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Unpublished Exercises

Exercises

These exercises will likely be included in a
later edition of the text, Statistical Mechan-
ics: Entropy, Order Parameters, and Complez-
ity, by James P. Sethna (Oxford University Press,
http://www.physics.cornell.edu/sethna/StatMech)).

(N.1) The Greenhouse effect and cooling coffee.
)
Vacuum is an excellent insulator. This is why
the surface of the Sun can remain hot (Ts =
6000° K) even though it faces directly onto outer
space at the microwave background radiation
temperature Thyyp = 2.725K, (Exercise [[.I5).
The main Wa in which heat energy can pass
through vacuum is by thermal electromagnetic
radiation (photons). We will see in Exercise [T71]
that a black body radiates an energy o7 per
square meter per second, where ¢ = 5.67 X
1078 J/(sm* K*).
A vacuum flask or Thermos bottle keeps cof-
fee warm by containing the coffee in a Dewar—a
double-walled glass bottle with vacuum between
the two walls.
(a) Coffee at an initial temperature T (0) =
100° C of volume V = 150 mL is stored in a vac-
uum flask with surface area A = 0.1 m? in a room
of temperature Tc = 20° C. Write down symbol-
ically the differential equation determining how
the difference between the coffee temperature and
the room temperature A(t) = Tu(t) — Tc de-
creases with time, assuming the vacuum surfaces
of the dewar are black and remain at the cur-
rent temperatures of the coffee and room. Solve
this equation symbolically in the approximation

that A is small compared to Tc (by approzimat-
ing Tgy = (Te+A) = TA +4ATE ). What is the
exponential decay time (the time it take for the
coffee to cool by a factor of e), both symbolically
and numerically in seconds? (Useful conversion:
0°C =273.15° K.)

Real Dewars are not painted black! They are
coated with shiny metals in order to minimize
this radiative heat loss. (White or shiny materi-
als not only absorb less radiation, but they also
emit less radiation, see exercise [[.7})

The outward solar energy flux at the Earth’s or-
bit is &g = 1370 W/m2, and the Earth’s radius
is approximately 6400km, rg = 6.4 x 10°m.
The Earth reflects about 30% of the radiation
from the Sun directly back into space (its albedo
a =~ 0.3). The remainder of the energy is even-
tually turned into heat, and radiated into space
again. Like the Sun and the Universe, the Earth
is fairly well described as a black-body radia-
tion source in the infrared. We will see in Ex-
ercise [7.7] that a black body radiates an en-
ergy oT? per square meter per second, where
o =5.67x107%J/(sm*K*).

(b) What temperature Ta does the Earth radi-
ate at, in order to balance the energy flow from
the Sun after direct reflection is accounted for?
Is that hotter or colder than you would estimate
from the temperatures you’ve experienced on the
Earth’s surface? (Warning: The energy flow in is
proportional to the Earth’s cross-sectional area,
while the energy flow out is proportional to its
surface area.)

IThe sun and stars can also radiate energy by emitting neutrinos. This is particularly

important during a supernova.
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The reason the Earth is warmer than would be
expected from a simple radiative energy balance
is the greenhouse eﬁectﬂ The Earth’s atmo-
sphere is opaque in most of the infrared region
in which the Earth’s surface radiates heat. (This
frequency range coincides with the vibration fre-
quencies of molecules in the Earth’s upper atmo-
sphere. Light is absorbed to create vibrations,
collisions can exchange vibrational and transla-
tional (heat) energy, and the vibrations can later
again emit light.) Thus it is the Earth’s atmo-
sphere which radiates at the temperature T4 you
calculated in part (b); the upper atmosphere has
a temperature intermediate between that of the
Earth’s surface and interstellar space.

The vibrations of oxygen and nitrogen, the main
components of the atmosphere, are too symmet-
ric to absorb energy (the transitions have no
dipole moment), so the main greenhouse gases
are water, carbon dioxide, methane, nitrous ox-
ide, and chlorofluorocarbons (CFCs). The last
four have significantly increased due to human
activities; CO2 by ~ 30% (due to burning of
fossil fuels and clearing of vegetation), CH4 by
~ 150% (due to cattle, sheep, rice farming, es-
cape of natural gas, and decomposing garbage),
N2O by ~ 15% (from burning vegetation, in-
dustrial emission, and nitrogen fertilizers), and
CFCs from an initial value near zero (from for-
mer aerosol sprays, now banned to spare the
ozone layer). Were it not for the Greenhouse
effect, we’d all freeze (like Mars)—but we could
overdo it, and become like Venus (whose deep
and COaz-rich atmosphere leads to a surface tem-
perature hot enough to melt lead).

The Dyson sphere. (Astrophysics) @

Life on Earth can be viewed as a heat engine,
taking energy a hot bath (the Sun at temper-
ature Ts = 6000° K) and depositing it into a
cold bath (interstellar space, at a microwave
background temperature Thvp = 2.725K, Ex-
ercise [[.I5)). The outward solar energy flux at
the Earth’s orbit is ®s = 1370 W/m?, and the
Earth’s radius is approximately 6400 km, rg =
6.4 x 10° m.

(a) If life on Earth were perfectly efficient (a
Carnot cycle with a hot bath at Ts and a cold

bath at Ty ), how much useful work (in watts)
could be extracted from this energy flow? Com-
pare that to the estimated world marketed energy
consumption of 4.5 x 10?° J/year. (Useful con-
stant: There are about m x 107 s in a year.)
Your answer to part (a) suggests that we have
some ways to go before we run out of solar en-
ergy. But let’s think big.

(b) If we built a sphere enclosing the Sun at a
radius equal to Earth’s orbit (about 150 million
kilometers, Rps ~ 1.5 x 10! m), by what factor
would the useful work available to our civilization
increase?

This huge construction project is called a Dyson
sphere, after the physicist who suggested [4] that
we look for advanced civilizations by watching
for large sources of infrared radiation.

Earth, however, does not radiate at the temper-
ature of interstellar space. It radiates roughly as
a black body at near Tr = 300° K = 23° C (see,
however, Exercise [N.T]).

(c) How much less effective are we at extracting
work from the solar fluzx, if our heat must be ra-
diated effectively to a 300° K cold bath instead
of one at Ty, assuming in both cases we run
Carnot engines?

There is an alternative point of view, though,
which tracks entropy rather than energy. Living
beings maintain and multiply their low-entropy
states by dumping the entropy generated into
the energy stream leading from the Sun to inter-
stellar space. New memory storage also intrinsi-
cally involves entropy generation (Exercise [5.2));
as we move into the information age, we may
eventually care more about dumping entropy
than about generating work. In analogy to the
‘work effectiveness’ of part (c) (ratio of actual
work to the Carnot upper bound on the work,
given the hot and cold baths), we can estimate
an entropy-dumping effectiveness (the ratio of
the actual entropy added to the energy stream,
compared to the entropy that could be conceiv-
ably added given the same hot and cold baths).
(d) How much entropy impinges on the Earth
(per second per square meter) from the Sun?
How much leaves the FEarth when the solar en-
ergy flux is radiated away at temperature Ty =
300° K ? By what factor f is the entropy dumped

2The glass in greenhouses also is transparent in the visible and opaque in the in-
frared. This, it turns out, isn’t why it gets warm inside; the main insulating effect
of the glass is to forbid the warm air from escaping. The greenhouse effect is in that

sense poorly named.
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to outer space less than the entropy we could
dump into a heat bath at Typ? From an
entropy-dumping standpoint, which is more im-
portant, the hot-bath temperature T's or the cold-
bath temperature (Tr or Tup, respectively)?
For generating useful work, the Sun is the key
and the night sky is hardly significant. For
dumping the entropy generated by civilization,
though, the night sky is the giver of life and the
realm of opportunity. These two perspectives are
not really at odds. For some purposes, a given
amount of work energy is much more useful at
low temperatures. Dyson later speculated about
how life could make efficient use of this by run-
ning at much colder tempeartures (Exercise [5.1).
A hyper-advanced information-based civilization
would hence want not to radiate in the infrared,
but in the microwave range.

