p(x)q(C|x)vx . (5)

w is therefore a weighted average of the input samples vx

weighted by the likelihood probabilities p(x|C). The third
equation connects the value of the probabilities q(C|x) to
the distance between the centroid w and each of the points
vx,

q(C|x) = 1/

{
1 +

1 − q(C)
q(C)

eβ[BF (vx‖w)−R]

}
. (6)

When β = 0, the information term in the objective func-
tion is dominant, yielding the simplest solution: all the

(a) (b)

Figure 1. Illustration of the loss function in (a) One-class SVM
(b) One-class IB. Note the local nature of the loss function in (b).

points are assigned to the cluster with the same probabil-
ity q(C|x) = q(C) regardless of the specific sample value
vx. The specific value of q(C) is determined by ranging
over the value of R. When β → ∞, q(C|x) attains one of
three values as follows

lim
β→∞

q(C|x) =

⎧⎨
⎩

1 BF (vx‖w) < R
0 BF (vx‖w) > R
q(C) BF (vx‖w) = R

(7)

Thus if vx is inside (outside) the ball then q(C|x) = 1
(q(C|x) = 0). If vx lies on the ball boundary then
q(C|x) = q(C), the a-priori probability of being assigned
to the ball. In other words, for a given w, the best assign-
ment for x is to minimize the loss function

L = min{BF (vx‖w) , R}.

As discussed above, most previous work on one-class prob-
lems (Schölkopf et al., 1995; Tax & Duin, 1999; Schölkopf
et al., 2001; Crammer & Singer, 2003) used a convex and
unbounded loss functions such as max{0, BF (vx‖w) −
R}. This is (up to a constant R) the opposite of L. Inside
the ball, L grows linearly, while the other loss function is
constant. On the other hand, outside the ball L is constant
while the other loss function grows linearly. An illustration
of these two loss functions is given in Fig. 1.

To demonstrate the effect of this difference between the two
loss functions, we created a simple synthetic example in
which 300 points were normally distributed in two Gaus-
sians centered at [0.5, 0.9] and [0.9, 0.5] and 700 points
were uniformly distributed over the 2-d unit square. Ap-
plying one-class SVM to this problem tends to find clusters
that are centered somewhere between the two Gaussians,
because its cost function penalizes for centers that are dis-
tant from the center of mass. This result is demonstrated in
Fig. 2, where dot-dashed circles correspond to the results of
a one-class SVM, each covering a different fraction of the
data. One-class IB circles successfully identify one of the
Gaussians for a large range of cluster sizes. To simplify the
demonstration we consider the points in input space rather
than in feature space and did not use any kernel with the
one-class IB. The same problem is expected to occur in
feature space if kernels are used.



Figure 2. Comparison of one-class SVM and IB on a synthetic ex-
ample. 700 data points are uniformly distributed in the unit square
and 300 points are normally distributed in two spheric Gaussians
with σ = 1/20. Each circle is centered at the mean of the clus-
ter, and it size follows 1 standard deviation in both x and y axes.
Dot-dashed circles: SVC (Polynomial kernel of degree 2). Solid
circles: IB. For one-class IB, runs were repeated 10 times and the
result which minimizes the target function was taken.

Until this point, we discussed the case where the radius R
was assumed to be known to the algorithm. The effect of
R on the solution is crucial: smaller R lead to smaller sub-
sets assigned to the ball. The natural question arises: can
this R be set in advance to a “right” value? As in other
model-complexity meta parameters (the number of clusters
in clustering problems or number of components in PCA)
this question is not well defined in an unsupervised learning
setting. It is often the case that the data can be described
at several resolutions: each revealing different aspects of
the data. Which of them is the relevant one depends on
the task at hand and is not dictated by the problem. A cor-
rect characterization of the data therefore requires to obtain
solutions for a spectrum of R values.

