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Abstract

Perceptual aliasing is a serious problem for
adaptive agents. Internal memory is a promis-
ing approach to extend reinforcement learning al-
gorithms to problems involving perceptual alias-
ing. In this paper we investigate the effective-
ness of internal memory for tackling perceptual
aliasing problems with adaptive agents and rein-
forcement learning. Specifically, we try to give a
unified view of some interesting results that have
been presented in different frameworks, i.e.: tab-
ular reinforcement learning and learning classifier
systems.

1. Introduction

The learning capabilities of adaptive agents rely heavily
on their perception of the environment. There are cases
in which the agent can perceive all the relevant infor-
mation necessary to decide what is best to do in every
situation. Often the agent’s perceptions are aliased be-
cause the agent’s sensors convey only partial information
about the surrounding environment. In these cases there
might be distinct situations which appear identical to the
agent but require different actions. When this happens
the agent cannot decide what is best to do only looking
at its current sensory inputs since these may be aliased.
Shortly, we say that the agent suffers from a perceptual
aliasing problem.

Perceptual aliasing is a major problem in reinforce-
ment learning (Sutton and Barto 1998), that area of
machine learning devoted to the study of techniques to
train autonomous agents through trial and error inter-
actions. In fact most reinforcement learning techniques
assume that the environment is completely observable
by the agent, i.e., that the agent’s perceptions are not
aliased. This condition is usually termed the Markov
property. The distinction between environments which
satisfy the Markov property (i-e., Markov environments)
and those which do not (i.e., non-Markov environments)

is essential in reinforcement learning.! If the environ-
ment is Markov, the agent can rely completely on its cur-
rent sensations, and those reinforcement learning algo-
rithms which develop reactive behaviors (e.g., Watkins’
Q-learning (1989)) perform optimally. Conversely, if the
environment is non-Markov, the agent cannot rely com-
pletely on its current sensations because these might be
aliased; reactive behaviors are not optimal anymore and
most of the reinforcement learning algorithms become
infeasible. To cope with perceptual aliasing, reinforce-
ment learning algorithms are usually extended by adding
a memory mechanism. Since the agent cannot rely only
its current sensory inputs, it exploits memory to keep
trace of previous information to disambiguate current
situations.

One of the most promising approaches to add mem-
ory to adaptive agents is by means of an internal memory
register (Wilson 1994) in which the agent can read and
write information. From the agent’s point of view in-
ternal memory is a sort of knot in an handkerchief that
the agent can tie or untie to remember past events. The
results reported in the literature suggest that internal
memory? can be a general and effective way to tackle per-
ceptual aliasing. However, there are small discrepancies
between the results reported by different authors. Lanzi
(1998b), and later Lanzi and Wilson (2000), discussed
a number of general problems that show up when using
internal memory to solve perceptual aliasing. Peshkin
et al. (1999) suggested that SARSA()) easily reached
optimal performance. Unfortunately these results refer
to different testbeds so that a direct comparison between
the two approaches is impossible.

In this paper we investigate the effectiveness of in-

I The term non-Markov embraces a larger class of problems than
that captured by the term “perceptual aliasing”. However, since in
this paper we only consider problems that are non-Markov because
of perceptual aliasing we use these two terms without distinctions.

2In learning classifier systems both Holland (1986) and Wil-
son (1994) consider memory as internal to the agent; in contrast
Peshkin et al. (1999) consider memory as external. In this paper
we use use the former approach which is coherent with Sutton and
Barto (1998) who consider as internal anything that the agent can
explicitly modify.



ternal memory for solving perceptual aliasing within
the reinforcement learning framework. Our aim is to
present an initial step toward the development of a uni-
fied view of different results reported in the literature.
For this purpose, we consider the most known reinforce-
ment learning algorithm, Q-learning, and add internal
memory following the approach used in (Lanzi and Wil-
son 2000; Peshkin et al. 1999). We apply Q-learning
with internal memory to a problem involving simple per-
ceptual aliasing. We show that while trying to solve
aliasing on the agent’s perceptions we may introduce an
aliasing on the payoffs which, in principle, prevents the
development of satisfactory behaviors. We study the
conditions under which this aliasing on the payoffs can be
limited in order to allow satisfactory performance. We
show that to limit this phenomenon the agent should
not develop a complete knowledge of the underlying re-
inforcement learning problem but a partial description.
Then we consider three extensions introduced in the lit-
erature for improving the performance of internal mem-
ory within reinforcement learning: (i) the separation be-
tween the exploration of internal memory and the ex-
ploration of the environment (Lanzi 1998b); (ii) the use
of redundancy (Lanzi and Wilson 2000); (iii) the eligi-
bility traces (Peshkin et al. 1999). Finally we discuss
the impact of these three extensions on Q-learning with
internal memory with respect to the problem previous
discussed.