To do this, it needs to increase the area of the
Dyson sphere; a bigger sphere can re-radiate the
Solar energy flow as black-body radiation at a
lower temperature. Interstellar space is a good
insulator, and one can only shove so much heat
energy through it to get to the Universal cold
bath. A body at temperature T radiates the
largest possible energy if it is completely black.
We will see in Exercise [[.7] that a black body ra-
diates an energy oT* per square meter per sec-
ond, where ¢ = 5.67 x 1075 J/(sm® K*) is the
Stefan—Boltzmann constant.

(e) How large a radius Rp must the Dyson
sphere have to achieve 50% entropy-dumping ef-
fectiveness? How does this radius compare to the
distance to Pluto (Rps ~ 6 X 10'2 m)? If we
measure entropy in bits (using ks = (1/log?2)
instead of kg = 1.3807 x 107**J/K), how
many bits per second of entropy can our hyper-
advanced civilization dispose of ? (You may ig-
nore the relatively small entropy impinging from
the Sun onto the Dyson sphere, and ignore both
the energy and the entropy from outer space.)
The sun wouldn’t be bright enough to read by
at that distance, but if we had a well-insulated
sphere we could keep it warm inside—only the
outside need be cold. Alternatively, we could
just build the sphere for our computers, and
live closer in to the Sun; our re-radiated energy
would be almost as useful as the original solar
energy.

Biggest of bunch: Gumbel. (Mathematics,
Statistics, Engineering) @
Much of statistical mechanics focuses on the
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average behavior in an ensemble, or the mean
square fluctuations about that average. In many
cases, however, we are far more interested in the
extremes of a distribution.

Engineers planning dike systems are interested
in the highest flood level likely in the next hun-
dred years. Let the high water mark in year
j be Hj;. Ignoring long-term weather changes
(like global warming) and year-to-year correla-
tions, let us assume that each H; is an inde-
pendent and identically distributed (IID) ran-
dom variable with probability density pi(H;).
The cumulative distribution function (cdf) is the
probability that a random variable is less than a
given threshold. Let the cdf for a single year be
Fi(H)=P(H' < H) = ["pi(H')dH".

(a) Write the probability Fn(H) that the high-
est flood level (largest of the high-water marks)
in the next N = 1000 years will be less than H,
in terms of the probability F1(H) that the high-
water mark in a single year is less than H.

The distribution of the largest or smallest of N
random numbers is described by eztreme value
statistics [10]. Extreme value statistics is a
valuable tool in engineering (reliability, disaster
preparation), in the insurance business, and re-
cently in bioinformatics (where it is used to de-
termine whether the best alignments of an un-
known gene to known genes in other organisms
are significantly better than that one would gen-
erate randomly).

(b) Suppose that pi(H) = exp(—H/Ho)/Ho de-
cays as a simple exponential (H > 0). Using the
formula

(1—A)=~exp(—A4) as N — oo, (N.1)

show that the cumulative distribution function
Fn for the highest flood after N years is

Fu(H) ~ exp {— exp (%)} . (N2

What are p and 3 for this case?

The constants § and p just shift the scale and
zero of the ruler used to measure the variable of
interest. Thus, using a suitable ruler, the largest
of many events is given by a Gumbel distribution

F(x) = exp(— exp(—z))

p(x) = OF/(%C = exp(—(x + exp(_x))). (N3)

How much does the probability distribution for
the largest of N IID random variables depend on
the probability density of the individual random
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variables? Surprisingly little! It turns out that
the largest of N Gaussian random variables also
has the same Gumbel form that we found for
exponentials. Indeed, any probability distribu-
tion that has unbounded possible values for the
variable, but that decays faster than any power
law, will have extreme value statistics governed
by the Gumbel distribution [5] section 8.3]. In
particular, suppose

Fi(H)~1— Aexp(—BH") (N.4)
as H — oo for some positive constants A, B,
and §. It is in the region near H*[N], defined
by Fi(H*[N]) =1 —1/N, that Fy varies in an
interesting range (because of eqn [N.1J).

(¢c) Show that the extreme value statistics
Fn(H) for this distribution is of the Gumbel
form (eqn [N2) with n = H*[N] and 8 =
1/(B§ H*[N]°~1). (Hint: Taylor expand Fi(H)
at H™ to first order.)

The Gumbel distribution is wuniversal. It de-
scribes the extreme values for any unbounded
distribution whose tails decay faster than a
power laWE (This is quite analogous to the cen-
tral limit theorem, which shows that the normal
or Gaussian distribution is the universal form for
sums of large numbers of IID random variables,
so long as the individual random variables have
non-infinite variance.)

The Gaussian or standard normal distribution
p1(H) = (1/v/27) exp(—H?/2), for example, has
a cumulative distribution Fi(H) = (1/2)(1 +
erf(H/+/2)) which at large H has asymptotic
form Fy(H) ~ 1 — (1/v/2rH) exp(—H?/2). This
is of the general form of eqn[No4l with B = % and
0 = 2, except that A is a slowly varying function
of H. This slow variation does not change the
asymptotics. Hints for the numerics are available
in the computer exercises section of the text Web
site [§].

(d) Generate M = 10000 lists of N = 1000
random numbers distributed with this Gaussian
probability distribution. Plot a normalized his-
togram of the largest entries in each list. Plot
also the predicted form pn(H) = dFn/dH from
part (¢). (Hint: H*(N) ~ 3.09023 for N = 1000;

check this if it is convenient.)

Other types of distributions can have extreme
value statistics in different universality classes
(see Exercise [NLg). Distributions with power-
law tails (like the distributions of earthquakes
and avalanches described in Chapter [[2)) have
extreme value statistics described by Fréchet dis-
tributions. Distributions that have a strict upper
or lower bound] have extreme value distributions
that are described by Weibull statistics (see Ex-
ercise [N4)).

First to fail: Weibull[]
Statistics, Engineering) @
Suppose you have a brand-new supercomputer
with N = 1000 processors. Your parallelized
code, which uses all the processors, cannot be
restarted in mid-stream. How long a time ¢ can
you expect to run your code before the first pro-
cessor fails?

This is example of extreme value statistics (see
also exercises and [\L8)), where here we are
looking for the smallest value of N random vari-
ables that are all bounded below by zero. For
large N the probability distribution p(¢) and
survival probability S(t) = fot p(t')dt’ are often
given by the Weibull distribution

S(t) =e /7,

o ds o Yy t . —(t/a)? (N5)
p(t) = dt ~ « <a) ¢ '

(Mathematics,

Let us begin by assuming that the processors
have a constant rate I' of failure, so the prob-
ability density of a single processor failing at
time t is p1(t) = Texp(—TI't) as ¢ — 0), and
the survival probability for a single processor
Si(t)=1-— fot p1(t')dt’ &~ 1 —Tt for short times.
(a) Using (1 — €) =~ exp(—e¢) for small ¢, show
that the the probability Sn(t) at time t that all
N processors are still running is of the Weibull
form (eqn[N.3). What are o and v?