The parameter R can in principle be replaced by other
global parameters such as the “weight” of the ball. How-
ever, we found that such formulations yielded more cum-
bersome solutions whose properties were more difficult to
analyse. In some cases however, it is possible to formally
relate R to other global parameters. For example, in the
case of an L2 norm, the problem discussed here can be
shown to be equivalent to a mixture model of a single Gaus-
sian and a uniform background distribution. In this case R
can be explicitly related to the prior weight of the mixture’s
components. This derivation will be published elsewhere.

4. Bregman Divergences

In the original formulation of the IB (Tishby et al., 1999)
the input samples represent multinomial distributions over
a finite set. As a natural consequence, the definition of
the mutual information over the joint distribution gives rise
to the Kullback-Leibler (KL) divergence that emerges as a

measure of discrepancy between any single sample vx and
the centroid of a cluster w. In many interesting problems
however, representing the data as distributions is not nat-
ural. For example, in various experimental measurements
the data are the sum of a signal and some near-Gaussian
noise, and are well represented as vectors in a Euclidean
space. In such cases the Euclidean distance is a more nat-
ural divergence. In this paper we follow Crammer and
Slonim (2003) which extended the IB to a richer set of pos-
sible divergences, called Bregman divergences. A Breg-
man divergence is defined via a strictly convex function
F : Λ → R defined on a closed, convex set Λ ⊆ R

n.
F has to satisfy a set of constraints, whose description we
omit and refer the reader to Censor and Zenios (1997). All
the functions we discuss in this paper obey these constraints
and are hence Bregman functions. Assume that F is contin-
uously differentiable at all points of Λint, the interior of Λ,
which we assume is nonempty. The Bregman divergence
associated with F is defined for v ∈ Λ and w ∈ Λint to be

BF (v‖w) def= F (v)− [F (w) + ∇F (w) · (v − w)] . (8)

Thus, BF measures the difference between F and its first-
order Taylor expansion about w, evaluated at v. The di-
vergences we employ are defined via a single scalar con-
vex function f such that F (v) =

∑n
l=1 f(vl), where

vl is the l-th coordinate of v. As a consequence, the
Bregman divergences we use are sums of Bregman Diver-
gences per coordinate of the input vectors, BF (v‖w) =∑n

l=1 BF (vl‖wl) .

Although Bregman divergences are quite general they share
many interesting properties. A property relevant to this pa-
per is stated in the following Lemma.

Lemma 1 (Convexity of a Bregmanian Ball) The set of
points {v : BF (v‖w) ≤ R} is convex .

The proof of the lemma is straightforward and uses the fact
that Bregman divergences are convex in their first argu-
ment. Thus, although we use a rich family of divergences
we are still guaranteed to have only convex bodies. A
straightforward consequence of the lemma is that if some
point v belongs to the ball around w then all the points
constituting the line connecting v and w also belong to it.

Bregman distances provide a generalization over several
commonly used distance measures. In this paper we
demonstrate our algorithms and their analysis with two
commonly used divergences. The first is the square dis-
tance between v and w, BF (v‖w) = 1

2‖v − w‖2, ob-
tained by setting f(x) = (1/2)x2. In this case Λ ⊂ R

n.
The second divergence can be obtained when Λ is the
n-dimensional simplex. Setting f(v) = v log(v) yields

the KL divergence BF (v‖w) =
∑n

l=1 vl log
(

vl

wl

)
. Two

other Bregman divergences are Itakura-Saito (Censor &



Input: Set of Points {vx}m
x=1 ; Divergence BF ;

Radius R > 0
Initialize:

• Pick a point vx̃ at random
• Set w = vx̃, q̃(C|x) = 1, q(C|x) = 0 for x �= x̃

Loop: For t = 1, 2, . . . , T
• Draw a random permutation π of 1 . . . m
• For i = 1, 2, . . . m

1. Set x = π(i)
2. If q(C|x) = 1 remove vx from the cluster:

w ← q(C)w−p(x)vx

q(C)−p(x)

q(C) ← q(C) − p(x)
q(C|x) ← 0

3. Set πvx
= p(x)

q(C)+p(x) , πc = q(C)
q(C)+p(x)

