
NSC -- Introduction -- 1Department of Computer Science

NSC : Non-Standard Computation

MEng 10 credit module

Susan Stepney, 
John A. Clark, Sam Braunstein

Non-Standard Computation Group



NSC -- Introduction -- 2Department of Computer Science

what is Standard Computation?

• Turing paradigm
– finite discrete classical state machine, Halting, Universal
– closed system, predefined state space

• Von Neumann paradigm
– sequential fetch-execute-store

• algorithmic paradigm
– deterministic function from initial input to final output
– black-box isolated from the world

• refinement paradigm
– a known specification is refined to provably correct code

• pure logic paradigm
– substrate (hardware/physics) is irrelevant
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Non-standard views

• Real World as inspiration
– natural computation : physics inspired, bio-inspired

• Real World as a computer
– all computation and all data is embodied

• physical effects – particularly quantum
– analogue computation

• the great missed opportunity of the 20th Century?

• Open dynamic systems
– no Halting, rather ongoing developing interactive processes
– massive parallelism

• “more is different”
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“non-standard” computation?

like defining the bulk of zoology 
by calling it the study of 
‘non-elephant animals’ 

– Stan Ulam (attrib)
(on the name “non-linear science”)
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Biological complex adaptive systems

• evolution and genetics
– competitive “survival of the fittest”
– genetic algorithms, genetic programming

• immune systems
– cooperative dynamics

• swarms, ants, termites
– flocking, pheromones

• development and growth processes
– L-systems, artificial embryology, ontogeny

⇒ Bio-inspired algorithms
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embodiment of computation

• all computation, all data, is embodied
– it must be realised in the Real World somehow

• therefore it obeys the laws of physics
– mathematical models are abstractions from underlying physics
– different physics ⇒ different abstractions, different models

• the physical world is quantum mechanical
– quantum weirdness : superposition, entanglement

• models of computation should encompass the quantum
– then can exploit these weird properties

• exponential speedup?  teleportation?

⇒ Quantum Computing
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“more is different”

• natural systems have vastly more than one atom, one 
molecule, one cell, one organism, one species, …
– interacting in interesting ways

• systems with vastly more than one processing element
– Ubiquitous (pervasive) computing

• “chips with everything”
– Agent systems

• elements move, learn, adapt
– Cellular Automata

• emergent structures : from Gliders to UTM in Conway’s Life
• FPGAs (Field Programmable Gate Arrays)

⇒ Massive parallelism, and emergence
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open dynamical networks

• computation as a dynamic process
• far-from-equilibrium, heterogeneous, unstructured, 

metadynamic
– continual learning and development – no “end point”

• phase space attractors, computational trajectories
– autocatalytic chemical networks, cytokine immune network, 

genomic control networks, ecological webs, social and 
technological networks

• computation at the “edge of chaos”
• self organisation

⇒ Dynamical algorithms, and emergence
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course overview : lectures

• 1.  Introduction
• 2.  Local Search
• 3-8.  Bio-inspired population search and optimisation

– evolutionary algorithms
– swarms, ants
– Artificial Immune Systems
– growth and development

• 10-13.  Embodied Computation
– Quantum computation and communication
– Computation by the real world : DNA, cells, membranes, chemicals, …
– Analogue computation

• 14-18.  Computational Dynamics, Complexity, and Emergence 
– fractals, Cellular Automata, self organisation
– phase space, attractors, trajectories, network models
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course overview : practicals

• discussion groups

1. (w3) assumptions of classical computation
2. (w6) reality as inspiration, not constraint
3. (w8) embodied issues

• Quantum computing – niche or mainstream?

4. (w9) fractals and chaos
5. (w10) emergence and dynamics

– plus course review, assessment handout
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course overview : resources

• lecture notes
• applets
• links

• available on the course Web site
http://www-course.cs.york.ac.uk/nsc/

http://www-course.cs.york.ac.uk/nsc/
http://www-course.cs.york.ac.uk/nsc/
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NSC

Search and optimisation
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Lecture overview

• solution and search spaces
– objective function, fitness and cost functions

• fitness landscapes
– local and global optima
– ruggedness, hypercubes, NK-landscapes
– data representations

• classification and clustering as search
• No Free Lunch theorem

– what it means, and when it doesn’t hold
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solution space

• solution space Σ
– space of artefacts: programs, circuits, music, …
– objective function defined on solution space, 

• multi-objective vector, 
– the objective function measures the actual real world property 

to be optimised (maximised or minimised)
• best power consumption
• shortest path length
• most melodious music
• …

– objective may be difficult to capture or quantify
• what is the SI unit of melodious music?