Often the probability of failure per unit time
goes to zero or infinity at short times, rather
than to a constant. Suppose the probability of
failure for one of our processors

p1(t) ~ Bt* (N.6)

3The Gumbel distribution can also describe extreme values for a bounded distribu-
tion, if the probability density at the boundary goes to zero faster than a power

law [10, section 8.2].

4More specifically, bounded distributions that have power-law asymptotics have
Weibull statistics; see note [3] and Exercise part (d).
5Developed with the assistance of Paul (Wash) Wawrzynek



with & > —1. (So, k& < 0 might reflect a
breaking-in period, where survival for the first
few minutes increases the probability for later
survival, and £ > 0 would presume a dominant
failure mechanism that gets worse as the proces-
sors wear out.)

(b) Show the survival probability for N identi-
cal processors each with a power-law failure rate
(eqn[NL4) is of the Weibull form for large N, and
give o and vy as a function of B and k.

The parameter « in the Weibull distribution just
sets the scale or units for the variable ¢; only
the exponent v really changes the shape of the
distribution. Thus the form of the failure distri-
bution at large N only depends upon the power
law k for the failure of the individual compo-
nents at short times, not on the behavior of p1 (¢
at longer times. This is a type of universalityé
which here has a physical interpretation; at large
N the system will break down soon, so only early
times matter.

The Weibull distribution, we must mention, is
often used in contexts not involving extremal
statistics. Wind speeds, for example, are nat-
urally always positive, and are conveniently fit
by Weibull distributions.

Advanced discussion:  Weibull and fracture
toughness

Weibull developed his distribution when study-
ing the fracture of materials under external
stress. Instead of asking how long a time t a
system will function, Weibull asked how big a
load o the material can support before it will
snapﬂ Fracture in brittle materials often occurs
due to pre-existing microcracks, typically on the
surface of the material. Suppose we have an iso-
latedd microcrack of length L in a (brittle) con-

Exercises 5

crete pillar, lying perpendicular to the external
stress. It will start to grow when the stress on
the beam reaches a critical value roughlyﬁ given
by

oc(L) ~ K./VrL. (N.7)

Here K. is the critical stress intensity factor, a
material-dependent property which is high for
steel and low for brittle materials like glass.
(Cracks concentrate the externally applied stress
o at their tips into a square-root singularity;
longer cracks have more stress to concentrate,
leading to eqn [N.7)

The failure stress for the material as a whole is
given by the critical stress for the longest pre-
existing microcrack. Suppose there are N mi-
crocracks in a beam. The length L of each mi-
crocrack has a probability distribution p(L).

(c) What is the probability distribution p1(c) for
the critical stress o. for a single microcrack, in
terms of p(L)?

The distribution of microcrack lengths depends
on how the material has been processed. The
simplest choice, an exponential decay p(L) ~
(1/Lo) exp(—L/Lo), perversely does not yield a
Weibull distribution, since the probability of a
small critical stress does not vanish as a power
law Bo* (eqn [NG).

(d) Show that an exponential decay of microcrack
lengths leads to a probability distribution pi(c)
that decays faster than any power law at o = 0
(i.e., is zero to all orders in o). (Hint: You may
use the fact that e” grows faster than =™ for any
m as x — 00.)

Analyzing the distribution of failure stresses for
a beam with N microcracks with this exponen-
tially decaying length distribution yields a Gum-
bel distribution [10 section 8.2], not a Weibull

6The Weibull distribution forms a one-parameter family of universality classes; see
chapter

"Many properties of a steel beam are largely independent of which beam is chosen.
The elastic constants, the thermal conductivity, and the the specific heat depends
to some or large extent on the morphology and defects in the steel, but nonetheless
vary little from beam to beam—they are self-averaging properties, where the fluctu-
ations due to the disorder average out for large systems. The fracture toughness of
a given beam, however, will vary significantly from one steel beam to another. Self-
averaging properties are dominated by the typical disordered regions in a material;
fracture and failure are nucleated at the extreme point where the disorder makes the
material weakest.

8The interactions between microcracks are often not small, and are a popular research
topic.

9This formula assumes a homogeneous, isotropic medium as well as a crack orienta-
tion perpendicular to the external stress. In concrete, the microcracks will usually
associated with grain boundaries, second-phase particles, porosity. . .
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distribution.

Many surface treatments, on the other hand,
lead to power-law distributions of microcracks
and other flaws, p(L) ~ CL™" with n > 1. (For
example, fractal surfaces with power-law correla-
tions arise naturally in models of corrosion, and
on surfaces exposed by previous fractures.)

(e) Given this form for the length distribution of
microcracks, show that the distribution of frac-

ture thresholds p1(c) o< o®. What is k in terms

ofn?

According to your calculation in part (b), this
immediately implies a Weibull distribution of
fracture strengths as the number of microcracks
in the beam becomes large.

Random energy model [ (Disordered sys-
tems) B

The nightmare of every optimization algorithm
is a random landscape; if every new configura-
tion has an energy uncorrelated with the pre-
vious ones, no search method is better than
systematically examining every configuration.
Finding ground states of disordered systems like
spin glasses and random-field models, or equili-
brating them at non-zero temperatures, is chal-
lenging because the energy landscape has many
features that are quite random. The random en-
ergy model (REM) is a caricature of these disor-
dered systems, where the correlations are com-
pletely ignored. While optimization of a single
REM becomes hopeless, we shall see that the
study of the ensemble of REM problems is quite
fruitful and interesting.

The REM has M = 2V states for a system with
N ‘particles’ (like an Ising spin glass with N
spins), each state with a randomly chosen en-
ergy. It describes systems in limit when the
interactions are so strong and complicated that
flipping the state of a single particle completely
randomizes the energy. The states of the indi-
vidual particles then need not be distinguished;
we label the states of the entire system by j €
{1, ...,2Y}. The energies of these states FE;
are assumed independent, uncorrelated variables

with a Gaussian probability distribution

__L BN
P(E) me (N.8)
of standard deviation /N/2.
Microcanonical ensemble. Consider the states in
asmall range E < E; < E4+0E. Let the number
of such states in this range be Q(FE)JE.
(a) Calculate the average

(QNe))rEM (N.9)

over the ensemble of REM systems, in terms of
the energy per particle €. For energies near zero,
show that this average density of states grows ex-
ponentially as the system size N grows. In con-
trast, show that (Q(Ne))rem decreases exponen-
tially for E < —Nes and for E > Nes, where
the limiting energy per particle

€ = y/log 2. (N.10)

(Hint: The total number of states 2V either
grows faster or more slowly than the probabil-
ity density per state P(E) shrinks.)

What does an exponentially growing number of
states mean? Let the entropy per particle be
s(e) = S(Ne)/N. Then (setting kg = 1 for
notational convenience) Q(E) = exp(S(E)) =
exp(Ns(e)) grows exponentially whenever the
entropy per particle is positive.

What does an exponentially decaying number of
states for € < —e, mean? It means that, for
any particular REM, the likelihood of having any
states in a range near e vanishes rapidly as the
energy goes to zero.

How do we calculate the entropy per particle
s(€) of a typical REM? Can we just use the an-
neale average

(1/N) log(Q(E))rEM
(N.11)

computed by averaging over the entire ensemble

of REMs?

