
THE CONTRIBUTION TO MODELLING, DESIGNING

AND IMPLEMENTING MULTIPLE NEURAL

NETWORKS:

AUTO-ADAPTATION OF DATA PROCESSING SYSTEM

BY TREELIKE-DIVIDE-TO-SIMPLIFY APPROACH

USING COMPLEXITY ESTIMATION METHODS

By

Mariusz Rybnik

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

AT

UNIVERSITY PARIS XII

CRETEIL, FRANCE

DECEMBER 2004

UNIVERSITY PARIS XII

DEPARTMENT OF

COMPUTER SCIENCE

The undersigned hereby certify that they have read and

recommend to the Faculty of Graduate Studies for acceptance a

thesis entitled “The contribution to modelling, designing

and implementing Multiple Neural Networks: Auto-

adaptation of Data Processing System by Treelike-Divide-

to-Simplify Approach using Complexity Estimation methods”

by Mariusz Rybnik in partial fulfillment of the requirements for the

degree of Doctor of Philosophy.

Dated: December 2004

External Examiner:
Name

Research Supervisor:
Kurosh Madani

Examing Committee:
Name

Name

ii

Table of Contents

Table of Contents iv

List of Figures ix

Index of symbols xiii

INTRODUCTION 1

PART I - STATE OF THE ART 5

1 Artificial Neural Networks 6

1.1 Introduction . 6

1.2 Main ideas . 7

1.3 Artificial Neural Networks’ architectures 11

1.4 Learning tasks . 13

1.4.1 Classification . 14

1.4.2 Pattern association . 15

1.4.3 Function approximation . 16

1.4.4 Filtering . 17

1.5 Learning algorithms . 18

1.5.1 Learning with a teacher . 19

1.5.1.1 Error correction learning 19

1.5.2 Learning without a teacher . 22

1.5.2.1 Reinforcement learning 22

1.5.2.2 Hebbian learning . 23

1.5.3 Unsupervised learning . 25

1.5.4 Competitive learning . 26

1.5.5 Memory-based learning . 27

1.5.6 Boltzmann learning . 28

iv

1.5.7 Learning algorithms conclusion 29

1.6 ANN Conclusion . 29

2 Modular Algorithms 32

2.1 ”Divide and conquer” algorithms . 33

2.2 Committee Machines . 34

2.2.1 Ensemble averaging . 35

2.2.2 Boosting . 36

2.2.2.1 Boosting by subsampling 37

2.2.3 Mixture of experts . 37

2.2.4 Hierarchical Mixture of experts 40

2.3 Multi Agent Systems . 42

2.4 Clustering . 44

2.5 Modular algorithms conclusion . 45

3 Complexity estimation 47

3.1 Complexity estimation - definition . 48

3.2 Classification as an aspect of Predictive Modelling 50

3.2.1 Discriminative classification 53

3.3 Probabilistic models for classification 54

3.3.1 Approaches to build classifiers 57

3.3.2 Classification methods . 57

3.3.3 Evaluating and comparing classifiers 60

3.3.4 Feature reduction . 60

3.4 Taxonomy of complexity estimation methods 61

3.5 Presentation of selected methods . 62

3.5.1 Indirect Bayes error estimation 63

3.5.1.1 Normalized mean distance 64

3.5.1.2 Chernoff bound . 64

3.5.1.3 Bhattacharyya bound 65

3.5.1.4 Divergence . 65

3.5.1.5 Mahalanobis distance 67

3.5.1.6 Jeffries-Matusita distance 68

3.5.1.7 Entropy measures 68

3.5.2 Non-Parametric Bayes error estimation and bounds 69

3.5.2.1 Error of the classifier itself 69

3.5.2.2 k-Nearest Neighbors, (k-NN) 69

3.5.2.3 Parzen Estimation 71

3.5.2.4 Boundary methods 72

v

3.5.3 Measures related to space partitioning 73

3.5.3.1 Class Discriminability Measures 73

3.5.3.2 Purity . 75

3.5.3.3 Neighborhood Separability 76

3.5.3.4 Collective entropy 77

3.5.4 Other Measures . 78

3.5.4.1 Correlation-based approach 78

3.5.4.2 Fisher discriminant ratio 78

3.5.4.3 Interclass distance measures (scatter matrices) 79

3.5.4.4 Volume of the overlap region 80

3.5.4.5 Feature efficiency . 80

3.5.4.6 Minimum Spanning Tree (MST) 81

3.5.4.7 Inter-intra cluster distance 81

3.5.4.8 Space covered by epsilon neighborhoods 82

3.5.5 Ensemble of estimators . 82

3.6 Complexity Estimation Conclusion 83

PART II - T-DTS 85

4 Treelike Divide-To-Simplify paradigm 86

4.1 General description of T-DTS . 89

4.2 Building of decomposition structure 93

4.2.1 Decomposition Unit . 95

4.2.2 Local decomposition control based on standard deviation esti-

mation threshold . 96

4.2.3 Local decomposition control based on classification Complexity

Estimation technique (Fisher discriminant ratio) 98

4.3 Decomposition of learning database 100

4.4 Training of Neural Network Models 100

4.5 Decomposition of generalization database - rules of pattern assignment

to models . 101

4.5.1 Following the decomposition tree 102

4.5.2 Prototypes based assignment 103

4.5.2.1 Prototypes similarity assignment rule 103

4.5.2.2 Probabilistic assignment rule 105

4.6 Using trained models (Processing Units) on data 107

4.7 Combining the results . 108

4.8 Conclusion - Discussion of T-DTS properties 108

vi

5 Applications of T-DTS System 111

5.1 Model identification . 112

5.1.1 Model identification - linear academic problem 112

5.1.2 Model identification - drilling rubber problem 116

5.2 Classification . 119

5.2.1 Classification - two spirals problem 119

5.2.2 Classification - Pattern recognition 122

5.2.3 Classification with complexity estimation 127

5.3 Applications - Conclusion . 130

CONCLUSIONS 132

APPENDIXES 135

A Computer T-DTS Implementation 136

A.1 Structure of functions call of main frame 136

A.2 User interface . 139

A.3 T-DTS Controlling Parameters structure 142

B History of ANN 146

C Biological neuron and its artificial models 150

C.1 Signum function . 155

C.2 Threshold (Heaviside) function . 156

C.3 Linear combiner function . 156

C.4 Softmax transfer function . 157

D Artificial Neural Networks’ structures 158

D.1 Single-layer perceptron . 158

D.2 Linear networks . 160

D.3 Multi-Layer Perceptron . 162

D.4 Radial-Basis Function Networks . 166

D.5 Competitive networks and Self Organizing Maps 168

D.6 Support Vector Machines . 169

E Applications of ANN 171

F System identification 174

F.1 Model identification . 174

F.2 Inverse system identification . 174

vii

F.3 Plant control . 175

Bibliography 177

viii

List of Figures

1.1 Neural network learning by example 8

1.2 Example of single layer feedforward network 12

1.3 Example of multilayer feedforward network structure 13

1.4 Example of recurrent network with no self-feedback loops 14

1.5 Nonlinear prediction . 18

1.6 Learning with a teacher (supervised) 20

1.7 Error computation . 21

1.8 Reinforcement learning . 22

1.9 Unsupervised learning . 25

2.1 Ensemble averaging structure . 36

2.2 Mixture of Experts . 38

2.3 Structure of gating network . 39

2.4 Example of hierarchical mixture of experts 41

2.5 Classification of intelligent artificial agents considering origin [WJ95b] 43

3.1 Two Gaussian distributions and Bayes error 55

3.2 Proposed taxonomy of complexity estimation methods 62

4.1 T-DTS decomposition architecture 89

4.2 Decomposition Unit activity . 92

4.3 T-DTS decomposition tree creation in time 94

4.4 Decomposition using AVStd threshold 97

ix

4.5 Bloc diagram of T-DTS . 99

4.6 Decomposition of learning database using ”following the decomposition

tree” strategy . 100

4.7 Decomposition of generalization database using ”following the decom-

position tree” strategy . 102

4.8 Decomposition of generalization database using ”similarity matching”

strategy . 104

4.9 Dataflow of T-DTS: gathering of the results from individual Processing

Units . 108

5.1 Decomposition tree for the model identification experiment 114

5.2 Aggregations of patterns created by decomposition 114

5.3 Evolution of learning error for models (LM learning) 115

5.4 Learning signals (left) and generalization signals (right) 115

5.5 Implemented industrial processing loop using T-DTS identifier 116

5.6 Example process input order, output (metric properties of produced

profiles) and some of process parameters (confidential) shapes. 117

5.7 Examples of database splitting after T-DTS learning phase: four amongst

twelve obtained sub-databases (left). Learned process output identifi-

cation (right) . 118

5.8 Identification of an unlearned sequence of drilling rubber plant’s output

in the generalization phase . 118

5.9 Example of Two Spiral problem’s database with 1000 patterns to be

classified . 119

5.10 Classification Rate as a function of number of neurons (for competitive

DU) and as a function of topology (for Kohonen DU) 120

5.11 Learning and generalization evolution rates vs. AVStd value, when

LVQ models are used . 121

5.12 Concept of views. (a) Example letters, (b) letters’ contour, (c) top

view, (d) down view, (e) left view, (f) right view 124

x

5.13 Choosing characteristic points for four views 124

5.14 Receiving coordinates of characteristic points 125

5.15 Database sample . 125

5.16 T-DTS decomposition tree obtained during experiments 126

5.17 Sequence of datasets of increasing complexity 128

5.18 Statistics of computational effort for T-DTS without adaptation . . . 129

5.19 Statistics of computational effort for T-DTS adapting to problem dif-

ficulty . 130

A.1 T-DTS implementation . 137

A.2 Static functions structure . 137

C.1 Biological neuron . 151

C.2 Artificial neuron example . 152

C.3 Sigmoid (logistic) transfer function 154

C.4 Hyperbolic tangent transfer function 155

C.5 Signum transfer function . 155

C.6 Threshold transfer function . 156

C.7 Linear combiner transfer function . 156

D.1 Perceptron neuron . 159

D.2 Perceptron hyperplane . 160

D.3 Linear network example . 161

D.4 Example of MLP network . 163

D.5 Example of RBF network structure 166

F.1 System identification . 175

F.2 Inverse system modelling . 175

F.3 Feedback control system . 176

xi

xii

Index of symbols

Symbol Signification

x input set of features

X space of input values

y output of real system

ŷ output predicted by model

Dtrain training data provided for prediction

f(x; θ) prediction model (function of input features x and model parameters)

θ set of estimated parameters of model

S(·) score (cost) function of model

C set of possible class values

c1, ..., cm class values

d scalar distance (between real output y and predicted output y)

ε Bayes error

µ arithmetical mean

Σ covariance matrix

εu Chernoff bound

εb Bhattacharyya bound

D divergence

dE Euclidean distance

dWE weighted Euclidean distance

dMH Manhattan distance

dMI Minkovsky distance

dMH Mahalanobis distance

xiii

Symbol Signification

dT Tchebyshev distance

dC Canberra distance

mD Matusita distance

dnorm Normalized mean distance

J Shannon measure of entropy

CDM Class Discriminability Measure

SH(l) degree of separability in cell l

SH overall degree of separability

ASH purity

SNN overall separability of data

ASNN neighborhood separability

ASE collective entropy

f1 Fisher discriminant ratio

Sw within class scatter matrix

Sb between class scatter matrix

Sm mixture scatter matrix

J1, J2, J3 measures manipulating the scatter matrices

rd length of class overlapping

vo volume of overlap region

SIC average inter-cluster distance

SBC average between-cluster distance

rh radius of hypersphere

OS overlap sum

w Neuron weight

b Neuron bias

v Neuron induced field (activation potential)

Φ(·) Activation function

u Linear combiner output

xiv

Symbol Signification

z−1 Unit delay operator

M(·) Model function

f(·) unknown system activity function

d̂k Estimation of output value of neuron k

ek Error of neuron k

E Cost function (index of performance)

η Rate of learning

EB Energy of Boltzmann machine

FI(x) Ensembled average function

gi Gating weight in Mixture of Experts approach

xv

INTRODUCTION

This work is concentrated on developing a semi-automatic data processing structure,

which can reduce complexity of processing tasks by techniques similar to task de-

composition. This data-processing system is called Treelike Divide To Simplify

(T-DTS in short). This idea is represented in part by the name - we divide the

task in order to simplify the processing. So - the most important idea of the work

is connected to Task Decomposition techniques called also Divide to Conquer (see

2.1), that offer potential advantages over one-piece problem processing. Processing

tasks are of very various origins. Sometimes there exists a relation between process-

ing time and size of data that makes task decomposition interesting, because of the

gain of performance, possibly in temporal or processing quality aspects, that is - to

decrease processing time and to increase processing quality. We are also trying to de-

velop a task difficulty evaluation in order to minimalize the need for user intervention

in decomposition. The processing tasks on which we are concentrated in this work

are model identification and classification, because the results are relatively easy to

interpret and compare.

The T-DTS system can also attune itself in part to classification processing task

by using a family of statistical methods called Complexity Estimation techniques.

The goal is to estimate the difficulty of classification task and modify the processing

1

algorithm so that can process the task more efficiently. The modification may include

among others: 1) task decomposition up to some degree dependant on measurements

(i.e. up to what degree we want to decompose the task), 2) the choice of appropriate

processing structure, 3) the choice of individual processing modules for each subset

of decomposed data. These concepts are quite different and complicated so we are

presenting here applications only for the first case. The reason for using Complexity

Estimation as diagnostic techniques is to minimalize the need for user intervention

and to process data efficiently and automatically. We are linking together statistical

methods (in order to well recognize the character of the task) and universal flexible

data processors (Artificial Neural Networks). With such cooperation we are expecting

to make these objectives a little closer.

T-DTS has modular structure. The modules are based on Artificial Neural Net-

works (ANN), because ANN are universal data processors and are naturally well

suited for modular processing. ANN could be considered as universal data processors

because they are on intersection of mathematics, statistics and informatics sciences,

so we can obtain the properties from all these disciplines when necessary. T-DTS

decomposes the processing task into clusters in recurrent way and process them sep-

arately in order to ease and speed up the processing, as well as in order to use

less complicated processing modules. In most cases decomposition of a problem will

also result in decreasing overall processing complexity for complicated tasks that are

difficult to process as a whole, due to great complexity or excess processing times.

The gain incorporates also simplification of structure of task, that lead to less compli-

cated processing modules and possibly less parameters to control. Task decomposition

makes also possible parallel processing (on parallel computing machine or network of

2

machines) that result in great reduction of processing time if the splitting/combining

phases are negligible comparing to the processing phase.