2. Related Work

Internal memory was first introduced within the
biologically-inspired framework of learning classifier sys-
tems (Holland 1986). These are rule-based systems
in which learning is viewed as the process of ongoing
adaptation to a partially unknown environment through
genetic algorithms and temporal difference learning.
Learning classifier systems have an internal message list
where the agent can store and retrieve information about
previous time steps. Wilson (1994) simplified Holland’s
approach by replacing the internal message list with an
internal memory register which basically corresponds to
an internal message list with only one message. Wil-
son’s internal memory register was successfully applied
to many problems involving perceptual aliasing, e.g.:
Cliff and Ross (1994), Lanzi (1998a, 1998b), Lanzi and
Wilson (2000). Recently Peshkin et al. (1999) ap-
plied the internal register idea to the framework of tab-
ular reinforcement learning adding an internal register
to SARSA(A) and to a novel algorithm, named VAPS, re-
porting interesting results.

Other authors have introduced different approaches
to tackle perceptual aliasing with reinforcement learn-
ing. McCallum (1995) extensively studied algorithms to
exploit a window of previous agent’s sensations to iden-
tify and solve perceptual aliasing situations. Stolzmann
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Figure 1: The Woods100 environment. The labels Ci, A, Fi,
Fr, Ar, and Cridentify the empty positions. Positions Agrand
A_are aliased since they are perceived as identical (like A) by
the animat.
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Figure 2: An optimal policy for Woods100 with one bit on
internal register. With “R¢...”
is set before the animat moves; with “R7?...

we indicate that the register
”  we indicate
that the animat moves only if the register contents are set as

specified.

(2000) developed his anticipatory classifier system where
previous sensations are explicitly remembered and used
to disambiguate states that appear to be aliased.

3. Perceptual Aliasing and Memory

To study how internal memory can be exploited to tackle
perceptually aliased situations we adopt the biological
metaphor of an artificial animal, an animat (Wilson
1985), that must learn to find food inside a maze. En-
vironments are grid worlds where each cell can contain
trees (“T”), food (“F”), or can be empty. The animat
randomly placed in an empty position must reach a po-
sition with food. The animat has two Boolean sensors
for each of the eight adjacent cells: one tells the animat
whether the cell is empty, the other one whether the cell
contains food; the animat can move into any adjacent
empty cell.



The Woods100 environment in Figure 1 is a small cor-
ridor with food in the middle position; it has two po-
sitions, identified with the labels A_ and Ag, where the
animat’s sensations are aliased. In fact these positions
appear identical (like position A in the lower part of Fig-
ure 1) through the animat’s sensors but they require dif-
ferent optimal actions: in position A, the optimal action
is go-east; in position Ag the optimal action is go-west.
From now on, with A_ and Ar we will refer to the ac-
tual positions in the environment, with A to the animat
sensation in both A. and Ag.

Perceptual aliasing in Woodsl00 would be easily
solved if the animat could remember the position from
which it entered an aliased position: if the animat was in
the left corner (position Cp) before entering the aliased
position (i.e., before sensing A), the optimal action is go-
east; if the animat was in the right corner (position Cg)
before entering the aliased position, the optimal action
is go-west.