(b) Show that Sanneated(€) = log2 — €.

If the energy per particle is above —e. (and be-

low €.), the expected number of states Q(F)JE

grows exponentially with system size, so the

fractional fluctuations become unimportant as

sannealed(e) = ]\}H»noo

10This exercise draws heavily from [5] chapter 5].

1 Annealing a disordered system (like an alloy or a disordered metal with frozen-in
defects) is done by heating it to allow the defects and disordered regions to reach
equilibrium. By averaging Q(F) not only over levels within one REM but also over
all REMs, we are computing the result of equilbrating over the disorder—an annealed

average.



N — oo. The typical entropy will become the
annealed entropy. On the other hand, if the en-
ergy per particle is below —e,, the number of
states in the energy range (E,E + JE) rapidly
goes to zero, so the typical entropy s(€) goes to
minus infinity. (The annealed entropy is not mi-
nus infinity because it gets a contribution from
exponentially rare REMs that happen to have
an energy level far into the tail of the probabil-
ity distribution.) Hence

5(€) = Sanncalea(€) = log2 — € |e| < e
le| > €.
(N.12)
Notice why these arguments are subtle. Each
REM model in principle has a different entropy.
For large systems as N — oo, the entropies
of different REMs look more and more similar
to one anotherl3 (the entropy is self-averaging)
whether |¢] < € or |¢] > €. However, Q(E)
is not self-averaging for |¢| > €*, so the typical
entropy is not given by the ‘annealed’ logarithm
(QUE))rEM.
This sharp cutoff in the energy distribution leads
to a phase transition as a function of tempera-
ture.
(c) Plot s(e) versus €, and illustrate graphically
the relation 1/T = 0S/OE = 0s/0e as a tangent
line to the curve, using an energy in the range
—€x < € < 0. What happens as the temperature
continues to decrease (slope increases)? What is
the critical temperature T, ?
When the energy reaches e, it stops changing as
the temperature continues to decrease (because
there are no stated™ below ..).
(d) Solve for the free energy per particle f(T') =
€ — T's, both in the high-temperature phase and
the low temperature phase. (Your formula for
f should not depend upon e.) What is the en-
tropy in the low temperature phase? (Warning:
The microcanonical entropy is discontinuous at
€*. Youll need to reason out which limit to take
as T'— T. from above to get the right canonical
entropy.)
The REM has a glass transition at T.. Above T,
the entropy is extensive and the REM acts much
like an equilibrium system. Below 7T, one can

s(e) = —o0

(N.6)

FExercises 7

show [Bl eqn 5.25] that the REM thermal pop-
ulation condenses onto a finite number of states
(i.e., a number that does not grow as the size of
the system increases), which goes to zero linearly
as T'— 0.

The mathematical structure of the REM also
arises in other, quite different contexts, such as
combinatorial optimization (Exercise [N.6]) and
random error correcting codes [B, chapter 6].

A fair split? Number partitioning
(Computer science, Mathematics, Statistics) 3
A group of N kids want to split up into two
teams that are evenly matched. If the skill of
each player is measured by an integer, can the
kids be split into two groups such that the sum
of the skills in each group is the same?

This is the number partitioning problem (NPP),
a classic and surprisingly difficult problem in
computer science. To be specific, it is NP-
complete—a category of problems for which no
known algorithm can guarantee a resolution in
a reasonable time (bounded by a polynomial in
their size). If the skill a; of each kid j is in the
range 1 < ay < 2™, the ‘size’ of the NPP is de-
fined as NM. Even the best algorithms will, for
the hardest instances, take computer time that
grows faster than any polynomial in M N, get-
ting exponentially large as the system grows.

In this exercise, we shall explore connections be-
tween this numerical problem and the statisti-
cal mechanics of disordered systems. Number
partitioning has been termed ‘the easiest hard
problem’. It is genuinely hard numerically; un-
like some other NP—complete problems, there
are no good heuristics for solving NPP (i.e., that
work much better than a random search). On
the other hand, the random NPP problem (the
ensembles of all possible combinations of skills
aj) has many interesting features that can be
understood with relatively straightforward argu-
ments and analogies. Parts of the exercise are to
be done on the computer; hints can be found on
the computer exercises portion of the book Web
site [§].

We start with the brute-force numerical ap-
proach to solving the problem.

12Mathematically, the entropies per particle of REM models with N particles ap-
proach that given by equation with probability one [5] eqn 5.10].

13The distribution of ground-state energies for the REM is an extremal statistics
problem, which for large N has a Gumbel distribution (Exercise [N.3)).

14 This exercise draws heavily from [5, chapter 7].
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(a) Write a function ExhaustivePartition(S)
that inputs a list S of N integers, exhaus-
tively searches through the 2N possible parti-
tions into two subsets, and returns the min-
imum cost (difference in the sums).  Test
your routine on the four sets [H] Si =
[10,13,23,6,20], S = [6,4,9,14,12,3,15,15],
Ss = [93,58,141,209, 179, 48,225, 228], and
Sy = [2474,1129, 1388, 3752, 821, 2082, 201, 739].
Hint: S has a balanced partition, and S4 has a
minumum cost of 48. You may wish to return
the signs of the minimum-cost partition as part
of the debugging process.

What properties emerge from studying ensem-
bles of large partitioning problems? We find a
phase transition. If the range of integers (M
digits in base two) is large and there are rela-
tively few numbers NN to rearrange, it is unlikely
that a perfect match can be found. (A random
instance with N = 2 and M = 10 has a one
chance in 2'° = 1024 of a perfect match, be-
cause the second integer needs to be equal to
the first.) If M is small and N is large it should
be easy to find a match, because there are so
many rearrangements possible and the sums are
confined to a relatively small number of possible
values. It turns out that it is the ratio k = M/N
that is the key; for large random systems with
M/N > k. it becomes extremely unlikely that a
perfect partition is possible, while if M/N < k.
a fair split is extremely likely.

(b) Write a function MakeRandomPartitionProb-
lem(N,M) that generates N integers randomly
chosen from {1, ... 2™}, rejecting lists whose
sum is odd (and hence cannot have perfect par-
titions). Write a function pPerf (N,M,trials),
which generates trials random lists and calls
ExhaustivePartition on each, returning the
fraction ppers that can be partitioned evenly
(zero cost). Plot pyers versus & = M/N, for
N = 3,5, 7 and 9, for all integers M with
0 < k= M/N < 2, using at least a hundred
trials for each case. Does it appear that there is
a phase transition for large systems where fair
partitions go from probable to unlikely? What
value of ke would you estimate as the critical
point?

Should we be calling this a phase transition? It
emerges for large systems; only in the ‘thermo-
dynamic limit’ where N gets large is the transi-
tion sharp. It separates two regions with quali-
tatively different behavior. The problem is much
like a spin glass, with two kinds of random vari-
ables: the skill levels of each player a; are fixed,
‘quenched’ random variables for a given random
instance of the problem, and the assignment to
teams can be viewed as spins s; = =£1 that
can be varied (‘annealed’ random VariablesE to
minimize the cost C'= |} a;s;].

(c) Show that the square of the cost C? is of the
same form as the Hamiltonian for a spin glass,
H = Zi,j JijS»;Sj. What 8 J»;j ?

The putative phase transition in the optimiza-
tion problem (part (b)) is precisely a zero-
temperature phase transition for this spin-glass
Hamiltonian, separating a phase with zero
ground-state energy from one with non-zero en-
ergy in the thermodynamic limit.

