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Frequently, human psychology opposes evolution and learning on the basis of their supposed differences in flexibility. 
Humans are thought to be more flexibly intelligent than other animals, because they lost most of their instincts. But, 
as William James proposed, we think that it might turn out that just the contrary is true. Human may have more 
instincts, more powerful instincts to learn for instance. Indeed, the view that instincts are rigid, correspond to fixed, 
innate, pattern of behaviour that do not enable the organisms to adapt to its ontologically relevant environment, 
seems to be an ancient believe of many scientist in the social sciences. This is however, nowadays, not the view of 
many researchers in the field of behavioural biology and ethology. Instincts do take into account information from the 
environment, that is basically what they are designed for, they provide an organism with behavioural responses to 
certain environmental stimuli. They are surely not about acting as if no environment existed.

The Powers of Learning

On the other hand, learning is thought to be very powerful, especially when it comes to react to unpredictable 
(phylogenetically speaking) characteristics of the environment. We must acknowledge that learning has the power to 
adjust the behavioural responses of an organisms to the contingencies in its particular environment, that no reliable 
evolved action pattern could provide. After all, how could an new-born know (in the strong sense of having the exact 
mental representation) its mother. It seems impossible to have the "genetic blueprint" do something as magical as 
this! Of course, the new-born has to learn to recognise its mother, but this is not the point. What is important is that 
the new-born "knows" that there is something like a mother, that she is likely to be the individual that most "cares" 
about your needs, etc. (we could say that it acts as-if it had such an explicit knowledge, although the very nature of 
this knowledge is not the relevant question here). Indeed a certain preparation to learn seems to be essential in order 
to focus the motivational, attentional resources of the new-born, at least, to certain aspects of the environment, 
physical or social, that are "expected" to be there. The "emotional value" of such environmental characteristics might 
provide some information about the stimuli to attend to, to look after actively. This seems to be true with human faces 
and speech in new-borns. They "actively" orient their attention towards stimuli that look like faces, they "like" to be 
talked to. All these, and other, behaviours show that what counts as environmental stimuli relevant for the learning to 
take place, are not neutral. They are indeed part of the biological features of the species. What we consider as 
pleasant is far from being the same as what a fly finds "pleasant" (no conscious feelings need to be involved here, 
pleasantness may just be a anthropomorphic description of a behavioural preference). Indeed the same objects may 
attract a fly, although you may not even notice it. Combinatorial explosion is a problem that every individual of a 
species faces when it is engaged in a process of learning. What are the stimuli that should enter the information 
processing and which should not? This problem is especially salient when it comes to acting in response to external 
events, that are potentially harmful or even lethal! You should be able to decide rather quickly whether you run away 
or not when facing a lion, for instance. There are not many ways in which you could learn the correct response by 
mere reinforcement learning. You would be dead if the first answer appears to be the wrong one! Of course, you could 
learn it from your mother, or other members of your group. But you would also have to "find" the link between stimuli 
and response. One way to conceive a solution to this problem is given by the paradigms of neural network 
computational explorations. Indeed, when it comes to finding the needle-in-the-hay-stack, neural networks are able to 
learn what the relevant features (events and co-occurring of events) of an environment are, provided that they be given 
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information about some aspects of the environment. It seems needless to say that no experimenter could claim that 
the input she gives her network are exhaustive of the environmental characteristics present at a certain moment. 
Filtering is an essential first-step operation in computation.

Neural Networks and Innateness

But neural networks can, provided they implement a powerful learning algorithm, learn reliably and rather fast what 
are the relevant hidden features (e.g., correlations) of an environment (or a certain domain of it). All the knowledge 
resides in the connections of the network, which adapt their weight in order to produce a desirable output. But what 
counts as a desirable response to some input, is often in the eye of the beholder, and not in the networks 
"knowledge base". Neural networks represent in this sense powerful models of learning and cognitive capacities. 
What is more, although they are often used in the domain of learning, they have the potential to provide us with a 
"natural" way to think about evolutionary processes involved in the design of the brain. Indeed, the weights of the 
connections between neurones could be initialised (given their initial values) by some mechanisms under genetic 
control. Connectionist models are generally mute about this possibility, but nothing prevents us from thinking about 
evolved design a neural network in terms of "fixing" the initial values of its connections (which may still be subject to 
later modification by learning mechanisms). When it comes to difficult problem solving, linked to the combinatorial 
explosion of potentially "good" patterns of connectivity, it seems that any network that is closer to the solution is 
better off, or at least it should reach an optimal solution faster. And speed is what counts in ontogenetic contexts 
when viewed from the evolutionary perspective. Any genotype, coding for the initial connectivity of a network, that is 
co-responsible for a good starting point should increase its frequency in the gene pool, compared to those that are 
less reliable or less close to the solution. Learning, in the sense of changing the connectivity pattern towards an 
optimal solution, enables networks that do not represent the optimal pattern right from the start to "find" the solution 
nevertheless. Learning thus makes evolution of a highly improbable connectivity pattern possible, where a fixed 
connectivity pattern (purely determined by genetic coding) would easily fail to represent the solution. One wrong 
connection would make it fail, since no changing can occur. Learning softens the fitness landscape as we approach 
the optimal solution. Next-to-good solutions can change into good solutions, which can converge on the optimal 
solution. This is however a reasonably fast process when the initial pattern is not to far away from the solution to be 
found. There is a trade-off between efficiency and flexibility. If the network is too flexible, having no correctly fixed 
connections at all, it fails to find the solution fast enough to be competitive with the other networks that have a better 
start-off. On the other hand, being inflexible on some connections closes many pathways towards the solution.

