The 2™ International Conference on Ubiquitous Robots and Ambient Intelligence

Robot Navigation in Partially Observable Domains using
Hierarchical Memory-Based Reinforcement Learning

Bharadwaj Srinivasan
Department of Computer Science & Engg.
S.R.M. Engineering College,

Anna University, Chennai, India
E-mail: bharadwajl4 @ gmail.com

Abstract — In this paper, we attempt to find a solution to the
problem of robot navigation in a domain with partial
observability. The domain is a grid-world with intersecting
corridors, where the agent learns an optimal policy for
navigation by making use of a hierarchical memory-based
learning algorithm. We define a hierarchy of levels over
which the agent abstracts the learning process, as well as its
behaviour. The problem is modeled as a POMDP and a
solution is obtained by implementing the SARSA algorithm,
which incorporates Temporal Difference learning. The agent
uses short-term memory and abstracts over minute details
thereby enabling it to scale up to large partially observable
domains.

Keywords — Robot Navigation, POMDP, Hierarchical
Reinforcement Learning, SARSA

1. Introduction

The problem of robot navigation in general refers to
that of finding a navigable path between any two points
say, the source and the destination, on a given map.
Assuming that at least one such path exists, the agent’s
task is to find the best path among all such existing
paths. Best here refers to the most profitable path, or in
other words, the path having the least overall cost. Thus
such an optimal path must be found, with certain
constraints being imposed on the agent, such as time
limits and limited availability of resources.

In this paper, we tackle the problem of robot
navigation in a domain with partial observability. Partial
observability implies that the agent is at no point fully
aware of its surroundings, and can only perceive a part
of it at any given time. This complicates the problem of
navigation since there is always a level of uncertainty
about the agent’s position, relative to the environment.
For example, the agent may sense the same perceptions
at different points on the map, thereby rendering it
unable to distinguish between those points.

Path planning problems in domains with partial
observability have been studied under AI for a long
time, though their origins can be traced to problems
rising in Operations Research. Of the various
approached used to tackle planning problems in
POMDPs, the most effective ones use a Belief State

model [16] to approximate real-world states in a probabilistic
manner. Other approaches include aggregation of states,
maintaining a state history, and the use of a Predictive
Representation of States [15].

The approach used in this paper, to guide the agent
through the map is one of Hierarchical Memory-Based
Reinforcement Learning [10]. The agent learns to take
optimal actions at every step, by experimenting as it passes
through the map, and is ultimately equipped with the
knowledge of the optimal sequence of steps from source to
destination.

The use of Hierarchical Memory-Based Reinforcement
Learning for robot navigation has already been demonstrated
[1]. The salient features of this paper, in comparison with the
above mentioned work are as follows.

In this paper, the domain has been narrowed down to a
discrete grid-world environment and the algorithm has been
implemented on a generic gird-world platform created for
this purpose. In [1] however, a continuous spatial domain
serves as the environment and the Nomad 200 simulator [8]
has been used for testing purposes. Further, this paper makes
use of the on-policy SARSA learning algorithm, in contrast
with the off-policy Q-learning approach [10] used in [1] and
also incorporates an alternative short-memory technique. In
addition, the levels of abstraction and the respective options
defined at each level such as ‘wall following’ and ‘avoiding
obstacles’ are implemented differently.

2. The Problem

The problem dealt with in this paper is that of simple
grid-world navigation. The map consists of square tiles
arranged in a sequential manner in 2 dimensions, having
mutually perpendicular walls, with the agent being able to
occupy exactly one empty tile at a time. The map is
structured in the form of intersecting corridors with
randomly located obstacles, through which the agent must
navigate, avoiding collisions. The agent is provided with a
reward for reaching the destination, and is penalized for
colliding into walls or obstacles. Also, each step taken by the
agent has an associated step cost, that the agent must aim to
minimize.

The 2™ International Conference on Ubiquitous Robots and Ambient Intelligence

Here, a major problem faced by the agent is that the
state space can be very large, making it difficult for the
agent to keep track of the world as a whole. Further,
partial observability leads to the problem of perceptual
aliasing, ie. Different real world states generate the same
observation to the agent.

Other issues involved are the dynamicity of the
environment, such as varying wind blowing across the
map, which may affect the agent’s motion, and the
stochasticity of world events and the agent’s actions.
Further the agent’s sensors or effectors or both may be
defective, causing noisy readings and erroneous output.