We can understand both the value k. of the
phase transition and the form of ppert(INV, M)
by studying the distribution of possible ‘signed’
costs FBs = Zj ajsj. These energies are dis-
tributed over a maximum total range of Emax —
Enin = 22?21 a;j < 2N2M (all players play-
ing on the plus team, through all on the minus
team). For the bulk of the possible team choices
{s;}, though, there will be some cancellation in
this sum. The probability distribution P(E) of
these energies for a particular NPP problem {a;}
is not simple, but the average probability distri-
bution (P(FE)) over the ensemble of NPP prob-
lems can be estimated using the central limit the-
orem. (Remember that the central limit theorem
states that the sum of N random variables with
mean zero and standard deviation o converges
rapidly to a normal (Gaussian) distribution of
standard deviation v/ No.)

(d) Estimate the mean and variance of a sin-
gle term sja; in the sum, averaging over both
the spin configurations s; and the different NPP
problem realizations a; € [1,...,2M], keep-
ing only the most important term for large M.
(Hint: Approximate the sum as an integral,
or use the explicit formula Y% k* = £%/3 +

15 Quenched random variables are fixed terms in the definition of the system, repre-
senting dirt or disorder that was frozen in as the system was formed (say, by quenching
the hot liquid material into cold water, freezing it into a disordered configuration).
Annealed random variables are the degrees of freedom that the system can vary to
explore different configurations and minimize its energy or free energy.



k*/2 + k/6 and keep only the most important
term.) Using the central limit theorem, what
is the ensemble-averaged probability distribution
P(E) for a team with N players? Hint: Here
P(FE) is non-zero only for even integers E, so for
large N P(E) = (2/V2n0)exp(—E?/20?); the
normalization is doubled.

Your answer to part (d) should tell you that the
possible energies are mostly distributed among
integers in a range of size ~ 2™ around zero, up
to a factor that goes as a power of N. The to-
tal number of states explored by a given system
is 2. So, the expected number of zero-energy
states should be large if N > M, and go to zero
rapidly if N < M. Let us make this more pre-
cise.

(e) Assuming that the energies for a specific sys-
tem are randomly selected from the ensemble av-
erage P(E), calculate the expected number of
zero-energy states as a function of M and N
for large N. What value of kK = M/N should
form the phase boundary separating likely from
unlikely fair partitions? Does that agree well with
your numerical estimate from part (b)?

The assumption we made in part (e) ignores the
correlations between the different energies due to
the fact that they all share the same step sizes
a; in their random walks. Ignoring these corre-
lations turns out to be a remarkably good ap-
proximation We can use the random-energy
approximation to estimate pperf that you plotted
in part (b).

(f) In the random-energy approzimation, arque
that ppers =1 — (1 — P(O))QN?I. Approzimating
(1 — A/L)" =~ exp(—A) for large L, show that

3 —N(k—FKe
Ppert(r, N) & 1 — exp { N 2 Nir=ne)

(N'13)

Rather than plotting the theory curve through
each of your simulations from part (b), we
change variables to © = N(k—kc)+(1/2) log, N,
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where the theory curve

lin 3 -
P (@) = 1 - exp [—\/ |

is independent of N. If the theory is correct,
your curves should converge to pls;?rlfing(x) as N
becomes large

(g) Reusing your simulations from part (b),
make a graph with your values of ppert(x, N) ver-
sus x and p;f;lfi"g(x). Does the random-energy
approximation explain the data well?

Rigorous results show that this random-energy
approximation gives the correct value of k.. The
entropy of zero-cost states below k., the proba-
bility distribution of minimum costs above k. (of
the Weibull form, exercise [N.4)), and the proba-
bility distribution of the k lowest cost states are
also correctly predicted by the random-energy
approximation. It has also been shown that
the correlations between the energies of differ-
ent partitions vanish in the large (N, M) limit
so long as the energies are not far into the tails
of the distribution, perhaps explaining the suc-
cesses of ignoring the correlations.

What does this random-energy approximation
imply about the computational difficulty of
NPP? If the energies of different spin configura-
tions (arrangements of kids on teams) were com-
pletely random and independent, there would
be no better way of finding zero-energy states
(fair partitions) than an exhaustive search of all
states. This perhaps explains why the best al-
gorithms for NPP are not much better than the
exhaustive search you implemented in part (a);
even among NP-complete problems, NPP is
unusually unyielding to clever methodsm It
also lends credibility to the conjecture in the
computer science community that P # NP-
complete; any polynomial-time algorithm for
NPP would have to ingeneously make use of the
seemingly unimportant correlations between en-
ergy levels.

(N.14)

16More precisely, we ignore correlations between the energies of different teams
s = {s;}, except for swapping the two teams s — —s. This leads to the N — 1
in the exponent of the exponent for ppe, in part (f). Notice that in this approxima-
tion, NPP is a form of the random energy model (REM, exercise [N.5), except that
we are interested in states of energy near E = 0, rather than minimum energy states.

17 The computational cost does peak near Kk = k.. For small kK < k. it’s relatively
easy to find a good solution, but this is mainly because there are so many solutions;
even random search only needs to sample until it finds one of them. For k > k¢
showing that there is no fair partition becomes slightly easier as x grows [5] fig 7.3].
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(N.7) Fracture nucleation: elastic theory has

zero radius of convergenceE (Condensed
matter) 3

In this exercise, we shall use methods from quan-
tum field theory to tie together two topics which
American science and engineering students study
in their first year of college: Hooke’s law and the
convergence of infinite series.

Consider a large steel beam, stretched by a mod-
erate strain € = AL/L (Figure [NI). You may
assume € < 0.1%, where we can ignore plastic
deformation.

(a) At non-zero temperature, what is the equi-
librium ground state for the beam as L — oo
for fizred €? (Hints: Remember, or show, that
the free energy per unit (undeformed) volume of
the beam is 1/éY62. Notice figure as an al-
ternative candidate for the ground state.) For
steel, with Y = 2 x 10" N/m?, v ~ 2.5 J/mQE
and density p = 8000 kg/mg, how much can we
stretch a beam of length L = 10 m before the equi-
librium length is broken in two? How does this
compare with the amount the beam stretches un-
der a load equal to its own weight?

t t 1

AL/L = FI(YA)

Elastic
Materid

ooy

Fig. N.1 Stretched block of elastic material,
length L and width W, elongated vertically by a force
F per unit area A, with free side boundaries. The
block will stretch a distance AL/L = F/Y A verti-
cally and shrink by AW/W = ¢ AL/L in both hor-
izontal directions, where Y is Young’s modulus and
o is Poisson’s ratio, linear elastic constants charac-
teristic of the material. For an isotropic material,
the other elastic constants can be written in terms

of Y and o; for example, the (linear) bulk modulus
Kiin = Y/3(1 — 20).

Surface Energy
2vA

,/\/\/\/\/\M
,,/\/\/\MAM\‘

Elastic
Materia

Fig. N.2 Fractured block of elastic material, as in
figure [N11] but broken in two. The free energy here
is 2vA, where 7 is the free energy per unit area A of
(undeformed) fracture surface.

Why don’t bridges fall down? The beams in the
bridge are in a metastable state. What is the bar-
rier separating the stretched and fractured beam
states? Consider a crack in the beam, of length
£. Your intuition may tell you that tiny cracks
will be harmless, but a long crack will tend to
grow at small external stress.