4. Set w̃ = πvx
vx + πcw

5. If πcBF (w‖w̃)+πvx̃
BF (vx̃‖w̃) < πvx̃

R then
merge the sample with the current cluster: w ←
w̃ ; q(C) ← q(C) + p(x) ; q(C|x) ← 1

Return: Centroid w ; Assignment’s indicators q(C|x)

Figure 3. The sequential algorithm for one-class IB

Zenios, 1997) (f(x) = − log(x) , Λ ⊂ R
n
+) designed for

speech analysis and Unnormalized Relative Entropy (Cen-
sor & Zenios, 1997) (f(x) = x log(x)−x , Λ ⊂ R

n
+) often

used with data represented by counts (positive integers).
The Itakura-Saito is not convex in its second argument.

5. Algorithms

In this section we describe an algorithm that finds a local
optimum for the problem defined in Eq. (3). Its output is
the center of the ball w and the probabilistic assignments
q(C|x) of points to the ball.

Several algorithms were developed for the original IB prob-
lem (see Slonim (2002) for review and comparison). Some
of these algorithms can be adapted to the problem discussed
in this paper, but some may not be easily extended to gen-
eral Bregman divergences. For example, the iterative al-
gorithm by Tishby et al. (1999) is based on iterations be-
tween the three self-consistent equations of the bottleneck
solution Eqs. (4,5,6). Unfortunately, for general Bregman
divergences, it is no longer guaranteed that BF is convex
with respect to its second argument, therefore the optimiza-
tion over Eq. (5) may not find its minimum.

Among the algorithms developed for IB, we chose to adapt
the sequential algorithm (Slonim, 2002) because it is fast,
easy to implement, and usually finds good local minima. It
was designed for the hard clustering case, in which the as-
signment of samples to clusters is deterministic rather than
stochastic. While hard solutions may be inferior to soft so-

lutions, they are often more easily interpretable, since the
set of samples that belong to a cluster is clearly defined.
An additional advantage of hard assignments is that the
first term of the objective function can be further simpli-
fied, I(C;X) = h(C) − h(C|X) = h(C), since for hard
assignment q(C|x)∈{0, 1} and h(C|x) = 0.

The sequential algorithm operates in iterative steps. At
each step, the algorithm picks a sample vx and tests if
modifying its status and updating the centroid accordingly
would decrease the value of the objective function. That
is, for a sample that is not assigned to the ball, the algo-
rithm checks if assigning it to the ball decreases the objec-
tive function. Similarly, the algorithm checks if excluding a
sample that is already assigned to the ball decreases the ob-
jective function. We now describe in details the first case,
the derivation of the second case is similar.

Assume we have a set of parameters q(C|x) =∑
x p(x)q(C|x) ,w =

∑
x

p(x)q(C|x)vx∑
x

p(x)q(C|x)
and let us focus

on some specific x̃ for which q(C|x̃) = 0. Let q̃(C|x)
be the probability of assignment after making the change,
and check how the objective function F changes by set-
ting q̃(C|x̃) = 1. We thus set q̃(C|x) = q(C|x) for all
x �= x̃ and q̃(C|x̃) = 1 �= 0 = q(C|x̃). Let us denote by
q̃(C|x), q̃(C), w̃ the set of parameters after inserting the
sample x̃ into the set of interesting samples. It is straight-
forward to verify that q̃(C) = q(C) + p̃(x), and

w̃ =
q(C)w + p̃(x)vx̃

q̃(C)
=

q(C)w + p̃(x)vx̃

q(C) + p̃(x)
. (9)

Let us now compute the difference in the objective func-
tion for both assignments of parameters. From the equality
I(C;X) = h(C) above we obtain that the difference be-
tween the two compression term is a difference between
two values of the entropy functional, Δh = h(C̃) − h(C).
For the simplicity of presentation we omit this term, and
discuss only the case for which β−1 = 0. It is straightfor-
ward to compute these terms for finite β as well :

F{q̃(C|x), w̃} − F{q(C|x),w} (10)

=
∑

x

p(x)q(C|x) [BF (vx‖w̃) − BF (vx‖w)]

+p(x̃) (BF (vx̃‖w̃) − R) .

where the equality stems from 0 = q(C|x) �= q̃(C|x) =
1. We now use the definition of Bregman divergences
(Eq. (8)) together with Eq. (9) and have the first term,∑

x

p(x)q(C|x) [BF (vx‖w̃) − BF (vx‖w)] (11)

= q(C)BF (w‖w̃) .