To remember its previous position the animat can use
an internal memory register (R) with one bit. When the
animat is initially placed in the environment the register
R is set to 0. If the animat is in C, it will set the in-
ternal memory register R to zero, if the animat is in Cr
it will set the internal memory register to one; when in
an aliased position (i.e., when its sensations are A) the
animat will go left if R is one, right if R is zero. This
strategy to solve the perceptual aliasing in Woods100 is
depicted in Figure 2. Note that when the animat starts
in an aliased position (e.g., Agr) it first must find out
in which part of the environment it is. For example, if
the animat is initially put in position Ag it will first ad-
vocate action go-east without setting the register; as a
result the animat will find itself in position Cgr. At this
point the animat realizes that it is in the right side of
the corridor; accordingly it goes west setting the register
R to 1 entering, for the second time, the aliased position
(Ar). At this point, the animat “remembers” that it is
in the right side of the corridor since the register R is set
to one; thus it goes west finding food near position Fg.

4. Reinforcement with Internal Memory

Reinforcement learning addresses the problem of an
agent that must learn to perform a task through trial and
error interactions with an unknown environment (Sut-
ton and Barto 1998). The agent and the environment
interact continuously. The agent senses the environment
through its sensors and, based on its current sensory in-
puts, it selects an action to perform in the environment.
Depending on the effect of its action, the agent eventu-
ally obtains a reward. The agent’s goal is to mazimize
the amount of reward (i.e., the payoff) it receives in the
long run.

There exist different types of algorithms that can
tackle reinforcement learning tasks. Most of them are

inspired, in a way or another, by methods of Dynamic
Programming (e.g., Watkins’ Q-learning (1989)). Oth-
ers, like Holland’s learning classifier systems are more
inspired by techniques of adaptive behavior.

Watkin’s Q-learning (1989) is probably one of the
best known reinforcement learning algorithm. The Q-
learning algorithm computes by successive approxima-
tions a table of all values Q(s,a), called the Q-table.
Q(s,a) is defined as the payoff that the agent should ex-
pect when, sensing s it performs action a, and then it
carries on always performing the best possible actions.
The algorithm works as follows. Initially, all the values
Q(s,a) are randomly initialized. At each time step ¢,
when action a; is performed in state s; the Q-table @ is
updated according to the formula:

Q(8t—1,at-1)
aQ(st-1,at-1) + (1 — @) (r + ymax Q(s¢, a))

where « is the learning rate (0 < a < 1); ~ is the dis-
count factor; r is the reward received for performing a;_1
in s;_1; and s; represents the agent’s sensations after
performing a; 1 in s 1.

Action Selection. Every time the agent has to select
an action it can decide whether it should exploit what it
already knows or it should ezplore new possibilities. In
the former case the agent usually selects the action with
the highest expected reward. In the latter the agent
selects an action according to a certain policy. There
are many policies that an agent can follow to select an
action to be performed in the environment. In this pa-
per the animat uses an e-greedy policy to explore new
actions: with probability e the animat will explore the
environment by selecting a random action; with prob-
ability 1 — € the animat will select the action with the
highest expected reward.

Eligibility Traces. Tabular Q-Learning can be ex-
tended with Sutton’s eligibility traces (Sutton 1988).
The resulting algorithm, Q(A), at each time step ¢ per-
forms the following updates (Watkins 1989):

1. 6« (r+ymax, Q(st,a)) — Q(s¢—1,a1—1)
e(si—1,a1-1) < e(sp—1,a1-1) +1
3. for all s,a:
Q(st-1,at-1) < Q(st-1,a:-1) + ade(s, a)
if a; is the best action
then e(s,a) + yAe(s, a);
otherwise e(s,a) «+ 0

where e(s, a) is the eligibility trace corresponding to sen-
sation s and action a; the term X is a decay factor.
Q(X) is generally believed to outperform plain Q-learning



since it uses single experiences to update the estimates
of many other sensation-action pairs (Peng and Williams
1996; Wiering and Schmidhuber 1998a). In addition,
eligibility traces are often used when dealing with non-
Markov environments, e.g., Loch and Singh (1999) and
Peshkin et al. (1999).