Enter the Baldwin Effect

This is where the so-called Baldwin Effect enters the play. It describes a process of interaction between learning and 
evolution. Evolution often could just not find the solution to a problem (one in a million of a million of possible states 
of connectivity), because it would be too improbable. What is more, any organism that approaches the solution but 
does not reach it (assuming no ontogenetic learning takes place), would have NO advantage over other organisms 
that approach it less. What good is, after all half-a-wing? Thus learning can make it possible for individuals to have 
differential fitness that is related to the distance between their initial state and the optimal state. Even if you fail to 
have the solution right from the start, you can find it faster than someone else whose initial state is further away from 
it. Hence your fitness is higher than that of your competitor.

From Learning to Inheritated Traits

On the other hand, the Baldwin Effect tells us that, in some conditions, learning (ontogenetic process) tends to be 
replaced by genetic determination (phylogenetic scale). Consider the following reasoning. If a genome provides an 
organism with a start-off closer to the solution (by having its neural connections better tuned in the beginning) than 
another organism, then it tends to produce differentially more offspring. Thus, over evolutionary time, it should tend to 
increase its frequency in the gene pool. Learning a certain behaviour in response to the environment tends to be 
replaced by genetically coded behaviour responses over evolutionary relevant intervals, given a more or less stable 
environment (or certain aspects of it).

Modelling Evolutionary Processes

How could such considerations be tested experimentally? We must remember that evolutionary time intervals are 
quite large and can hardly be manipulated, if they can at all, in the lab! Artificial Life (ALIFE) simulations have the 
potential to help us understand the interactions between evolution and learning, since they are designed to represent 
the mechanisms of life, like evolution by natural selection. It is possible to make virtual creatures evolve certain 
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features, and to learn certain behaviours by means of certain learning algorithms that yield ontological modifications.
Neural Networks seem to be especially powerful tools to study the interaction between evolution and learning, since 
the two complementary processes can involve exactly the same elements of the virtual organism, namely the 
weights of the neural connections. Whether they are initially determined by the artificial genome or result from 
changes due to the exposure to the external (and eventually internal) stimuli makes no qualitative differences. None 
of the two causes of a connection’s weight can be detected by simply looking at its value. The mere value does not 
reveal anything about its origin nor about the history of the weight changes - whether they take place during a life-
time or during evolution. So applying genetic algorithms to the initial connectivity pattern of artificial neural networks 
(ANN) provides us with a "natural" - although still simplified - way to conceive the Baldwin Effect. It also enables us to 
see how controlled computational models can be designed in order to study such a phenomenon that otherwise 
cannot be examined experimentally in nature.
In the following, we present two quite simple, but rather ingenious simulations of the Baldwin Effect using ANN and 
Genetic Algorithms (GA), namely Hinton & Nowlan (1987) and Ackley & Littman (1992) (quoted in Mitchell & Forrest, 
1997).

Computational Exploration - Part I

Hinton et al.’s model was designed in order to be very simple. They, indeed, instead of using a complex hebbian or 
error-driven learning algorithm, used random guessing. On each learning trial, a network guesses a 1 or a 0 at 
random for each of its learnable connections. In the GA population, each network is represented by a string of 20 
characters which can be 0, 1, or ? - the ? corresponding to a learnable connection, 0 to absent, and 1 to present. 
Note that 1 and 0, for a particular connection can correspond to a correct connection, as well as an incorrect one. 
There is only one pattern of connectivity that was, arbitrarily, postulated as the one in 220 possible patterns 
corresponding to the solution to be found by the ANN. This implies a "needle-in-the-hay-stack" search problem 
because there is only one correct state in a immensely large space of possibilities. Learning, as seen before, 
changes the fitness landscape, from a single spike to a smoother "zone of increased fitness" (Michtell & Forrest, 
1995). Fitness can indeed be computed quite easily, corresponding to an inverse function of the number of trials 
needed to find the correct solution. Having all the connections set correctly means maximum fitness, never finding 
the correct setting means lowest fitness. There is thus a trade-off between efficiency and flexibility, as seen above.

Hinton et al.’s simulation showed that learning enables individual networks to receive partial credit instead of 
engaging in an all-or-none situation. They concluded from their results that learning helps ANN adapt to predictable 
but difficult aspects of an environment, in the sense that only one setting of connections represents the only solution 
to some problem. Learning systematically increases population fitness by giving partial credits to solutions close to 
the optimum peek. Furthermore, learning leads to adaptations (optimal or close to optimal solutions) becoming 
genetically fixed. Indeed, reproduction rate of initial patterns of connectivity (determined by an AG) varied according 
to the explicit fitness function, mentioned above. Hinton et al. found that the initial patterns tend to become more and 
more fixed genetically as evolution took place.