The thesis contains two main parts: the first presents state of the art in domains

close to the work included in the thesis, while the second concerns our work and

presents theoretical basis of T-DTS approach and examples of practical applications

and computer T-DTS implementation. Part concerning state of the art contains three

chapters. First chapter describes Artificial Neural Networks in order to give ideas

about their universality and particular usefulness in modular approach. Chapter two

is concerned with modular algorithms as closely connected to task decomposition

techniques. Chapter three presents complexity estimation that is used in part of

experiments in order to auto-organize the modular T-DTS structure and presents

useful perspectives for the further development of auto-organizing structure. T-DTS

concerned part is composed of two chapters, numbered consequently 4 and 5. T-DTS

approach is presented in detail in chapter four, including methods and strategies for

building the modular structure, decomposition of databases and finally processing and

obtaining the results. Chapter five is aimed at evaluating the universality of T-DTS

approach, by showing its applications to different classes of processing problems. It is

split into two main sections: 5.1 that concerns model identification problems and 5.2

which presents classification problems. Finally chapter six is a presentation of T-DTS

computer implementation, starting from static structure of implemented functions,

user interface description, ending up with controllable parameters structure. The

practical part is followed by global conclusions that summarize up essence of the

work, and give further perspectives for the future development of T-DTS system.

This is pursued by list of publications and annexes contenting additional information

3

of less importance. The references to works related and used in the thesis end up the

text.

4

PART I - STATE OF THE ART

5

Chapter 1

Artificial Neural Networks

1.1 Introduction

This chapter is concentrated on Artificial Neural Networks. ANN are the substance

and basis of T-DTS solution. ANN are used in our approach in order to split up a

problem into several sub-problems and also to process (usually modelize) the sub-

problems. As problem is represented by data, so from technical point of view ANN

operate on sets of data, splitting them up and processing them.

Artificial Neural Networks are especially useful in modular solutions, as they are

well suited by their nature itself to modular and universal applications. That sim-

plifies connecting and cooperation between modules. These properties are desired

in T-DTS approach, so processing modules were based entirely on ANN. Decompo-

sition modules could be based on any efficient clustering algorithm. We have chosen

to use for decomposition ANN structures similar in activity to well-known k-means

clustering algorithm, however presenting more possibilities when it comes to cluster

organization. The advantage of our approach is its flexibility - it’s easy to replace one

part of system with another algorithm that will enlarge the possible usage of whole

6

system.

Artificial Neural Networks (ANN) are grand and powerful data processing tools,

being basically a cross between mathematics and informatics. Their most important

features are distributed processing and adaptive morphology. Distributed processing

is derived from decentralized and modular structure of ANN. They are connected to

many other disciplines, like: neurobiology, mathematics, computer science, statistics,

physics and engineering. Artificial neural networks are applied with success in many

areas: modelling, classification, pattern recognition, signal processing, time series

analysis and others.

Section 1.2 presents main ideas and properties concerning ANN. Section 1.3 in-

troduces general ideas about architecture of layered networks. Section 1.4 presents

learning tasks applicable with machine learning and in particular ANN. Section 1.5

will exhibit learning strategies that are most popular in the area of Artificial Neural

Networks. Conclusion in section 1.6 ends this chapter.

Additional information about ANN is contained in appendixes: Appendix B is a

brief description of ANN history, appendix C presents structural similarities of ar-

tificial and biological neurons and as well discuses the artificial neuron activation

functions. Appendix D is a presentation of general ideas of most popular ANN learn-

ing algorithms, appendix E enumerates industrial applications of ANN, and finally

appendix F is concerned with system identification learning tasks.

1.2 Main ideas

Artificial Neural Networks are inspired by biological nervous systems. Similarly to

biological neural networks (i.e. human brain), ANN are composed of relatively simple

7

elements called neurons. Neurons are connected creating networks. Networks can be

very large and have complicated structure. Network function is determined widely

by the connections between neurons. Neural networks work in parallel way, which

is a very important feature for many computation tasks. In nature, NN perform

many various tasks, beginning from simple reaction to environment change in one-

cell organisms up to still little known functions of human brain. ANN also have this

feature and although simple comparing to Neural Networks in the nature, they are

very powerful and universal computation instrument. ANN similarly to natural NN

usually learn through example. It means that first, a network of appropriate structure

is built and then the network’s behavior is modified to meet the expectations. The

mechanism is similar to feedback known in electronics and other areas. It is depicted

on figure 1.1.

Adjust
parameters

Input Output
Compare

Desired
output

Artificial
Neural Network

Figure 1.1: Neural network learning by example

Depending on the comparison between an output from ANN and a requested

output (known as target) we adjust its connections (called connection weights) and

possibly structure in a way which is expected to ameliorate its performance. This

mechanism is called supervised learning, as it needs a supervisor who will compare

the results with expected values and perform an action depending on it. ANN can

8

be trained to solve problems that are difficult for human beings and for conventional

computing methods. They have proven their efficiency in a number of applications,

among others: pattern recognition, identification, classification, speech, vision and

control systems. Two other important ways of training ANN are called unsupervised

learning and direct design methods. Unsupervised learning can be used for instance

to identify and localize groups of data. Certain types of linear networks as Hopfield

networks are designed directly. Unsupervised learning and direct design methods

are thoroughly described in subsequently sections 1.5.3. In summary there is a great

variety of possible network architectures and learning methods which are used in very

different areas of applications.

Artificial Neural Networks have following properties:

1. Uniformity of analysis and design - ANN are universal data processors,

so it is possible to share theories, learning algorithms in different applications

of neural networks. It is possible also to connect the different types of ANN

modules. This paradigm is known as Multiple Neural Network (DU) [Arb89].

It is very important to this work.

2. Nonlinearity - when network includes nonlinear artificial neurons it is nonlin-

ear. Nonlinearity is important property, when underlying physical mechanism

responsible for generation of the output signal is inherently nonlinear.

3. Input-output mapping - ANN are capable of constructing a mapping be-

tween input and output, based on the training examples. From a statisti-

cal point of view, the process is similar to nonparametric statistical inference

(model-free estimation) [HMS01] and from biological viewpoint tabula rasa

9

learning [GBD92].

4. Adaptivity - Some ANN are designed to be able to adapt their work to minor

changes in operating environment. They can be used in constantly changing

(non-stationary) environment where they change their synaptic weights in real

time. To take a full benefit of adaptivity, the ANN should ignore spurious

(short) disturbances and respond to meaningful changes in environment. The

problem is referred to as stability-plasticity dilemma [Gro88].

5. Fault tolerance - ANN implemented in hardware form are prone to faults,

like any electronic device. However, due to distributed nature of ANN, usually

damage has to be extensive, before the overall response of system is impaired

seriously. In general ANN exhibits gradual degradation of performance rather

than catastrophic failure.

6. VLSI implementability - due to their distributed and parallel structure, ANN

are potentially well suited for implementation using Very-Large-Scale-Integrated

technology circuits [Arb89].

7. Evidential response - in the context of pattern classification, ANN can pro-

vide not only predicted response, but also the confidence about the decision

made. This information can be used later to improve the classification perfor-

mance of network by rejecting ambiguous patterns or to present the doubtful

patterns to another system (for example human expert).

8. Neurobiological analogy - ”The design of a neural network is motivated by

analogy with the brain, which is a living proof that fault tolerant parallel process-

ing is not only physically possible but also fast and powerful.” [Hay99].

10

It is still useful to research the structure of brain and natural neural systems,

as they have still many mysteries and solution to offer, created not by hand of

a man, but by evolution.

9. Statistical analogy - ANN ideas are frequently known in the optimalization

and statistics area [Sar94]. The use of parallel and distributed representation of

data processing elements makes them however easier to integrate and connect

with other ideas.

In the morphology ANN one can distinguish several concepts:

• Artificial neurons

• Structure (organization) of neurons

• Learning algorithms

The concept of artificial neuron as a heritage of biological neuron is described in

detail in appendix C. Section 1.3 presents Artificial Neural Networks architectures.

Section 1.4 will present learning tasks in general manner, while section 1.5 will give

details on machine learning.

1.3 Artificial Neural Networks’ architectures

Neural layer is a combination of several (sometimes also only one) neurons working

in parallel way. In general, an ANN consists of several layers of neurons. In fact

large part of functionality of ANN depends on the connections between neurons,

propagation of values between them (current similar to biological neural impulses)

and whole layers. Depending on the direction of information flow, ANN can be

11

classified as follows: Feedforward networks - Information in that structure flows only

forward, i.e. layer doesn’t contain internal feedback paths. The simple form of such

network is single-layer feedforward network. It contains input layer of source nodes

that projects onto a output layer of neurons. An example of such network is depicted

in the Figure 1.2.

Input layer Output layer

Sensor

Synaptic weight

Neuron

Figure 1.2: Example of single layer feedforward network

Multilayer feedforward networks - the structure consists of not only input and

output layers, but also one or more hidden layers (consisting of hidden neurons also

referred as hidden units). By adding hidden layers a network is enabled to extract

higher-order statistics. Extra set of synaptic connections enable the network to ac-

quire a global perspective [CS92]. The network is fully connected if each neuron from

the preceding layer has a connection with all neurons forming the succeeding layer.

If some connections are missing the network is partially connected. An example of

fully connected ANN feed-forward structure with one hidden layer is depicted on the

Figure 1.3.

12

Input layer Hidden layer Output layer

Sensor

Synaptic weight

Neuron

Figure 1.3: Example of multilayer feedforward network structure

Recurrent networks are networks, which contain at least one internal feedback

loop. A self feedback loop is a delayed connection from a neuron to itself. Recurrent

networks can contain hidden layers. They are able to show dynamical behavior (de-

pending on the previous conditions). An example of recurrent network is depicted on

the Figure 1.4

Feed-forward ANN cannot perform temporal computation like recurrent ANN,

but building and training of recurrent ANN is more difficult. In the next section

learning tasks will be presented to show the most popular goals of data processing

techniques.

1.4 Learning tasks

Artificial Neural Networks are used in many tasks. In this chapter, learning tasks

taxonomy is presented showing the main application classes. The specific applications

of ANN are presented in the Annex C.

13

Unit delay
operatorsz-1 z-1 z-1 z-1

Figure 1.4: Example of recurrent network with no self-feedback loops

1.4.1 Classification

Classification is a process where a signal is assigned to one of prescribed classes (cat-

egories). Neural network first undergoes a training session, during which a network

is repeatedly presented a set of input pattern together with the class to which each

pattern belongs. Later a network is presented with input patterns unlearnt and ANN

is able to classify (attach a class) the patterns using the knowledge extracted from

the learning session.

The patterns are represented as points in multidimensional (feature) decision

space. The decision space is divided into decision regions; each one is assigned

with a class. The decision boundaries are determined during the learning process and

divide the decision regions.

Classification system using ANN can take two forms:

• The system consists of two parts: first part (unsupervised network) is used to

14

do feature selection (transformation from input pattern x into feature vector y).

The transformation may result in dimensionality reduction (data compression),

which is expected to ease the classification task. The second part (supervised

network) is a classifier which maps feature vector y to class labels.

• The system is designed as a single multilayer feedforward network using a su-

pervised learning algorithm. In this case, the task of feature extraction can be

considered as performed in explicit way by hidden layer(s) of the network.

1.4.2 Pattern association

Association is a process of linking objects. Network is required to respond to a key

pattern xk with a memorized pattern yk:

xk → yk, k = 1, 2, ..., q (1.4.1)

Association takes two forms: autoassociation and heteroassociation. In autoasso-

ciation task, network is required to store a set of patterns and respond to a distorted

version of original pattern with that particular pattern. In heteroassociation task,

key pattern and memorized pattern can be completely different (for example dimen-

sionality).These two patterns are paired (associated to each other). The associative

memory is a set of such pairs.

There are two phases of operation of an associative memory:

• Storage phase - when network is trained by presenting the patterns;

• Recall phase - when network is presented with a key pattern and responds

with a memorized pattern.

15

When associative memory responds with wrong pattern, it is said to make an error

in recall. The number of patterns stored in memory provides a direct measure of

the storage capacity of the network. In designing of associative memory, the goal is

to enhance the storage capacity and efficiency and minimalize the recall errors.

1.4.3 Function approximation

The aim here is to create a model function M(·) which imitates the activity of un-

known system. The activity of system is marked as function f(·), which is usually

unknown and can be approximated by analyzing the input-output relation of system.

d = f(x)

d are outputs of real system f(·) to inputs x

The approximation can be exploited in two ways:

• system identification, when model M(x) imitates explicitly a function f(x).

Both original system and model are given input values x, the responses are

compared to determine error e, which is used to train the system identification

model. The model M(x) produces in this case estimations of output values,

given real input values x.

d̂ = M(x)

The performance of system is measured by taking into account absolute differ-

ence between responses of system and model to input patterns:

‖M(x)− f(x)‖

16

• inverse system, when model M(x) imitates the function f−1(x), which is

reverse to system behavior. The model M(x) produces thus estimations of

input values , given real output values y of system:

x̂ = M(y)

The system’s performance is measured by taking into account absolute difference

between responses of model (estimated input pattern) and real input pattern

(unknown to model):

‖M(y)− x‖

System identification and inverse system computation are detailed in Annex F.

1.4.4 Filtering

The filtering is a process of extracting interesting properties from a set of noisy data.

Filters can be used to three basic tasks:

• filtering - extraction of information about a quality of interest at discrete time

n by using data measured up to and including time n.

• smoothing - extraction of information about a quality of interest at discrete

time n by using data measured before and after time n. In statistical sense,

smoothing is expected to be more accurate than filtering, because it can use

more data.

• prediction - forecasting information about a quality of interest at discrete time

n + no by using data measured up to and including time n. This task is most

difficult.

17

x(n)

Model +-
)(ˆ nx

x(n-T)

x(n-mT)

Figure 1.5: Nonlinear prediction

A spatial form of filtering is known as beamforming. It is used to distinguish

between the spatial properties of a target signal and background noise.

Beamforming is commonly used in radar and sonar systems where the primary

task is to detect and track a target of interest in the presence of noise and interfering

signals.

Next section gives details on learning algorithms, which lead to accomplishment

of the learning tasks.

1.5 Learning algorithms

Learning algorithm in ANN approach is an algorithm which is used to modify the

weights, biases and/or structure of ANN. By these modifications, the performance of

ANN is expected to be improved. One of possible morphology of learning algorithms

is as follows:

• Learning with a teacher (supervised learning)

– error correction learning

18

∗ incremental training

∗ batch training

• Learning without a teacher

– Reinforcement learning/neurodynamic programming

– Unsupervised learning

– Competitive learning

• Memory based learning

• Boltzmann learning

1.5.1 Learning with a teacher

Learning with a teacher is also called supervised learning. To adjust the parame-

ters of learning system, one uses an error signal, which is a difference between actual

system response and desired (optimal) response given by teacher.

In incremental training, weights and biases are updated each time a new input

vector and corresponding target is presented to the network; i.e. sequentially. In-

cremental learning can be applied to both static and dynamic networks, but is most

commonly used with dynamic networks, such as adaptive filters. In batch training,

weights and biases are updated after whole learning database (learning examples and

corresponding targets) was presented; i.e. concurrently.

1.5.1.1 Error correction learning

Error of neuron k with m synapses given a signal vector x(n) at time step n is equal

to:

19

Environment Teacher

+
Learning system

Actual
response

Error signal

Desired
response

_

Figure 1.6: Learning with a teacher (supervised)

ek(n) = dk(n)− yk(n) (1.5.1)

where yk(n) denotes neuron output, dk(n) is a desired output of neuron k, ek(n)

denotes error signal. The corrective mechanism is expected to minimalize this error.