ℜ→Σ:φ
( )n

i ℜ→Σ:φ
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search space

• search space S
– encode the solution space in a form suitable for search

• fitness (or cost) function defined on search space, 
• some implementations require the measure to be positive

– fitness for maximum, cost for minimum (but not consistent)
– optimising the fitness should also optimise the objective!

• the choice of fitness function is a modelling decision
• it can be scaled, inverted, smoothed, wrt to the objective

• algorithm to search that (very large) space
– efficient algorithm will sample only a very small part of the 

search space, yet find good (high fitness, low cost) solutions
• by exploiting structure of the search space

– decode search result(s) back into solution space, : SΓ → Σ

ℜ→Sf :
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search landscape terminology

local optimum

global optimum

f (s)

fitness 
function

s

search 
parametersearch for sopt where f (sopt) = max
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maximise or minimise?

• convert a maximisation problem to a minimisation 
problem by negating the fitness function
– and adding an offset, to make the cost function positive, if 

necessary
• choice of offset can affect behaviour of the search algorithm

– as can adding a constant to fitness/cost function for any reason

maximise minimise

f(s)

sopt

k− f(s)

sopt
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satisficing solutions

• don’t necessarily need the best solution, just a “good 
enough” solution 

• interested in satisficing, rather than optimising
– look for satisfactory solutions, that satisfice (minimally satisfy) 

the requirements, rather than the best, or optimal solution

– if current solution is good enough, it doesn’t matter that it may 
be very hard to get any better
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search landscape examples

smooth landscape rugged landscape
small change in search parameter 

-> large change in fitness

“swamp”

deceptive “trap” landscape“needle in a haystack”
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hypercube landscapes
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NK landscapes

• Kauffman’s parameterised correlated fitness landscapes
• consider N dimensions of binary traits : N D hypercube

– where overall fitness depends on correlations of traits
– draw a network that connects each trait to all the other traits 

that affect its fitness
• NK model: N traits, fitness of each affected by K other 

“input” traits
– hence the fitness of a trait depends on the values of K+1 traits
– attempt to maximise total fitness (of all N traits)
– conflicting constraints on maximising fitness of traits that 

depend differently on same input traits
• conflicts increase as K increases
• high K ⇒ more rugged landscape
• K = 0 = single peak ; K = N − 1 = fully random landscape
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classification and clustering as search

• classification
– group a population into “similar” sub-classes

• clusters in parameter space, expressed as rules, or boundaries

– supervised : given predetermined sub-classes, algorithm finds 
boundaries

– unsupervised : algorithm discovers sub-classes, too

• search, for a “fit” set of clustering rules
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representation

• choice of search space representation to fit the problem 
naturally, and be searchable 
– bit strings of length l :  S = {0,1}l

• directly encode parameter values being optimised
– more structured strings

• integers, characters, structs, …
– example: the component values in a fixed topology electronic 

circuit
– finite state machines

• to predict the next value in a sequence
– computer programs

• execute the program to generate (representation of) solution
– example: draw a variable topology electronic circuit diagram

• a change of representation can “smooth” the search 
landscape, or make it more searchable in other ways
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representation : Gray coding

• normal binary v Gray coding of integer bit strings
– binary : flipping high bits has a bigger effect than low bits
– Gray : consecutive underlying numbers differ by only one bit flip
– Gray coding gives a much smoother search landscape

• smoother, more continuous, adjacency relationship; fewer peaks
– but may smooth out important features
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representation : data transformations

• change of basis so structure becomes clearer
– “rotations” or scale changes; eigenvectors

• standard data transforms
– Fourier / Laplace / …

• projecting onto a lower dimensional space (smaller)
– might lose some information
– change of representation might result in some “fixed” 

parameters that can be eliminated
• embedding in a higher dimensional space (smoothing)

