To appear in the 2001 International Conference on Machine Learning 1

Automatic Discovery of Subgoalsin Reinforcement Learning
using Diver se Density

Amy McGovern
Andrew G. Barto

AMY @CS.UMASS.EDU
BARTO@CS.UMASS.EDU

Computer Science Department, 140 Governor’s Drive, University of Massachusetts, Amherst, Amherst, MA 01003

Abstract

This paper presents a method by which a rein-
forcement learning agent can automatically dis-
cover certain types of subgoals online. By creat-
ing useful new subgoals while learning, the agent
is able to accelerate learning on the current task
and to transfer its expertise to other, related tasks
through the reuse of its ability to attain subgoals.
The agent discovers subgoals based on common-
alities across multiple paths to a solution. We
cast the task of finding these commonalities as
a multiple-instance learning problem and use the
concept of diverse density to find solutions. We
illustrate this approach using several gridworld
tasks.

1. Introduction

The ability to decompose a learning problem into a set of
simpler learning problems can greatly expand the range of
applications in which a learning system can be successful.
Within the reinforcement learning (RL) paradigm, one way
to do this is to introduce subgoals with their own reward
functions, learn policies for achieving these subgoals, and
then use these policies as temporally-extended actions, or
options (Sutton et al., 1999; Precup, 2000) for solving the
overall problem. In addition to accelerating learning on
the current task, this strategy can facilitate skill transfer to
other tasks in which the same subgoals are useful.

This paper presents a method by which an RL agent can
discover useful subgoals automatically. It is based on the
idea of “mining” an ensemble of behavioral trajectories ac-
cumulated by the agent as it interacts with its environment.
This ensemble can be processed in various ways to form
concepts useful to the learning agent. In this paper, the fo-
cus is on discovering subgoals of achievement by searching
online for “bottlenecks” in observation space. Informally, a
bottleneck is a region in the agent’s observation space that
the agent tends to visit frequently on successful paths to a

goal but not on unsuccessful paths (for some suitable defi-
nition of success). The bottlenecks of interest are those that
appear early and persist throughout learning. If the agent
can discover these bottleneck regions and learn policies to
reach them during the initial stages of learning, it can use
these policies for more effective exploration as well as to
more quickly refine its overall policy. These subgoal poli-
cies can then be used to facilitate learning in similar tasks.

We treat the problem of finding bottleneck regions as a
multiple-instance learning problem as defined by Diet-
terich et al. (1997). In this type of problem, a system at-
tempts to identify a target concept on the basis of “bags” of
instances: positive bags have at least one positive instance,
while negative bags consist of all negative instances. A
successful trajectory corresponds to a positive bag, where
the instances are the agent’s observations along that trajec-
tory. A negative bag consists of observations made over an
unsuccessful trajectory. We argue that the problem of find-
ing bottleneck regions is well fit by this paradigm, and we
use the concept of diverse density (Maron, 1998; Maron &
Lozano-Pérez, 1998) to detect the bottleneck regions.

Methods for automatically introducing subgoals have been
studied in the context of adaptive production systems,
where subgoals are created based on examinations of
problem-solving protocols (e.g., Amarel, 1968; Anzai and
Simon, 1979). Iba’s (1989) macro-growing heuristic is re-
flected in several parts of our algorithm and discussed in
more detail below. For RL systems, several researchers
have proposed methods by which policies learned for a
set of related tasks are examined for commonalities (Thrun
and Schwartz, 1995) or are probabilistically combined to
form new policies (Bernstein, 1999). However, neither of
these RL methods introduce subgoals. The most closely re-
lated research is that of Digney (1996,1998). In his system,
states that are visited frequently or states where the reward
gradient is high are chosen as subgoals. Drummond (1998)
proposed a system where an RL agent detected walls and
doorways through the use of vision processing techniques
applied to the learned value function. This enabled the
agent to utilize subparts of the value function for task trans-

To appear in the 2001 International Conference on Machine Learning 2

fer. His technique is currently limited to 2D environments.

