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Abstract 

Traditional approaches to joint control required 
accurate modelling of the system dynamic of the 
plant in question.  Fuzzy Associative Memory 
(FAM) control schemes allow adequate control 
without a model of the system to be controlled.  
This paper presents a FAM based joint controller 
implemented on a humanoid robot.  An empirically 
tuned PI velocity control loop is augmented with 
this feedforward FAM, with considerable reduction 
in joint position error achieved online and with 
minimal additional computational overhead.  

1 Introduction 

Research into control techniques for highly non-linear and 
systems with unknown or difficult to model dynamics is 
becoming more and more prevalent.  Learning systems that 
are capable of providing adequate control of highly complex 
systems are quickly gaining acceptance as suitable control 
techniques.   

In the field of humanoid robotics, learning systems are 
appealing for two main reasons: their ability to generate 
control without accurate system characterization 
information, and the parallels with the biological world.  
Humanoid robots are typically multi-jointed systems, with 
each joint subject to complex and varying loads as the robot 
moves about. 

Designing controllers that maintain a high level of 
tracking and stability under a range of load conditions is 
challenging. Using traditional model-based control, the 
problem is addressed by calculating the forward model of 
the torques on the joints and applying an appropriate 
compensating signal.  

However, humanoid robots are difficult to model 
mathematically. Hence analytically finding feedforward 
dynamics for model based control can be both a complicated 
and time consuming process.  Additionally, contact with the 
unpredictable loads from the real world and human 
interaction further complicates the modelling problem. 

The motions performed by a humanoid robot are 
typically cyclic, such as walking and grasping. The loads 
experienced by each joint are consequently cyclic, and as 

such, feedforward controllers may be used to great effect to 
predict and compensate the expected loads.  

Adaptive control techniques such as Fuzzy Logic and 
Associative Memories can be used to implement this 
feedforward component without explicitly modelling the 
system dynamics.  

This paper presents the use of a Fuzzy Associative 
Memory (FAM) as a feedforward addition to a traditional 
control schema.  This component provides an additive 
compensating signal, effectively predicting the known 
disturbances of a cyclic motion.   

1.1 Previous Research 
The area of adaptive control has been widely researched and 
in particular, the use of learning systems in adaptive joint 
control of under-modelled systems has been previously 
investigated.  Three main methods are used: neural 
networks, fuzzy logic systems, and genetic 
algorithms [Commuri and Lewis, 1996; Kee, 2002; Si et al., 
1999].  Of these methods, fuzzy associative memory is 
generally the most suited to on-line learning. 

Collins [2003] outlines the use of a Trajectory Error 
Learning (TEL) schema, whereby the measured error of the 
system is learned by a neural network feedforward block.  In 
a poorly tuned system, consisting of a wheelchair robot, the 
initial error is significant, and the compensating signal is 
heavily updated every iteration.  As the system learns, the 
measured error is reduced and the compensating signal 
undergoes fewer modifications.  Kee [2002] adapted this 
TEL for use in the joint controllers of a humanoid robot.  
Both methods employ the use of a Cerebellar Modelled 
Articulated Controller (CMAC) as the learning component 
to the system [Kee and Wyeth, 2002]. 

An alternative to the CMAC is the use of a Fuzzy 
Associative Memory as a feedforward control element for 
adaptive joint control.  Several researchers [Commuri and 
Lewis, 1996; Pan and Woo, 2000] show methodologies that 
develop appropriate control for an n-degree-of-freedom 
planar robot arm.  Both teams apply their methodology to a 
simulated two degree of freedom arm with successful 
results.  

Si, Zhang and Tang [1999] built on Pan and Woo 
[2000], and augmented a PD controller with a Fuzzy 
Controller on a two-degree-of-freedom planar robotic arm.  



 

 

The Fuzzy Adaptive Controller was then trained to 
compensate for the gravity disturbance experienced by the 
tool point.  They used a Genetic Algorithm to learn the 
membership functions parameters which are traditionally 
determined by an expert human.  The GA was used to 
determine the optimal membership width of a set of triangle 
membership functions to control a simulated inverted 
pendulum on a cart.  

1.2 Paper Outline 
Section 2 presents the experimental setup in the form of the 
GuRoo humanoid robot and the associated simulator.  
Section 3 outlines the FAM as used in this research, 
including the parameters of the membership functions and 
association tables.   

Results obtained from the experimental system with both 
the uncompensated and compensated architecture are 
outlined in Section 4.  These results include experiments 
with changing system dynamics and the impact co-
evolutionary learning systems.  Section 5 draws conclusions 
based on these results. 

