

# NSC : Non-Standard Computation

MEng 10 credit module

Susan Stepney,  
John A. Clark, Sam Braunstein

Non-Standard Computation Group

# what is *Standard* Computation?

- Turing paradigm
  - finite discrete classical state machine, Halting, Universal
  - closed system, predefined state space
- Von Neumann paradigm
  - sequential fetch-execute-store
- algorithmic paradigm
  - deterministic function from initial input to final output
  - black-box isolated from the world
- refinement paradigm
  - a known specification is refined to provably correct code
- pure logic paradigm
  - substrate (hardware/physics) is irrelevant

# Non-standard views

- Real World as inspiration
  - natural computation : physics inspired, bio-inspired
- Real World as a computer
  - all computation and all data is embodied
    - physical effects - particularly quantum
  - analogue computation
    - the great missed opportunity of the 20<sup>th</sup> Century?
- Open dynamic systems
  - no Halting, rather ongoing developing interactive processes
  - massive parallelism
    - "more is different"

# “non-standard” computation?

like defining the bulk of zoology  
by calling it the study of  
'non-elephant animals'

- Stan Ulam (attrib)  
(on the name “non-linear science”)

# Biological complex adaptive systems

- evolution and genetics
  - competitive "survival of the fittest"
  - genetic algorithms, genetic programming
- immune systems
  - cooperative dynamics
- swarms, ants, termites
  - flocking, pheromones
- development and growth processes
  - L-systems, artificial embryology, ontogeny

⇒ Bio-inspired algorithms

# embodiment of computation

- all computation, all data, is embodied
  - it must be realised in the Real World somehow
- therefore it obeys the laws of physics
  - mathematical models are abstractions from underlying physics
  - different physics  $\Rightarrow$  different abstractions, different models
- the physical world is quantum mechanical
  - quantum weirdness : superposition, entanglement
- models of computation should encompass the quantum
  - then can exploit these weird properties
    - exponential speedup? teleportation?

$\Rightarrow$  Quantum Computing

# "more is different"

- natural systems have vastly more than one atom, one molecule, one cell, one organism, one species, ...
  - interacting in interesting ways
- systems with vastly more than one processing element
  - Ubiquitous (pervasive) computing
    - "chips with everything"
  - Agent systems
    - elements move, learn, adapt
  - Cellular Automata
    - emergent structures : from Gliders to UTM in Conway's Life
- FPGAs (Field Programmable Gate Arrays)

⇒ Massive parallelism, and emergence

# open dynamical networks

- computation as a dynamic process
- far-from-equilibrium, heterogeneous, unstructured, metadynamic
  - continual learning and development - no "end point"
- phase space attractors, computational trajectories
  - autocatalytic chemical networks, cytokine immune network, genomic control networks, ecological webs, social and technological networks
- computation at the "edge of chaos"
- self organisation

⇒ Dynamical algorithms, and emergence

# course overview : lectures

- 1. Introduction
- 2. Local Search
- 3-8. Bio-inspired population search and optimisation
  - evolutionary algorithms
  - swarms, ants
  - Artificial Immune Systems
  - growth and development
- 10-13. Embodied Computation
  - Quantum computation and communication
  - Computation by the real world : DNA, cells, membranes, chemicals, ...
  - Analogue computation
- 14-18. Computational Dynamics, Complexity, and Emergence
  - fractals, Cellular Automata, self organisation
  - phase space, attractors, trajectories, network models

# course overview : practicals

- discussion groups
- 1. (w3) assumptions of classical computation
- 2. (w6) reality as inspiration, not constraint
- 3. (w8) embodied issues
  - Quantum computing - niche or mainstream?
- 4. (w9) fractals and chaos
- 5. (w10) emergence and dynamics
  - plus course review, assessment handout

# course overview : resources

- lecture notes
- applets
- links
- available on the course Web site  
<http://www-course.cs.york.ac.uk/nsc/>

# NSC

## Search and optimisation

# Lecture overview

- solution and search spaces
  - objective function, fitness and cost functions
- fitness landscapes
  - local and global optima
  - ruggedness, hypercubes, NK-landscapes
  - data representations
- classification and clustering as search
- No Free Lunch theorem
  - what it means, and when it doesn't hold