This paper is organized as follows. After a brief introduc-
tion to RL terminology, we discuss bottleneck detection,
subgoal creation, and then we cast the problem of finding
the useful subgoals as a multiple instance learning prob-
lem. Next we describe diverse density and how it can be
applied to this problem. Finally we illustrate the utility of
this approach using several RL tasks.

2. Reinforcement Learning

In the RL framework, a learning agent interacts with an en-
vironment over a series of time stepst =0,1,2,3,.... At
each time t, the agent observes the environment state, s,
and chooses an action, a;, which causes the environment
to transition to state .1 and to emit a reward, ri+1. Ina
Markovian system, the next state and reward depend only
on the preceding state and action, but they may depend on
these in a stochastic manner. The objective of the agent is
to learn to maximize the expected value of reward received
over time. It does this by learning a (possibly stochas-
tic) mapping from states to actions called a policy. More
precisely, the objective is to choose each action a; so as
to maximize the expected return, E { 3" ¥'rit1 }, where
vy € [0,1) is a discount-rate parameter. Other return for-
mulations are also possible. A common solution strategy
is to approximate the optimal action-value function, or Q-
function, which maps each state and action to the maximum
expected return starting from the given state and action and
thereafter always taking the best actions. See Sutton and
Barto (1998) for details.

We use the options framework (Sutton et al., 1999; Pre-
cup, 2000) to define subgoals. An option is a temporally-
extended action which, when selected by the agent, exe-
cutes until a termination condition is satisfied. While an
option is executing, actions are chosen according to the op-
tion’s own policy. An option is like a traditional macro ex-
cept that instead of generating a fixed sequence of actions,
it follows a closed-loop policy so that it can react to the en-
vironment. By augmenting the agent’s set of base actions—
its primitive actions—by a set of options, the agent’s per-
formance can be enhanced. More specifically, a (Markov)
option is a triple (I,), where | is the option’s input set,
i.e., the set of states in which the option can be initiated,
7 is the option’s policy defined over all states in which the
option can execute; and B is the termination condition, i.e.,
the option terminates with probability B(s) for each state
s. Each option that we use in this paper bases its policy on
its own internal value function, which can be modified over
time in response to the environment.

We also define an additional term. A state trajectory of
length n starting at time step t is a sequence of states

S,S+1,---,S+n- In episodic tasks, each trajectory corre-
sponds to a single episode. For continuing tasks, one can
use a variety of methods to segment experience into finite-
length trajectories. For example, a trajectory could end
when a reward peak is reached as suggested by Iba’s “peak-
to-peak” heuristic (Iba, 1989).

3. Autonomous Subgoal Discovery

The simplest approach to creating useful options is to
search by generating many new options, randomly or based
on simple heuristics, and letting the agent test them by
adding them to its set of actions. Although some of these
options may be useful, others can degrade the agent’s per-
formance, e.g., by adversely affecting its mode of explo-
ration (McGovern, 1998b). Performance can also deterio-
rate due to the agent having too many actions from which
to select. Instead, the agent needs a more focused method
for creating new options. In the approach described in this
paper, the focus is on discovering useful subgoals that can
be defined in the agent’s observation space. New options
are then created to accomplish those subgoals.

To discover useful new subgoals, the agent searches for
bottleneck regions in its observation space. The idea of
looking for bottleneck regions was motivated by study-
ing room-to-room navigation tasks where the agent should
quickly discover the utility of doorways as subgoals (Mc-
Govern, 1998a). If the agent can recognize that a doorway
is a kind of bottleneck by detecting that the sensation of be-
ing in the doorway always occurred somewhere on success-
ful trajectories but not always on unsuccessful ones, then
it can create an option to reach the doorway. This option
can accelerate learning on the current task—if created early
enough—as well as enable the agent to learn more rapidly
on related tasks in the same or similar environments.

One motivation for using bottlenecks as subgoals is the
effect of the subgoal options on the agent’s exploration.
If the agent uses some form of randomness to select ex-
ploratory primitive actions, it is likely to remain within the
more strongly connected regions of the state space. An op-
tion for achieving a bottleneck region, on the other hand,
will tend to connect separate strongly connected areas. For
example, in a room-to-room navigation task, navigation
using primitive movement commands produces relatively
strongly connected dynamics within each room but not be-
tween rooms. A doorway links two strongly connected re-
gions. By adding an option to reach a doorway subgoal,
the rooms become more closely connected. This allows the
agent to more uniformly explore its environment. We have
shown in previous work (McGovern, 1998b) that the effect
on exploration is one of two main reasons that options are
sometimes able to dramatically affect learning.