For convenient calculations, we will now switch
problems from a stretched steel beam to a taut
two-dimensional membrane under an isotropic
tension, a negative pressure P < 0. That is, we
are calculating the rate at which a balloon will
spontaneously pop due to thermal fluctuations.

t t 1

P<0
< —>
<] — —>

<>
Crack length {
< —>

voov o

18This exercise draws heavily on Alex Buchel’s work [T12].

9This is the energy for a clean, flat [100] surface, a bit more than leV/surface
atom [9]. The surface left by a real fracture in (ductile) steel will be rugged and
severely distorted, with a much higher energy per unit area. This is why steel is
much harder to break than glass, which breaks in a brittle fashion with much less
energy left in the fracture surfaces.



Fig. N.3 Critical crack of length ¢, in a two-
dimensional material under isotropic tension (neg-
ative hydrostatic pressure P < 0).

The crack costs a surface free energy 2a/, where
« is the free energy per unit length of membrane
perimeter. A detailed elastic theory calculation
shows that a straight crack of length ¢ will re-
lease a (Gibbs free) energy wP?(1 — o?)¢?/4Y .
(b) What is the critical length L. of the crack,
at which it will spontaneously grow rather than
heal? What is the barrier B(P) to crack nucle-
ation? Write the net free energy change in terms
of £, Uc, and o. Graph the net free energy change
AG due to the the crack, versus its length €.
The point at which the crack is energetically fa-
vored to grow is called the Griffiths threshold, of
considerable importance in the study of brittle
fracture.

The predicted fracture nucleation rate R(P) per
unit volume from homogeneous thermal nucle-
ation of cracks is thus

R(P) = (prefactors) exp(—B(P)/ksT). (N.15)

One should note that thermal nucleation of frac-
ture in an otherwise undamaged, undisordered
material will rarely be the dominant failure
mode. The surface tension is of order an eV per
bond (> 10°°K/A), so thermal cracks of area
larger than tens of bond lengths will have insur-
mountable barriers even at the melting point.
Corrosion, flaws, and fatigue will ordinarily lead
to structural failures long before thermal nucle-
ation will arise.

Advanced topic: FElastic theory has zero radius of
convergence.
Many perturbative expansions in physics have
zero radius of convergence. The most precisely
calculated quantity in physics is the gyromag-
netic ratio of the electron [7]
(g — 2)theory = a/(21) — 0.328478965 . .. (a/m)?
+ 1.181241456 . . . (o/7)?
— 1.4092(384) (/)"
+4.396(42) x 107" (N.16)

a power series in the fine structure constant
a = e?/hc=1/137.039999 . ... (The last term is
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an a-independent correction due to other kinds
of interactions.) Freeman Dyson gave a wonder-
ful argument that this power-series expansion,
and quantum electrodynamics as a whole, has
zero radius of convergence. He noticed that the
theory is sick (unstable) for any negative o (cor-
responding to a pure imaginary electron charge
e). The series must have zero radius of conver-
gence since any circle in the complex plane about
o = 0 includes part of the sick region.

How does Dyson’s argument connect to fracture
nucleation? Fracture at P < 0 is the kind of in-
stability that Dyson was worried about for quan-
tum electrodynamics for @ < 0. It has impli-
cations for the convergence of nonlinear elastic
theory.

Hooke’s law tells us that a spring stretches
a distance proportional to the force applied:
x —xo = F/K, defining the spring constant
1/K = dx/dF. Under larger forces, the Hooke’s
law will have corrections with higher powers of
F. We could define a ‘nonlinear spring constant’
K(F) by

K(lF) - x(F); 2O eyt F 4 (N.17)

Instead of a spring constant, we’ll calculate a
nonlinear version of the bulk modulus fni(P)
giving the pressure needed for a given fractional
change in volume, AP = —kAV/V. The linear
isothermal bulk modulud™] is given by 1 /Klin =
—(1/V)(8V /OP)|r; we can define a nonlinear
generalization by

1 1 V(P)-V(0)
ka(P)  V(0) P
=co+aP+cP? 4+ +enyPY 4o

(N.18)

This series can be viewed as higher and higher-
order terms in a nonlinear elastic theory.

(c) Given your argument in part (a) about the
stability of materials under tension, would Dyson
argue that the series in eqn[N.18 has a zero or a
non-zero radius of convergence?

In Exercise we saw the same argument holds
for Stirling’s formula for N!, when extended

20Warning: For many purposes (e.g. sound waves) one must use the adiabatic elastic
constant 1/k = —(1/V)(0V /OP)|s. For most solids and liquids these are nearly the

same.
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to a series in 1/N; any circle in the com-
plex 1/N plane contains points 1/(—N) from
large negative integers, where we can show that
(=N)! = co. These series are asymptotic expan-
stons. Convergent expansions Y ¢,z converge
for fixed z as n — oo; asymptotic expansions
need only converge to order O(z" ') as * — 0
for fixed n. Hooke’s law, Stirling’s formula, and
quantum electrodynamics are examples of how
important, powerful, and useful asymptotic ex-
pansions can be.

Buchel [1l[2], using a clever trick from field the-
ory [12) Chapter 40], was able to calculate the
large-order terms in elastic theory, essentially by
doing a Kramers—Kronig transformation on your
formula for the decay rate (eqn[N.15)) in part (b).
His logic works as follows.

e The Gibbs free energy density G of the
metastable state is complex for negative P. The
real and imaginary parts of the free energy for
complex P form an analytic function (at least
in our calculation) except along the negative P
axis, where there is a branch cut.

e Our isothermal bulk modulus for P > 0 can
be computed in terms of G = G/V(0). Since
dG = —-SdT+V dP+pdN, V(P) = (0G/OP)|r
and hencd?]

1 1 (8G/AP)|r — V(0)
Fom (P) V(O) P

= (a_P 1) . (N.19)

(d) Write the coefficients cy, of eqn[N18 in terms
of the coefficients gm in the nonlinear expansion

P)=> gnP™ (N.20)

e The decay rate R(P) per unit volume is propor-
tional to the imaginary part of the free energy
Im[G(P)], just as the decay rate I" for a quan-
tum state is related to the imaginary part ¢iI" of
the energy of the resonance. More specifically,
for P < 0 the imaginary part of the free energy
jumps as one crosses the real axis:

Im[G(P =+ 1€)] = +(prefactors) R(P). (N.21)

A
Im[P]
D E P0 Re[P]
B A F C

Fig. N.4 Contour integral in complex pres-
sure. The free energy density G of the elastic mem-
brane is analytic in the complex P plane except along
the negative P axis. This allows one to evaluate G at
positive pressure Py (where the membrane is stable
and @ is real) with a contour integral as shown.

e Buchel then used Cauchy’s formula to evaluate
the real part of G in terms of the imaginary part,
and hence the decay rate R per unit volume:

6(r) =5~ ¢ 9P _4p

2ri ABCDEF P-F
O G(P +1€) — G(P —1¢)

P
271’1 P — Po d
/EFA /BCD
G(P +1¢€)]
—— [ IOl gp
7r/B P— P d
+ (unimportant) (N.22)

where the integral over the small semicircle van-
ishes as its radius € — 0 and the integral over the
large circle is convergent and hence unimportant
to high-order terms in perturbation theory.

The decay rate (eqn [NL15) for P < 0 should be
of the form

R(P) o (prefactors) exp(—D/P?),  (N.23)

where D is some constant characteristic of the
material. (You may use this to check your an-
swer to part (b).)