2.1 Problem Formulation

The entire state space and actions taken by the agent
are formalized as a finite Markov Decision Process
(MDP) [6]. A finite Markov Decision Process is a tuple
<S, A, ¥, P, R>, where S = {1, 2, 3, ..., n} is a set of
states, A isSa finite set of actions, ¥ S x A, is the set of
admissible state-action pairs, P : ¥ x S — [0,1], is the
transition probability function with P(s,a,s’) being the
probability of transition from state s to state s’ under
action a, and R : ¥ — R is the expected reward function,
with R(s, a) being the expected reward for performing
action a in state s.

However, due to partial observability criteria, the
agent does not perceive the entire state space S, but only
a set of observations, say O. Thus the formalization is
actually that of a Partially Observable MDP (POMDP)
[11], which is a generalization of an MDP, with O
denoting the set of all observations perceived by the
agent, and rest of the parameters remaining the same.

The agent thus tries to learn an optimal Control
Policy [13] which is nothing but a relation C : O — A,
giving the optimal action to be chosen by the agent,
corresponding to each observation.

2.2 Agent’s Perceptors and Actuators

The agent has 8 sonars fixed horizontally in the
each of the 8 principal directions. Each sonar sends out a
beam which travels in that direction until it collides with
a wall/obstacle and gets reflected. The agent makes use
of the reflected beam to calculate the distance to the
nearest obstacle in that direction. A sample set of sonar
readings is shown in the following figure, with the blue
tile indicating the position of the agent. Black tiles
represent obstacles and numbers indicate the distance
from the agent to the obstacle. Each such sonar reading
constitutes an observation, in the simplest sense.

Figure 1. Agent’s Perceptors

The actions available to the agent apart from sensing are
Turn Left, Turn Right and Move Forward.

3. A Solution

The agent uses a short-term memory to remember recent
observations and learns the optimal control policy using an
on-policy Temporal Difference learning scheme, namely
SARSA [13].

3.1 SARSA — A Temporal Difference Reinforcement
Learning Algorithm

As in any Reinforcement Learning scheme, the aim here
is to maximize the cumulative reward obtained by the agent.
As mentioned earlier, the agent is presented a certain reward
when it reaches the destination and a certain penalty for
colliding with walls and obstacles.

A certain Reward Function can thus be associated with
every State-Action pair (s,a) which is nothing but the reward
r obtained when the agent chooses the action a in state s.
Thus the agent’s goal is to maximize the total reward
obtained over time, or in other words maximize the final
return.

Each state-action pair is associated with a value function
(Q-function) which gives the desirability of choosing an
action in that state. Thus Q(s,a) gives the desirability of
choosing action a in state s and is initialized with random
values for all a. The Q-functions for each state-action pair
are updated as the learning progresses, and in Temporal
Difference (TD) learning [13], this update takes place based
on the previous Q-value.

An €-greedy algorithm [13] is used to pick the action at
each step, thereby choosing a random action with probability
€, and the action with highest Q-value, with probability 1- €,
where € is a small value corresponding to the exploration
factor. This process of selection and update is repeated until
the goal state is reached and the learning stops. Training
takes place by repeating the above process over numerous
iterations of learning until the Q-values stabilize to the
desired level of accuracy.

The 2™ International Conference on Ubiquitous Robots and Ambient Intelligence

SARSA is an on-policy TD algorithm in the sense
that the updates to Q-values are made at each step based
on the action taken previously, and not the best possible
action at that step.

The steps involved in the SARSA algorithm are as
follows:

Initialize Q(s,a) arbitrarily
Repeat (for each episode)
Initialize s
Choose a from s using policy derived from Q (ie. € -
Greedy)
Repeat (for each step of episode)
Take action a, observe 1, s* (where s’ is the new state
reached)
Choose @’ from s’ using policy derived from Q (ie. € -
Greedy)
Q(s,a) <~ Q(s,a) ta [r + }'Q(s ’)a ’) - Q(s,a)]
s—s’;a«<—a’
until s is terminal

SARSA Algorithm

In our case, since the set of all states S maps onto
the set of all observations O, we replace state s by
observation o.