This is accomplished by minimalizing a cost function or index of performance:

E(n) =
1

2
e2k(n) (1.5.2)

E(n) is a instantaneous value of error energy. The corrections are continued until

system is in stabilized state. One of the ways to minimalize the error energy is the

Widrow-Hoff rule or delta rule. The adjustment to the j-th synaptic weight of neuron

k equals:

20

bk

 �(·) �
wk1

wk2

wkm

vk

x1

x2

xm

yk

ek

dk

+

_

�

Figure 1.7: Error computation

∆wkj(n) = ηek(n)xj(n) (1.5.3)

where η is the positive constant called rate of learning, wkj(n) is the synaptic

weight value of neuron k, when excited by element xj(n) of input vector x(n) at time

step n. The adjustment is proportional to the product of error signal and the input

signal of the synapse. The updated value of synapse wkj at time n+ 1 is computed:

wkj(n+ 1) = wkj(n) + ∆wkj(n) (1.5.4)

The network with new values of synapses is expected to achieve better perfor-

mance. The very early approach was perceptron learning rule [Ros58]. The most

popular techniques in error correction learning are based on backpropagation of gra-

dient [Arb89], [Hay99], which is a generalization of the perceptron learning rule.

21

Environment Critic

Learning system

Actions

State (input)

Heuristic
reinforcements

Primary
reinforcements

Figure 1.8: Reinforcement learning

1.5.2 Learning without a teacher

In learning without a teacher, there are no examples given to the system.

1.5.2.1 Reinforcement learning

In reinforcement learning the learning of input-output mapping is performed through

continued interaction with the environment in order to minimalize a scalar index of

performance.

Critic converts primary reinforcement signal received from an environment

into a higher quality reinforcement signal called heuristic reinforcement. The

system incorporates delayed reinforcement which means that system is able to observe

temporal sequence of state vectors. The goal is to minimalize a cost-to-go function

defined as an expectation of the cumulative cost of actions taken over a sequence of

22

steps. Reinforcement learning is related to dynamic programming [Bel57], which

provides the mathematical formalism for sequential decision making.

1.5.2.2 Hebbian learning

Hebb’s postulate of learning [Heb49] says that if a neuron A repeatedly excites

other neuron B, then the connection from A to B (axon) becomes more efficient. The

postulate was made in neurobiological context.

The idea expanded by Changeeux and Danchin says as follows:

1. If two neurons on either side of a synapse (connection) are activated simulta-

neously (i.e., synchronously), then the strength of that synapse is selectively

increased.

2. If two neurons on either side of synapse are activated asynchronously, then that

synapse is selectively weakened or eliminated

Hebbian synapse is characterized by four properties:

1. time-dependent mechanism - modification of the Hebbian synapse depend

on the exact time of occurrence of the presynaptic and postsynaptic signals

2. local mechanism - the modifications are local and are triggered by local con-

ditions

3. interactive mechanism - Hebbian form of learning depend on interaction

between presynaptic and postsynaptic signals two neurons.

4. conjunctional or correlational mechanism - temporal correlation between

presynaptic and postsynaptic signals is viewed as being responsible for change.

23

General form of Hebbian adjustment of synapse wkj of neuron k at time step

n is expressed as follows:

∆wkj(n) = F (yk(n)j, xj(n))

where F (·, ·) is a function of presynaptic and postsynaptic signals, yk is postsy-

naptic signal and xj is presynaptic signal. Hebb’s hypothesis in the simplest form

(only development of synapse, no weakening) is realized by adjustment of following

form:

∆wkj(n) = ηyk(n)j, xj(n) (1.5.5)

where η is the learning rate parameter. Covariance hypothesis [Sej77] expands the

functionality by taking into account average values of respectively presynaptic and

postsynaptic signals:

∆wkj = η(xj − x̄j)(yj − ȳj) (1.5.6)

where η is the learning rate parameter. The covariance hypothesis realizes Hebbian

learning in the full form, described by Changeeux and Danchin, by making synapse

stronger or weaker depending on the pre- and post synaptic activities. In particular

the synaptic adjustment achieves negative value (with minimum of −η(xj − x̄)ȳ),

where synapse is weakened. When presynaptic activity xj or postsynaptic activity yk

equal the average values respectively x̄ and ȳ the synapse remains unchanged.

There is a psychological evidence for the occurrence of Hebbian learning in the

area of brain called hippocampus [BL73].

24

Environment Learning system

Vector describing
state of the

environment

Figure 1.9: Unsupervised learning

1.5.3 Unsupervised learning

In unsupervised or self-organized learning the stress is placed on independent

measure of the quality of network representation. Unsupervised learning is usually a

way to form ’natural groupings’ or clusters of patterns (in this interpretation referred

to also as clustering).

The advantages of clustering:

• Separate processing of clustered groups can be much easier and less expensive

than processing of the database as a whole. Collecting and labelling a large

set of sample patterns can be very expensive. For example recorded speech is

virtually free, but accurately labelling the speech can be very expensive and time

consuming. By designing a basic classifier with a small set of labelled samples,

and then tuning the classifier up by allowing it to run without supervision on a

large, unlabelled set, much time and trouble can be saved;

• Training with large amounts of often less expensive, unlabelled data, and then

using supervision to label the groupings found. This may be used for large ”data

mining” applications where the contents of a large database are not known

before;

• Unsupervised methods can be used to find features which can be useful for

25

categorization. There are unsupervised methods that represent a form of data-

dependent ”smart pre-processing” or ”smart feature extraction.”;

• Clustering can give insight into the nature or structure of the data.

Clustering is described in details in the section 2.4 of this work - in connection with

modular algorithms.

1.5.4 Competitive learning

In competitive learning the output neurons of ANN compete among themselves to

become active. Only one neuron in the output layer can be active (fire) at the

same time (opposite to Hebbian learning, where many output neurons can be active

simultaneously). Basic elements of competitive learning rule are:

• a set of neurons which are the same except for the synaptic weights. Therefore

they respond differently to a given set of input patterns

• a limit of the ”strength” of each neuron

• a mechanism which forces the competition between neurons, so only one of the

group is active at a time [RZ85].

The individual neurons specialize on ensembles of similar patterns, so they became

feature detectors of input patterns

A mechanism called lateral inhibition is a set of negative feedbacks connec-

tions linking excited neuron to other neurons. It means that when the neuron is

excited it decreases the possibility that other neurons are excited. Lateral inhibition

is also present in the neurobiological systems like eye retina, ear cochlea and pressure

sensitive nerves of the skin [Arb89].

26

Each neuron in the structure is allocated a fixed amount of synaptic weight (all

weights are positive):

∑
j

wkj = 1 (1.5.7)

to ensure that neuron learns by shifting the synaptic weights from inactive to

active input nodes. To be a winning neuron, the neuron’s induced local field vk

must be the largest among all neurons in the network. Induced local field is equal

to:

vk =
m∑

j=1

wkjxj + bk (1.5.8)

The output of winning neuron is then set to 1, the outputs of other neurons are

set to 0. The winning neuron is moved towards the input pattern x by competitive

learning rule:

∆wkj =

{
η(xj − wkj) if neuron k wins the competition

0 if neuron k loses the competition
(1.5.9)

where η is the learning parameter.

1.5.5 Memory-based learning

In memory-based learning, all or part of the experiences are stored in memory of

correctly classified examples. When classification of test vector xtest is requested, the

algorithm searches the memory for the similar examples of xtest(”local neighborhood”)

and produces an output depending on the values of the memorized similar examples.

Memory-based algorithms have two properties:

27

• definition of local neighborhood of the test vector xtest;

• learning rule applied to the local neighborhood of xtest;

The memory based learning simplest example is the k-nearest neighbor classifica-

tion [HMS01]. ANN which use memory learning are for example radial-basis function

network.

1.5.6 Boltzmann learning

The Boltzmann learning rule [AK89] is a stochastic learning algorithm derived

form statistical mechanics. A neural network designed on the basis of the Boltzmann

learning rule is called a Boltzmann machine.

In a Boltzmann machine, the neurons constitute a structure and operate in a quasi-

binary way (two possible states of neurons: 1 and -1). The machine is characterized

by energy function EB:

EB = −1

2

∑
j

∑
k

wkjxkxj (1.5.10)

where xj,xk are the states of neurons j and k, wkj is the synaptic weight connecting

neuron j to neuron k. None of the neurons in the machine has self-feedback. The

machine operates by choosing a neuron at random and flipping the state of the neuron

with probability:

P (xk → −xk) =
1

1 + exp(−∆EBk/T)
(1.5.11)

where EBk is the change in the energy of the machine resulting form such a flip

and T is a pseudotemperature - parameter used to control the uncertainty in firing.

The goal is to achieve thermal equilibrium - steady state of the machine.

28

1.5.7 Learning algorithms conclusion

In this section a number of learning algorithms for single structure have been pre-

sented; all of them are well suited for machine learning (and in particular ANN). In

the next section the concept of many collaborating structures will be introduced.

1.6 ANN Conclusion

ANN present huge variety of architectures and learning algorithms. The area is

developing rapidly. Consequently, they are used as powerful tools in many problems,

especially problems characterized by:

• lack of physical or statistical understanding of a problem

• statistical variations in the data

• nonlinear mechanism underlying the problem

ANN have many advantages:

• uniformity of analysis and design - it’s possible to share theories and learning

algorithms in different applications of ANN;

• adaptive morphology - ANN can adapt to major changes in the operating en-

vironment, ignoring the minor changes;

• input-output mapping - model building based on training examples;

• universality - many areas of interest, i.e. modelling, pattern recognition, signal

processing, time series analysis;

• nonlinearity - ANN are capable of solving non-linear problems;

29

• fault tolerance - resistance to faults in hardware implementation (due to dis-

tributed structure);

• easy VLSI implementability in most cases;

• distributed processing - ANN are capable of parallel data processing;

• evidential response - can produce decisions with confidence rates;

• neurobiological and statistical analogies - in terms of morphology and algo-

rithms.

ANN have also limitations, mainly due to distributed and randomized way of working:

• the given solution is sometimes unpredictable;

• if ANN doesn’t work as expected it’s sometimes not trivial to find the way to

fix that behavior;

• Some tasks are more suited to an algorithmic approach (like arithmetic opera-

tions), where ANN are sometimes less efficient than conventional computation

methods and algorithms;

• For some learning algorithms and structures the examples must be selected

carefully, otherwise useful time is wasted or even worse - the network might be

functioning incorrectly;

• specialized ANN may not be universal - ANN once trained is fixed on some data

and cannot process other task until trained again, once ANN was designed for

some task its design may be found inappropriate for other tasks;

30

• Possibly large number of training examples and long training periods are needed

for some tasks;

• Knowledge embodied in ANN is sometimes not easily accessible (not under-

standable) outside of the ANN (i.e. ANN decides that patient needs a surgery,

but the reason is unknown as the reasoning is based on trained examples and

the decision is hidden and distributed in numerous neurons weights);

• It’s sometimes hard to incorporate prior knowledge into network.

We have introduced so many models in order to show the great possibilities of ANN

structures in processing of different tasks. In T-DTS approach we need two general

class of modules: clustering and processing. We can found ANN structures for both

cases, what makes easier the cooperation between these and offer great variability of

possible processing modules.

Next chapter will talk about modular algorithms - solutions that have distributed

structure. Our approach is a modular structure, so these solutions especially in ANN

area are very interesting to us.

31

Chapter 2

Modular Algorithms

Apart from explicit solution of problem by specialized ”one-piece” algorithm, there

exist a number of solutions, which have modular structure. In modular structure

modules could have some defined and regularized structure or be more or less ran-

domly connected, ending up at completely independent and individual modules. The

modules can communicate with others: send them data or orders (to modify module

itself or structure, cooperate, perform specific action, autodestruct, etc.). A modu-

lar structure when modules are composed of Neural Networks is called Multi Neural

Network (MNN).

We will present here three modular paradigms that are of particular interest for

us: ”divide and conquer” paradigm, Committee Machines and Multi-agent approach.

”Divide and conquer” paradigm is certainly a leading idea of the work presented in

the thesis. Committee machines are in large part incorporation of this paradigm.

Multi-agent approach is more distant cousin as the stress is put on the independence

of modules, but the idea of intelligent modules (taking decisions) is close to T-DTS

approach.

32

2.1 ”Divide and conquer” algorithms

The approaches most close to presented in this work are known as ”divide and con-

quer” algorithms. They are based on the principle ”Divide et impera” (Julius Caesar).

The main frame of the principle can be expressed as:

1. Break up problem into two (or more) smaller subproblems of similar structure.

2. Solve subproblems

3. Combine results to produce solution to original problem.

The ways in which the original problem is split differ as well as the algorithms of

solving subproblems and combining the sub-solutions. The splitting of the problem

can be done in recursive way. Very known algorithm using the paradigm is Quick-

sort [Hoa62], which splits recursively data in order to sort them in defined order. In

the ANN area the most known algorithm of similar structure is Mixture of Experts.

An issue could be model complexity reduction by splitting of a complex problem

into a set of simpler problems: multi-modelling where a set of simple models is used

to sculpt a complex behavior [GK96]. Another promising approach to reduce com-

plexity takes advantage from hybridization [KV95]. Several ANN based approaches

were suggested allowing complexity and computing time reduction. Among proposed

approaches, one can note the Intelligent Hybrids Systems [KV95], Neural Network

Ensemble concept [Han93], Models or experts mixture ([BS95], [SN95]), Dynamic Cell

Structure architecture [LW98] and active learning approaches [FL90].

It was observed earlier that one reason for examining algorithmic paradigms was

the fact that their running time could often be precisely determined. This is useful

in allowing comparisons between the performances of two algorithms to be made.

33

For Divide-and-Conquer algorithms the running time is mainly affected by 3 cri-

teria:

• The number of sub-instances into which a problem is split: α

• The ratio of initial problem size to sub-problem size: β

• The number of steps required to divide the initial instance and to combine

sub-solutions, expressed as a function of the input size, n.

Suppose, P , is a divide-and-conquer algorithm that instantiates α sub-instances,

each of size n/β. Let Tp(n) denote the number of steps taken by P on instances of

size n. Then:

Tp(n0) = constant(recursive− base)

Tp(n) = α · Tp(n/β) + γ(n)
(2.1.1)

In the case when α and β are both constant (as in all the examples we have given)

there is a general method that can be used to solve such recurrence relations in order

to obtain an asymptotic bound for the running time Tp(n).

In general: T (n) = αT (n/β) +O(nγ) , (where γ is constant) has the solution:

T (n) =


O(nγ), α < βγ

O(nγ log n), α = βγ

O(nlog−βα
), α > βγ

(2.1.2)

2.2 Committee Machines

The committee machines are based on engineering principle divide and conquer.

According to that rule, a complex computational task is solved by dividing it into a

34

number of computationally simple tasks and then combining the solutions of these

tasks. In supervised learning, the learning task is distributed among a number of

experts which divides the space into a set of subspaces. The combination of experts

is called committee machine. Committee machine fuses knowledge of experts to

achieve an overall decision, which is supposedly superior to that achieved by any of

the experts alone. Committee machines are universal approximators [Tre01].

The taxonomy of committee machines could be as follows:

1. Static structures

a) Ensemble averaging

b) Boosting

2. Dynamic structures

a) Mixture of experts

b) Hierarchical mixture of experts

Next several subsections will present the types of committee machines in detail.