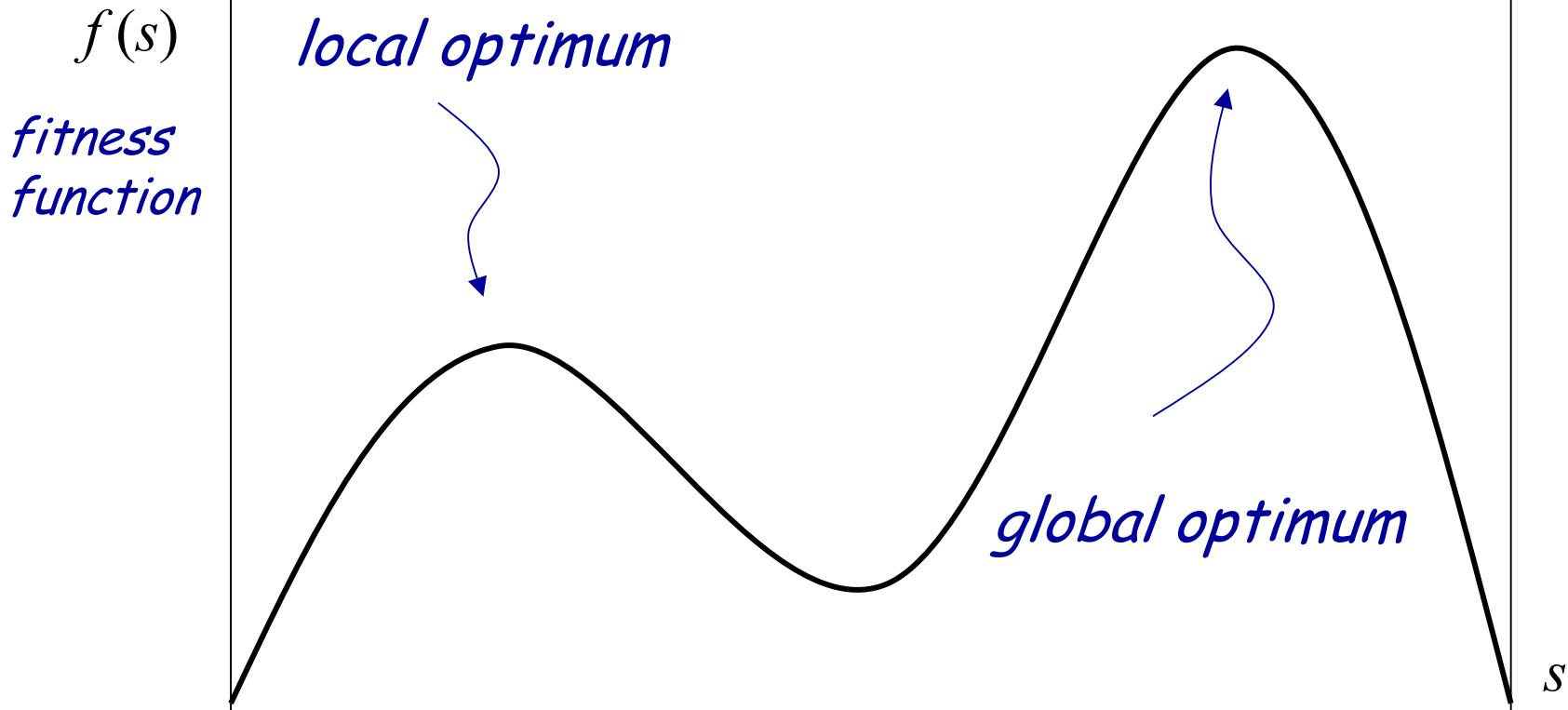
# solution space

- solution space  $\Sigma$ 
  - space of artefacts: programs, circuits, music, ...
  - *objective function* defined on solution space,  $\phi: \Sigma \rightarrow \mathcal{R}$ 
    - multi-objective vector,  $\varphi: (\Sigma_i \rightarrow \mathcal{R})^n$
  - the objective function measures the actual real world property to be optimised (maximised or minimised)
    - best power consumption
    - shortest path length
    - most melodious music
    - ...
  - objective may be difficult to capture or quantify
    - what is the SI unit of melodious music?