21Notice that this is not the (more standard) pressure-dependent linear bulk modulus,
k1in(P) which is given by 1/kyn(P) = —(1/V)(0V /OP)|r = —(1/V)(8?G/OP?)|r.
This would also have a Taylor series in P with zero radius of convergence at P = 0,
but it has a different interpretation; k,1(P) is the nonlinear response at P = 0, while
K1in(P) is the pressure-dependent linear response.



(e) Using eqns. [N.21, and [N.23, and as-
suming the prefactors combine into a constant
A, write the free energy for Po > 0 as an inte-
gral involving the decay rate over —oo < P < 0.
Ezxpanding 1/(P — Po) in a Taylor series in pow-
ers of Po, and assuming one may exchange sums
and integration, find and evaluate the integral for
gm in terms of D and m. Calculate from g, the
coefficients ¢, and then use the ratio test to cal-
culate the radius of convergence of the expansion
for 1/6m(P), eqn[N.18 (Hints: Use a table of
integrals, a computer algebra package, or change
variable P = —/D/t to make your integral into
the I" function,

P(2) = (2 — 1)l = /OOOtZ*lexp(_t)dt. (N.24)

If you wish, you may use the ratio test on every
second term, so the radius of convergence is the
value limy o0 \/|Cn/Cn+2|.)

(Why is this approximate calculation trustwor-
thy? Your formula for the decay rate is valid only
up to prefactors that may depend on the pres-
sure; this dependence (some power of P) won'’t
change the asymptotic ratio of terms c,. Your
formula for the decay rate is an approximation,
but one which becomes better and better for
smaller values of P; the integral for the high-
order terms g, (and hance cy,) is concentrated
at small P, so your approximation is asymptot-
ically correct for the high order terms.)

Thus the decay rate of the metastable state can
be used to calculate the high-order terms in per-
turbation theory in the stable phase! This is
a general phenomena in theories of metastable
states, both in statistical mechanics and in quan-
tum physics.

Extreme value statistics: Gumbel,
Weibull, and Fréchet. (Mathematics, Statis-
tics, Engineering) 3

Ezxtreme value statistics is the study of the max-
imum or minimum of a collection of random
numbers. It has obvious applications in the in-
surance business (where one wants to know the
biggest storm or flood in the next decades, see
Exercise [N3) and in the failure of large sys-
tems (where the weakest component or flaw leads
to failure, see Exercise [NL4). Recently extreme
value statistics has become of significant impor-
tance in bioinformatics. (In guessing the func-
tion of a new gene, one often searches entire
genomes for good matches (or alignments) to the
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gene, presuming that the two genes are evolu-
tionary descendents of a common ancestor and
hence will have similar functions. One must
understand extreme value statistics to evaluate
whether the best matches are likely to arise sim-
ply at random.)

The limiting distribution of the biggest or small-
est of N random numbers as N — oo takes one of
three universal forms, depending on the proba-
bility distribution of the individual random num-
bers. In this exercise we understand these forms
as fixed points in a renormalization group.
Given a probability distribution pi(x), we de-
fine the cumulative distribution function (CDF)
as Fi(z) = [*__ p(z')da’. Let us define py(z)
to be the probability density that x is the largest
of N random variables drawn from the distribu-
tion p1, and let Fv(x) to be the corresponding
CDF.

(a) Write a formula for Fan(z) in terms of
En(z). If Fn(z) = exp(—gn(z)), show that
g2n () = 29N (2).

Our renormalization group coarse-graining oper-
ation will remove half of the variables, throwing
away the smaller of every pair, and returning
the resulting new probability distribution. In
terms of the function g(z) = —log [“__ p(z)dxz’,
it therefore will return a rescaled version of the
2g(xz). This rescaling is necessary because, as
the sample size N increases, the maximum will
drift upward—only the form of the probability
distribution stays the same, the mean and width
can change. Our renormalization-group coarse-
graining operation thus maps function space into
itself, and is of the form

Tlg](xz) = 2g(az + b). (N.25)

(This renormalization group is the same as that
we use for sums of random variables in Exer-
cise [ZT1] where g(k) is the logarithm of the
Fourier transform of the probability density.)
There are three distinct types of fixed-point dis-
tributions for this renormalization group trans-
formation, which (with an appropriate linear
rescaling of the variable z) describe most ex-
treme value statistics. The Gumbel distribution
(Exercise [N.3)) is of the form

Fgumbel(x) = EXp(f eXp(f‘r))
Pgumbel(m) = EXP(*JU) eXp(f eXp(fm))'

Ggumbel () = exp(—z)



14  Unpublished Exercises

The Weibull distribution (Exercise[N.4)) is of the
form

exp(—(—z)%) <0
Fwei u =
bull () {1 23>0
(N.26)
(@) (=) =<0
weibull\ L) =
Gweibull 0 £>0,

and the Fréchet distribution is of the form

0 <0
Ffréchet ((E) = — -
exp(—z~%) x>0
(N.27)
(@) 00 z <0
réchet (L) =
Jiréchet x ¢ x>0,

where a > 0 in each case.

(b) Show that these distributions are fized points
for our renormalization-group transformation
eqn [N.23l What are a and b for each distribu-
tion, in terms of a?

In parts (c) and (d) you will show that there are
only these three fixed points g*(z) for the renor-
malization transformation, T[g*](z) = 2¢™ (az +
b), up to an overall linear rescaling of the vari-
able x, with some caveats. ..

(¢) First, let us consider the case a # 1. Show
that the rescaling x — ax + b has a fizxed point
x = p. Show that the most general form for the
fized-point function is

9"t z) = 2 pa(ylog 2) (N.28)

for z > 0, where py is periodic and o' and ~y are
constants such that p+ has period equal to one.
(Hint: Assume p(y) = 1, find o/, and then show
g*/zal is periodic.) What are o and v¢ Which
choice for a and p+ gives the Weibull distribu-
tion? The Fréchet distribution?

Normally the periodic function p(ylog(z — u))
is assumed or found to be a constant (some-
times called 1/, or l/ﬂa/). If it is not constant,
then the probability density must have an infi-
nite number of oscillations as x — u, forming a
weird essential singularity.

(d) Now let us consider the case a = 1. Show
again that the fixed-point function is

g (x) = e Pp(a/v)

with p periodic of period one, and with suitable
constants B and . What are the constants in

(N.29)

terms of b? What choice for p and (8 yields the
Gumbel distribution?

Again, the periodic function p is often assumed
a constant (e*), for reasons which are not as ob-
vious as in part (c).

What are the domains of attraction of the three
fixed points? If we want to study the maximum
of many samples, and the initial probability dis-
tribution has F'(z) as its CDF, to which universal
form will the extreme value statistics converge?
Mathematicians have sorted out these questions.
If p(z) has a power-law tail, so 1 — F(z) < 7%,
then the extreme value statistics will be of the
Frechet type, with the same «. If the initial
probability distribution is bounded above at p
and if 1 — F(u—vy) x y®, then the extreme value
statistics will be of the Weibull type. (More com-
monly, Weibull distributions arise as the small-
est value from a distribution of positive random
numbers, Exercise [N.4]) If the probability distri-
bution decays faster than any polynomial (say,
exponentially) then the extreme value statistics
will be of the Gumbel form [I0, section 8.2].
(Gumbel extreme-value statistics can also arise
for bounded random variables if the probability
decays to zero faster than a power law at the

bound [10]).