Q-Learning with Internal Memory. To add inter-
nal memory to Q-learning we follow the approach pro-
posed by Wilson (1994) for the ZCS classifier system
(later implemented by Cliff and Ross (1994) and Lanzi
(1998a)) which is is basically the same used by Peshkin
et al. (1999) with SARSA(A). First we add an internal
memory register R of b bits to Q-learning. We extend
the animat’s sensations s with a binary string s,, that
the animat can use to test the content of the register,
i.e., s, is satisfied if R is equal to s,,. We also extend
the animat’s actions with an “internal action” a,, which
the animat can use to modify the register, i.e., to per-
form a,, means to assign a,, to R. At the beginning of
a new problem the register is set to a fixed initial state
(e.g., R is set to zero). Then Q-learning is applied as
usual on the Q-table built on the new set of sensation
pairs (s,s,,) and action pairs (a,a,,). The only difference
with respect to basic Q-learning is that: (i) the animat
sensations are determined both by the current (external)
sensations s and by the content of the register R; (ii) the
animat acts both on the environment (with a) and on
the internal register R (with a,,).

Design of Experiments. All the results presented in
this paper are averages over one hundred runs. Each
runs consists of 50000 problems that the animat must
solve. These problems are divided in learning problems
and testing problems: every learning problem is followed
by a testing problem. During a learning problem the an-
imat selects actions randomly according to the e-greedy
exploration strategy, during testing problems the animat
always selects the best action. The animat performance
is computed as a moving average over the last 50 testing
problems. At the end of the 50000 problems, the solution
is tested by running a set of test problems in which the
animat is put in every free position of the environment
exactly once.

5. Simple Perceptual Aliasing

We apply Q-learning with one bit of internal memory
(i.e., b = 1) to Woods100 for 50000 problems, with the
following parameter settings: a = .1, v = .5, ¢ = .5. The
performance, computed as an average over one hundred
experiments, is showed in Figure 3. As can be noticed
from the plot, Q-learning with one bit of internal mem-
ory does not achieve optimal performance on the aver-
age. However, when looking at the single runs we find
that:
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Figure 3: Performance of Q-learning with one bit in
Woods100. The curve is an average over one hundred runs.

(i) in 62 runs Q-learning with memory converged to an
optimal solution for Woods100 which was the same
as or equivalent to that shown in Figure 2;

(ii) in other 20 runs Q-learning with memory converged
to a solution that was “correct”, i.e., that always took
the animat to the food but required more steps than
the optimal solution in Figure 2;

(iii) in the remaining 18 runs Q-learning with mem-

ory converged to an incomplete solution which was

fully incorrect, e.g., for certain positions the animat
bounces against a wall or loops in a subset of posi-
tions.

We repeated this experiment for values of € from .1 to
1.0 with step .1. The result of this series of experiments
is depicted in Figure 4. The parameter € is on the ab-
scissa; the percentage of optimal solutions (dashed line)
and correct solutions (solid line) is on the ordinate. As
the results show in no case Q-learning with one bit of
memory reaches optimal performance in 100% cases.

6. Analysis of the Experimental Results

The reader might argue that the unsatisfactory perfor-
mance of Q-learning with memory in Woods100 is due to
an incorrect use of the memory bit. However analyzing
these results in detail we noted that in most of the cases
in which performance was not optimal the association
between the memory bit and the aliased positions was
correct. In fact in many unoptimal cases, the solution
for the positions Ag, AL, F., and Fg was similar to that
in Figure 2.

Surprisingly (at least for us), unoptimal performance
happened because the best action advocated in the cor-
ner position (C_ and Cg) was wrong. For instance, if

25000
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Figure 4: Percentage of optimal (dashed) and correct (solid)
solutions developed by Q-learning with one bit of internal
memory for different values of €. The statistic is measured
over 100 runs of 50000 trials each.

we consider the solution in Figure 2, in many unopti-
mal cases we found that in position Cp the action corre-
sponding to the highest expected reward was not go-east
setting the register R to 0 (shortly, go-eastr¢—), as it
happens in the optimal solution in Figure 2, but go-east
setting R to 1 (shortly, go-eastr¢e—1). As a result, when
the animat started in position C_ it cycled between Cp
and A_. This looping situation eventually stopped when,
because of the Q-learning update, the truly optimal ac-
tion go-eastr<«—o became the most predictive and the an-
imat broke out of the loop.

7. The Mathematical Framework

To understand the previous results we must first under-
stand the impact that internal memory has on the un-
derlying mathematical framework of Q-learning,.