To appear in the 2001 International Conference on Machine Learning 3

The idea of using bottlenecks as subgoals is not confined to
gridworlds or navigation tasks. We expect that other tasks
with similar dynamics would also benefit from subgoal dis-
covery as described in this paper. For example, consider a
game in which the agent must find a key to open a door be-
fore it can proceed. If it can discover that having a key is
a useful subgoal, then it will more quickly be able to learn
how to advance from level to level. Clearly this approach
will not work for every task since bottlenecks or subgoals
of achievement do not always make sense for particular en-
vironments.

A: The two-room gridworld environment

Bottleneck area

and useful subgoal location

C: First-visit histogram

B: Every-visit histogram

Figure 1. State visitation histograms for the middle stages of
learning in a two-room gridworld

Automatically finding bottleneck regions in observation
space is a difficult task. It is even more challenging if it has
to be done online. An offline method could examine opti-
mal trajectories of several related tasks for commonalities
which may reveal bottlenecks. An online method would
need to inspect trajectories as they are gathered while learn-
ing. Consider the case where each discrete state is com-
pletely observed. A first approach might be to simply look
for states that are more frequently visited. However, if
we examine every-visit frequencies, where each state is
counted each time that it is visited, the resulting histogram
is not generally helpful for bottleneck detection. In a room-
to-room navigation task, for example, the agent spends
most of its time within a room and very little time moving
through a doorway. If one counts only the first visit to each
state within a trajectory, on the other hand, bottlenecks are
more readily visible. Examples of these two types of state-
visitation frequencies for a two-room example are shown
as histograms in Figure 1. The histograms in Panels B and
C are shaded by visitation frequency counts collected over
10 trajectories, with higher counts shaded more lightly than
lower counts. Each histogram shows data collected over 30
runs of the 30-40th trials of an agent using Q-learning in
the 21x10 gridworld shown in Panel A of the figure. The
agent used e-greedy exploration with ¢ = 0.1 and a fixed

step-size parameter of 0.05. All rewards were zero until the
agent reached the goal state where it received a reward of
1. The discount factor was 0.9, which meant that the agent
was learning how to find the goal as quickly as possible.

The histograms in Figure 1 indicate that first-visit frequen-
cies (Panel C) are better able to highlight the bottleneck
states (states in the doorway) than are the every-visit fre-
quencies (Panel B). However, the idea of just using vis-
itation frequencies to detect bottleneck states has several
drawbacks. The first is that it is clearly a noisy process, as
the graph illustrates. The second is that it is not immedi-
ately obvious how to do this in problems with continuous
or very large state spaces. Last, visitation frequencies do
not incorporate negative evidence for bottleneck states in
a principled manner. All of these problems motivate our
use of the multiple-instance learning paradigm and the con-
cept of diverse density to precisely define and detect bottle-
necks.

4. Multiple-Instance L earning and Diverse
Density

Multiple-instance learning problems as described by Di-
etterich et al. (1997) are supervised learning problems in
which each object to be classified is represented by a set of
feature vectors, only one of which may be responsible for
its observed classification. An example from explanation-
based learning that these authors give is when many expla-
nations for an observed result can be obtained from a do-
main theory, but only one explanation can account for all
observed results. More specifically, there are multiple pos-
itive and negative bags of instances (Maron, 1998; Maron
& Lozano-Pérez, 1998). Each positive bag must contain at
least one positive instance from the target concept but may
contain many negative instances. Each negative bag must
contain all negative instances. The individual instances
within each bag are not labeled. The goal is to learn the
concept from the evidence presented by the different bags.