Cardiac dynamics
ogy, Complexity) @

Reading: References [0l [II], Niels Otani,
various web pages on cardiac dynamics,
http://otani.vet.cornell.edu, and Arthur T.
Winfree, ‘Varieties of spiral wave behav-
ior: An experimentalist’s approach to the
theory of excitable media’, Chaos, 1, 303-
334 (1991). See also spiral waves in Dic-
tyostelium by Bodenschatz and Franck,
http://newt.ccmr.cornell.edu/Dicty /diEp47A.mov

(Computation, Biol-

and http://newt.ccmr.cornell.edu/Dicty /diEp47A.avil

The cardiac muscle is an excitable medium.
In each heartbeat, a wave of excitation passes
through the heart, compressing first the atria
which pushes blood into the ventricles, and then
compressing the ventricles pushing blood into
the body. In this exercise we will study sim-
plified models of heart tissue, that exhibit spiral
waves similar to those found in arrhythmias.

22This exercise and the associated software were developed in collaboration with

Christopher Myers.
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http://newt.ccmr.cornell.edu/Dicty/diEp47A.avi

An excitable medium is one which, when trig-
gered from a resting state by a small stimulus, re-
sponds with a large pulse. After the pulse there
is a refractory period during which it is difficult
to excite a new pulse, followed by a return to the
resting state. The FitzHugh-Nagumo equations
provide a simplified model for the excitable heart
tissue

ov o2 l 3 .
8t—VV+E(V V?/3—W)
ow

where V' is the transmembrane potential, W is
the recovery variable, and € = 0.2, v = 0.8, and
B = 0.7 are parameters. Let us first explore the
behavior of these equations ignoring the spatial
dependence (dropping the V2V term, appropri-
ate for a small piece of tissue). The dynamics
can be visualized in the (V, W) plane.

(a) Find and plot the nullclines of the FitzHugh-
Nagumo equations: the curves along which
dV/dt and AW/dt are zero (ignoring V2V ). The
intersection of these two nullclines represents
the resting state (V*,W™*) of the heart tissue.
We apply a stimulus to our model by shifting
the transmembrane potential to a larger value—
running from initial conditions (V* + A, W™).
Simulate the equations for stimuli A of various
sizes; plot V and W as a function of time t, and
also plot V(t) versus W (t) along with the null-
clines. How big a stimulus do you need in order
to get a pulse?

Excitable systems are often close to regimes
where they develop spontaneous oscillations.
Indeed, the FitzHugh-Nagumo equations are
equivalent to the van der Pol equation (which
arose in the study of vacuum tubes), a standard
system for studying periodic motion.

(b) Try changing to 3 = 0.4. Does the system os-
cillate? The threshold where the resting state
becomes unstable is given when the nullcline in-
tersection lies at the minimum of the V' nullcline,
at B. = 7/15.

Each portion of the tissue during a contraction
wave down the heart is stimulated by its neigh-
bors to one side, and its pulse stimulates the
neighbor to the other side. This triggering in our
model is induced by the Laplacian term VZV.
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We simulate the heart on a two-dimensional grid
V(xi,yj,t), W(xs,y;,t), and calculate an ap-
proximate Laplacian by taking differences be-
tween the local value of V' and values at neigh-
boring points.

There are two natural choices for this Laplacian.
The five-point discrete Laplacian is generaliza-
tion of the one-dimensional second derivative,
0?V )0x® =~ (V(x+da)—2V (2)+V(z—dx))/dz>:

V[25]V(l'i,yi) ~ (V(zs, yit1) + V(wi, yiz1)
+ V(zig1,yi) + V(zio1,9:)
— AV (a0, yi)) e

L [0 10
o1 -4 1
d=*\g 1 o

(N.31)

where do = z;4+1 — i = yi+1 — ¥ is the spac-
ing between grid points and the last expression
is the stencil by which you multiply the point
and its neighbors by to calculate the Laplacian.
The nine-point discrete Laplacian has been fine-
tuned for improved circularly symmetry, with
stencil

1 1/6 2/3  1/6
ViV (zi, yi) < o 2/3 —10/3 2/3
1/6 2/3  1/6
(N.32)
We will simulate our partial-differential equation
(PDE) on a square 100 x 100 grid with a grid
spacing dz = 1] As is often done in PDEs,
we will use the crude Euler time-step scheme
V(t+A) = V(t)+ AdV /Ot (see Exercise B12):
we find A =~ 0.1 is the largest time step we can
get away with. We will use ‘no-flow’ boundary
conditions, which we implement by setting the
Laplacian terms on the boundary to zero (the
boundaries, uncoupled from the rest of the sys-
tem, will quickly turn to their resting state). If
you are not supplied with example code that
does the two-dimensional plots, you may find
them at the text web site [§].
(c) Solve eqn N34 for an initial condition equal
to the fized-point (V*,W™) except for a 10 x 10
square at the origin, in which you should apply
a stimulus A = 3.0.  (Hint: Your simulation
should show a pulse moving outward from the
origin, disappearing as it hits the walls.)

23Nerve tissue is also an excitable medium, modeled using different Hodgkin-Huxley
equations.
24Smaller grids would lead to less grainy waves, but slow down the simulation a lot.
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If you like, you can mimic the effects of the
sinoatrial (SA) node (your heart’s natural pace-
maker) by stimulating your heart model period-
ically (say, with the same 10 x 10 square). Real-
istically, your period should be long enough that
the old beat finishes before the new one starts.
We can use this simulation to illustrate general
properties of solving PDEs.

(d) Accuracy. Compare the five and nine-point
Laplacians. Does the latter give better circu-
lar symmetry? Stability. After running for a
while, double the time step A. How does the sys-
tem go unstable? Repeatl this process, reducing
A until just before it goes nuts. Do you see in-
accuracies in the simulation that foreshadow the
instability ?

This checkerboard instability is typical of PDEs
with too high a time step. The maximum time
step in this system will go as da?, the lattice
spacing squared—thus to make dx smaller by a
factor of two and simulate the same area, you
need four times as many grid points and four
times as many time points—giving us a good rea-
son for making dz as large as possible (correcting
for grid artifacts by using improved Laplacians).
Similar but much more sophisticated tricks have
been used recently to spectacularly increase the
performance of lattice simulations of the inter-
actions between quarks [3].

As mentioned above, heart arrhythmias are due
to spiral waves. To generate spiral waves we need
to be able to start up more asymmetric states—
stimulating several rectangles at different times.
Also, when we generate the spirals, we would
like to emulate electroshock therapy by apply-
ing a stimulus to a large region of the heart.
We can do both by writing code to interactively
stimulate a whole rectangle at one time. Again,
the code you have obtained from us should have
hints for how to do this.

(e) Add the code for interactively stimulating a
general rectangle with an increment to 'V of size
A = 3. Play with generating rectangles in differ-
ent places while other pulses are going by: make
some spiral waves. Clear the spirals by giving a
stimulus that spans the system.

There are several possible extensions of this
model, several of which involve giving our model
spatial structure that mimics the structure of the
heart. (One can introduce regions of inactive
‘dead’ tissue. One can introduce the atrium and
ventricle compartments to the heart, with the
SA node in the atrium and an AV node connect-
ing the two chambers ...) Niels Otani has an
exercise with further explorations of a number
of these extensions, which we link to from the
Cardiac Dynamics web site.
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