3.2 Memory and Hierarchy

As discussed already, the two major hurdles faced
in this problem are that of scaling up to larger domains
and perceptual aliasing. These can be overcome by
organizing the learning process into different levels of a
hierarchy, such that each level abstracts over minute
details, which are present in the lower layers. Further by
employing short-term memory instead of decisions
based on single states, we can reduce the problem of
perceptual aliasing.

Our state space now consists of histories, with each
history representing a collection of recently observed
states. Learning takes place at different hierarchical
levels based on the histories of observations made at
each level. This greatly speeds up the learning process
and also simplifies the spatial complexity required for
learning by a great deal. Hence we go in for a hierarchy
of levels with each level containing a history of states
previously observed at that level, instead of a flat, one-
level state space.

A history can thus be defined as a sequence of the
last n observations and the agent’s memory is thus a
collection of all such histories that have been
encountered in the past. The agent’s memory is stored in
the form of a tree with the Q-values stored at each leaf
node. The memory is padded with blank states until it
reaches a minimum usable size.

A technique of short-term memory that is used in
this paper is known as Nearest Sequence Memory

(NSM) [4] which records raw experiences in the form of a
linear chain. Another form of memory representation known
as the Utile Suffix Memory (USM) [4] has also been
implemented. However, it is preferable to have the length of
histories stored in the memory or in other words the memory
length as a variable, in order to speed up the learning process
and make it adaptable to the different forms of perceptual
aliasing encountered in the map. For this purpose, a
technique of variable memory, namely U-Trees [2] can be
used. However, in this paper we restrict ourselves to
memories of fixed length only.

Figure 2. shows a sample memory tree obtained during
an agent’s learning process. Successive states of a history are
stored along a chain from root to leaf, with the leaf
containing the Q-value for the history.

A Sample Memory-Tree

B - Blank
S0 - 85 - Observed States

Figure 2. A sample Memory Tree

The above tree has memory size = 3 states and a blank
state B is used to pad the memory with empty observations
until it reaches the full size. Every path in the tree from Root
to leaf represents a history of observations perceived by the
agent. Thus the chain consisting of Root-So-S2-S5 represents
the history wherein the last 3 observations were S5, S2 and
So respectively, in that order.

Next, we build a hierarchy of levels for navigation,
wherein each level of the hierarchy uses such a memory tree
to store the observations perceived in that level.

The Hierarchy used in this particular solution consists of
2 levels that are defined as follows:

Level 1 (Higher Level): This level consists of landmarks on
the map, which in this case are all corridor intersections. At
this level, the agent picks a direction to move in.

Level 2 (Lower Level): This level consists of the hallways or
corridors in the map and the agent learns to navigate through
a corridor, avoiding obstacles. The actions available to the
agent in the lower level are primitive actions such as Turn
Left, Turn Right or Move Forward, or an option [14]
consisting of a temporally extended combination of these
actions.

The 2™ International Conference on Ubiquitous Robots and Ambient Intelligence

3.3 Implementation

Level 1 of the Hierarchy (Higher Level):

i. Picks one of the available directions to move in,
at an intersection
ii. Passes control to level 2 after exiting the

intersection along that direction

A total of 13 different are intersections possible, 4
of which are shown below. Others can be obtained from
rotation/reflection of these figures.

Intersections

=1 it

Dead End L-junction T-junction 4 way junction

Figure 3. Types of intersections

Figure 3. shows simple corridor intersections with
uniform thickness and having no obstacles, which is an
elementary case. The actual map may contain corridors
of varying thickness with randomly located obstacles.

Level 2 of the Hierarchy (Lower Level):

i Uses an option to navigate within a corridor,
avoiding obstacles
ii. The option is trained separately in a training
corridor
iii. Terminates and passes control back to Level 1

on reaching an intersection
Training:

The option used in the lower level must be capable
of navigating within a corridor/hallway avoiding any
obstacles that may be present there. For this purpose the
agent is first trained in a Training Corridor, using the
same Memory-Based SARSA algorithm, so that it learns
to navigate within a corridor effectively. Once this is
learnt, the same option is used throughout the map in
level 2 of the hierarchy.

Figure 4. shows a sample training corridor where
the green tile represents the start state and the red tile,

the end state.