The problem of mining collections of trajectories for bot-
tlenecks, or other concepts useful for defining subgoals,
can be formulated as a multiple-instance learning problem.
Each trajectory can be viewed as a bag, with the agent’s
individual observation vectors being the instances within
the bag. Positive bags are successful trajectories; nega-
tive bags are unsuccessful trajectories. What constitutes
a successful or unsuccessful trajectory can be defined in
a problem-dependent way. For example, successful tra-
jectories might be all those trajectories in which the agent
reached a goal state no matter how many steps it took. Or
success might depend on reaching a goal within a certain
number of steps. A bottleneck region of observation space
as described above corresponds to a target concept in this
multiple-instance learning problem: the agent experiences

To appear in the 2001 International Conference on Machine Learning 4

this region somewhere on every successful trajectory and
not at all on unsuccessful trajectories.

Maron (1998) and Maron and Lozano-Pérez (1998) devised
the concept of diverse density to solve multiple-instance
learning problems. The most diversely dense region in fea-
ture space is the region with instances from the most posi-
tive bags and the least negative bags. This differs from the
concept of simple density by including the idea of using
many different bags rather than one large set of instances.
The region of maximum diverse density can be detected
using either exhaustive search or gradient descent. Maron
(1998) defines the diverse density of a target concept ¢ to
be DD(t) = Pr(t|Bf,...,B},B[,...,By), where Pr(t) is
the probability that the t™" concept from the concepts {c;}
is the correct concept, B;" is the it positive bag, and B is
the it negative bag. The concept with the maximum DD
value is the output of a DD search.

To perform this search, we must more precisely instantiate
the definition of DD given above. Using Bayes’ rule sev-
eral times and assuming a uniform prior, we look for the
concept with the highest value as defined by:

I1 Preie) TT Prtsn).

1<i<n 1<i<m

DD(t) =

Maron generally uses a noisy-or model to model the prob-
ability of any event in a bag causing the t'" concept to be
correct, which yields:

PrtiB") = 1- [] @-Pr(Bfea))
1<j<p
Pritg7) =] (1-Pr(Bjea)),
1<j<p

where Bj; is the jt" instance of the i'" bag. Lastly, the prob-
ability of a particular instance being in the target concept,
Pr(Bij € &), is defined to be a Gaussian based on the dis-
tance from the particular instance to the target concept. In
this paper, we use exhaustive search to find the concept
with the highest DD value since it is feasible for our tasks.
Many other search methods can be used successfully on
larger problems.

The concept of diverse density corresponds exactly to our
concept of a bottleneck region. The region with maximum
diverse density will be a bottleneck region which the agent
passes through on multiple successful trajectories and not
on unsuccessful ones. Abstract types of concept spaces can
be used within this framework. However, in this paper we
restrict attention to the simplest concept space consisting
of individual states. In this case, a subgoal is always to
reach a given state, and we use bags that are simply state
trajectories.

To take full advantage of diverse density calculations in the
problem of defining subgoals, we do not add all states to a

bag. For example, if the agent always starts or ends each
trajectory in the same set of states, then those states will
have a high diverse density since each will appear in all
of the positive bags. We exclude states surrounding the
starting and ending states from any bag. This follows Iba’s
(1989) use of static filters for a macro-growing mechanism.
A static filter can be defined on a per-task basis and used
to filter out any undesired subgoals before they can be dis-
covered by the agent.

5. Forming New Options

Once the agent has created a set of bags from its saved
trajectories, it searches for the maximum diverse density
regions. If the agent has only created a small number of
bags because it is still within the initial stages of learning,
the diverse density peaks will be noisy. The bottlenecks of
interest are those that appear early within the maximum di-
verse density regions and persist throughout learning. An
easy way to detect which regions appear early and persist
as peaks is to use a running average of how often each state
appears as a peak. The average for each state is initialized
to zero. At the end of each trajectory, the agent creates a
new bag and searches for concepts with high diverse den-
sity. The average, c, for each concept ¢ found is updated by:
c=A(C+1) where A € [0,1). If a concept is an early and
persistent maximum, then its average will rise quickly and
converge to % The agent examines the concepts whose
averages rise above a specified threshold and uses those to
create new options.