When adding internal memory to Q-learning we hy-
pothesize that, if the environment has some aliased sit-
uations (and thus is non-Markov), then the animat can
solve perceptual aliasing (making it Markov) by stor-
ing and retrieving information in the internal memory.
Indeed, the optimal solution for Woods100 in Figure 1
suggests that this is possible and that our hypothesis is
correct. On the other hand, our results also suggest that
something in the overall framework does not work prop-
erly. In fact we found that an unoptimal action (e.g.,
go-eastr¢—1 in Ci) might have an higher expected reward
than an optimal one (e.g., go-eastr<—). Thus the first
question we must answer is, given the optimal solution
in Figure 2, “What is the expected reward of the actions
go-eastr¢—o and go-eastr¢—1 in C 77

Consider the optimal solution in Figure 2 and suppose
that Q-learning with one bit of memory has converged

to the optimal Q-table Q* for Woods100.® ;From the
Q-learning we have that the expected payoff for action
go-eastreo in C, i.e., Q*(CL, go-eastre—g) is computed
as:

Q" (CL,go-eastre—) =7 + y max Q*(Aa)

The immediate reward r is zero since performing go-
eastr¢— in C| returns no reward; the most rewarding
action in the next (aliased) state A* is go-eastgzg which
has an expected payoff equal to v1000 since it is two steps
away from the food. Thus Q*(C, go-eastr¢«—o) is 721000.
In a similar way, if we compute Q*(C_,go-eastre—1) we
find that: again r is zero; when the internal memory
register R is set to 1, the most rewarding action in A
is go-westg?; which is two steps away from the food and
thus as a payoff equal to v1000; while Q*(C ,go-eastr¢1)
is v21000. Therefore the two actions go-eastr«o and go-
eastre—1 have the same expected reward in C_ that is:
+21000!

Although in Woods100 the animat can exploit mem-
ory to solve the perceptual aliasing coming from its sen-
sors, it may be still unable to decide which action is best
because also the action’s payoffs are “aliased,” i.e., the
animat cannot distinguish which action is best because
both actions have the same expected payoff.

8. Validation

This analysis suggests that the animat should not be able
to solve Woods100. On the other hand our experiments
show that the animat can solve Woods100 in a significant
amount of experiments: when € is 0.5, 62% of solutions
developed are optimal (Figure 4). Thus, if Q-learning
with internal memory should not solve Woods100, why
does the animat learn so many optimal solutions?

To explain these results we traced the payoffs of the
actions go-eastr¢—o and go-eastr¢—1 in position C for
different values of e. Figure 5 shows the payoffs of the
two actions in position C| on a single optimal run for
e = .1; Figure 6 shows the same payoffs for an optimal
run with € = .5; finally, Figure 7 shows them for an
unoptimal run with e = 1.0.

As can be noticed from Figure 5, when the animat
performs only a little exploration (¢ = 0.1) one of the
two actions (solid line in Figure 5) becomes immediately
“dominant,” i.e., its expected reward is greater than the
expected reward of the other action. Thus when the
exploration is limited the two actions, go-eastr«o and
go-eastr«—1, are very unlikely to converge to the same
payoff, therefore the animat is always able to choose the
best action when in C,.

3Since we hypothesized that internal memory solves perceptual
aliasing we also hypothesize that the Markov hypothesis holds and
that Q-learning with internal memory converges to an optimal Q*.

4We remind the reader that we use A to refer to the aliased
positions as seen through the animat’s sensations; A| and Ag when
referring to the actual positions in the environment.
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Figure 5: Values of the Q-table corresponding to position
Cifor the actions go-eastr¢«—o and go-eastr«1; the parameter
eis 0.1.
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Figure 6: Values of the Q-table corresponding to position
Cifor the actions go-eastr¢«—o and go-eastr«1; the parameter
€ is 0.5.

Q-LEARNING WITH MEMORY AND EPSILON = 1.0
250 T T

GO EAST AND R<-0
GO EAST AND R<-1 -------

200 q

150 Ik

100 1

EXPECTED PAYOFF

50 1

I I I I
0 5000 10000 15000 20000 25000
NUMBER OF PROBLEMS

Figure 7: Values of the Q-table corresponding to position C,
for the actions go-eastr¢—o and go-eastr«—1; the parameter €
is 1.0.