Finally, plugging Eq. (11) into Eq. (10) we obtain
F{q̃(C|x), w̃} − F{q(C|x),w} = q(C)BF (w‖w̃) +



p(x̃) (BF (vx̃‖w̃) − R). By defining the following
Bernoulli distributions πvx̃

= p(x̃)
q(C)+p(x̃) and πc =

q(C)
q(C)+p(x̃) , we have that the sample vx̃ is inserted to the
cluster of interesting points if,

πcBF (w‖w̃) + πvx̃
BF (vx̃‖w̃) < πvx̃

R . (12)

Plugging Eq. (9) into the left hand side of Eq. (12),

πcBF (w‖πcw+πvx̃
vx̃)+πvx̃

BF (vx̃‖πcw+πvx̃
vx̃) (13)

This term equals to the weighted average of two distor-
tion terms, between w and vx̃ to their common average,
where the two distortions are weighted in according to πc

and πvx̃
. We thus call Eq. (13) the Average Bregman Di-

vergence (ABD) 1. Finally, using again the special form of
Bregman divergences we can write Eq. (13) as,

πvx̃
F (vx̃)+πcF (w)−F (πvx̃

F (vx̃) + πcF (w)) . (14)

Eq. (14) enables us to compute the Average Bregman Di-
vergence in a very simple manner. To conclude this part of
the algorithm, given a new sample which is not part of the
cluster, we evaluate Eq. (14). If it is smaller than πvx̃

R,
we merge it into the cluster, otherwise we ignore it. The
case where we need to decide if to exclude a point out of
the cluster is similar. In fact, we can always remove the
given point vx out of the cluster and then apply the above
procedure to determine if we like to include it back or not.
We also like to note in passing that in the case of the Eu-
clidean distance the condition of Eq. (12) can be written in
a simpler form, 1

2‖vx̃ − w‖ < R q(C)+p(x̃)
q(C) . Thus, in the

case of the Euclidean distance we check whether the sam-
ple vx̃ lies in a ball around the current center w. Where
the radius of the ball depends also on the weight (q(C))
of the current cluster and the weight of the specific sample
(p(x̃)). Finally, for the general case β < ∞, the following
condition determines if the current example vx̃ should be
merged into the cluster or not, πcBF (w‖πcw + πvx̃

vx̃)+
πvx̃

BF (vx̃‖πcw + πvx̃
vx̃) + h(C̃)−h(C)

β(q(C)+p(x̃)) < πvx̃
R. An

outline of the algorithm is given in Fig. 3.

6. Experiments

We evaluate the performance of our approach on two real-
life and high dimensional problems: identifying predictive
genes, and document retrieval.

6.1. Gene expression in B-Cell Lymphoma

We applied our approach to the problem of finding a small
sets of interesting genes in micro arrays gene expression

1When the Bregman divergence is the Kullback-Leibler,
Eq. (13) becomes equals to the symmetric KL or Jensen-Shannon
divergence JSπ(v,w) = πKL(v|πv + (1 − π)w) + (1 −
π)KL(w|πv + (1 − π)w).
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Figure 4. Performance of one class IB and SVM on predicting
survival of B-cell lymphoma patients based on gene expression
profile from a single coherent class. y-axis is log10 of the p-value
obtained from using all genes in the cluster for predicting survival
rate using linear regression. (a) one class IB with β−1 = 0. (b)
one class SVM polynomial kernel of degree 2. Similar results
obtained also with RBF kernel at a large range of Gamma val-
ues. Error bars denote standard deviation across all clusters of the
same size. Since the size of the clusters in one-class IB is an out-
come of the algorithm, rather than determined externally, not all
cluster sizes provide a good solution.