To create a new option for a subgoal extracted in this way,
the option’s input set, I, can be initialized in several ways.
The method used in this paper is to search the agent’s saved
state trajectories for occurrences of the subgoal state(s).
When a subgoal has been found in a trajectory at time step
t, the agent adds to | the set of states visited by the agent
from time t —ntot, where n is a positive integer specified
as a parameter. The input set of the subgoal option is there-
fore the union of all such states over all of the agent’s saved
trajectories. Other methods based on examination of the
optimal value function could be used if the subgoals were
not created until the learning was completed. The termina-
tion condition, B, is set to 1 when the subgoal is reached or
when the agent is no longer in the input set, and is set to 0
otherwise. The option’s policy, m, is initialized by creating
a new value function that uses the same state space as the
overall problem. The reward function used for the option is
to give a reward of —1 on each step and 0 when the option
terminates. The agent can also be rewarded negatively for
leaving the input set. The option’s value function is learned
using Lin’s (1992) experience replay method with the saved
trajectories.

The algorithm for discovering subgoals and creating new

To appear in the 2001 International Conference on Machine Learning 5

Table 1. Pseudocode of the subgoal-discovery algorithm pre-
sented in this paper

Init full trajectory database to 0
For each trial
Interact with environment/Learn using RL
Add observed full trajectory to database
Create positive or negative bag from state trajectory
Search for diverse density peaks
For each peak concept ¢ found
Update the running average by c = A(C+1)
If c is above threshold
If ¢ passes the static filter
Create a new optiono=<I,m,[3 >
of reaching concept ¢
Init I by examining trajectory database
SetB(c)=1,B(S—1)=1,B(-) =0else
Init policy r using experience replay

options is summarized in pseudocode in Table 1. Although
saving the full history seems expensive in terms of space,
it is linear in the size of the trajectories and can quite rea-
sonably be saved. Also, if memory is at a premium, the
agent could save only the last n trajectories. Memory space
has not been a problem in practice over a number of dif-
ferent tasks. The next section illustrates the utility of this
algorithm on several illustrative problems.

6. Experimental Results
6.1 Two-Room Gridworld Illustration

We illustrate diverse density and subgoal discovery on two
simple gridworld problems. The first is the two-room en-
vironment shown in Figure 1A. For these experiments, the
goal state was placed in the lower right-hand corner and
each trial started from a randomly chosen state in the left-
hand room. The primitive actions are the usual four prim-
itive actions of up, down, right, and 1left. Each ac-
tion succeeds in moving the agent in the chosen direction
with probability 0.9 and in a uniform random direction
with probability 0.1. The reward, learning parameters, and
learning algorithm are the same as described in Section 3.
Once the agent created an option, it switched its learning
algorithm from Q-learning to Macro Q-learning (McGov-
ern et al., 1997). The agent was limited to creating only
one option per run.

The agent created a positive bag for each trajectory in
which it successfully reached the goal state from the start
state. It did not take into account the number of steps within
a trajectory. No negative bags were created. Because this
gridworld has a small number of states, we were able to cal-
culate the diverse density exactly for each state. Figure 2A

A: Average Diverse Density

B: Subgoals Discovered

Figure 2. A: Average DD values where the states with higher DD
values are shaded more lightly. The static filter excluded the goal
region while the walls were never reached and therefore have very
low DD values. B: Locations of the new subgoals formed by the
learning agent. Each state is shaded by the number of times that
it was selected as a subgoal location where the lighter the square,
the more often it was selected as a subgoal.

shows the average log likelihood of the diverse density for
each state after 25 trials. The results in this graph are aver-
aged over 30 trials. Although this average graph is slightly
smoother than the individual graphs for each run, the peak
in diverse density near the doorway remains the same. Fig-
ure 2B shows the locations of the subgoals created over the
30 runs. As expected, locations near the door were the most
frequently detected subgoal locations.

Mean steps to goal in 2-room gridworld
25000

2000

1500

Steps to Goal
5
8

5001 Primitives

Options

0 10 20 30 40 50 60 70 80
Episodes

Figure 3. Average steps to goal with and without automatic sub-
goal detection two-room gridworld.