2.2.1 Ensemble averaging

In ensemble averaging technique [Hay99], [Arb89], a number of differently trained

experts (i.e. neural networks) share a common input and their outputs are combined

to produce an overall output value y.

The advantage of such structure over a single expert is that the variance of the

ensembled average function FI(x) is smaller than the variance of single expert F (x).

Simultaneously both functions have the same bias. These two facts lead to a training

35

Input x (n)

y1(n)Expert 1

Expert 2

Expert K

Combinery2(n)

yK(n)

Output y(n)

Figure 2.1: Ensemble averaging structure

strategy for reducing the overall error produced by a committee machine due to

varying initial conditions [NIH97]: the experts are purposely overtrained, what results

in reducing the bias at the cost of variance. The variance is subsequently reduced by

averaging the experts, leaving the bias unchanged.

2.2.2 Boosting

In boosting [Sch99a] (in contrast with the ensemble averaging) the experts are trained

on the data sets with entirely different distributions; it is a general method which can

improve the performance of any learning algorithm. Boosting can be implemented in

three different ways:

1. Boosting by filtering - the training examples are filtered by different versions

of a weak learning algorithm with the examples either discarded or kept during

training.

2. Boosting by subsampling - the second approach works with a sample of fixed

size. The examples are resampled according to given probability distribution

36

during training.

3. Boosting by reweighing - the approach works with a fixed training sample

and assumes that the weak learning algorithm can receive ”weighted” samples.

2.2.2.1 Boosting by subsampling

The algorithm that realizes boosting by subsampling is called AdaBoost algo-

rithm [Sch99b]. It adaptively resamples the data set and uses a data set of fixed size.

AdaBoost is running a given weak learner several times on slightly altered training

data, and combining the hypotheses to one final hypothesis, in order to achieve higher

accuracy than the weak learner’s hypothesis would have. The algorithm is as follows:

• Assign every example an equal weight 1/N

• For t = 1, 2, , T Do

– Obtain a hypothesis (classifier) h(t) under w(t)

– Calculate the weighted error e(t) of h(t)

– If e(t) ¿ 1/2, repeat for loop with different sample

– Re-weight the correct examples with b(t) = e(t)/(1− e(t))

– Normalize w(t+ 1) to sum of 1

• Output a weighted sum of all the hypothesis, with each hypothesis weighted

according to its accuracy on the training set.

2.2.3 Mixture of experts

Mixture of experts consists of K supervised models called expert networks and a

gating network, which performs a function of mediator among expert networks. The

37

output is a sum of experts’ outputs (weighted by gating network). It is assumed that

the different networks work best in different regions of the input space, in accordance

with the probabilistic generative model [JJ95].

An exemplary Mixture of Experts structure is presented in figure 2.2. One can

not the K experts and a gating network that filters the solutions of experts. Finally

the weighted outputs are combined to produce overall structure output.

Input x

Expert 1

Expert 2

Expert K

...

Gating
network

gK

g1

g2

...
...

yK

y2 �

y1

Figure 2.2: Mixture of Experts

The gating network consists of K neurons, with every neuron assigned to specific

expert. The gating network structure is depicted in the figure 2.3.

The neurons in gating network are nonlinear with activation function defined by:

gk =
exp(uk)

K∑
j=1

exp(uj)

wherek = 1, 2, , K (2.2.1)

38

... ...

gK

g1

g2

x1

xm

x2

a1m

a12

a11

Figure 2.3: Structure of gating network

where uk is the inner product of the input vector x and synaptic weight vector wk

for the neuron k:

uk = wT
k x, k = 1, 2, ..., K (2.2.2)

The transfer function is a differentiable version of ”winner-takes-all” operation of

picking the maximum value. It is referred to as ”softmax” transfer function [Bri90],

described in section C.4 of appendixes. The use of ”softmax” as the activation func-

tion for the gating network induces the following properties:

0 ≤ gk ≤ 1, for all k (2.2.3)

K∑
k=1

gk = 1 (2.2.4)

The gating network maps the input vector into multinomial probabilities, so the

different experts will be able to match the desired response [JJ95]. The output is a

sum of experts’ outputs and is equal to:

39

y =
K∑

i=1

giyi (2.2.5)

The mixture of experts is an associative Gaussian mixture model, which is

a generalization of traditional Gaussian mixture model [TSM85], [MB88].

2.2.4 Hierarchical Mixture of experts

Hierarchical mixture of experts works similarly to ordinary mixture of experts, except

that there exist multiple levels of gating networks. So the outputs of mixture of

experts are gated in order to produce combined output of several mixture of expert

structures. In figure 2.4 one can see two separate mixture of experts blocks (marked

with dashed rectangles). The additional gating network is gating the outputs of these

two blocks in order to produce the global output of the whole structure.

40

Input x

Output

Expert 1,2

Expert 1,2

Expert L,2

...

Gating network 2

gL2

g12

g22

...

...

yL2

y22 �

y12

Expert 1,1

Expert 2,1

Expert K,1

...

Gating network 1

gK1

g11

g21

...

yK1

y21 �

y11

Gating network 3

g2

g1

�

Output y2

Output y1

Figure 2.4: Example of hierarchical mixture of experts

41

2.3 Multi Agent Systems

There is a great variety of intelligent software agents and structures. The character-

istics of Multi Agent Systems [Fer98] are that:

• each agent has incomplete information or capabilities for solving the problem

and, thus, has a limited viewpoint;

• there is no system global control;

• data are decentralized;

• computation is asynchronous

In Multi Agent Systems many intelligent agents interact with each other. The

agents are considered to be autonomous entities, such as software programs or robots.

Their interactions can be either cooperative or selfish. That is, the agents can share

a common goal (e.g. an ant colony), or they can pursue their own interests (as in the

free market economy).

Classification of agents by task:

• Interface Agents - ”[C]omputer programs that employ artificial intelligence

techniques in order to provide assistance to a user dealing with a particular

application ...The metaphor is that of a personal assistant who is collaborating

with the user in the same work environment.” [Mae]

• Information Agents - ”An information agent is an agent that has access to at

least one, and potentially many information sources, and is able to collate and

manipulate information obtained from these sources to answer queries posed by

users and other information agents... ” [WJ95a].

42

Autonomous

Biological agents Robotic agents Computational

Software agents Artificial life

Task-specific Entertainment Viruses

Figure 2.5: Classification of intelligent artificial agents considering origin [WJ95b]

• Commerce Agents - a commerce agent is an agent that provides commercial

services (e.g., selling, buying and prices’ advice) for a human user or for another

agent. ”

• Entertainment Agents - ” ... artistically interesting, highly interactive, sim-

ulated worlds ... to give users the experience of living in (not merely watching)

dramatically rich worlds that include moderately competent, emotional agents”

[BLR92].

Agents can communicate, cooperate and negotiate with other agents. The basic

idea behind Multi Agent systems is to build many agents with small areas of spe-

cialized knowledge and link them together to create structure which is much more

powerful than the single agent itself. This is similar to T-DTS paradigm, where the

Processing Unit models are specialized in small areas and conjunction of the areas

covers whole problem space.

43

The theoretical basis for multiple agents is given in research field known as dis-

tributed artificial intelligence (DAI), which is a part of distributed problems solving.

DAI is the study of distributed but centrally designed AI systems [AG92] and in-

volves design of multiple-agents distributed system. The aim is to solve a problem

or accomplish a task. The DAI decomposes the task into subtasks, each of which is

processed by an agent. It is assumed also that there exist a single control structure

which can influence the preferences and control the agents. The DAI infrastructure

can be constructed with an architecture known as blackboard [AG92].

DAI systems contrast with multiagent systems. In multiagent systems, there is no

single control structure (designer) which controls all agents. Each of these agents can

work on different goals, sometimes in parallel and sometimes in contradictory. Both

cooperation and competition is possible among agents [DSW97]. In multiagent sys-

tems, a complex problem is decomposed into subproblems, each of which is assigned

and agent that works independently of others and is supported by a knowledge base.

The agents make acquiring and interpretation of information by using deductive and

inductive methods as well as computations. The resulting data is sent to coordinator

who chooses one or more solutions.

2.4 Clustering

Clustering is a process of forming ’natural groupings’ or clusters of patterns from

database. The process is often referred to as unsupervised learning. The advantages

of clustering:

• Separate processing of clustered groups can be much easier and less expensive

than processing of the database as a whole. This is especially visible when the

44

processing cost could be expressed as a magnitude of size of data.

• Training with large amounts of often less expensive, unlabelled data, and then

using supervision to label the groupings found. This may be used for large ”data

mining” applications where the contents of a large database are not known

before. Characteristics of patterns can change slowly with time. For example

in automated food classification as the seasons change. If these changes can be

tracked by a classifier running in an unsupervised mode, improved performance

can be achieved.

• Unsupervised methods can be used to find features which can be useful for

categorization. There are unsupervised methods that represent a form of data-

dependent ”smart pre-processing” or ”smart feature extraction.

• Clustering can give insight into the nature or structure of the data. The dis-

covery of similarities among patterns or of major departures from expected

characteristics may suggest an approach to design the classifier.

2.5 Modular algorithms conclusion

Modular algorithms present advantages over single structures. By using a structure

of simple networks one can obtain good results without a need for creating large and

complicated networks and obtaining a well-defined structure, that is potentially much

easier to control, modify and manage.

Next section will introduce complexity estimation - methods to estimate the com-

plication of classification task. Incorporation of the techniques can provide knowledge

about efficient methods for designing the problem solution, in particular modification

45

of T-DTS structure. It can be also as a knowledge source for a system that adapts

itself to problem.

46

Chapter 3

Complexity estimation

This chapter concerns complexity estimation methods. Complexity estimation is

a supportive tool for classification. Complexity estimation is used as a knowledge

harvester that provides clues about organization of processing structure. The goal

of complexity estimation is to verify and measure the difficulty of classification task,

yet before proper processing, in order to modify the processing parameters. The goal

is to reduce the user intervention to minimum, while keeping processing efficient and

accommodated to the processing task. This technique is one of possible tools that

could lead finally to automate processing of computation task.

Structure of this chapter is as follows: section 3.1 introduces complexity estima-

tion, shows its possible applications and identifies the sources of classification errors.

Section 3.2 presents the basics of classification as a special case of prediction. Section

3.4 proposes taxonomy of complexity estimation methods. Section 3.5 exhibits most

popular complexity estimation methods, following the taxonomy proposed in section

3.4. Conclusion in section 3.6 ends the chapter.

47

3.1 Complexity estimation - definition

Complexity estimation methods are intended for estimating difficulty of data in clas-

sification problem. Classification complexity estimation is used to understand the

behavior of classifiers and for feature selection. It can be also used to choose or

adjust classifier depending on the measured characteristics of the problem.

Bayes error [Irv65] is a theoretical probability of classification error, resulting from

the ambiguity of classification task. It is considered as a target classification rate - no

classification algorithm is expected to achieve better results on the unseen data. It is

also the optimal complexity estimator. It is explained in details in section 3.3. There

is a great impact of Bayes error on the most of classification complexity techniques.

Bayes error is however difficult to calculate directly for three main reasons:

• conditional density estimation p(ck|x) is an ill-posed problem [Dev87],

• class probabilities p(x) are needed,

• difficulty of numerical integration increases with dimensionality.

Many approaches aims at estimating Bayes error in indirect way, i.e. propose

a measure which is a lower or higher bound of Bayes error but easier to calculate

than direct estimation. Correlation to Bayes error is a desirable property for other

measures.

To understand why classifiers are not successful, it is important to identify sources

of classification problem errors. Relevant effects of geometrical complexity are de-

scribed by Basu [Ho01]:

1. Class ambiguity - some problems are known to have nonzero Bayes error

[HB97], it means that samples from two different classes may have identical

48

feature values. (Bayes error sets a lower bound on achievable error rate.) Ac-

cording to Ho [Ho00], this can happen regardless of class boundary shape and

feature space dimension. Some problems may be intrinsically ambiguous; other

problems may be ambiguous only due to poor features selection. The ambiguity

is intrinsic if the given feature set is complete for reconstruction of the patterns.

Otherwise redefining the features can remove the ambiguity.

2. Curvature of boundary / imperfectly modelled boundary complexity

- some problems have complicated optimal decision boundary. In other words,

some are much more difficult than others. Classifying algorithm should have

enough capacity to cope with the problem, otherwise boundary is imperfectly

modelled and classification error will occur (avoidable by reference to Bayes

error). This effect is independent of class ambiguity, sampling density and

feature space dimensionality

3. Non-representative sample size and feature space dimensionality -

sometimes training set does not represent whole classification problem well.

Classification algorithm considers a problem simple when in fact it is complex

but insufficiently represented. This easily happens in high dimensional space

where the class boundary can vary with a larger degree of freedom. The repre-

sentativeness of training set is a subject of study in many theoretical and practi-

cal considerations, like Vapnik’s statistical learning theory [Vap98], Kleinberg’s

arguments on M-representativeness [Kle96], Berlind’s hierarchy of indicernibil-

ity [Ber94], Raundy’s and Jain’s work [RJ91] and many others [FK71], [KD82],

[Tou74].

49

Before presenting specific classification complexity methods, classification and its

complexity related properties will be discussed.

3.2 Classification as an aspect of Predictive Mod-

elling

Predictive modelling aim is to predict unknown value of variable when provided

with known values of other variables. Predictive modelling can be thought of as a

learning of mapping from an input set of features x to estimated scalar output

y. To learn, the mapping model is provided with training data Dtrain (consisting

of pairs of measurements: vector x(i) with corresponding true output value target

y). The goal of predictive modelling is to estimate (using training data Dtrain) a

function representing the model ŷ = M(x; θ) that generates estimated values of

output ŷ, which are expected to be close to true value of output y. That function is

given an input vector x(i) and a set of estimated parameters θ for a model M . There

are two kinds of task in predictive modelling:

• Classification - values y of output set Y are categorical

• Regression - values y of output set Y are real

To build a predictive model one have to choose three elements:

1. a model M

2. a score function S for determining how well the model fits the original problem

(how far are the real values from the results estimated by model f)

50

3. optimalization strategy, also known in literature as training algorithm, the

aim of it is to minimize the score function S as function of θ

The choice of model is difficult, as huge number of solutions exists in literature.

The advantages of simple models are that they are easier to interpret and usually

more stable. They can be just too simple for complicated problems and don’t achieve

satisfactory results. Relatively new idea is a combination of multiple simple models

in some way (i.e. Multiple Neural Networks [Arb89]), which can possibly lead to

satisfactory results without overcomplicating.

Score function (also known as error function) is a function of difference from

observed real output values y and predicted output values y:

S(θ) =
∑

Dtrain

d(y(i), ŷ(i)) =
∑

Dtrain

d(y(i), f(x(i); θ)) (3.2.1)

where sum is taken over the tuples (x(i), y(i)) in the training data set and d defines

a distance between real output y and predicted output ŷ for the same input vector

x(i). Distance function d(·) is usually defined as squared distance (Euclidean) for

real-valued outputs y or an indicator function for categorical values of y. Function

d(·) has scalar values.