experiments. In genome-wide gene expression experi-
ments, a large set of genes is pre-defined and their level
of expression in various tissues is measured. The goal is
often to identify subsets of genes that can be related to a
biological process or function. In some cases labeled sets
of tissues are available, and the relevant genes can be found
using supervised techniques. In other cases, labeling is un-
known. An important example is the case of identifying
subtypes of disease, where gene expression are used to un-
cover different biological mechanisms that lead to similar
clinical symptoms. Within this framework we have cho-
sen to use the data of (Alizadeh & et al., 2000), that con-
tains gene expression levels in tissues of B-cells lymphoma
patients. It was previously used in numerous (mostly su-
pervised) machine learning studies. Importantly, there also
exists data on the survival of 39 patients, thus predicting
this survival rate provides an external independent mea-
sure of performance for any automated approach. Using
their expertise, Alizadeh and colleagues were able to iden-
tify genes that are believed to separate B cell lymphoma
into two subtypes, which also differ considerably in the ex-
pected survival rate. In the context of the current paper, Our
goal with this data is to identify a single cluster that con-
tains genes that are good predictors of survival in a fully
automated unsupervised manner.

The data consists of the expression profiles of
4, 026 genes over 46 tissues. To reduce the di-
mensionality of the data to a level that can be han-
dled by the SVM package we used (OSU SVM,
www.eleceng.ohio-state.edu/∼maj/osu svm), we first
chose the 500 genes with the highest single-gene
information I(x) = DKL[p(y|x)||p(y)] (where
p(x, y) = 1/[1 + exp(data(x, y))] is the probability



assigned with a gene x and a tissue y). We then applied
both one-class-IB and one-class-SVM to the genes, each
gene being a vector in R

46. For one-class-SVM, we
enumerated over ν (the fraction of outliers) thus obtaining
an optimal cluster for each cluster size. For one-class IB,
we enumerated over the cost R, yielding optimal clusters
of different sizes. For each cost, optimization was repeated
100 times with different random seeds, and the result with
best target function value was used. All the genes of the
chosen clusters, were then used in a linear regression to
predict the survival rate. The log of the p values of this
prediction are plot in Fig. 4 as a function of the cluster
size. Since for one-class-IB several cost values may lead
to the same cluster size, we plot the mean and standard
deviation of log(p value) over all costs that yield the same
cluster size.

The performance of one-class-IB in predicting survival
rates largely outperforms that of one-class-SVM for almost
all cluster sizes, and is in particular better than one-class-
SVM for smaller clusters. We believe that the reason is
that small SVM clusters are strongly biased to the center
of the whole data, thus are not sensitive enough to local
structures.

6.2. Document Retrieval

We further examined the usefulness of our approach
on another real life complex data, by evaluating
its performance in a documents retrieval problem.
We used the Reuters-21578 corpus (available at
www.daviddlewis.com/resources/testcollections), which
contains 10, 789 documents, each associated with cate-
gories taken from a set of about 90 topics. We used the
ModApte pre-processing of the corpus and the feature
selection schema described in Slonim (2002), and picked a
dictionary of size 2, 000 .

In our experiments we used a subset of the data that con-
tained the five most frequent categories: earn (3964 docu-
ments), acq (2369), money-fx (717), grain (582) and crude
(578). Finally, we represented each document as a multino-
mial distribution over term counts. For each of the above
five topics we repeated the following experimental setup.
The data was split into a training set that contained half of
the documents from the chosen topic, and a test set that
contained all other documents. For example, in the case of
the earn category, the training contained 1, 982 documents
(all from the earn category), and the remaining 8, 807 doc-
uments constituted the test set (1, 982 document from the
earn category and 6, 825 documents from other categories).

We implemented two algorithms. First, one-class-IB,
as described in Sec. 5 (OC-IB for short) and second,
the one-class algorithm described in (Crammer & Singer,
2003), called here OC-Convex. Both algorithms used the
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Figure 5. Plot of Precision vs. Recall for the five topics of
Reuters-21578. Two algorithms are compared: one-class trained
with convex loss function (OC-Convex) and the one-class IB (OC-
IB). The number near the name of the category in the title indi-
cates the total number of examples associated with this category.
Right-bottom-figure: plot of the maximal distance of the resulting
centroid and the center of mass of the training set. The maximum
is taken for each of the algorithms over the possible values of tun-
ing parameters.