2 GuRoo Project 

The GuRoo is a humanoid robot with 21 degrees of freedom 
(Figure 1).  It stands 1.2m tall and weighs approximately 
35kg with onboard computation and power.  In addition, the 
project uses a graphical simulator which accurately models 
the dynamics of the multi degree of freedom robot.  
 

 
 
Figure 1 GuRoo Robot and location of degrees of freedom 

2.1 The Robot 
The joints of the robot consist of 15 high-powered DC 
motors to actuate the legs and spine, as well as six smaller 
servo motors to drive arm movements. 

These motors are controlled by a distributed computing 
system, comprising six dedicated motor control boards and 

a central computer.  The central computer is a mini-ITX 
motherboard with a 1 GHz CPU running Windows 
XP (Figure 2). 
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Figure 2 GuRoo distributed control architecture 
 

Trajectories for each of the joints are calculated, and the 
desired joint velocities are sent to each motor control board 
via a CAN network.  Each motor control board consists of a 
Motorola 68HC376 processor and discrete power 
electronics capable of controlling three motors.  The control 
boards are responsible for running local control loops for 
these motors, and can measure and send diagnostic 
information back to the main controller.  The local control 
loops run at 250 Hz, while the main trajectory generator 
runs five times slower, at 50 Hz. 

2.2 GuRoo Simulator 
The simulator is based on DynaMechs [McMillian, 1995], a 
dynamic simulation tool for multi-chained, star configured 
robots. It has been adapted to include specific characteristics 
of the GuRoo, including the distributed nature of the control 
architecture and the CAN bus. The GuRoo's chest is 
modelled as a mobile base with five chains arranged in a 
star configuration representing the arms, legs and head. The 
modified Denavit-Hartenburg parameters and CAD surface 
area graphically represent the robot, as seen in Figure 3.  

Mass distribution information in the form of inertia 
tensors is combined with actual motor characteristics to 
simulate realistic interactions between links. The simulator 
provides the same programmatic interface as the firmware, 
with the ability to read encoders, measure current 
consumption and to transmit and receive CAN packets.  
This interface also provides simulated sensor information 
congruous with the real world sensors located on the robot. 

The GuRoo has a vision system consisting of two Basler 
Firewire cameras.  This system is capable of capturing and 
processing 30 frames per second.  It can identify the soccer 
ball, coloured markers and soccer goals necessary to 
compete in the RoboCup Humanoid League. 

Capacitive force sensors located in the feet are used to 
calculate the zero moment point acting on the robot. 



 

 

 
 

Figure 3 GuRoo Simulator 

3 Fuzzy Associative Memory 

A Fuzzy Associative Memory (FAM), employing the use of 
triangular membership functions, was implemented as the 
feedforward component in a Trajectory Error Learning 
schema.  The FAM component consists of two sub-
components, the fuzzy logic rules and the input/output 
mapping relation known as the Associative Memory. 

3.1 Fuzzy logic 
A fuzzy logic system contains sets used to categorise input 
data (fuzzification), decision rules that are applied to each 
set, and a way of generating an output from the rule results 
(defuzzification). 

In the fuzzification stage, a data point is assigned a 
degree of membership (DOM) in the each set.  The DOM is 
determined by a membership function.  The membership 
function is often a triangular function [Castro, 1995] centred 
at a given point x0: 
 

 ( )0,1max)( 0

w
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The width of the membership function w is then set so that 
adjacent sets overlap, ensuring that the total degree of 
membership is constant.  An example of four triangular 
membership functions is shown in Figure 4.  Here each 
input is assigned to at most two of the sets “ tiny” , “small” , 
“medium”, or “ large” . 

Once the input has been categorised into sets, rules are 
applied to the sets.  The rules are if...then statements, e.g. IF 
input1=tiny AND input2=small THEN output1=3.  Each 
rule inherits a degree of membership (or a degree of 
applicability) which is the product of the degrees of 
membership of the inputs.  These rules may be input by a 
human expert before the system runs, but in the case of 
FAM, the rules are learned online. 

Defuzzification is the name for a procedure to produce a 
real (non-fuzzy) output which combines the fuzzy rule 

results together.  It generally takes one of several forms; in 
this case, each output is the weighted sum of applicable 
rules.  The effect is to interpolate outputs between the points 
specified by the rules. 

In the GuRoo system, the inputs are the phase of the 
current cyclic action, and the error in each of the joints.  
Thirty-six phase sets are used, and sixty-four error sets.  
Each of these sets has a triangular membership function, 
with a constant width.  The outputs produced are the 
positional corrections to apply to each of the joints.  Each 
joint has its own independent set of rules; i.e., the state of 
other joints is not considered when calculating corrections 
to a specific joint. 