When the exploration rate increases (¢ = .5) the ex-
pected payoffs of the two actions in C; tend to become
very similar (see Figure 6). However, one action may
still tend to be dominant because it is exploited more
(see the dashed line in Figure 6). Note however that the
two actions may swap their roles, i.e., the action which
has a lower expected payoff may suddenly become the
more predictive and wvice-versa; this event is reported in
the plot with the crossing of the two lines (see Figure 6
between run 15000 and run 20000). When this happens
two events may occur: (i) If the new situation persists
enough the animat will tend to modify the association
between the memory and the aliased positions so that
the new “dominant” action becomes optimal; (ii) Alter-
natively, after a few trials the two actions swap again
and the former optimal action becomes dominant again.

Finally, if the animat explores too much (¢ = 1) the
prediction of the two actions might become almost equal
and the corresponding actions are indistinguishable with
respect to their expected payoffs (see Figure 7). Thus the
animat cannot establish an optimal and stable strategy
to solve perceptual aliasing in Woods100.

9. Some Considerations

We found that while trying to solve aliasing on the ani-
mat’s perceptions with internal memory, we might intro-
duce an “aliasing on the payoffs’ which can prevent the
animat to develop satisfactory behaviors. Unfortunately,
this type of alias is very difficult to characterize. As we
will show in the next section, other well know environ-
ments show similar situations. One way to tackle this
problem consists of performing little exploration. In this
case, even if the problem does not admit in principle an
optimal solution the animat can build one by focusing on
most promising actions and paying little or no attention
to less promising ones. In other words, to solve percep-
tual aliasing the animat must learn only part of what it
can do (in our case, only part of the Q-table) because
the complete knowledge of everything it might do (i.e.,
the complete final Q-table) would make the problem im-
possible to solve. In reinforcement learning the complete
knowledge of the Q-table is usually regarded as an advan-
tage of tabular representations. Unfortunately these are
not feasible in practice because of their complexity and
thus function approximators (e.g., neural networks) are
commonly employed to get rid of the size of the Q-table.
In general, these methods do not represent the whole ta-
ble, but only part of it. Our results suggest that these
“incomplete” representations become a need when using
internal memory with reinforcement learning.

Finally, we observe that a limited exploration does not
solve the problem we analyzed. In fact, even if we use a
very small exploration rate € we are not guaranteed that
the animat will not finally develop Q* reaching at the
end an unsatisfactory behavior. In fact, in Figure 5 we
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Figure 8: The Woods101 environment. The labels AL and
Aridentify the aliased positions. The labels C and Cridentify
the corner positions.

see that although the animat rarely explores the action
with the lower payoff, in the long run we shall expect
that the two lines will cross, i.e., the two payoffs will
tend to be very, very, similar.

In our opinion, these results suggest that “non-
tabular” reinforcement learning techniques, such as
learning classifier systems or neural networks, are
promising ways to tackle perceptual aliasing problems.
These techniques in fact more easily focus only on part
of the representation of animat’s behavior; this feature
when coupled with adequate exploration strategies may
avoid the convergence to the complete Q-table and the
consequent disruption of the optimal behaviors devel-
oped. The positive results presented in literature, e.g.,
(Lanzi and Wilson 2000) and (Wiering and Schmidhuber
1998b), appear to support this opinion.

10. A Well Known Environment

Since Woods100 is very simple we may argue that the
phenomenon we analyzed so far appears rarely. However,
if we consider the Woods101 environment which has been
extensively used in much reinforcement learning litera-
ture (e.g., McCallum (1996), Cliff and Ross (1994)) we
find that the phenomenon we analyzed shows up again.
Woods101 (Figure 8) is a small maze with two aliased
positions (AL and Ag) which can be solved, in principle,
by an animat with one bit of internal memory. The two
corner positions (C_ and Cg) have the same problems
as the positions with the same name in Woods100 (not
showed here). When we apply Q-learning with one bit
of internal memory in Woods101 with the same settings
of previous experiments, and we measure the number of
optimal and correct solutions developed, we obtain the
results showed in Figure 9 which basically confirm what
we found for Woods100. Interestingly, as far as we know,
the phenomenon we discussed in previous sections has
not been discussed in the literature; this supports our
claim that this “aliasing on the payoffs’ may be very dif-
ficult to characterize and thus a relevant problem when
designing adaptive agents.
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Figure 9: Number of optimal (dashed) and correct (solid)
solutions with one bit of memory and different values of e.
The statistics are measured over 100 runs of 50000 trials each.