Training Corridor

Figure 4. Training Corridor

The agent is repeatedly trained in such a training
corridor and as the agent learns, the observation histories and
corresponding Q-values are entered into the memory tree.
This knowledge is then used by the agent while navigating
the main map.

Learning and Updating Q-functions:

In each of the two levels, the corresponding Q-function
is updated after each move as follows:

Level 1:

O(s,a) = Q(s,a) + a [(yo + yj + ...+ y’”).r +9".0(s"a’) —
O(s,a) | (D

where n = of steps taken from previous intersection, o =
learning rate and y = discount function

Level 2:

O(s,a) = O(s,a) + a [r+y.0(s".a’) = Qfs,a) | (©))

The learning and updating process continues until the
goal state is reached. As this is run over several iterations,
the agent learns the optimal control policy C, which it then
uses to navigate the map efficiently.

4. Testing and Analysis

The algorithm explained in this paper for navigating
partially ~ observable = domains has been tested
comprehensively across a wide range of simulated maps, and
the results obtained on two such maps are displayed in the
following section.

These maps represent the actual physical structure of the
world, and are not accessible to the agent. The agent’s
observation of a state on the map consists of only the 8
readings that it acquires as input from its sonars. Based on a
history of such readings and the reward obtained, the agent
learns a control policy by updating the corresponding value
functions in its memory.

Also, it is observed that occasional errors in the sonar
and noisy readings do not affect the learning process in the
long run since they are not used directly by the agent for
constructing a map of the world. Hence this design
consisting of sonars is feasible for real-time implementation.

The 2™ International Conference on Ubiquitous Robots and Ambient Intelligence

4.1 Results Obtained

Map 1:

Figure 5. Map 1 — Without Obstacles

* Size : 25 x 25

* Start : (6, 6)

¢ Destination : (20, 17)

* Optimal No. of Steps = 34

Learning Curve

1000

00

Number of Steps

20

0 10000 20000 30000 40000 50000 50000 70000 000 0000 10000

Episodes

Figure 6. Map 1 — Learning Curve

Figure 6. shows that the Hierarchical Memory
Based approach learns significantly well in the case of a
corridor without obstacles (ie. Map 1).

Map 2:

Figure 7. Map 2 — With Obstacles

e Size : 28 x 26

e Start : (7, 17)

¢ Destination : (20, 19)

* Optimal No. of Steps = 18

In Map 2, we have compared the Hierarchical Memory

Based learning algorithm with a flat, memory-less algorithm
and obtained the following results:

Learning Curve

3000

30000

w0
v
2 2o
]
o
b
T 15000
-]
£
S
=z
om0
s
.
o oo mow w0 awo sow w0 meo sow w0 owo
Episodes
Figure 8. Map 2 — Learning Curve (Without Memory)
Learning Curve
1000
som
0 oo
[-3
0]
12
-
o
g
-
2 o
=1
] '
2000 I ‘
MWMMM I ‘
o A e s e sy
o 1o 2o 20 o som - o oo oo oo

Episodes
Figure 9. Map 2 — Learning Curve (With Hierarchical Memory)

In Figure 8. the curve is haphazard and the agent shows
no signs of learning. This is due to the fact that the algorithm
is unable to overcome the problem of perceptual aliasing
without the use of memory. However in Figure 9. we notice
that the agent learns the optimal policy for navigation.

The agent is thus able to learn the optimal control policy
efficiently in both maps when it uses the Hierarchical
Memory Based approach. But, we also notice that the
learning process is significantly faster in the absence of
obstacles on the map.

The 2™ International Conference on Ubiquitous Robots and Ambient Intelligence

5. Conclusion

5.1 Hurdles faced in the Implementation

ii.

iii.

iv.

It was not possible to uniquely determine a
state as belonging to Level 1 or Level 2 of the
hierarchy.

Moving the agent out of intersections could not
be entirely automated and some manual
prodding was necessary.

The learning process would be disrupted if the
goal state was hidden inside corridors.

The agent had problems in navigating around
irregular-shaped obstacles until it was fully
trained.

5.2 Optimizations

ii.

iii.

iv.

vi.

The following list of optimizations can be
applied to the above implementation, in order to
improve the accuracy and efficiency of the learning
process.

Using an implementation of variable length
memory such as U-Trees, instead of the fixed-
size memory that is being used at present.
Implementing goal regression and prioritized
sweep.