The number of sets to use in a particular application 
depends on how rapidly the output changes with respect to 
the inputs.  A fuzzy logic control system effectively 
interpolates between known output values, so a large 
number of triangles means better interpolation, but higher 
memory use and less extrapolation.  In the case of the 
GuRoo system, these numbers were chosen by knowledge 
of the range of expected data, and tuned by experimentation. 

3.2 Associative Memory 
Associative Memory is a type of memory with a generalised 
addressing method: the address is not the same as the data’s 
location, as in traditional memory [Skapura, 1995].  An 
associative memory allows a fuzzy rule base to be stored: 
the inputs are the degrees of membership, and the outputs 
are the fuzzy system’s output.  Such a system is termed a 
fuzzy associative memory (FAM) [Si et al 1999].  A FAM is 
particularly useful if learning algorithms are applied, 
because it allows rules to be updated easily. 

FAM may be implemented in software for restricted 
inputs by assigning a number to each possible input set (e.g. 
“ tiny”=1, “small”=2, etc.), and using the numbers to index a 
multidimensional array (the number of dimensions being the 
number of input variables).  Each element of the 
multidimensional array is then a list of the output values.  In 
the case of this type of FAM control, the output is the 
position correction that must be made. 

Using the associative memory presented thus far, the 
system has a storage method, and a way of calculating 
outputs, but no way of learning from its inputs.  The 
learning process is governed by a learning rule; the type of 
data being learned influences the choice of learning rule.  In 
this case, the learning rule for an output correction ∆x is 

αε+∆=∆ oldnew xx  

where α is the learning rate (which controls how much the 
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Figure 4 Example of membership functions for four fuzzy sets 



 

 

existing knowledge is weighted relative to the new 
knowledge), and ε is the position error that was observed 
[Collins, 2003; Russell and Norvig, 2003].  This learning 
rule converges to a stable output state when the error is zero.  
In the case of the GuRoo system, the learning rule is applied 
to every element of the associative memory where the 
degree of membership for the input variables is non-zero.  
(Other alternatives include applying the rule to only the 
memory element with the highest degree of membership.) 

3.3 Feedforward block 
The feedforward FAM component outlined above is used as 
the learning component of a Trajectory Error Learning 
(TEL) architecture (Figure 5).  A conventional feedback 
control loop is implemented on the motor control boards, 
with the desired position as the input to the system.  Using 
the desired position and the trajectory phase as inputs to the 
system, the FAM generates a compensating signal which is 
added to the original signal’s position.  The updating of the 
table values in the associative memory component is driven 
by the position error measured in the system.  As the error 
decreases, the change in values of the associative memory 
and hence compensating signal tends towards zero. 

In general, each output should be calculated using all the 
joint position information available.  In practice, this creates 
a prohibitively large FAM array with a large number of 
inputs: with n inputs, and m sets per input, memory usage is 
O(mn).  So the output for each joint was determined only by 
its own error, not that of other joints.  Effectively, each joint 
used an independent FAM controller. 

Using a set of independent controllers can pose 
problems, however, because the dynamics of the joints are 
not actually independent.  Because the dynamics are 
coupled, the FAM learning systems can potentially 
coevolve.  The extent to which this coevolution helps or 
hinders the FAM system is investigated later in the paper. 

3.4 Sensor Delay, Actuator Delay, and Temporal 
Credit Assignment 

The fuzzy logic system as described so far presumes that the 
sensing and actuation is instantaneous.  If sensing is not 
instantaneous, or there is a delay between sensing and 

processing the data (as is the case in GuRoo), then the 
desired position from the trajectory generator must be 
delayed so that it corresponds with the measured position.  
This is not difficult in the case of the GuRoo because the 
sensor delay is known accurately.  Activity queue number 1 
in Figure 5 compensates for this delay. 

A more difficult problem arises when the actuator 
responds slowly, because of communication delays, inertia 
in the system, or a poorly tuned control loop.  In this case, 
errors will not be corrected at the point in the associative 
memory that caused them.  Further problems may flow on, 
such as induced unstable oscillations.  This problem is 
known as the temporal credit assignment problem. 