11. Three Extensions

Other authors have studied the use of internal mem-
ory within the reinforcement learning framework. In
these works three main extensions were introduced to
improve the performance of reinforcement learning algo-
rithms with internal memory.

Internal /External Exploration. Lanzi (1998b)
showed that it is useful to separate the exploration per-
formed “in the environment” from that performed “in
the internal memory.” In particular he suggested that
for reaching optimal performance in difficult perceptu-
ally aliased situations, it is better to explore internal
memory less than external environment. Lanzi argued
that to build a correct association between memory
configurations and aliased positions the animat must
follow a strategy which must be “more deterministic”
than that needed to explore the environment.

To analyze the impact of these two types of explo-
rations in our framework we define two exploration prob-
ability: ex for the environment; ep; for the internal
memory. We extend the e-greedy exploration employed
in the previous experiments as follows. Every time the
animat has to select an action, first it selects with proba-
bility eps whether it will act on the internal memory ran-
domly or with the best available action. In the former
case, the animat will generate a random (internal) ac-
tion to be performed in the internal memory register. In
the latter case, it will select the internal action that cor-
responds to the most rewarding external-internal action
pair. Then the animat applies the same procedure with
probability ex to the external action part. The overall
strategy is a generalization of the “compound’ action se-
lection strategy that was introduced in (Lanzi 1998b).
We apply an animat with one bit of internal memory to
Woods100 for values of ejs and ex ranging from 0 to 1
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Figure 10: Number of optimal solutions for different internal
exploration rates (eas) and a fixed external exploration rate
(ex). The statistics are a measure over 100 runs of 50000
trials each.
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Figure 11: Number of correct solutions for different internal
exploration rates (eas) and a fixed external exploration rate
(ex). The statistics are a measure over 100 runs of 50000
trials each.

with step 0.1. For each ex-eps pair we made one hun-
dred runs each one of 50000 trials. The number of op-
timal solutions developed for each ex-€,; pair is showed
in Figure 10; each line represents the number of optimal
solutions developed by the animat with respect to a fixed
external exploration rates (ex). As can be noticed for
a limited external exploration rate (ex < .7) the num-
ber of optimal solutions mainly depends on the internal
exploration rate €pr: the lower the e;; the greater the
number of optimal solutions developed. However, when
the animat explores the environment too much (ex > .7)
then the number of optimal solutions drops dramatically.
Similar results are showed in Figure 11 with respect to
the number of correct solutions.

Our results, coherently with those presented in (Lanzi
1998b), suggest that the development of optimal strate-
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Figure 12: Number of optimal solutions developed with 1, 2,
and 4 bits and different values of . The statistic is a measure
over 100 runs of 50000 trials each.

gies for aliased situations relies heavily on the balance
between internal and external exploration. In general
the animat has to explore the internal memory less than
the environment; however, it must not explore the envi-
ronment too much otherwise it is still unable to develop
satisfactory behaviors in most of the cases.

Redundancy. Lanzi and Wilson (2000) also showed
that a redundant number of internal memory bits can
improve the learning capabilities of animats in percep-
tually aliased situations. They argued that more bits
of internal memory means more optimal solutions and
more chances that the animat can learn one of them.

We apply an animat with one, two, and four bits to
Woods100 for one hundred runs. Figure 12 compares
the number of optimal solutions developed by the three
versions. For higher degrees of exploration (i.e., greater
values of €) there is a slight increase in the number of
optimal solution developed. For small exploration rates
(i.e., small values of €) the animats with two and four
bits develop fewer optimal solutions than that with only
one bit. This results is easily explained: with more bits
the animat has more solutions to explore; accordingly if
the exploration rate is limited the animat may be unable
to find a complete optimal solution. Therefore there is
an obvious trade-off between the number of bits and the
exploration rate: the more the bits the more the optimal
solutions, but also, the more the exploration required to
find an optimal solution. More interesting are the re-
sults concerning the number of correct solutions that the
animats with one, two, and four bits can develop (see
Figure 13). As the number of bits of internal memory
increases the number of correct solutions developed in-
creases: with four bits the animat finds a correct solution
in more or less the 90% of the runs.