One reason that it is important for the learning agent to
be able to detect these bottleneck states is the effect on the
rate of convergence to a solution. If the subgoals are useful,
then learning should be accelerated. To ascertain that these
subgoals were helping the agent to improve its policy more
quickly, the average number of steps that the agent took
to reach the goal when using subgoal discovery was com-
pared to learning using only primitive actions. The average
results of this comparison over 30 different runs are shown
in Figure 3. It is clear that learning with automatic subgoal
discovery has considerably accelerated learning compared
to learning with primitive actions alone. The initial trials
were the same because the options were not added until
approximately trial 20. The automatically created options

To appear in the 2001 International Conference on Machine Learning 6

were useful for accelerating learning on this simple task.
Although the variances are not shown on the graph, the dif-
ference between the two learning curves is greater than one
standard deviation.

Mean steps to goal in 2-room gridworld
1000¢

— Options

900} — Primitives

- = All Experience Replay

- - Partial Experience Replay

Steps to Goal
@
8

20 25 30 35 40 45 50 55 60
Episodes

Figure 4. Comparison of the effect of experience replay over dif-
ferent parts of the state space to option-growing

These results indicate that automatically discovered op-
tions can be useful for accelerating learning within a given
task. To more fully understand why the options are useful,
we performed two additional experiments in the two-room
gridworld. First, it is possible that the time spent in expe-
rience replay during initialization of the option’s input set
could have been better spent by performing experience re-
play over the entire state space. To test this, we allowed
the agent to use an equal amount of experience replay over
the entire state space starting at the same trial where the
agent would have created its new options. However, no new
options were created. Because the option-discovery agent
only performed experience replay using the states in the
option’s input set, it performed a much smaller number of
backups than the total experience available per trajectory.
Counting the number of backups that the option-discovery
agent would have performed for each trajectory and proba-
bilistically choosing experiences from the entire trajectory
for replay approximately equalized the amount of compu-
tational work performed by the two agents. Figure 4 shows
the comparison of this approach with the option-discovery
agent and learning with primitive actions only. The latter
results are the same as in Figure 3 but the axes have been
changed to highlight the meaningful regions. These results
indicate that while experience replay can help to acceler-
ate learning on the current task, option discovery is more
advantageous.

We also examined the effect of the option’s initial policy.
In this case, the agent performed experience replay over
the states in the option’s input set except that the backups
occurred in the main value function instead of in the op-
tion’s value function. No options were created. The results
of this experiment are also shown in Figure 4. The per-

formance of the agent using partial experience replay was
almost indistinguishable from performance of the option-
discovery agent. The effect of this partial experience re-
play is to give the agent a useful policy for navigating to
the doorway. Since this appears to accelerate learning al-
most as quickly option-discovery, it is clear that a primary
reason that the newly created options are beneficial to the
agent is their initial policy.

Gridworld Task Tranfer — Goal in Upper Corner
30000

2500

2000

1500 P
Primitives

Steps to Goal

1000

500F
Options

0 10 20 30 40 50
Episodes

Figure 5. Learning curves in the new two-room task comparing
use of the previously learned options to primitive actions.

Another reason that automatic discovery of subgoals is use-
ful is that the agent can use the subgoals and their corre-
sponding options to facilitate learning on similar tasks. To
illustrate how learned subgoals can be useful for task trans-
fer, the gridworld task was changed by moving the goal
to the upper right-hand corner and decreasing the success
probability from 0.9 to 0.8. The agent using options was
initialized with the options discovered in the correspond-
ing run of the previous task. Figure 5 compares the average
number of steps to the goal for the agent using only prim-
itive actions with the average for the agent using the pre-
viously learned subgoal options in addition to the primitive
actions. Clearly, the availability of these options consider-
ably accelerated learning. This was consistently observed
across many different transfer tasks using this environment.

To ensure that it is the options themselves which are use-
ful and not just the availability of an appropriate multi-step
policy in a new environment, we compared the same task
transfer results with two other experiments. In the first ex-
periment, the agent started the new task with the learned
primitive value function from the prior task. In the second
experiment, the agent started with values from the states
in the option’s input set but did not use the options them-
selves. We then compared the learning of these two agents
to the results discussed above. This comparison is shown in
Figure 6. It is clear that simply reusing the value function
in whole or in part is drastically worse. Instead, the advan-
tage of the new options for task transfer is highlighted even
more distinctly.