# search space

- search space  $S$ 
  - encode the solution space in a form *suitable for search*
    - *fitness (or cost) function* defined on search space,  $f: S \rightarrow \mathbb{R}$ 
      - some implementations require the measure to be positive
      - *fitness* for maximum, *cost* for minimum (but not consistent)
  - optimising the fitness should also optimise the objective!
    - the choice of fitness function is a modelling decision
    - it can be scaled, inverted, smoothed, wrt to the objective
- algorithm to search that (very large) space
  - efficient algorithm will sample only a very small part of the search space, yet find good (high fitness, low cost) solutions
    - by exploiting structure of the search space
  - decode search result(s) back into solution space,  $\Gamma: S \rightarrow \Sigma$

# search landscape terminology

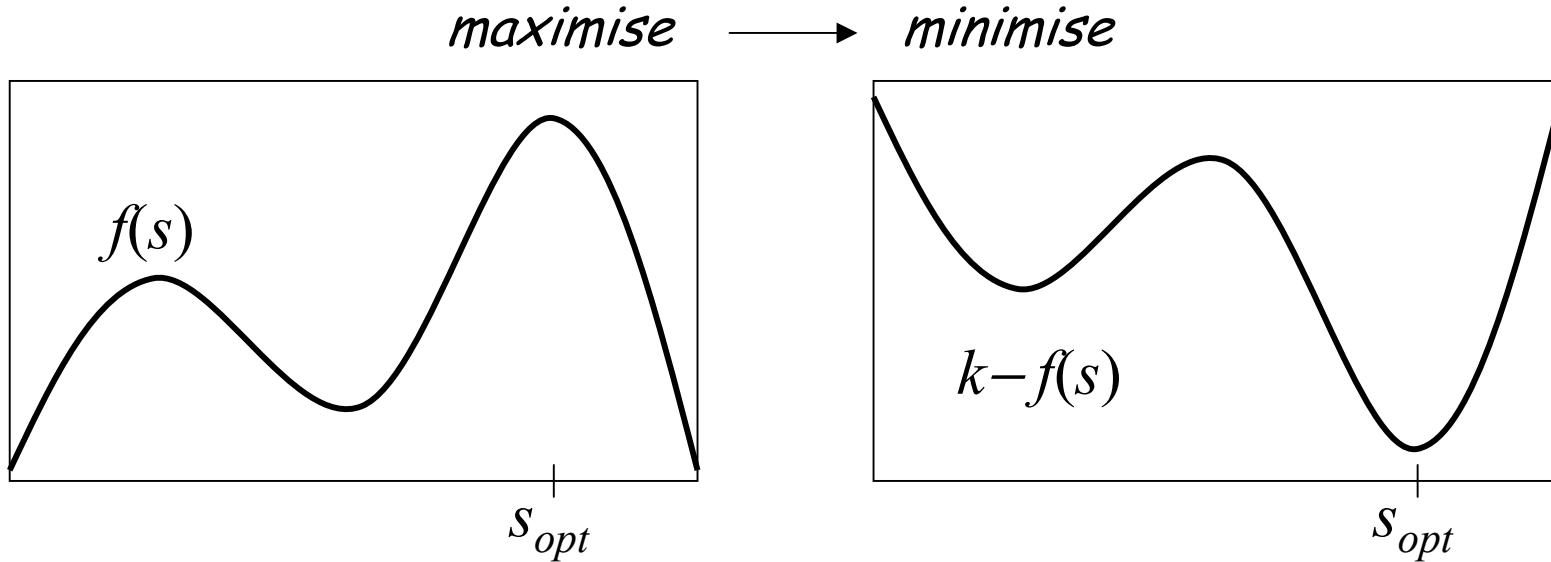


search for  $s_{opt}$  where  $f(s_{opt}) = \max$

search  
parameter

# maximise or minimise?

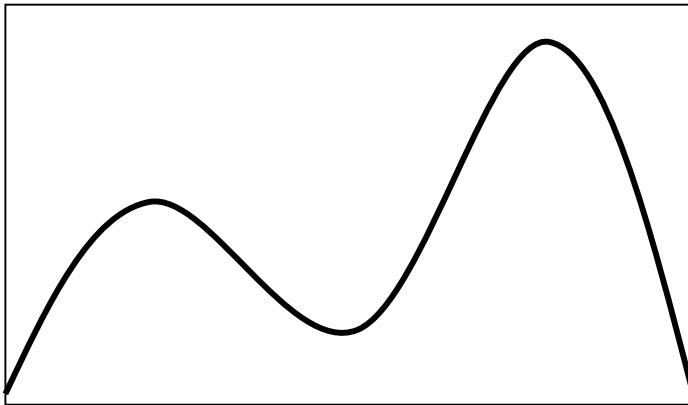
- convert a maximisation problem to a minimisation problem by negating the fitness function
  - and adding an offset, to make the cost function positive, if necessary
    - choice of offset can affect behaviour of the search algorithm
    - as can adding a constant to fitness/cost function for any reason