These results confirm what was found in (Lanzi and
Wilson 2000): a redundant number of memory bits im-
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Figure 13: Number of correct solutions developed with 1, 2,
and 4 bits and different values of e. The statistic is a measure
over 100 runs of 50000 trials each.

proves the learning capabilities of animats in perceptu-
ally aliased situations. However, one issue remains, that
of scalability. Lanzi and Wilson (2000) showed that even
if a very large number of memory bits was employed the
learning problem remained computationally tractable.
In our case, this will hardly hold anymore since the tab-
ular representation grows exponentially in the number of
memory bits. Again, this suggests that non-tabular re-
inforcement learning techniques (e.g., neural network or
learning classifier systems) may be more profitable when
using internal memory.

Eligibility Traces. Eligibility traces were first intro-
duced by Sutton (1988); they can be viewed as a tempo-
rary (numerical) record, a “memory”, of the occurance
of an event. Thus they appear to be well-suited for per-
ceptual aliasing. Recently, Loch and Singh (1999) stud-
ied the use of eligibility traces in non-Markov problems
within memoryless approaches. Peshkin et al. (1999)
used eligibility traces with SARSA and memory report-
ing interesting results. We add eligibility traces to Q-
learning with internal memory following the approach
proposed by Watkins (1989). We apply Q()\)-learning
with one bit of memory to Woods100 with different val-
ues of € for one hundred runs. The number of optimal
solutions developed is depicted in Figure 14; as can be
noticed the use of eligibility traces significantly improves
the learning capabilities of the animat. In fact, if we
compare the number the optimal solutions with that of
correct solutions in Figure 15 we see that almost all the
correct solutions developed are also optimal. On the
other hand we also note that still the exploration rate is
a very important parameter: if € is greater than 0.6 the
number of optimal and correct solutions developed dra-
matically decreases. These results somehow summarize
the results presented by different authors. In fact eligibil-
ity traces are effective in perceptually aliased problems
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Figure 14: Number of optimal solutions for Q()) for A equal
to 0.1, 0.5, and 0.9. The statistics are a measure over 100
runs of 50000 trials each.
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Figure 15: Number of correct solutions for Q(\) for A equal
to 0.1, 0.5, and 0.9. The statistics are a measure over 100
runs of 50000 trials each.

(Peshkin et al. 1999) but still the balance with explo-
ration is an important issue (Lanzi 1998b).

12. Conclusions

We have studied the effectiveness of internal memory
within the reinforcement learning framework. We have
considered the most known reinforcement learning al-
gorithm, Q-learning, and added internal memory. We
have shown that internal memory can solve perceptual
aliasing but in certain cases it might also introduce a
new type of aliasing “on the payoffs” which in prin-
cipal can prevent the development of optimal or just
satisfactory solutions. We have shown that to achieve
satisfactory performance the animat should not learn a
complete mapping from sensations-actions pairs to pay-
offs. Accordingly, an adequate exploration strategy can
be effective in limiting the effects of the aliasing on the
payoffs. However this solution does not guarantee the



convergence to satisfactory performance in general.

Then we have considered three extensions that were
previously introduced to improve the performance of re-
inforcement learning algorithms with internal memory.
We have shown that, as suggested by Lanzi (1998a), the
separation between the exploration of internal memory
and external environment helps in defining and tuning an
adequate exploration strategy so as to improve the learn-
ing capabilities of the agent. Furthermore, as showed by
Lanzi and Wilson (2000), redundancy on the internal
memory increases the number of good strategies that
the animat can developed improving its learning perfor-
mance. Finally, as suggested by Peshkin, Meuleau, and
Kaelbling (1999), eligibility traces play an important role
in improving the number of optimal solutions that the
animat can develop, although their performance still de-
pends on the rate of exploration of internal memory.

Overall with this paper we tried to identify some novel
and relevant issues concerning the use of internal mem-
ory within the reinforcement learning framework while
also presenting an initial step toward an unified view of
some results that were previously reported with respect
to different frameworks.
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