Computational Exploration - Part II

Let us now turn to another computational exploration by Ackley & Littman where fitness is no longer such an 
explicitly and a priori determined function of the pattern of connectivity. Fitness of real organisms tend to be 
determined by various actions engaged in and interactions with other organisms. Fitness can thus better be regarded 
as some emergent function of behaviour, co-determined by genetic design and ontogenetic learning processes - not 
to forget chance: being at the right place at the right time. Ackley et al. implemented so-called adaptive agents in a 
virtual environment with different objects placed in it: trees to hide in, food to eat, and predators to avoid of course. 
The agents consist of two neural networks, one intended to evaluate the actual state of the agent, in terms of its 
overall energy and the actions that lead to this state, the other one intended to control the actions of the agent. 
Briefly said, each agent comes with innate goals about what is good to do and not to do, and is able to change its 
actions by reinforcement learning based on the mismatch between desired state and actual state. This is achieved 
by fixing the connection pattern of the evaluative network based on the specifications of a sting generated by an AG, 
and by initially specifying the connections of the action network which are subject to modification by reinforcement 
learning. Reinforcement learning can be seen as some kind of intermediate between supervised and narrow-sense 
unsupervised learning: there is no precise information about the amount of difference between the actual state and 
the desired one, there is only information about the success or the failure of a certain action pattern. In the virtual 
environment designed by Ackley et al. the struggle for survival and reproduction encompasses different factors. 
Agents have to act in order to prevent death, by eating and avoiding predators, by reproducing - by means of simple 
cloning or by cross-over with a nearby agent, reproduction depending on the amount of energy they call their own. 
Ackley et al. found that learning lead to considerable improvement of the current state of an agent. Furthermore, by 
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letting compete different types of agents, different in terms of ability to learn and intervention of evolution on their 
initial connections in the action network, they found differential success in the following order: Agent with learning 
and evolution surpassed agents with learning only, surpassing themselves agents merely designed by evolution. 
What is more, they observed an evolution from "goal instincts" towards "behaviour instincts". This point is worth 
some discussion. Indeed, whereas in the beginning agents tend to present some initial variability in the connectivity 
pattern of their action networks, after "some time" they tend to show less variability in their action networks but 
greater variability in their evaluation networks. In the beginning of evolution it seems to be important to know what the 
desirable outcomes are and to change one behaviour accordingly, and after some evolutionary changes can occur, 
genetic specifications of adaptive actions become sufficient, maybe even preferable. Indeed behaviour improving your 
fitness is sufficient for differential reproductive success. This however can reliably take place only in agents that are 
descents of agents who "evolved" these action network specifications "helped" (or "guided") by the specifications 
provided by their evaluation network.

Conclusions

We would like to end this essay by concluding that learning and evolution are by no means opposed processes. 
They are better seen as complementary processes. More evolved design enables not less flexible learning, but more 
(Pinker 1997), especially in survival conditions where time is an essential variable of success! Although a tabula rasa 
organism could learn anything quite reliably - for instance if it has a very strong learning mechanisms or if it has a lot 
of time - but knowing a lot right from the start - this knowledge may just simply be encoded in the initial connection 
weights and represent a preferential hypothesis about the environment, and nothing more - enables an organisms to 
be better off. Finding a solution a bite quicker than all the others gives you some better chance to increase the 
frequency of your genes, even if your genes are only partially and not totally responsible for the solution you found!

We have also seen that ALIFE modelling has the powerful potential to enable us to achieve controlled computational 
experiments of such processes like evolution, competition, learning in non-static environments, and so on. ALIFE 
models could play the same role in biology and evolutionary psychology as ANN did in classical experimental 
psychology - namely to re-energise theoretical and empirical work by means of providing experimental conditions to 
refute and verify certain model of evolutionary processes involved, for instance, in the emergence of behaviour.
Not to forget that GA could be applied to ANN in order to solve more practical engineering problems that are hard to 
resolve by classical artificial intelligence methods, because they involve a combinatorial explosion of the potentially 
successful (or unsuccessful!) pathways in a vast solution space. Contributions to the field of cognitive sciences could 
be made by providing a better way to "resolve" the old problem of "innate versus learned", in terms of complementary 
and not opposing processes. After all, the characteristics of the environment our hominid ancestors lived in clearly 
favoured the evolution of some of our specific flexible learning mechanisms that no other species has! And this 
environment of adaptive fitness can impossibly not have had some impact, still measurable today, on the design of 
our modern mind. Ninety-nine percent of their history, our hominid ancestors lived as hunter-gatherers, in ecological 
conditions clearly different from those today. It seems reasonable to assume, that this evolutionary history can be 
detected in the functional - if not structural - design of our mind-brain. After all, evolution is quite a slow process.
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