Kullback-Leibler divergence. OC-Convex uses a single pa-
rameter ν which controls the number of outliers, that was
set here to range between 0.04% and 99.999%. OC-IB is
tuned by setting the constant-cost parameter R. To cover
the range of parameters values we first sampled pairs of
samples from the training set, and used it to estimated the
maximal and minimal divergence. We generated a list of
possible costs approximately between this two estimates.
For every possible cost value we trained the sequential al-
gorithm 10 times and picked the most populated ball.

We evaluated both learning algorithms as following. For
both algorithms we set the value of the controlling param-
eter and ran the algorithm which generated a ball parame-
terized by a center and a radius. For each of the documents
in the test set, we tested if it falls inside or outside this ball,
and computed the two following measures (using the test
set only). The recall which equals to the fraction of docu-
ments labeled earn that are contained in the ball from the
total number of documents labeled earn. The second mea-
sure is the precision which equals to the fraction of docu-



ments labeled earn that are contained in the ball from the
total number of documents which are contained in the ball.
In both algorithms the control parameter enables the user to
trade between recall and precision. Recall-Precision curves
are given in Fig. 5.

The result over the five topics share a common behavior.
For large values of recall the one-class combined with the
convex loss achieves slightly better precision than OC-IB.
As we decrease the recall value, the gap between the value
of the precision decreases until the recall attains some value
(around 20%), in which the performance of the one-class
IB is better than the one-class with convex loss. For very
low values of recall the one-class IB clearly outperforms
the one-class with convex loss. In fact, in three differ-
ent categories, the ball obtained by the one-class algorithm
with the convex loss did not contain even a single docu-
ment from the test set. This result is in accordance with
our intuition stated above: For very low values of recall
the one-class with convex loss convergence to the center of
mass of the input examples, regardless of any other prop-
erty of the input data. On the other hand, the one-class
IB locates areas of the input data which is dense related
to its neighborhood. This intuition is further supported by
the bottom-right panel in Fig. 5. For each of the categories
and algorithms we computed the divergence of the centroid
from the center of mass of examples. The height of the bar
designates the maximal divergence over the possible set of
control parameters for each of the algorithms.

7. Summary and Conclusions

We addressed the problem of finding a small coherent sub-
sets of data points in a high dimensional complex data. We
demonstrated why current approaches to the problem are
less sensitive to local structures of the data when search-
ing for small subsets, and described a localized cost func-
tion that improves this sensitivity. Building on the elegant
Information-Bottleneck approach we cast the learning task
as an optimization problem which trades-off between the
two opposite demands of simplicity and accuracy. We de-
rived a simple algorithm that is guaranteed to converge to
a local minima that also works well in practice. In two
real-world domains, when searching for small clusters, our
approach provides an improvement over current one-class
methods which are based on the principle of large mar-
gin. Our approach also provides a well-defined probability
measure which indicates for each of the input examples the
probability that it is belonging to the single cluster or not.

Similarly to previous approaches (Crammer & Singer,
2003) our framework can be combined with a general no-
tion of divergence measures - the Bregman divergences.
Furthermore, Since the Euclidean norm is a Bregman di-
vergence, we can also combine Mercer kernels (Schölkopf

et al., 1995) with our method.

The current paper focused on training a single one-class
model for the input data. However, real world complex
data, often contains several distinct regions that can be
learned separately. It is therefore an interesting question
how current algorithms for combining several one-class
classifiers can be combined with our approach.

Several extensions of the current work are of interest. First,
it will be interesting to explore alternative macroscopic pa-
rameters that control the problems solutions. Specifically,
the constant cost R may be replaced with another parameter
which will control the size of the cluster q(C) similar to the
parameter ν in previous formulations. Another extension is
to use our approach to solve problems of set covering in the
context of information theory and rate distortion.
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