For a general plant, the solution is difficult to overcome, 
especially when no a priori estimate of this time is 
available.  In the case of the GuRoo, the time delay is 
similar across joints because of the similar motors and 
hardware used, and trial solutions may be estimated and 
tested in simulation.  One can obtain an initial estimate of 
the magnitude of this time delay by applying an impulse 
input from the associative memory and observing the 
system’s output.  Once an estimate of this actuator delay 
time has been made, an activity queue of this length may be 
used to store past inputs.  When errors are observed, the 
portion of the table that is updated with the desired 
correction is determined by the earliest entry in the activity 
queue.  Activity queues 2 and 3 in Figure 5 represent this 
actuator delay compensation.  Their lengths were tuned as 
described above.  This essentially places all credit or blame 
at the one time, a variant of the common TD learning 
algorithm.  Because of the fuzzy nature of the table, the 
temporal credit is spread across two phase sets and two error 
sets.  Fully solving the temporal credit problem in general is 
extremely complex, and essentially needs a complete system 
model of its own. 

Although the input and output delays may seem 
symmetrical (a delay between input and output), changing 
the point where FAM is applied effectively changes the 
FAM system’s objective.  In the case of GuRoo, one of the 
objectives of FAM is to compensate for the slow system 
response, so separate input and output delay lines are 
necessary. 

 
Figure 5 Fuzzy Associative Memory Implementation 



 

 

4 Results 

The FAM implementation was tested with the simulator to 
avoid damaging the robot.  Initial experimentation was 
performed with a standard crouching movement, 
characterised by joint angles of 22°, 35° and 16° on the 
pitch axes of the hip, knee and ankles respectively.  Figure 6 
shows the position error present on each of these joints 
during a crouching motion without any compensation in the 
system. 

FAM feedforward component was added to the hip 
pitch, knee pitch, and ankle pitch joints with a fast learning 
rate α = 0.2.  Thirty-six fuzzy sets in phase and sixty-four 
sets in error were used to categorise the inputs to the FAM, 
and inputs were scaled so this range was well-covered.  An 
actuator delay length of 0.24 seconds was used.  The robot 
visibly improved its balance with FAM as opposed to 
without FAM—Figure 7 shows the tracking.  Table 1 shows 
the RMS error in both cases.  However, when no actuator 
activity queues were used to address the temporal credit 
assignment problem, FAM created instabilities that caused 
the robot to overbalance, obviously worse than the 
behaviour with no FAM at all. 

 
Joint RMS error with 

FAM (degrees) 
RMS error without 
FAM (degrees) 

Ankle 0.17 0.19 
Knee 1.87 2.85 
Hip 0.30 0.34 
Table 1 RMS joint position error with and without FAM 
 

To demonstrate the learning effect of FAM, the RMS 
error was plotted.  Figure 8 shows the RMS error with FAM 
disabled: it is essentially a constant.  In contrast, with FAM 
enabled (Figure 9), the error decays at a rate proportional to 
the learning rate to its steady-state error. 

In the case of the GuRoo system, FAM is not overly 
sensitive to the length of the delay queue.  A range of 
actuator delay queue lengths from 3 to 18 (corresponding to 
actuator delays of 0.06 seconds to 0.36 seconds) were found 
to give a reduction in RMS error.  Similarly, the GuRoo 
works with high or low learning rates (though higher 
learning rates may overcompensate), and a wide range of 
number of fuzzy sets.  Changing the number of triangles did 
not impact heavily on the system.  Additional triangles 
slowed the time taken to reach a constant output, in return 
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Figure 6 Joint position errors vs time during the crouching 
motion 

0 10 20 30 40 50 60 70 80
-5

-4

-3

-2

-1

0

1

2

3

4

5

Time (s)

P
os

iti
on

 e
rr

or
 (

de
gr

ee
s)

Ankle pitch

Knee pitch

Hip pitch

 
Figure 7 Joint position errors vs time during the crouching motion 
with FAM enabled 
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Figure 8 RMS position error with FAM disabled during the 
crouching motion 
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Figure 9 RMS position  error with FAM enabled during the 
crouching motion 



 

 

for greater steady state stability.  Fewer triangles allowed 
for faster learning and better generalisation. 

The adaptive nature of FAM suggests testing it in a 
dynamic environment.  The previous crouching test may be 
extended to a lifting situation.  The robot is allowed to learn 
an appropriate compensation for its crouching motion, but 
after five cycles is given a mass of 5 kg in its arms.  The 
FAM controller must then relearn the dynamics of the 
system. 

Figure 10 shows the joint position errors when the robot 
lifts a load.  The point where the load is applied is easily 
visible, but the motion quickly returns to its previous 
behaviour.  A temporary increase in the error is seen, but the 
system converges to nearly the same long-term errors as in 
Figure 7. 

In each of these tests, the robot started in a slightly 
crouched position so that it would not be moving to its joint 
limits.  Because FAM knows nothing of the robot’s joint 
limits, it may try to compensate past the robot’s joint limits 
if the robot is operating near them.  This creates a highly 
discontinuous force as the joint hits the limit, effectively 
violating the assumption underlying FAM that the system 
has continuous derivatives, and hence destabilizing the 
algorithm. 