# satisficing solutions

- don't necessarily need the *best* solution, just a "good enough" solution
- interested in *satisficing*, rather than optimising
  - look for satisfactory solutions, that satisfice (minimally satisfy) the requirements, rather than the best, or optimal solution
  - if current solution is good enough, it doesn't matter that it may be very hard to get any better

# search landscape examples

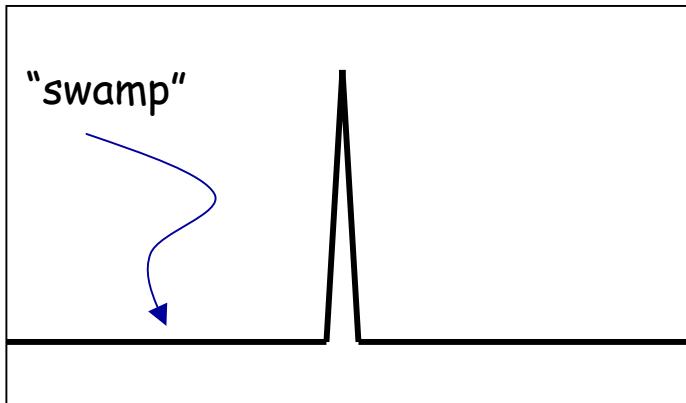


*smooth landscape*

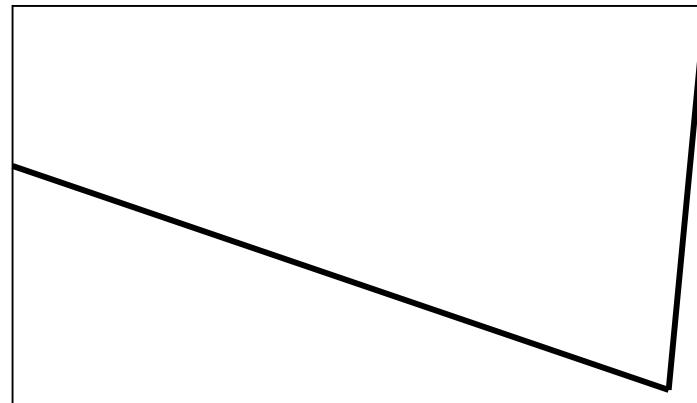


*rugged landscape*

small change in search parameter  
-> large change in fitness

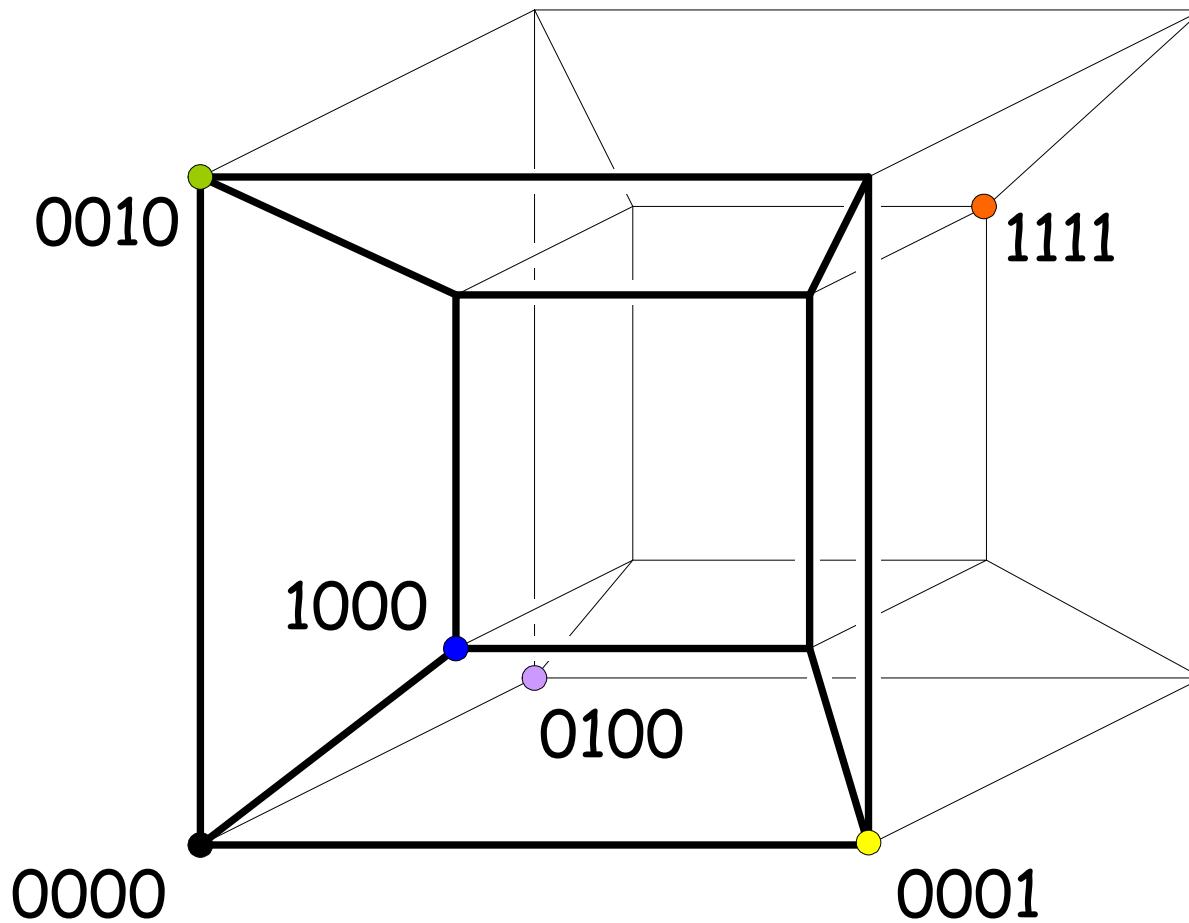


*"needle in a haystack"*



*deceptive "trap" landscape*

# hypercube landscapes

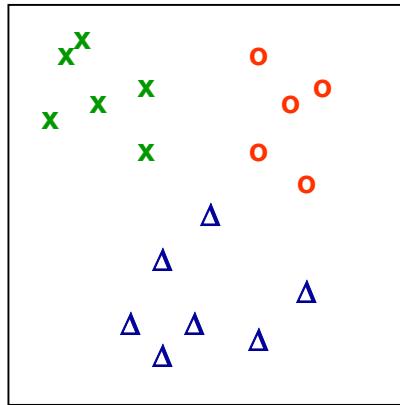
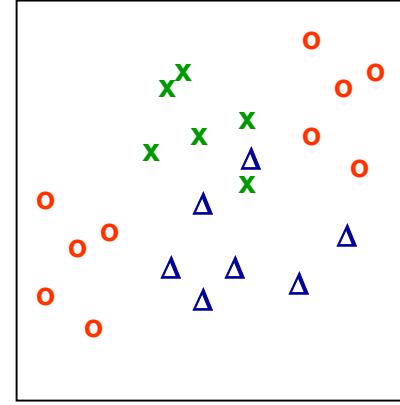


# NK landscapes

- Kauffman's parameterised correlated fitness landscapes
- consider  $N$  dimensions of binary *traits*:  $N$  D hypercube
  - where overall fitness depends on correlations of traits
  - draw a network that connects each trait to all the other traits that affect its fitness
- NK model:  $N$  traits, fitness of each affected by  $K$  other "input" traits
  - hence the fitness of a trait depends on the values of  $K+1$  traits
  - attempt to maximise total fitness (of all  $N$  traits)
  - conflicting constraints on maximising fitness of traits that depend differently on *same* input traits
    - conflicts increase as  $K$  increases
    - high  $K \Rightarrow$  more rugged landscape
    - $K = 0$  = single peak ;  $K = N - 1$  = fully random landscape

# classification and clustering as search

- classification
  - group a population into “similar” sub-classes
    - clusters in parameter space, expressed as rules, or boundaries