Most known distance functions for real-valued outputs, between feature vectors i

and j where dim is the total number of dimensions (features), are:

• Euclidean distance:

dE(i, j) =

(
dim∑
k=1

(xk(i)− xk(j))
2

) 1
2

(3.2.2)

51

• Weighted Euclidean distance:

dWE(i, j) =

(
dim∑
k=1

uk(xk(i)− xk(j))
2

) 1
2

(3.2.3)

where vector uk defines the importance weights for features.

• Manhattan (Hamming) distance:

dMH(i, j) =
dim∑
k=1

|xk(i)− xk(j)| (3.2.4)

• Minkovsky distance:w

dMI(i, j) =

(
dim∑
k=1

(xk(i)− xk(j))
λ

) 1
λ

(3.2.5)

Minkovsky distance is a generalization of Euclidean and Manhattan distance.

Minkovsky distance when λ = 2 equals Euclidean distance and Minkovsky dis-

tance with λ = 1 equals Manhattan distance.

• Mahalanobis distance:

dMH(i, j) = ((x(i)− x(j))T Σ−1(x(i)− x(j))
1
2 (3.2.6)

x(i) and x(j) are the feature vectors, T represents the transpose, Σ is the

p × p covariance matrix. The purpose of using Σ−1 is to standardize the data

relative to covariance matrix. The formula can be used also as a data complexity

criterion as described in section 3.5.1.5.

• Tchebyshev distance:

dT (i, j) = max
i=1,2,...,p

|xk(i)− xk(j)| (3.2.7)

52

Tchebyshev distance is a generalization of Minkovsky distance when λ ap-

proaches infinity.

• Canberra distance:

dC(i, j) =

p∑
k=1

|xk(i)− xk(j)|
|xk(i) + xk(j)|

(3.2.8)

Optimalization strategy (commonly known in Neural Network literature as train-

ing algorithm) depends amongst others on type of predictive modelling task (classi-

fication or regression), specificity of task, chosen model M and score function S(·)

used.

In classification we wish to learn a mapping (function) from feature vectors x to

categorical values from space C (class labels). Class labels take values in the set

c1, , cm. The most popular approach to deal with classification problems is to use

discriminative classification, which is described in next section.

3.2.1 Discriminative classification

In a discriminative classification approach, a classification model f(x; θ) (predic-

tion model for classification task is known as classifier) takes input vector x and

assigns to it a value from the set of classes c1, , cm.

Decision region for class ci (where i ∈ [1,m]) is union of all regions in the input

feature space where output takes value of ci. In other words, decision region for ci is

a set of all input values for whose output is ci. Complement of this decision region is

the decision region for all others classes.

Decision boundaries or decision hyperplanes separate the decision regions.

Mathematical form of decision boundaries can be straight lines or planes (linear

53

boundaries), curves boundaries such as polynomials and other (Boundary Methods

are described in detail in section 3.5.2.3 on page 71).

In most real classification problems, the classes are not perfectly separable in fea-

ture space. The situation when relatively very close input vectors x are from different

classes is referred to as classes overlapping. It leads to another way of seeing classi-

fication problem - we can seek a function f(x; θ) which maximalizes some measure of

separation between classes. Such functions are called discriminant functions. The

earliest formal approach to classification, Fisher’s linear discriminant [Fis00], was

based on this idea. It sought the optimal linear combination of the variables in input

space. The goal was to maximally discriminate two classes.

3.3 Probabilistic models for classification

Let p(ck) be the probability that object comes from class ck. Then, if classes are

exclusive and exhaustive we have:

∑
k

p(ck) = 1 (3.3.1)

Often p(ck) are referred to as prior probabilities since they represent the class

probabilities before observing the vector x.

Objects from class ck are assumed to have measurement vectors x distributed

according to probability distribution (density function) p(x|ck, θk), where θk

are unknown distribution parameters. For example, the estimated distribution may

be multivariate Gaussian (normal), and the parameters θk may represent mean and

variance of that distribution.

54

Figure 3.1: Two Gaussian distributions and Bayes error

Once the distributions have been estimated, we can yield the posterior probabili-

ties:

p(ck|x) =
p(x|ck, θ)p(ck)

m∑
i=1

p(x|ck.θ)p(ck)
, for 1 ≤ k ≤ m (3.3.2)

If one knew the true posterior probabilities (instead of estimating them), then it

would be possible to make optimal classifications.

Figure 3.1 presents two Gaussian distributions (cases from two classes: c1 and c2)

in one-dimensional space:

The values of x axis represent values of feature X, and the values on the y axis

represent posterior probabilities of classes (in other words distributions, scaled

using prior probabilities). There is an area, where the distributions overlap each

other. In the overlapping area, classification errors cannot be avoided, as cases from

both classes have the same feature values (the situation is referred to as class ambi-

guity). The inevitable classification error occurs only in the dashed area. To classify

in the optimal way, one should take most probable class along the X space. Overlap

55

means that there is a non-zero probability that the data comes from other class than

the locally optimal. Bayes error of classifier f(x; θ) is the minimal probability of

misclassification in whole input space X:

ε =

∫
(1−max

k
p(ck|x))p(x) dx (3.3.3)

That value corresponds to dashed area. This is the minimum error rate. It is a

lower-bound on the best possible classifier for the problem. No classifier is expected

to achieve lower error on unseen data due to problem ambiguity.

Bayes optimal classifier is a classifier which error rate is equal to Bayes error.

Bayes optimal classifier is done as:

x→ ck : p(ck|x) = max
k
p(ck|x) (3.3.4)

Usually in real problems, we don’t know however conditional probabilities p(ck|x).

In the example above, Bayes optimal classifier is a classifier which separates the classes

using a threshold value bo marked in the figure 3.1, assigns cases with feature value

less than bo class label c1 and with values greater or equal bo to class label c2.

Methods to compute Bayes error:

• Analytical - difficult to calculate, depends on distribution parameters,

• Experimental - estimate class densities basing on non-parametric methods.

Next section describes the various ways to build classifiers depending on the theory

presented above.

56

3.3.1 Approaches to build classifiers

In order to build classifiers many techniques can be used. One can identify three main

approaches:

1. The discriminative approach - find direct mapping from inputs x to one

of m class label c1, ...cm. No attempt to model class conditional or posterior

class probabilities. Examples: perceptron, Multi Layered Perceptron, Support

Vector Machines [Arb89], [Hay99].

2. The regression approach - The posterior class probabilities p(ck|x) are mod-

elled explicitly, and for prediction, the maximum of these probabilities weighted

by cost function is chosen. Examples: logistic regression [CSS00].

3. The class-conditional approach - The class-conditionals p(x|ck, θk) (where

θk represent distribution parameters) are modelled explicitly along with esti-

mates of p(ck) and both are used to compute p(ck|x). Also known as generative

approach and classifiers as ”Bayesian” classifiers.

3.3.2 Classification methods

The classification methods may cover the whole input space with one model or use

submodels, where each submodel covers small area of space, and at last the union

of the submodels covers the whole input space. Depending on that feature one can

categorize classification methods:

1. Global approximation - there is only one model which covers all data feature

space:

57

a) Fisher discriminant function - the method is based on the search of the

linear mapping from the input variable to a new variable which separates

best the classes;

b) Perceptron - perceptron is the simplest type of neural network and it is

typically used for classification, it simply gains weighted sum of inputs and

may produce only two values as output (1 or 0 usually). It can effectively

solve any two-class classification problem where the classes are linearly

separable (i.e. there exists at least one plane that is able to separate the

classes; when projected in space).

c) Logistic Discriminant Analysis (LDA) - a statistical technique capa-

ble of discriminating individuals within a diseased group against normal

representatives. It also enables classification of various diseases within a

group of patients.

d) Linear discriminants - the method is based on the search of the linear

combination of the variables which separates best the classes,

e) Nearest neighbor methods - to classify a new object one examines k

nearest neighbors of object and assigns the object to the class that has the

majority of points amongst these k neighbors,

f) Feed-forward Neural Networks - perceptron, Multi Layered Perceptron,

g) Support Vector Machines - they are long cousin of perceptron. Per-

ceptron searches linear hyperplane that perfectly separates the data from

different classes, SVM work in similar way, extending the feature space to

include transformations of the raw variables and searching linear decision

58

surface in the enhanced space. This conforms to nonlinear decision surface

in the raw measurement space.

h) The Naive Bayes model - a simple probabilistic classification method

that assumes (naively) that all model feature are independent.

i) Bayesian model averaging - classification method that averages over many

different competing models, thus diminishing the uncertainty inherent in

the model selection process.

j) Projection pursuit methods - they consist of linear combinations of non-

linear transformations of the raw variables. They are data-driven.

k) Probabilistic Neural Networks - model is built depending on the learn-

ing examples presented to network.

2. Local approximation - model consists of many smaller models (sub-models).

Each sub-model covers a part of data feature space:

a) Mixture models - approximate each class-conditional distribution by a

mixture of simpler distributions (for example multivariate Gaussian distri-

butions),

b) Radial Basis Functions (RBF) - ANN approach similar to mixture mod-

els, they combine many models of local influence to produce a mixture

model,

c) Mixture of experts - ANN approach parallel to mixture models.

d) Tree models - basic principle is to partition in a recursive manner the

space spanned by the input variables to maximalize some score of data

separability.

59

Artificial Neural Networks are frequently used with success to solve classification

problems. Most popular ANN used in this purpose are: perceptron, multilayered feed-

forward neural networks, (especially Multi-Layered Perceptron), mixture of experts,

radial basis function, projection pursuits, Support Vector Machines. Most of these

structures are described in Annex B. There are methods to evaluate the efficiency of

classification and compare them to others. Two most known methods are described

in the next section.

3.3.3 Evaluating and comparing classifiers

Leaving-one-out method - from known data of n vectors, we create n training sets

by leaving one vector each time for generalization (testing set). Thus we train the

model n times, and verify obtained classification rates on left vector, which is unseen

by the model (not included in learning). By using this method one can use whole

available data for learning and classify whole set, keeping generalization free of data

known from learning.

Bootstrap methods - model the relation between unknown true distributions

and the sample by analyzing the relation between the sample and subsample of the

same size drawn from the sample.

3.3.4 Feature reduction

Not all variables measured are always necessary to build a model. In fact overwhelm-

ing number of variables may lead to worse models. It is not obvious which variables

are non relevant and can be deleted. General strategies to reduce the number of

variables without much loss of important information are:

60

• Variable selection - the idea is to select a sub-database of variables of the

original set of features. There is a combinatorially large search space of variable

sub-databases which may be considered.

• Variable Transformations - transform the original measurements by some

linear or non-linear functions in order to diminish the number of variables and

thus simplify further processing. Examples:

– Principal Component Analysis (PCA) [TB97] - modification of di-

rections in space in order to achieve maximum variance;

– Projection pursuit [Hub85] - search for interesting linear projections;

– Factor analysis [Gor83] - linear transformation of data in search for in-

teresting properties;

– Independent component analysis [Com91] - extracting maximally in-

dependent components form data.

3.4 Taxonomy of complexity estimation methods

Significant part of complexity estimation methods are related to Bayes error estima-

tion. Due to the difficulties with direct Bayes error computation, some approaches

try to estimate Bayes error in indirect way, i.e. propose a measure which is a lower

or higher bound of it but easier to calculate than direct estimation. Another method

is to use non-parametric methods to estimate Bayes error.

Correlation to Bayes error is a desirable property for other measures. Some of

them take advantage from space partitioning. Thus, one can divide the measures into

four classes:

61

Complexity estimation methods

Bayes error estimation

Non-parametricIndirect

Space partitioning Other

Figure 3.2: Proposed taxonomy of complexity estimation methods

1. Indirect Bayes error estimation (probabilistic distance measures) - para-

metric estimates of Bayes error;

2. Non-parametric Bayes error estimation - methods which are proven to

estimate Bayes error but in non-parametric way;

3. Methods based on space partitioning - they are connected to some space

partitioning algorithms;

4. Other methods - remaining ideas that are very different.

3.5 Presentation of selected methods

Complexity estimation is not a very popular subject. Regarding that fact, this section

present in detail classification complexity estimation methods, categorized as stated

in previous section. Section 3.5.1 presents indirect Bayes error methods, section 3.5.2

exhibits non-parametric Bayes error estimation methods, section 3.5.3 familiarizes

with measures related to space partitioning and section 3.5.4 stages other methods.

Section 3.5.5 talks briefly about a possibility of creating ensembles of estimators,

62

which correctly used can inhibit advantages over solo methods.

3.5.1 Indirect Bayes error estimation

To avoid the difficulties related to direct estimation of the Bayes error, a popular

approach is to estimate a measure directly related to the Bayes error, but easier to

calculate. Usually one assumes that the data distribution is normal (Gaussian).

Statistical methods grounded in the estimation of probability distributions are

most frequently used. The drawback of these is that they assume data normality. A

number of limitations have been documented in literature [Vap98]:

• construction of model could be time consuming;

• model verification could be difficult;

• as data dimensionality increases, a much larger number of samples is needed to

estimate accurately class conditional probabilities;

• if sample does not sufficiently represent the problem, the probability distribution

function cannot be reliably approximated and Bayes error cannot be accurately

estimated;

• with a large number of classes present, estimating a priori probabilities is quite

difficult. This can be only partially overcome by assuming equal class probabil-

ities [Fuk90], [HB02].

• we normally do not know the density form (distribution function);

• most distributions in practice are multimodal, while models are unimodal;

63

• approximating a multimodal distributions as a product of univariate distribu-

tions do not work well in practice.

Following subsections will present complexity measures based on indirect Bayes

error estimation.

3.5.1.1 Normalized mean distance

Normalized mean distance is a very simple complexity measure for Gaussian unimodal

distribution. It raises when the distributions are distant (measured by distance be-

tween means) and not overlapping.

dnorm =
|µ1 − µ2|
σ1 + σ2

(3.5.1)

The main drawback of that estimator is that it is inadequate (as a measure of

separability) when both classes have the same mean values.

3.5.1.2 Chernoff bound

The Bayes error for the two class case can be expressed as:

ε =

∫
min

i
[P (ck)p(x|ck)] dx (3.5.2)

Through modifications, we can obtain a Chernoff bound εu, which is an upper

bound on ε for the two class case:

εu = P (c1)
sP (c2)

1−s

∫
p(x|c1)sp(x|c2)1−s dx ,for 0 ≤ s ≤ 1 (3.5.3)

The tightness of bound varies with s.

64

3.5.1.3 Bhattacharyya bound

The Bhattacharyya bound is a special case of Chernoff bound for s = 1
2
. Empirical

evidence indicates that optimal value for Chernoff bound is close to 1
2

when the

majority of separation comes from the difference in class means. Under a Gaussian

assumption, the expression of the Bhattacharyya bound is:

εb =
√
P (c1)P (c2)e

−µ(1
2) (3.5.4)

where:

µ

(
1

2

)
=

1

8
(µ2 − µ1)

T

(
Σ1 + Σ2

2

)−1

(µ2 − µ1) +
1

2
ln

|Σ1+Σ2

2
|√

|Σ1||Σ2|
(3.5.5)

and µi and Σi are respectively the means and covariances of classes i ∈ {1, 2}.