The phenomenon of coevolution, where the learning of 
one joint affects the response of the system to the other 
joints, was observed, but not as dramatically as was first 
thought.  Joint position errors in this case are shown in 
Figure 11.  The knee error is almost the same as in Figure 7; 
differences are more apparent later in the evolution.  In fact, 
the RMS knee error is slightly higher in Figure 11 (FAM 
applied to the knee only); it is 1.93 degrees, higher than the 
RMS error of 1.87 degrees when FAM was applied to all 
joints.  Not observing unstable coevolution is heartening, 
because the most obvious solution to coevolution problems 
would be to use all joint errors as inputs to the associative 
memory, creating a many-dimensional lookup table that 
consumes exponentially more memory than the present 
implementation.  However, other joint positions are quite 
well correlated with the gait phase, so the gait phase 
essentially encodes the other joint positions for a given 
motion.  Although this approximation is certainly not exact, 
it appears to produce a favourable space/accuracy tradeoff. 

For maximum utility, the one set of FAM parameters 
must be stable for a wide variety of period motions.  To test 
this, the more complex motion of walking was used to test 
FAM’s stability and effectiveness.  The same FAM 
parameters as for crouching were used. 
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Figure 11 RMS Joint position errors vs time during the crouching 
motion with FAM compensation on the knee only. 
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Figure 12 RMS position error vs time, with FAM disabled during a 
normal walking gait 
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Figure 13 RMS errors with FAM enabled during a normal 
walking gait 
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Figure 10 RMS position errors vs time when the robot lifts a 5 kg 
load at 40 seconds 



 

 

Figure 12 and Figure 13 show the joint position error 
against time while walking with FAM disabled and enabled, 
respectively.  The improvement with FAM is less than for 
the crouching motion, with the ankle pitch showing greatest 
improvement.  It is thought that more improvement is 
observed in the crouching motion than the walking motion 
because the knees are not loaded as much in the walking 
motion as in the crouching motion, and the FAM system 
was tuned based on the crouching motion.  This raises the 
question as to whether tuning control gains is easier than 
tuning FAM parameters for a particular application. 

5 Future Work 

FAM has been shown to improve joint-tracking errors, but 
there is clearly room for further improvement.  In particular, 
the method for tuning FAM parameters is rather ad-hoc, 
requiring an understanding of the tradeoffs involved. 
Further, some more general parameters, such as the optimal 
set of membership functions and the method of temporal 
credit assignment, are very complex in general.  Using other 
learning techniques (such as used by Si et al [1999]) can 
help tune the FAM parameters in a specific situation, but 
tuning all the parameters would generally take a large 
amount of learning time.  Hence further work should focus 
on finding subsets of this parameter space that are likely to 
contain near-optimal sets of parameters. 

In addition to the parameter search improvements, the 
techniques here could be extended to higher level robotic 
control tasks.  For example, FAM could be used to aid 
toolpoint path planning. 

6 Conclusions 

Complex multi-degree of freedom robotic systems are 
difficult to model and hence difficult to control using 
traditional analytical techniques.  Learning approaches such 
as FAM enable appropriate control without the need for 
accurate system dynamics to be determined.  In this 
research, a FAM was implemented on a set of poorly tuned 
joint controllers on the GuRoo robot and resulted in an 
improvement in joint control. 

The temporal credit assignment problem caused by the 
delay between commanded output and measured response 
was addressed through the use of activity queues to keep 
track of inputs and their relative impact.  Use of the FAM on 
a simple crouching motion improved joint positional error 
by up to 30% in some joints. 

The paper also shows the FAM’s ability to compensate 
for changes in system dynamics.  A sudden 15% increase in 
mass at the arms initially increased the positional error, but 
was quickly compensated for. 

Co-evolutionary issues were initially thought to 
potentially impact the system, as changes in position of one 
joint can effect changes in another joint with constant 
inputs.  The effects of co-evolution were found to be 
negligible once the system was implemented, probably due 
to the use of a gait phase variable to drive the learning. 

When implemented on more complex motions such as 
walking, the improvement was not as noticeable, with only 
minor decreases in RMS error.  The joint error present 

during a walking gait is less than during a deep crouch and 
as such, lower absolute improvements were expected. 

The FAM implementation was found to provide an 
increase in performance but only from the basis of an 
initially poorly tuned controller.  Even without accurate 
system dynamics, it was easy to tune the PI controller to 
give comparable results.  The FAM still requires some 
tuning in the form of learning rates and number of 
membership functions. 
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