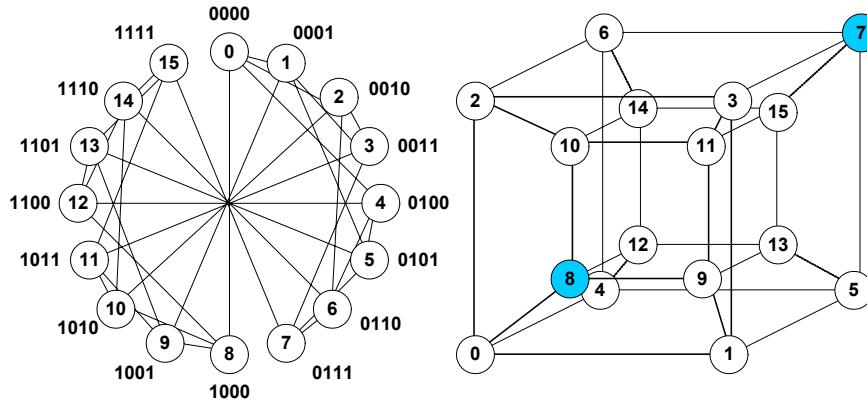
- supervised : given predetermined sub-classes, algorithm finds boundaries
- unsupervised : algorithm discovers sub-classes, too
- search, for a “fit” set of clustering rules

# representation

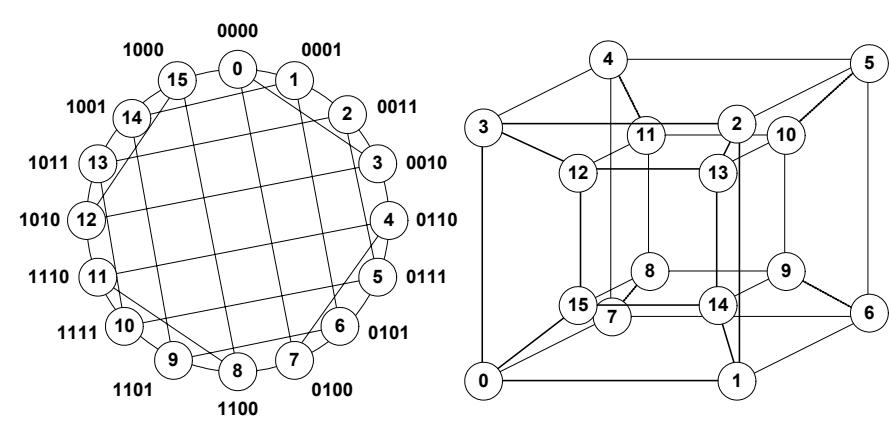
- choice of search space representation to fit the problem naturally, and be searchable
  - bit strings of length  $l$ :  $S = \{0,1\}^l$ 
    - directly encode parameter values being optimised
  - more structured strings
    - integers, characters, structs, ...
      - example: the component values in a fixed topology electronic circuit
  - finite state machines
    - to predict the next value in a sequence
  - computer programs
    - execute the program to generate (representation of) solution
      - example: draw a variable topology electronic circuit diagram
- a change of representation can “smooth” the search landscape, or make it more searchable in other ways

# representation : Gray coding

- normal binary v Gray coding of integer bit strings
  - binary : flipping high bits has a bigger effect than low bits
  - Gray : consecutive underlying numbers differ by only one bit flip
  - Gray coding gives a much smoother search landscape
    - smoother, more continuous, adjacency relationship; fewer peaks
      - but may smooth out important features



## binary adjacency



## Gray adjacency

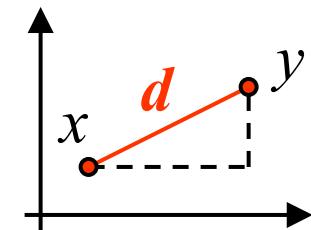
# representation : data transformations

- change of basis so structure becomes clearer
  - “rotations” or scale changes; eigenvectors
- standard data transforms
  - Fourier / Laplace / ...
- projecting onto a lower dimensional space (smaller)
  - might lose some information
  - change of representation might result in some “fixed” parameters that can be eliminated
- embedding in a higher dimensional space (smoothing)
  - discrete → continuous (real valued) → complex
- indirect encodings
  - as programs that generate results

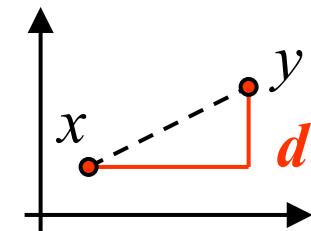
# distances

- distance between two points in an  $N$ -D space
- Euclidean distance
  - "straight line"
  - other "non-geometric" powers can also work
- Manhattan distance
  - "city blocks"
  - cheap to calculate
- Hamming distance
  - bitwise distance between strings