3.5.1.4 Divergence

Measure of divergence [Lin91] (separability) is related to verisimilitude ratio. Verisimil-

itude ratio L12 between two classes c1 and c2 is defined as:

L12(X) =
P (X|c1)
P (X|c2)

(3.5.6)

Divergence is defined as function of logarithm of verisimilitude ratio:

D12 = E [L′
12(X)|c1] + E [L′

21(X)|c2] (3.5.7)

and after transformations:

D12 =

∫
x

(P (X|c1)− P (X|c2)) ln
P (X|c1)
P (X|c@)

dx (3.5.8)

65

The measure of divergence has the following properties:

1. D12 ≥ 0 ;

2. Symmetry: D12 = D21

3. If probabilities distributions P (X|c1) and P (X|c2) are equal then divergence

D12 equals 0. In particular D11 = 0.

4. If variables X1, X2, , Xd are statistically independent, i.e.

P (X|c1) =
d∏

k=1

P (Xk|c1), (3.5.9)

then

D12(X
1, X2, ...Xd, Xd) =

d∑
k=1

D12(X
k) (3.5.10)

5. As consequence of properties 1 and 4:

D12(X
1, X2, ...Xd, Xd+1) > D12(X1, X2, ...Xd) (3.5.11)

That property is important because it means that divergence will increase with

addition of new variables.

Calculation of the divergence is significantly simplified when distributions of vari-

ables are normal. In that case divergence equals:

D12 =
1

2
tr[(Σ1 − Σ2)(Σ

−1
1 − Σ−1

2)] +
1

2
tr[(Σ−1

1 − Σ−1
2)(µ1 − µ2)(µ1 − µ2)

T] (3.5.12)

66

where tr signifies trace of a matrix, µ1 and mu2 class means, Σ1 and Σ2 class

covariance matrices.

Divergence measures the degree of separability between two classes. Therefore

in order to evaluate multi class case one should count an average of all two-element

combination of classes. Computational cost of divergence is significant.

Transformed divergence is defined as:

DT
12 = 2[1− e−

D12
8] (3.5.13)

Transformed divergence takes values from range [0, 2] and increases with class

separability.

3.5.1.5 Mahalanobis distance

Mahalanobis distance [TKM87] is defined as follows:

MD = (µ2 − µ1)
T Σ−1(µ2 − µ1) (3.5.14)

MD is the Mahalanobis distance between two classes. The classes’ means are µ1

and mu2 and Σ is the covariance matrix. Mahalanobis distance is used in statistics

to measure the similarity of two data distributions. It is sensitive to distribution of

points in both samples. The Mahalanobis distance is measured in units of standard

deviation, so it is possible to assign statistical probabilities (that the data comes from

the same class) to the specific measure values. Mahalanobis distance greater than 3

is considered as a signal that data are not homogenous (does not come from the same

distribution).

Similar practice is applied in complexity estimation: high values of Mahalanobis

measure indicate that classes in discrimination problem are well separated.

67

3.5.1.6 Jeffries-Matusita distance

Jeffries-Matusita [Mat67] distance between classes c1 and c2 is defined as:

JMD =

∫
x

(√
p(X|c2)−

√
p(X|c1)

)2

dx (3.5.15)

If c1 and c2 distributions are normal then Jeffries-Matusita distance reduces to:

JMD = 2(1− e−α) (3.5.16)

where

α =
1

8
(µ2 − µ1)

T

(
Σ2 + Σ1

2

)−1

(µ2 − µ1) +
1

2
loge

(
det Σ

det Σ1 − det Σ2

)
(3.5.17)

Matusita distance is bounded within range [0, 2] where high values signify high

separation between classes c1 and c2.

3.5.1.7 Entropy measures

Examining the dependence between the data vector x and the class c gives a measure

of how much information these two distributions contain about each other. The

proof is as follows - for the extreme case when x and c are independent, p(c|x) and

p(c) are equivalent. It means that data provides no information about which class

it should belong to. Therefore the data is worthless for classification. That logic

leads to information theoretic measures for class separability. The procedure is to

observe x and compute the a posteriori probabilities p(ci|x) to determine the amount

of class information contained in the observation. One of the most popular measures

is Shannon’s measure:

68

J = −
∫ L∑

i=1

p(ci|x) log2[p(ci|x)]p(x) dx (3.5.18)

L is the number of classes. Unlike the Chernoff and Bhattacharyya distances,

this equation is not limited to the two classes but neither is directly related to Bayes

error. The probability densities are needed, that implies that entropy based measures

suffer from difficulties of estimating Bayes error directly. It is known however that the

variances associated with entropy measures of class separability are normally lower

than those associated with direct Bayes error estimation.

3.5.2 Non-Parametric Bayes error estimation and bounds

Non-parametric Bayes error estimation methods make no assumptions about the spe-

cific distributions involved. They use some intuitive methods and then prove the

relation to Bayes error. Non-parametric techniques do not suffer from problems with

parametric techniques.

3.5.2.1 Error of the classifier itself

This is the most intuitive measure. However it varies much depending on the type of

classifier used and, as such, it is not very reliable unless one uses many classification

methods and averages the results. The last solution is certainly not computationally

efficient.

3.5.2.2 k-Nearest Neighbors, (k-NN)

K - Nearest Neighbors [CH67] technique relays on the concept of setting a local

region Γ(x) around each sample x and examining the ratio of the number of samples

69

enclosed k to the total number of samples N , normalized with respect to region

volume v:

p̂(x) =
k(x)

vN
(3.5.19)

K-NN technique fixes the number of samples enclosed by the local region (k be-

comes constant). The density estimation equation for k-NN becomes:

p̂(x) =
k − 1

v(x)N
(3.5.20)

where p(x) represent probability of specific class appearance and v(x) represent

local region volume.

K-NN is used to estimate Bayes error by either providing an asymptotic bound

or through direct estimation. Asymptotic bounds are derived by an application of

the voting k-NN procedure. For the two class case, where ekNN represents the k-NN

estimate of ε, these estimates form a bound on ε by:

1

2
ε ≤ ε2NN ≤ ε4NN ≤ ... ≤ ε ≤ ... ≤ ε3NN ≤ ε1NN ≤ 2ε (3.5.21)

As N → ∞ asymptotically the estimations are closer to ε. For the L class case,

as N →∞, we obtain the following bound:

εNN ≤ 2ε− L

L− 1
ε2 (3.5.22)

The k-NN estimate of Bayes error can exhibit significant biases and variances

when N is finite. K-NN can directly estimate ε by first estimating the expected value

of the risk that the biases and variances will influence the estimation. The formula

for this estimate is:

70

ε̂ =
1

N

N∑
i=1

1−max
i


vi(x)

L∑
j=1

vj(x)



 (3.5.23)

This estimate is not known to bound Bayes error but it is known to have a smaller

variance than the estimate found through the voting k-NN procedure.

K-NN estimation is computationally complex.

3.5.2.3 Parzen Estimation

Parzen estimation techniques relay on the same concept as k-NN: setting a local

region Γ(x) around each sample x and examining the ratio of the samples enclosed

k, to the total number of samples N , normalized with respect to region volume v:

p̂(x) =
k

vN
(3.5.24)

The difference according to k-NN is that Parzen fixes the volume of local region

v. Then the density estimation equation becomes:

p̂(x) =
k(x)

vN
(3.5.25)

p(x) represents density and k(x) represents number of samples enclosed in volume.

Estimating the Bayes error using the Parzen estimate is done by forming the log

likelihood ratio functions based upon the Parzen density estimates and then using

resubstitution and leave-one-out methodologies to find an optimistic and pessimistic

value for error estimate. Parzen estimates are however not known to bound the Bayes

error.

Parzen estimation is computationally complex.

71

3.5.2.4 Boundary methods

The boundary methods are described in the work of Pierson [Pie98]. Data from each

class is enclosed within a boundary of specified shape according to some criteria. The

boundaries can be generated using general shapes like: ellipses, convex hulls, splines

and others. The boundary method often uses ellipsoidal boundaries for Gaussian data,

since it is a natural representation of those. The boundaries may be made compact by

excluding outlying observations. Since most decision boundaries pass through overlap

regions a count of these samples may give a measure related to misclassification rate.

Collapsing boundaries iteratively in a structured manner and counting the measure

again lead to a series of decreasing values related to misclassification error. The rate

of overlap region decay provides information about the separability of classes. Pierson

discuses in his work a way in which the process from two classes in two dimensions

can be expanded to higher dimension with more classes. Pierson has demonstrated

that the measure of separability called the Overlap Sum is directly related to Bayes

error with a much more simple computational complexity. It does not require any

exact knowledge of the a posteriori distributions. Overlap Sum is the arithmetical

mean of overlapped points with respect to progressive collapsing iterations:

OS(mt0) =
1

N

m∑
k=1

(kt0)∆s(kt0) (3.5.26)

where to is the step size, m is the maximum number of iteration (collapsing bound-

aries), N is the number of data points in whole dataset and ∆s(kt0) is the number of

points in the differential overlap.

In his partial PhD work entitled ”Using boundary methods for estimating class

72

separability” [Pie98] Pierson writes that: ”BMs (Boundary Methods) provide a mea-

sure of class separability, the overlap sum (OS), which is strongly correlated with

Bayes error and easily computed. These properties suggest BMs can be used as an

alternative to traditional Bayes error estimation techniques.” The advantage of using

Overlap Sum over estimating Bayes error is that Overlap Sum doesn’t require knowl-

edge about a posteriori distributions. Overlap Sum is correlated to Bayes error, which

is a measure of class separability known to be optimal. Pierson shows theoretically

and empirically in his work that there is a direct relationship between BM and Bayes

error. Furthermore, he shows an advantage of Overlap Sum complexity measure over

k-NN due to computational complexity.

3.5.3 Measures related to space partitioning

Measures related to space partitioning are connected to space partitioning algo-

rithms. Space partitioning algorithms divide the feature space into sub-spaces. That

allow to obtain some advantages, like information about the distribution of class in-

stances in the sub-spaces. Then the local information is globalized in some manner

to obtain information about the whole database, not only the parts of it.

3.5.3.1 Class Discriminability Measures

Class Discriminability Measures (CDM) [KNM96] are based on the idea of

inhomogeneous buckets. The idea here is to divide the feature space into a number

of hypercuboids. Each of those hypercuboids is called a ”box”. The dividing stops

when any of following criteria is fulfilled:

• box contains data from only one class;

• box is non-homogenous but linearly separable;

73

• number of samples in a box is lower that N0.375, where N is the total number

of samples in dataset.

If the stopping criteria are not satisfied, the box is partitioned into two boxes

along the axis that has the highest range in terms of samples, as a point of division

using among others median of the data.

Final result will be a number of boxes which can be:

• homogenous terminal boxes (HTB)

• non-linearly separable terminal boxes (NLSTB)

• non-homogenous non-linearly separable terminal boxes (NNLSTB)

In order to measure complexity, CDM uses only Not Linearly Separable Terminal

Boxes, as, according to author, only these contribute to Bayes error. That is however

not true, because Bayes error of the set of boxes can be greater than the sum of Bayes

errors of the boxes - partitioning (and in fact nothing) cannot by itself diminish the

Bayes error of the whole dataset, however it can help classifiers in approaching the

Bayes error optimum. So given enough partitions we arrive to have only homogenous

terminal boxes, so the Bayes error is supposed to be non-existent, that is not true.

The formula for CDM is:

CDM =
1

N

M∑
i=1

{k(i)−max[k(j|i)]} (3.5.27)

where k(i) is the total number of samples in the i-th NNLSTB, k(j—i) is the

number of samples from class jin the i-th NNLSTB and N is the total number of

samples. For task that lead to only non-homogenous but linearly separable boxes,

this measure equals zero.

74

3.5.3.2 Purity

Purity measure [Sin02a] is developed by Singh and it is presented with connection

to his idea based on feature space partitioning called PRISM (Pattern Recognition

using Information Slicing Method). PRISM divides the space into cells within defined

resolution B. Then for each cell probability of class i in cell l is:

Pil =
nil

Kl∑
j=1

nil

(3.5.28)

where njl is the number of points of class j in cell l, nil is the number of points of

class i in cell l and Kl is the total number of classes. Degree of separability in cell l

is given by:

SH(l) =

√√√√(k

k − 1

) k∑
i=1

(
pil −

1

k

)2

(3.5.29)

These values are averaged for all classes, obtaining overall degree of separability:

SH =

Htotal∑
i=1

SH(l)
N l

N
(3.5.30)

where Nl signifies the number of points in the l-th cell, and N signifies total

number of points.

If this value was computed at resolution B then it is weighted by factor w = 1
2B

for B = 0, 1, ..., 31) . Considering the curve (SH versus normalized resolution) as a

closed polygon with vertices (xi, yi), the area under the curve called purity for a total

of n vertices is given as:

75

ASH =
1

2

(
n−1∑
i=1

(xiyi+1 − yixi+1)

)
(3.5.31)

The x axis is scaled to achieve values bounded within range [0, 1]. After the

weighing process maximum possible value is 0.702, thus the value is rescaled once

again to be between [0, 1] range.

The main drawback of purity measure is that if in a given cell, the number of

points from each class is equal, then the purity measure is zero despite that in fact

the distribution may be linearly separable. Purity measure does not depend on the

distribution of data in space of single cell, but the distribution of data into the cells

is obviously associated with data distribution.

3.5.3.3 Neighborhood Separability

Neighborhood Separability [Sin02a] measure is developed by Singh. Similarly

to purity, it also depends on the PRISM partitioning results. In each cell, up to k

nearest neighbors are found. Then one measure a proportion pk of nearest neighbors

that come from the same class to total number of nearest neighbors. For each number

of neighbors k, 1 <= k <= λil calculate the area under the curve that plots pk against

k as φj. Then compute the average proportion for cell Hl as:

pl =
1

N l

Nl∑
j=1

φj (3.5.32)

Overall separability of data is given as:

SNN =

Htotal∑
l=1

pl
N l

N
(3.5.33)

76

One compute the measure for each resolution B = (0, 1, ..., 31). Finally, the area

under the curve versus resolution gives the measure of neighborhood separability

for a given data set. The value is rescaled as ASNN = SNN

0.702
to be in range [0, 1].

3.5.3.4 Collective entropy

Collective entropy [SG02], [Sin02b] measures degree of uncertainty. High values of

entropy represent disordered systems. The measure is connected to data partitioning

algorithm called PRISM. Calculate the entropy measure for each cell Hl:

El =

Kl∑
i=1

(−pil · log(pil)) (3.5.34)

Estimate overall entropy of data as weighted by the number of data in each cell:

E =

Htotal∑
l=1

El ·
N l

N
(3.5.35)

Collective entropy for data at given partition resolution is defined as:

EC = 1− E (3.5.36)

This is to keep consistency with other measures: maximal value of 1 signifies

complete certainty and minimum value of 0 uncertainty and disorder.

Collective entropy is measured at multiple partition resolutions B = (0, 31) and

scaled by factor w = 1
2(B) to promote lower resolution. Area under the curve of

Collective Entropy versus resolution gives a measure of uncertainty for a given data

set. That measure should be scaled as ASE = SE

0.702
to keep the values in [0, 1] range.

77

3.5.4 Other Measures

The measures described here are difficult to classify as they are very different in idea

and it’s difficult to distinguish common properties.