To appear in the 2001 International Conference on Machine Learning 7

Gridworld Task Tranfer — Goal in Upper Corner
18000

—— Option transfer

" —— Primitives

160001 A - .- All values transfer
() - - Option values transfer
140008 1

|

12000, %\
L
L

10000F1 !4
H

8000

Steps to Goal

6000+

4000

2000+

N
A

PRI GRS
0 ‘

0 10

20 30 40 50
Episodes

Figure 6. Comparison of knowledge transfer using the value func-
tion to using the newly discovered options.

6.2 Four-Room Gridworld Illustration

As a second illustration, we used the four-room gridworld
studied by Precup (2000). The agent’s task was to move
from a randomly chosen start state in either left-hand room
to the goal location in the doorway between the two right-
hand rooms. The primitive actions, stochasticity, and learn-
ing algorithms were the same as described above. We al-
lowed the agent to create up to three options per run. The
static filter constrained each option to be at least a Manhat-
tan distance of 2 away from any other option.

As before, we compare the results of learning with au-
tonomous subgoal discovery to learning with primitive ac-
tions by examining the average steps the agent needed to
reach the goal state from the start state. The results of this
comparison are shown in Figure 7. These numbers are av-
erages over 30 different runs. Although the difference be-
tween the two curves is less striking than with the two-room
gridworld, here one can also see that autonomous subgoal
discovery was able improve the rate of learning.

Mean steps to goal in 4 room gridworld
3000

2500

2000

| Primitives
il

1500

Steps to Goal

1000

500

0 50] 100 150
Episodes

Figure 7. Comparison of automatic subgoal detection to primitive
actions only in the four-room gridworld.

To test task transfer, we decreased the action-success prob-
ability from 0.9 to 0.8 and moved the goal to the middle of

the upper-right room. Figure 8 compares performance with
and without the previously learned options. It is clear that
the learned options continue to facilitate knowledge trans-
fer.

Mean steps to goal using macro knowledge transfer
3500

30001

N
a
=}
IS}

N
o
3
3

1500

Steps to Goal

1000+

500

Episodes

Figure 8. Performance of the learned options on task-transfer in
the four-room gridworld.

7. Discussion and Conclusions

We introduced a method for automatically creating subgoal
options online by searching for bottlenecks in observation
space. We formulated the problem as a multiple-instance
learning problem and used the concept of diverse density
to solve it. We illustrated this approach in several simu-
lated tasks and showed that it can both accelerate learning
on the current task and facilitate transfer to related tasks.
Although these were not large-scale tasks, we believe that
our results suggest that this is a promising approach to one
aspect of the challenge of automatic abstraction.

This research is part of our broader focus on mining the
agent’s experience to create many different types of useful
new options. It is clear that the subgoals of achievement
like the type discovered in this paper are not useful for
every environment. However, the broader idea of mining
the agent’s past experience can yield useful options across
many environments. This research is one part of that ap-
proach.

Our current research extends this approach by considering
more abstract concept spaces in which to compute diverse
density. For example, concepts in the form of linearly dis-
criminable surfaces might allow a robotic agent to detect
concepts not expressible as a single point in feature space.
We are also developing an online method for filtering and
deleting options that prove less useful, which can further
accelerate learning. This can also help if an option is less
useful on a new task than expected and in cases where an
initially useful subgoal is keeping the agent from discover-
ing an even shorter path to the goal.

One potential drawback to this method is the requirement

To appear in the 2001 International Conference on Machine Learning 8

that negative bags cannot contain any positive instances.
In the case of more complicated environments, it can be
tricky to define what constitutes the positive and negative
bags. It is desirable to allow the agent to occasionally visit
useful subgoals on unsuccessful trajectories while not af-
fecting the results of the diverse density calculations. We
are currently investigating how to best utilize such noisy
bags. One such method is to decrease the influence of each
negative instance through the width of the Gaussians. It
may also be possible to give each bag a relative measure of
success.