– discrete → continuous (real valued) → complex
• indirect encodings 

– as programs that generate results
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distances

• distance between two points in an N-D space

• Euclidean distance 
– “straight line” 
– other “non-geometric”

powers can also work

• Manhattan distance 
– “city blocks”
– cheap to calculate

• Hamming distance
– bitwise distance

between strings
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“No Free Lunch” (NFL) results

• to do with the impossibility of finding a search algorithm 
effective over all landscapes

• definitions
– search space S, fitness space R (where S, R are finite sets)
– fitness function
– search trace (or trajectory) 
– search algorithm gives the “move” : next point to 

search
– T(A, f ) = full search trace generated by A on f
– performance measure 

• given a set of cost functions F, 

• then, a NFL result applies to F, iff

:f S R→
1 1( , ), , ( , )m m mT s r s r= K

: mA T S→

( ) ( ( , ))
f F

M A M T A f
∈

≡ ∑
ℜ→TM :

)()(:,;: bmamAbaMm =∀ •
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“No Free Lunch” theorems

a NFL result applies to the following Fs:
• F = (finite) set of all functions f from S to R 

– [Wolpert & Macready]

• F = (finite) set of all functions f “closed under 
permutation” 
– all functions that have the same set of results

•
– [Schumacher et al.]

D. H. Wolpert, W. G. Macready.  No free lunch theorems for search.  SFI-
TR-95-02-010, Santa Fe Institute, 1995.
D. H. Wolpert, W. G. Macready.  No free lunch theorems for optimization.  
IEEE Trans. Evolutionary Comp. 1(1):67-82, 1997.
C. Schumacher, M. D. Vose, L. D. Whitley.  The No Free Lunch and problem 
description length.  GECCO 2001, 565-570, Morgan Kaufmann, 2001.

{ } { } { }1 2 3( , ), ( , ), ( , ) , ( , ), ( , ), ( , ) , ( , ), ( , ), ( , )f a b c f a b c f a b cα α δ α δ α δ α α= = =
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“No Free Lunch” in words

• any algorithm that searches for an optimum of a cost 
function performs exactly the same as any other, when 
averaged over all cost functions
– random search is as good as anything else, on average

• so, if algorithm A is better than algorithm B on some 
cost functions, then there are other cost functions 
where B is better than A
– in particular, B could be intuitively “wrong” (eg, using hill-

climbing to find a minimum)
• search algorithms look for global maxima based on information from 

other parts of the fitness landscape
• for any given algorithm, there are many “deceptive” landscapes
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“No Free Lunch” in pictures
1 2 3 4
1 2 4 3
1 3 2 4
1 3 4 2
1 4 2 3
1 4 3 2
2 1 3 4
2 1 4 3
2 3 1 4
2 3 4 1
2 4 1 3
2 4 3 1
3 1 2 4
3 1 4 2

3 2 1 4
3 2 4 1
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3 4 2 1
4 1 2 3
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4 3 2 1

all permutations
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NFL: theoretically important

• NFL is a fundamental theoretical result
– like undecidability or Halting
– there is no general-purpose search algorithm any better than 

random search on average
• NFL theorems hold for exponentially large sets of cost functions, 

most of which are “random” or uncomputable
• NFL does not hold for sets of cost functions with bounded 

description lengths 

• a “Gödel fallacy”
– consider the Halting Problem v. proofs of program termination

• interested in a particular class of all possible programs
• can structure with loop variants, etc

M. J. Streeter.  Two broad classes of functions for 
which a No Free Lunch result does not hold.  GECCO 
2003, LNCS 2724, 1418-1430, Springer, 2003.
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NFL: irrelevant in practice

• in practice, we are not interested in arbitrary problems
– we are interested in a particular class of search spaces

• real world problems, not artificial “pathological” test functions
• can always invent a test function that performs badly -- are these 

ones found in practice?
• real world problems often have deep and interesting structure

• NFL demonstrates the importance of understanding the 
particular problem
– can use domain knowledge to choose good search algorithms

• “any algorithm performs only as well as the knowledge concerning
the cost function put into the cost algorithm”

[Wolpert & Macready, 1995]
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