3.5.4.1 Correlation-based approach

Correlation-based approach [RF98] is described by Rahman and Fairhust. In their

work, databases are ranked by the complexity of images within them. The degree of

similarity in database is measured as the correlation between a given image and the

rest images in database. It indicates how homogenous the database is. For separable

data, the correlation between data of different classes should be low.

3.5.4.2 Fisher discriminant ratio

Fisher discriminant ratio [Fis00] originates from Linear Discriminant Analysis (LDA).

The idea of linear discriminant approach is to seek a linear combination of the vari-

ables which separates two classes in best way. The Fisher discriminant ratio is given

as:

fl =
(µ1 − µ2)

2

σ2
1 + σ2

2

(3.5.37)

where mu1, µ2, σ1, σ2 are the means and variances of two classes respectively. The

measure is calculated in each dimension separately and afterwards the maximum of

the values is taken. It takes values from [0,+∞]; high value signifies high class sepa-

rability. To use it for multi class problem it is necessary however to compute Fisher

discriminant ratios for each two-element combination of classes and later average the

values.

78

Important feature of the measurement is that it is strongly related to the struc-

ture of data. The main drawback is that it acts more like a detector of linearly

separable classes than complexity measure. The advantage is very low computational

complexity.

3.5.4.3 Interclass distance measures (scatter matrices)

The interclass distance measures [Fuk90] are founded upon the idea that class sepa-

rability increases as class means separate and class covariances become tighter. We

define: Within-class scatter matrix:

SW =
L∑

i=1

P (ωi)Σi (3.5.38)

Between-class scatter matrix:

Sb =
L∑

i=1

P (ωi)(µi − µ0)(µi − µ0)
T (3.5.39)

Mixture (total) scatter matrix:

Sm = Sw + Sb (3.5.40)

where µi are class means, P (ci) are the class probabilities, Σi are class covariance

matrices, and µ0 =
L∑

i=1

P (ωi)mui is the mean of all classes.

Many intuitive measures of class separability come from manipulating these matri-

ces which are formulated to capture the separation of class means and class covariance

compactness. Some of the popular measures are:

J1 = tr(S−1
2 S1), J2 = ln |S−1

2 S1| J3 =
tr(S1)

tr(S2)
(3.5.41)

79

where S1, S2 are a tuple from among Sb, Sw, Sm, and tr signifies trace of a matrix.

Frequently many of these combinations and criteria result in the same optimal

features.

3.5.4.4 Volume of the overlap region

We can find volume of the overlap region [HB98] by finding the lengths of overlapping

of two classes’ combination across all dimensions. The lengths are then divided by

overall range of values in the dimension (normalized):

rd =
d0

dmax − dmin

(3.5.42)

where do represents length of overlapping region, dmax and dmin represent conse-

quently maximum and minimum feature values in specified dimension

Resulting ratios are multiplied across all dimensions dim to achieve volume of

overlapping ratio for the 2-class case (normalized with respect to feature space)

v0 =
dim∏
i=1

rd (3.5.43)

It should be noted that the value is zero as long as there is at least one dimension

in which the classes don’t overlap. In order to expand the measure to multi class

case, one should take the average of the values computed for all two elements classes’

combinations.

3.5.4.5 Feature efficiency

The feature efficiency [HB98] measure describes the efficiency of features in differen-

tiating the classes. It doesn’t however contribute to the joint effect of features. If

there is an overlap in feature values for two classes we consider the classes ambiguous

80

in that region (along that dimension). If the problem is linearly separable then there

exists at least one dimension in which the classes don’t overlap each other. For other

problems that are globally ambiguous one may progressively remove the ambiguity

by separating only the points that lie outside of overlapping region in each chosen

dimension. The individual feature efficiency may be defined as the fraction of the

remaining points separated by that feature.

3.5.4.6 Minimum Spanning Tree (MST)

The method is based on use of the Minimum Spanning Tree (MST)I [FR79]. One

constructs a MST that connects all data points to their nearest neighbors regardless

of class labels. The number of data points connected to an opposite class by an edge

of MST is then computed. The fraction of remaining points to the size of dataset is

used as a measure of complexity. The flaw of the approach is that it is disrupted by

a small margin narrower than the distance between points of the same class.

3.5.4.7 Inter-intra cluster distance

The average inter-cluster distance is computed by considering all data in both clusters

(classes):

SIC =
l1Swi + l2Swj

l1 + l2
(3.5.44)

where l1 and l2 are the numbers of samples in the two clusters and Swi, Swj

represent consequently inter-cluster distance of cluster i and inter-cluster distance of

cluster j.

Between-cluster distance Sb is computed in analogical way, by considering the

distance between the point pairs across clusters.

81

The ratio Sw/Sb shows how separate are the two classes. The measure is bounded

within range [0; +∞]. A low value indicates that the two datasets are separable. A

measure of multi-class problem is done by averaging the values of (Sw/Sb) across all

class combination and all features.

3.5.4.8 Space covered by epsilon neighborhoods

The main idea of space covered by epsilon neighborhoods is to enclose each

class in largest hypersphere possible excluding other classes. The number and size

of that hyperspheres define the classification complexity of the problem [Ho00]. The

algorithm for the space by epsilon neighborhoods is as follows:

1. compute the starting radius of hypersphere value rh,

2. for each data point we grow the size of the hypersphere in increments of rh,

and terminate the process when increasing the hypersphere leads to inclusion

of samples from other classes.

Average proportional size in terms of number of members in each hypersphere

divided by the total number of data points is used as a measure of complexity.

3.5.5 Ensemble of estimators

The idea here is to combine several methods, for example: use weighted average of

them. It is possible that a single measure of complexity may be not suitable for

practical applications; instead a hierarchy of estimators may be more appropriate

[Mad90]. The computation of several methods at once is potentially more difficult

than one, but using several simple methods could be faster than one complex method.

82

3.6 Complexity Estimation Conclusion

Classification complexity estimation methods present great variability. The meth-

ods which are derived from Bayes error are most reliable in terms of performance,

as they are theoretically stated. The most obvious drawback is that they have to

do assumptions about a priori probability distributions. The methods which are de-

signed on experimental (empirical) basis are very various and their performance is

difficult to predict. The advantage of the last is that they frequently base uniquely

on experimental data and do not need probability density estimates of distributions,

as they obtain that in experimental way during the processing. Not every method

is suitable to estimate a complexity of multi-class classification problem - some are

designed only to two-class problems, and as such they need special procedures to

accommodate them to multi-class problem (like counting the average of complexi-

ties of all two-class combinations) what usually result in combinatorial increase in

computational complexity.

83

Technique Relation to
Bayes error

Computational
complexity Advantages Disadvantages

Chernoff bound direct
Need pdf es-
timates,
2 class only

Bhattacharyya bound direct
Need pdf
estimates, 2
class only

Divergence high 2 class only
Mahalanobis distance 2 class only
Matusita distance 2 class only

Entropy measures not equivalent not limited
class number

Classifier error potential

depends on
the

classifier
used

Depends on
the char-
acteristics
of classifier
used - not
reliable

k-Nearest neighbors direct high
pdf esti-
mates not
needed

Parzen estimation not known high
pdf esti-
mates not
needed

Boundary methods yes medium
pdf esti-
mates not
needed

Class Discriminability Measures low
Purity no high
neighborhood separability high
Collective entropy no high
Correlation based approach
Fisher discriminant ratio very low 2 class only
Interclass distance mea-
sures (scatter matrices) not equivalent

Volume of the overlap region low
Feature efficiency
Minimum Spanning Tree
Inter-intra cluster distance high 2 class only
Space covered by epsilon
neighborhoods

Ensemble of estimators variable probably high

potentially
more reliable
than single
method

84

PART II - T-DTS

85

Chapter 4

Treelike Divide-To-Simplify

paradigm

This chapter has to present in detail the new Treelike-Divide To Simplify approach,

define its structure, and describe the types of modules that are used in the structure.

T-DTS is based on modular treelike decomposition structure, that is used for task

decomposition. There are two types of modules: Decomposition Unit (DU) and

Processing Unit (PU). It will present also in detail procedures and algorithms that

are used for the creation, execution and modification of the modules. It will discuss

also advantages and disadvantages of T-DTS approach and compare it with other

approaches.

In a very large number of cases, dealing with real world dilemmas and applica-

tions (system identification, industrial processes and manufacturing regulation and

optimization, decision, pattern recognition, systems and plants safety, etc.), informa-

tion is available as data stored in files (databases etc.). Especially in industrial areas,

86

efficient processing of data is the chief condition to solve problems. Efficiency con-

cerns not only performance in terms of correct processing, but also temporal aspect

of calculations. In the most of those cases, processing efficiency is closely related to

several issues among which are:

• Data nature: the properties of data; includes complexity, quality and repre-

sentativeness:

– Data complexity, related to nonlinearity, may affect the processing effi-

ciency.

– Data Quality (noisy data, etc.): may influence processing success and

expected results quality.

– Representativeness: concerning scarcity of pertinent data, could affect

processing achievement.

• Processing technique related issues: including model choice, processing

complexity and intrinsic processing delay.

The choice or availability of appropriated theoretical model describing the behav-

iour related to the processed data is of major importance. Processing technique and

algorithm complexity (designing, precision, etc) shapes the processing effectiveness.

Intrinsic processing delay or processing time is related to the processing technique’s

implementation (software or hardware related issues).

One of the key points on which one can act is the complexity reduction. It concerns

not only the problem solution level but also appears at processing procedure level.

The constraints relative to the nature of data to be processed, difficult dilemma

related to the choice of appropriated processing techniques and allied parameters

87

make complexity reduction a key point on both data and processing levels. T-DTS

(Treelike Divide To Simplify) paradigm which is a lead motive of this thesis is able to

reduce complexity on both data and processing levels. The main idea of the T-DTS is

based on the notion ”Divide et impera” (Julius Caesar), transformed here to ”Divide

To Simplify” (DTS).

The main idea is to split a complex problem into many easier subproblems. T-

DTS have a modular structure that allows parallel processing and simplification of

the problem. The purpose is based on the use of a small set of specialized mapping

Neural Networks, called Neural Network Models (Processing Unit), supervised by a

Decomposition Unit (DU). Decomposition Unit could be a prototype based neural

network, Markovian decision process, etc. The modules responsible for processing in

the structure are Artificial Neural Networks (models). The T-DTS paradigm allows

us to build a tree structure. At the node’s level, the input space is decomposed into

a set of subspaces of smaller sizes. At the leaf’s level the aim is to learn the relations

between inputs and outputs relatives to one of sub-spaces, obtained from splitting.

The organization of this chapter is as follows: next section 4.1 is a general descrip-

tion of T-DTS. Sections 4.2 to 4.7 concentrate on specific aspects of T-DTS algorithm:

4.2 - building of decomposition structure, 4.3 - decomposition of learning database,

4.4 - training of Neural Network models, 4.5 - decomposition of generalization data-

base, 4.6 - using trained Processing Unit models on data, 4.7 - combining obtained

results. Section 4.8 is a conclusion of this chapter, so it discuses properties of T-DTS,

pointing out the advantages and the disadvantages of the paradigm.

88

PU

PU

PU

PU

DU

DU

DU

DU

PU

PU
DU

PU
DU

Figure 4.1: T-DTS decomposition architecture

4.1 General description of T-DTS

This section will present the general overview of T-DTS algorithm. Particular proce-

dures will be explained in detail in the consecutive sections of the chapter.

T-DTS (Treelike Divide To Simplify) is a data driven Neural Networks based Mul-

tiple Processing (multiple model) structure. The idea is based on problem decompo-

sition paradigm. It can reduce complexity on both data and processing chain levels

[MCR03b]. T-DTS constructs a treelike architecture, where nodes are Decomposition

Units (DU) and leaves correspond to Processing Units (PU), as presented in figure

4.1. The structure is used to decompose the learning database into sub-databases and

can be used to assign the generalization database to models. Processing Units process

specific segments of feature space, and are trained using learning sub-databases. The

Processing Units are trained in supervised mode.

89

T-DTS algorithm consist of two main phases, first is connected to structure build-

ing and model training, while the second is equal to using the trained structure on

generalization data. The detailed algorithm is as follows:

1. Learning phase

• Building of decomposition structure using training data,

• decomposition of training dataset,

• training of Processing Unit using learning data sub-databases.

2. Operation phase

• Vector to model assignment of generalization dataset,

• using corresponding Processing Unit models on data sub-databases,

• combining the results obtained from Processing Unit models.

The T-DTS compounds of two main operation modes. The first phase is the learn-

ing phase, when T-DTS system decomposes the input data and provides processing

substructures and tools for decomposed sets of data. The second phase is the oper-

ation phase (usage of the system to process unlearned data). There could be also a

preprocessing phase at the beginning, which arranges (prepares) data to be processed.

Preprocessing phase could include several steps (conventional or neural stages).

Preprocessing is expected to ease the processing of data. During preprocessing, sev-

eral operations such as data normalizing, data scaling, data dimensionality reduction

could be performed. Preprocessing could also include other kind of operations, as

removing outliers or Principal Component Analysis [TB97] to enhance input data

quality, eliminate redundancy in data, etc.

90

The learning phase is an important phase during which T-DTS performs key

operations: building the decomposition tree, splitting the learning database into many

sub-databases, constructing (dynamically) a treelike structure of Decomposition Unit

(DU) and building a set of submodels (Processing Unit) at leaf level of the treelike

structure (corresponding to each sub-database).

The splitting (during the learning phase) could lead to two general cases. The

first one corresponds to the situation where the splitting process doesn’t modify the

feature space dimension. That means that the initial problem’s is decomposed into M

sub-problems. Instead of building one complex model T-DTS builds M easier models

describing behaviour in each related sub-problem. That correspond to the situation

where the splitting process divides the initial feature space into M feature spaces with

smaller dimensions (that doesn’t means that the obtained feature sub-spaces will be

orthogonal). So, in this case, the activation of appropriated Processing Unit will not

depend on the complete input vector but on some partial input vector φ ∈ Rφ with

φ ∈ Rφ ⊆ Ψ.

Let i be an n-dimensional input pattern vector, where ψi ∈ ΨnΨ . Let Fk(·) :

RnΨ → RnY be the k-th Processing Unit’s transfer function. Yk(i) ∈ RnY will be then

the k-th (k ∈ 1, 2, ..M) model’s output vector of dimension ny. Let S(ψ, τ, ξ) where

B = 0, 1 be the Decomposition Unit’s (DU) output, called also Scheduling Function,

which depends on ψ(i), but which may also depend on some parameters τ and/or

conditions ξ. τk represents some particular values of parameter τ and ξk denotes some

particular value of condition ξ , respectively, obtained from learning phase process

for the k-th sub-dataset.

91

Figure 4.2: Decomposition Unit activity

S(ψ, τ, ξ) = (s1...sk, ...sM)T with

 sk = 1 if τ = τk and ξ = ξk

sk = 0 else
(4.1.1)

The scheduling vector S(ψi, τk, ξk) will activate (select) the k-th Processing Unit,

and so the processing of an unlearned input data conform to parameter τk and con-

dition ξk will be given by the output of the selected Processing Unit:

Y (ψi) = Yk(i) = Fk(ψi) (4.1.2)

The output is then gathered from Processing Unit models by the same multiplexer-

like structure, which joins together the output values form individual modules to

achieve output for the whole database.