Another drawback to this method of subgoal discovery is
that the agent must first be able to reach the overall goal
using only the given primitive actions (or any options that
are pre-defined). This limits the problems to which it can be
applied. Current research addresses ways to extend the ap-
proach so that it can be applied when goal states cannot eas-
ily be reached using only primitive actions. Although the
subgoals discussed in this paper do not specifically include
the ability to violate the conditions of other subgoals (or
to allow the evaluation function to decrease) during execu-
tion, both Iba’s (1989) and Korf’s (1985) method of creat-
ing such macro-operators provide ideas for future types of
options which might be discoverable by mining the agent’s
past experience.

Acknowledgments

The authors are grateful for comments and helpful discus-
sions from Andrew Fagg and Balaraman Ravindran. We
are also grateful for the comments and suggestions from
the anonymous reviewers. This work was supported by
the National Physical Science Consortium, Lockheed Mar-
tin, Advanced Technology Labs, and the National Science
Foundation under grant ECS-9980062 and EIA 9703217.

References

Amarel, S. (1968). On representations of problems of rea-
soning about actions. In D. Michie (Ed.), Machineintel-
ligence 3, vol. 3, 131-171. North Holland: Elsevier.

Anzai, Y., & Simon, H. A. (1979). The theory of learning
by doing. Psychological Review, 86, 124-140.

Bernstein, D. S. (1999). Reusing old policiesto accelerate
learning on new MDPs (Technical Report UM-CS-1999-
026). Dept. of CS, U. of Massachusetts, Amherst, MA.

Dietterich, T. G., Lathrop, R. H., & Lozano-Perez, T.
(1997). Solving the multiple-instance problem with axis-
parallel rectangles. Artificial Intelligence, 89, 31-71.

Digney, B. (1996). Emergent hierarchical control struc-
tures: Learning reactive/hierarchical relationships in re-

inforcement environments. From animals to animats 4:
SAB 96. MIT Press/Bradford Books.

Digney, B. (1998). Learning hierarchical control structure
for multiple tasks and changing environments. From an-
imalsto animats 5: SAB 98.

Drummond, C. (1998). Composing functions to speed up
reinforcement learning in a changing world. European
Conference on Machine Learning (pp. 370-381).

Iba, G. A. (1989). A heuristic approach to the discovery of
macro-operators. Machine Learning, 3, 285-317.

Korf, R. E. (1985). Macro-operators: A weak method for
learning. Artificial Intelligence, 26, 35-77.

Lin, L.-J. (1992). Self-improving reactive agents based on
reinforcement learning, planning and teaching. Machine
Learning, 8, 293-321.

Maron, O. (1998). Learning from ambiguity. Doctoral dis-
sertation, Massachusetts Institute of Technology.

Maron, O., & Lozano-Pérez, T. (1998). A framework
for multiple-instance learning. NIPS 10 (pp. 570-576).
Cambridge, Massachusetts: MIT Press.

McGovern, A. (1998a). acQuire-macros: An algorithm for
automatically learning macro-actions. NIPS 98 work-
shop on Abstraction and Hierarchy in RL.

McGovern, A. (1998b). Roles of macro-actions in accel-
erating reinforcement learning. Master’s thesis, U. of
Massachusetts, Amherst. Also Technical Report 98-70.

McGovern, A., Sutton, R. S., & Fagg, A. H. (1997). Roles
of macro-actions in accelerating reinforcement learning.
Proc. of the 1997 Grace Hopper Celebration of Women
in Computing (pp. 13-18).

Precup, D. (2000). Temporal abstraction in reinforcement
learning. Doctoral dissertation, U. of Massachusetts,
Ambherst.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learn-
ing. an introduction. Cambridge, MA: MIT Press.

Sutton, R. S., Precup, D., & Singh, S. (1999). Between
MDPs and Semi-MDPs: A framework for temporal ab-
straction in reinforcement learning. Artificial Intelli-
gence, 112, 181-211.

Thrun, S. B., & Schwartz, A. (1995). Finding structure
in reinforcement learning. NIPS 7 (pp. 385-392). San
Mateo, CA: Morgan Kaufmann.