Addition of eligibility traces to speed up
learning.

Exploration vs Exploitation trade-off
Decaying the value of € gradually to obtain
optimal solutions after learning has stabilized .
Incorporating transformations in histories to
exploit symmetry and other similarities
between histories.

Use of a closest match algorithm to determine a
match from the memory tree with highest
degree of closeness to the history.

5.3 Computational Issues

The technique of Reinforcement Learning used
in this paper is strictly iterative and as in any such
problem, the efficiency of learning is greatly
dependent on the complexity of the map.

However, when compared to a one-level
learning scheme, Hierarchical learning requires
fewer states to be remembered because of its two-
level organization. This greatly reduces the space
complexity of the algorithm and in turn the search-
time and time complexity, the extent of this
reduction being dependent on the definition of
levels of the hierarchy.

Thus we infer that the Hierarchical Memory-Based
approach performs significantly better than the flat state-
based approach for navigating in partially observable
domains, in terms of the learning speed as well as the
efficiency.

Acknowledgements

I sincerely thank Dr.B.Ravindran, Assistant Professor,
Department of Computer Science & Engg., IIT Madras, for
his clear guidance and unfailing assistance, without which
this paper would not have been possible.

I also thank the Head, faculty members, staff and
students of the Department of Computer Science & Engg.,
IIT Madras, for their support and encouragement.

REFERENCES

[1] Natalia Hernandez Gardiol and Mahadevan, S. "Hierarchical Memory-
based Reinforcement Learning", Advances in Neural Information Processing
Systems 13, (NIPS 2000). MIT Press, Cambridge, 2001

[2] McCallum, R. Andrew, “Learning to Use Selective Attention and Short-
Term Memory in Sequential Tasks”, in From Animals to Animats, Fourth
International Conference on Simulation of Adaptive Behavior, (SAB'96).
Cape Cod, Massachusetts. September, 1996.

[3] McCallum, R. Andrew, “Hidden State and Reinforcement Learning with
Instance-Based State Identification”, IEEE Transactions on Systems, Man
and Cybernetics (Special issue on Robot Learning), 1996.

[4] McCallum, R. Andrew, “Reinforcement Learning with Selective
Perception and Hidden State”, PhD. thesis. December, 1995.

[5] Leslie Pack Kaelbling et al, “Hierarchical Solution of Markov Decision
Processes using Macro-actions”, Proceedings of the Fourteenth
International Conference on Uncertainty In Artificial Intelligence, 1998.

[6] Richard Bellman, “Dynamic Programming”, Princeton University Press,
1957.

[7] S. D. Patek, “On Partially Observed Stochastic Shortest Path Problems,”
Proceedings of the 40" IEEE Conference on Decision and Control (CDC
2001). IEEE Part vol. 5, pp. 5050-5055.

[8] Brie Finger & Jessica Fisher, “Nomad 200", Robotics — Lab Write-up,
Harvey Mudd College, 2003.

[9] Thomas. G. Dietterich, “The MAXQ Method for Hierarchical
Reinforcement Learning”, 1998 International Conference on Machine
Learning.

[10] Ronald Edward Parr, “Hierarchical Control and Learning for Markov
Decision Processes”, PhD. thesis. December, 1998.

[11] Georgios Theocarous, K. Rohanimanesh, and Mahadevan, S.
“Learning Hierarchical Partially Observable Markov Decision Processs for
Robot Navigation”. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2001.

[12] Georgios Theocarous, K. Rohanimanesh, Mahadevan, S. “Learning
Hierarchical Partially Observable Markov Decision Processes for Robot
Navigation”.

[13] Richard.S.Sutton & Andrew.G.Barto, “Reinforcement Learning, An
Introduction”, MIT Press, 1998.

[14] Barto, A. G. and Mahadevan, S. “Recent Advances in Hierarchical
Reinforcement Learning”. Discrete Event Dynamic Systems 13, 4 (Oct.
2003), 341-379.

[15] Michael L. Littman, Richard S. Sutton and Satinder Singh, “Predictive
Representations of State”, in Advances in Neural Information Processing
Systems 14, pages 1555—1561, 2002.

[16] Richard D. Smallwood and Edward J. Sondik, “The optimal control of
partially observable Markov processes over a finite horizon”, Operations
Research, 21:1071--1088, 1973.