$$d = \sqrt{\sum_{i=1}^N (x_i - y_i)^2}$$



$$d = \sum_{i=1}^N |x_i - y_i|$$



$$d = \sum_{i=1}^N (x_i \neq y_i)$$

# "No Free Lunch" (NFL) results

- to do with the impossibility of finding a search algorithm effective over *all* landscapes
- definitions
  - search space  $S$ , fitness space  $R$  (where  $S, R$  are *finite* sets)
  - fitness function  $f : S \rightarrow R$
  - search trace (or trajectory)  $T_m = \langle (s_1, r_1), \dots, (s_m, r_m) \rangle$
  - search algorithm  $A : T_m \rightarrow S$  gives the "move" : next point to search
  - $T(A, f) =$  full search trace generated by  $A$  on  $f$
  - performance measure  $M : T \rightarrow \mathbb{R}$ 
    - given a set of cost functions  $F$ ,  $M(A) \equiv \sum_{f \in F} M(T(A, f))$
- then, a NFL result applies to  $F$ , iff

$$\forall m : M; a, b : A \bullet m(a) = m(b)$$

# "No Free Lunch" theorems

a NFL result applies to the following  $F$ s:

- $F = (\text{finite}) \text{ set of all functions } f \text{ from } S \text{ to } R$ 
  - [Wolpert & Macready]
- $F = (\text{finite}) \text{ set of all functions } f \text{ "closed under permutation"}$ 
  - all functions that have the same set of results
    - $f_1 = \{(a, \alpha), (b, \alpha), (c, \delta)\}, f_2 = \{(a, \alpha), (b, \delta), (c, \alpha)\}, f_3 = \{(a, \delta), (b, \alpha), (c, \alpha)\}$ 
      - [Schumacher *et al.*]

D. H. Wolpert, W. G. Macready. No free lunch theorems for search. SFI-TR-95-02-010, Santa Fe Institute, 1995.

D. H. Wolpert, W. G. Macready. No free lunch theorems for optimization. *IEEE Trans. Evolutionary Comp.* 1(1):67-82, 1997.

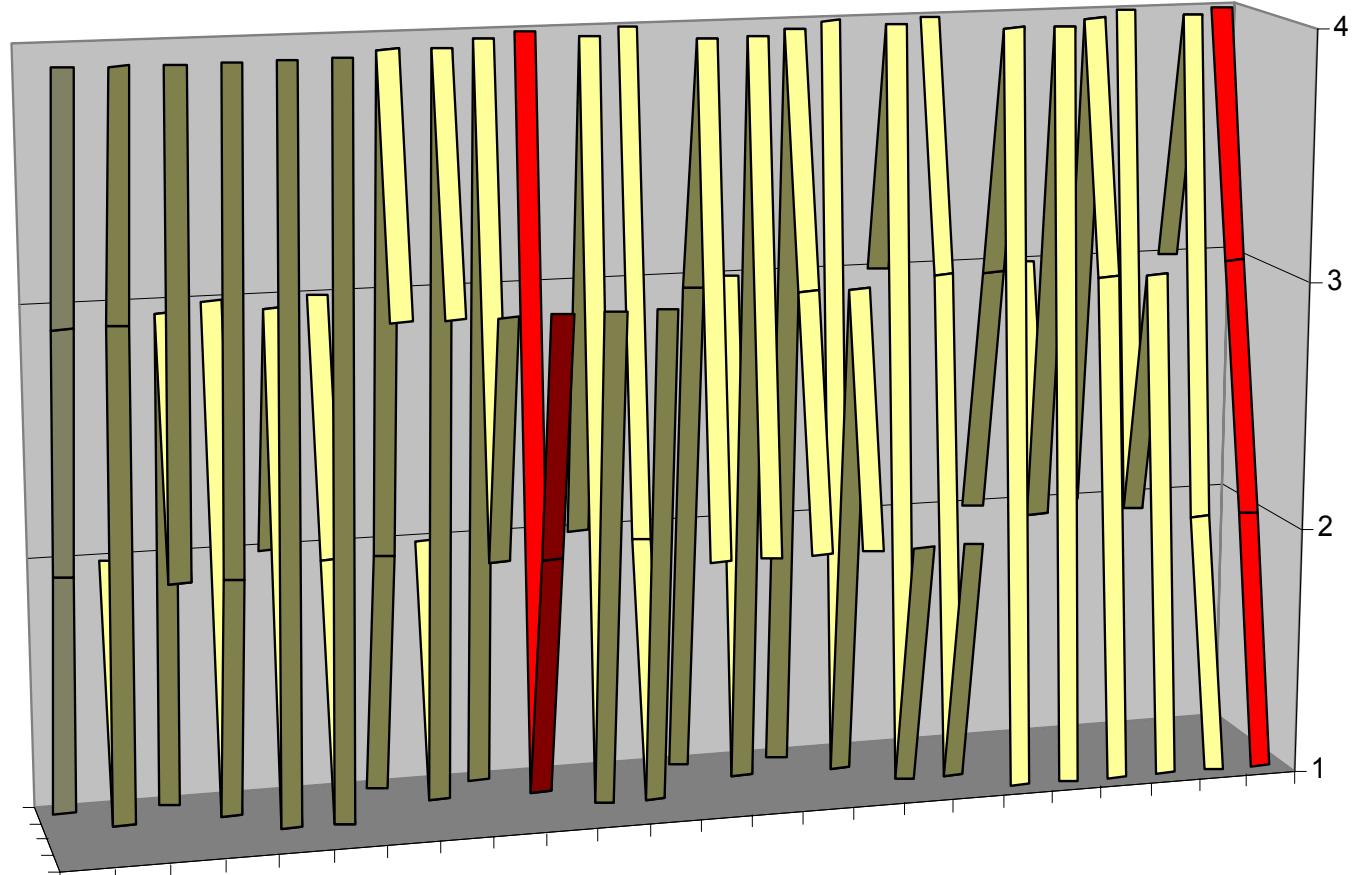
C. Schumacher, M. D. Vose, L. D. Whitley. The No Free Lunch and problem description length. *GECCO 2001*, 565-570, Morgan Kaufmann, 2001.

# "No Free Lunch" in words

- any algorithm that searches for an optimum of a cost function performs *exactly the same* as any other, *when averaged over all cost functions*
  - random search is as good as anything else, on average
- so, if algorithm A is better than algorithm B on some cost functions, then there are other cost functions where B is better than A
  - in particular, B could be intuitively "wrong" (eg, using hill-climbing to find a *minimum*)
    - search algorithms look for global maxima based on information from other parts of the fitness landscape
    - for any given algorithm, there are many "deceptive" landscapes

# "No Free Lunch" in pictures

| 1 | 2 | 3 | 4 |
|---|---|---|---|
| 1 | 2 | 4 | 3 |
| 1 | 3 | 2 | 4 |
| 1 | 3 | 4 | 2 |
| 1 | 4 | 2 | 3 |
| 1 | 4 | 3 | 2 |
| 2 | 1 | 3 | 4 |
| 2 | 1 | 4 | 3 |
| 2 | 3 | 1 | 4 |
| 2 | 3 | 4 | 1 |
| 2 | 4 | 1 | 3 |
| 2 | 4 | 3 | 1 |
| 3 | 1 | 2 | 4 |
| 3 | 1 | 4 | 2 |
| 3 | 2 | 1 | 4 |
| 3 | 2 | 4 | 1 |
| 3 | 4 | 1 | 2 |
| 3 | 4 | 2 | 1 |
| 4 | 1 | 2 | 3 |
| 4 | 1 | 3 | 2 |
| 4 | 2 | 1 | 3 |
| 4 | 2 | 3 | 1 |
| 4 | 3 | 1 | 2 |
| 4 | 3 | 2 | 1 |



all permutations

# NFL: theoretically important

- NFL is a fundamental theoretical result
  - like undecidability or Halting
  - there is no general-purpose search algorithm any better than random search on average
    - NFL theorems hold for *exponentially large* sets of cost functions, most of which are "random" or uncomputable
    - NFL does not hold for sets of cost functions with bounded description lengths
- a "Gödel fallacy"
  - consider the Halting Problem v. proofs of program termination
    - interested in a particular class of all possible programs
    - can structure with loop variants, etc

M. J. Streeter. Two broad classes of functions for which a No Free Lunch result does not hold. *GECCO 2003, LNCS 2724, 1418-1430, Springer, 2003.*

# NFL: irrelevant in practice

- in practice, we are not interested in *arbitrary* problems
  - we are interested in a *particular class* of search spaces
    - real world problems, not artificial “pathological” test functions
    - can always invent a test function that performs badly -- are these ones found in practice?
    - real world problems often have deep and interesting structure
- NFL demonstrates the importance of understanding the particular problem
  - can use *domain knowledge* to choose good search algorithms
    - “any algorithm performs only as well as the knowledge concerning the cost function put into the cost algorithm”

[Wolpert & Macready, 1995]