92

4.2 Building of decomposition structure

For each sub-database k, T-DTS constructs a neural based model describing the rela-

tions between inputs and outputs. The decomposition structure in T-DTS approach

is a tree. The creation of decomposition tree is data-driven. It means that the decision

to-split-or-not and how-to-split is made depending on the properties of the current

data sub-database (data sub-database which had arrived to some position at decom-

position tree). For each database the decision to-split-or-not should be made. After

positive to-split-or-not decision a Decomposition Unit (DU) is created which divides

the achieved data and distributes the resulting sub-databases creating children in the

tree. If the decision is negative the decomposition of this data sub-database (and

tree branch) is over and a Processing Unit should be built for the sub-database. The

type of the tree child depends though on the result of decision made for the current

sub-database (and in some cases also on other parameters, as described in section

4.2.1). The tree is built beginning from the root which achieves the complete learn-

ing database. The process results in a tree which has DUs at nodes and Processing

Unit models in tree leaves.

Figure 4.3 shows decomposition tree structure (in case of binary tree) and its

recurrent construction in time, while question marks mean decomposition decisions.

Complexity indicators could be used in our approach in order to reach one of the

following ways:

• Global decomposition control - estimator which evaluates the difficulty of classi-

fication of the whole dataset and chooses decomposition strategy and parameters

before any decomposition has started,

93

DU DU

DU

DU

?

?

PU

DU

DU

DU

DU

DU

DU

?

?

?

?

PU

PU

PU

DU

DU

DU

DU

PU

PU
DU

PU

PU
DU

?
?

?
?

?
?

Figure 4.3: T-DTS decomposition tree creation in time

• Local decomposition control - estimator which evaluates the difficulty of classi-

fication of the current sub-database during decomposition of dataset, in partic-

ular:

– Estimator which evaluates the difficulty of classification of the current

sub-database during decomposition of dataset, to produce decomposition

decision (if to divide the current sub-database or not);

– Estimator which can be used to determine type of used classifier or its

properties and parameters.

• Mixed approach - use of many techniques mentioned above at once, for example:

usage of Global decomposition control to determine the parameters of local

decomposition control.

The local and global decomposition control may seem similar, but they are in

94

fact very different. In general case, estimation of whole dataset complexity is much

more difficult and prone to faults (occurs only once, large size of data) than estima-

tion of sub-database (occurs multiple times, data size is reduced; especially on lower

levels of decomposition tree, data complexity is reduced). Estimation of current sub-

database’s complexity can be done by less advanced techniques as it is relatively

small part of system comparing to the global decomposition control that affects di-

rectly all calculations. One should mention also that estimation of sub-database

complexity occurs for each sub-database dividing decision thus computational com-

plexity of the algorithm should rather be small. Thus it doesn’t require advanced

complexity estimation methods. Considering these features, the second option - esti-

mation during decomposition - has been chosen in our experiments in order to achieve

auto-adaptation feature of system.

The decomposition decision can be based on many techniques; we have used two

approaches: local decomposition control based on standard deviation thresh-

old and local decomposition control based on complexity estimation.

4.2.1 Decomposition Unit

The purpose of Decomposition Unit is to divide the database into several sub-databases.

This task is referred in the literature as clustering. To accomplish this task a plenty

of methods are known. We are using unsupervised competitive Neural Networks and

in particular Kohonen Self-Organizing Maps. These methods are based on prototype,

that represent the centre of cluster (cluster = group of vectors). In out approach

cluster is referred to as sub-database.

95

4.2.2 Local decomposition control based on standard devia-

tion estimation threshold

Local decomposition control, in particular an approach called by us AVStd thresh-

old, is based on the Standard Deviation measurements. It allows achieving regular

decomposition in terms of vectors distribution in problem space dissections. It is un-

supervised in term that doesn’t need the targets (output values, i.e. classes), but only

their features (coordinates in feature space). It could be applied to any input-output

mapping problem, and the decomposition amount can be controlled by operator by

changing the AVStd threshold.

The whole set of data is normalized at the beginning to achieve standard devia-

tion equal to one. (Additional advantage of normalization is that some distance-based

algorithms treat variables in ”democratic” way) Then the recurrent decomposition

starts. The threshold for deciding about current set decomposition is based on stan-

dard deviation of set. Specifically it could be:

• maximum value of standard deviations (by dimension);

• average value of standard deviations (by dimension);

• minimum value of standard deviations (by dimension), etc.

The standard deviations of sub-databases will decrease gradually as the sub-

databases will be more and more divided. The standard deviation was equal to

one in original (not-divided) database, so the standard deviations of sub-databases

will be monotonically dropping form 1 to 0 (0 means that there is only one vector in

sub-database or all vectors in sub-database are equal). When the standard deviation

of currently analyzed sub-database will be lower than globally defined threshold value,

96

Figure 4.4: Decomposition using AVStd threshold

then the decomposition of the sub-database is abandoned. The decomposition at its

extreme leads to as many sub-databases as the number of data vector in the original

database is. This is of course not interesting for us, as the goal is somewhere between

- we want to achieve sub-problems that are less difficult than original database, but

still large enough to be efficiently processed by leaves - processing modules.

The decomposition obtained in such a way takes into account in non-explicit way

the area occupied by sub-database and the dispersion of data in sub-database. With

use of competitive ANN as decomposition algorithms it allows to achieve regular

decomposition, as could be seen in figure 4.4.

The splitting process starts by evaluating the average of standard deviation of the

learning database. If the obtained standard deviation is greater that the AvStd, then

a distance based competitive ANN (for example Kohonen SOM) divides the learn-

ing database into sub-databases. These operations are repeated until the standard

deviation relative to each created sub-database doesn’t exceed the AvStd value.

97

4.2.3 Local decomposition control based on classification Com-

plexity Estimation technique (Fisher discriminant ra-

tio)

Local decomposition control with classification complexity estimation could be ap-

plied only to classification problem, because classification complexity methods could

be applied only in classification. The decomposition degree can be controlled by

operator or also measured by classification complexity estimation and controlled au-

tomatically. The automatic statement of decomposition parameters was however not

included in our experiments. Local decomposition control is supervised in term that

it needs both feature values and class labels to measure the classification complexity.

T-DTS could be used as an auto-adapting system, i.e. system which structure

adapts to difficulty of data [RCM03a]. Thus it needs to measure the amount of

necessary decomposition. The goal here is to adjust the decomposition according

to the complication of task. This is done by using classification complexity estima-

tion methods. Then it can achieve desired quasi-constant performance (in terms of

misclassifications at cost of increased computational effort) with datasets of various

difficulties, see section 5.2.3 for details.

T-DTS in classification-like application can incorporate classification complexity

estimation indicators (described thoroughly in chapter 2). Then the complexity esti-

mation take place to determine if actual set of data should be decomposed using DU,

or rather a Processing Unit can be created directly (assuming that Processing Unit

can process it efficiently). The bloc diagram of T-DTS with incorporated complexity

estimation is depicted in Figure 4.5.

98

Database

Normalization

Data Complexity
Evaluation

Model Choice or
Construction

Complexity Indicator
Conformity?

Model Obtained?

Decomposition of the
Database

End

no

yes

no

yes

Figure 4.5: Bloc diagram of T-DTS

99

Learning
database

PU

PU

PU

DU

DU

DU

DU

PU

PU
DU

PU

PU
DU

Learning
sub-database

Learning
sub-database

Learning
sub-database

Learning
sub-database

Learning
sub-database

Learning
sub-database

Learning
sub-database

Figure 4.6: Decomposition of learning database using ”following the decomposition
tree” strategy

4.3 Decomposition of learning database

The learning database is split into M learning sub-databases by DUs during building

of the decomposition tree. The learning database decomposition is should be equiv-

alent to ”following the decomposition tree” decomposition strategy (section 4.5.1).

The resulting learning sub-databases could be used for Processing Unit learning.

Each subdatabase has then Processing Unit attached. The Processing Unit models

are trained using the corresponding learning sub-database.

4.4 Training of Neural Network Models

Training of Processing Unit models is performed using standard supervised training

techniques, possibly most appropriate for the learning task required. In this work

100

only Neural Networks are used, however there should be no difficulty to use other

modelization techniques.

Processing Unit is provided with a data sub-database and target data. It is

expected to model the input/output mapping underlying the subspace as reflected

by the data sub-database provided. The trained model is used later in processing of

the data patterns assigned to the Processing Unit by assignment rules, as specified in

the previous section. Processing Unit models used in this work are: LVQ, MLP, LN,

Perceptrons, GRNN, and Probabilistic Networks.

4.5 Decomposition of generalization database - rules

of pattern assignment to models

When the generalization database is to be processed each vector from the database

should be assigned to a model. In other words there should be defined a function that

for each generalization vector returns processing model that should process this vec-

tor. This is done by using assigniment rules. The rules of assignment are expected to

determine which model will process the given input pattern in generalization phase,

given learning sub-databases. In particular the learning sub-databases can be rep-

resented by prototypes and characterized by other techniques and attributes. Each

k-th sub-database has Processing Unit assigned, which was built to process the k-th

sub-database.

Pattern assignment can be performed in two general manners:

• following the decomposition tree (based on the decomposition tree): as decision

tree and making decisions at each branch node, starting from the root

101

Generalization
database

PU

PU

PU

DU

DU

DU

DU

PU

PU
DU

PU

PU
DU

Generalization
sub-database

Generalization
sub-database

Generalization
sub-database

Generalization
sub-database

Generalization
sub-database

Generalization
sub-database

Generalization
sub-database

Figure 4.7: Decomposition of generalization database using ”following the decompo-
sition tree” strategy

• decomposition based on learning sub-databases: using the properties of learning

sub-database to determine the similarity between pattern and learning sub-

database. In particular the prototypes of learning sub-databases are represented

by learning sub-databases prototypes, and the similarity could be measured

between the prototype and pattern (called here prototypes based assignment).

Then some criterion is used to choose the most appropriate prototype for each

vector or use more than one and combine somehow the results.

4.5.1 Following the decomposition tree

Following the decomposition tree seems to be in line with decomposition tree creation

technique. Following the tree requires many decisions for each data vector.

102

4.5.2 Prototypes based assignment

Using of prototypes based assignment seems to be more autonomous in a way that

it’s independent of decomposition tree creation technique. Prototypes based assign-

ment requires only one decision per data vector. Decision used in prototypes based

assignment could be based on similarity criterion. Similarity criterion could be com-

monly used distance measures (described in section 2.2). Next two sections present

two Prototypes based assignment rules.

4.5.2.1 Prototypes similarity assignment rule

In this case, splitting process dividing the initial complex problem into M reduced sub-

problems is based on similarity criterion. The activation of an appropriate Processing

Unit will be issued from similarity measure between an unlearned input vector i and

the k-th cluster prototype representative (Wk). As previously, it is supposed that the

initial feature space has been decomposed into M clusters by a competitive network

decomposition tree.

The similarity criterion could be based on prototypes of learning sub-databases.

A prototype is a vector representing the set of vectors, obtained in some way. We use

usually a prototype obtained from Competitive Network during building of decom-

position tree. Then the similarity criterion is expressed as a distance between data

vector and prototype. The most natural distance function is the one used during de-

composition phase, but there is plenty of distance functions available, some of them

are described in section 2.2.

Properties of similarity assignment:

• universality - can use any measure of similarity

103

Generalization
database

PU

PU

PU

PU

PU

PU

Generalization
sub-database

Generalization
sub-database

Generalization
sub-database

Generalization
sub-database

Generalization
sub-database

Generalization
sub-database

Similarity
ciriterion

Generalization
sub-database

Figure 4.8: Decomposition of generalization database using ”similarity matching”
strategy

• deterministic or fuzzy assignment

Maximum similarity (minimum distance) deterministic assignment The Schedul-

ing vector (DU output) will be conform to relation 4.1.1, with sk(ψi,Wk) given by:

sk(ψi,Wk) =

 1 if ψi −Wk = min(ψi,Wk)

0 else
(4.5.1)

So to be specific: the closest model (minimum distance) is chosen to process

pattern.

Fusion similarity assignment

This approach is a generalization of maximum similarity assignment. Scheduling

vector contains here values for range < 0, 1 >, with sum of all elements equal to

1. The feature vector is directed not only to one Processing Unit like in maximum

similarity assignment, but to many of them at certain degree.

104

sk(ψi,Wk) =
|ψi −Wk|)∑
j

|ψi −Wj|)
(4.5.2)

The output for i-th feature vector is then weighted sum of outputs of all Processing

Unit models.

o(ψi) =
∑

j

o(ψi, NNMj)s(ψi, NNMj) (4.5.3)

In this way a feature vector is processed by all Processing Unit models, but the

influence of Processing Unit output on the output is proportional to the similarity

between feature vector and learning sub-database corresponding to the Processing

Unit. That technique could be improved by considering only output of specified

number of closest Processing Unit models (when only one Processing Unit is con-

sidered this approach is equal to maximum similarity assignment). The number of

closest Processing Unit models could be determined by That significantly reduces the

number of calculations and allows the Processing Unit models to be local.

4.5.2.2 Probabilistic assignment rule

In this case, the activation of an appropriate Processing Unit is given in terms of

probability of activation the k-th NMM among M neural network based models. If

the k-th Processing Unit has been obtained with respect to the k-th learning sub-

database, then the probability of activation of the corresponding Processing Unit, Pk(

(t)), could be expressed by relation (3), where k() is some Gaussian approximation

of k-th learning sub-database density.

105

Pk(ψ) =
ρk(ψ)

M∑
k=1

ρk(ψ)

(4.5.4)

with

ρk(ψ) = exp

[
−(ψ − µk)

T (ψ − µk)

ρ2
k

(4.5.5)

where µk represents the average prototype’s centre and ρk denoting the learned

prototypes standard deviation. The approach has following properties:

• Pk(ψ(t)) and k() are reverse proportional to the distance between the input

vector and sub-database prototype;

• Pk(ψ(t)) and k() are reverse proportional to the learned prototypes standard

deviation ρk;

• The exponential function strongly awards the prototypes that are close to µk

and punishes the prototypes that are far from µk ;

• Sum of probabilities is equal to 1.

Probabilistic assignment The Scheduling vector (DU output) could be deter-

mined randomly with probabilities of assignment to Processing Units defined above.

Maximum probability assignment The Scheduling vector could be expressed

according to relation 4.1.1 , where sk(ψi, Pk) is given by:

sk(ψi, Pk) =

 1 if Pk = max(Pl)

0 else
(4.5.6)

106

with l ∈ {1, ...,M}.

Then the assignment is deterministic and the model associated with sub-database

most close to input pattern vector wins. The assignment could be unfair when two

or more models have similar values of probabilities for given input pattern.

4.6 Using trained models (Processing Units) on

data

Processing Unit models used in our approach can be of any origin. In fact they could

be also not based on Artificial Neural Networks at all. The structure used depend on

the type of learning task, we use:

• for classification - MLP, LVQ, Probabilistic Networks, RBF, Linear Networks;

• for regression - MLP, RBF;

• for model identification - MLP.

Processing Unit models are created and trained (section 4.4) in the learning phase

of T-DTS algorithm, using learning sub-databases assigned by decomposition struc-

ture (section 4.3). In the generalization phase, they are provided with generalization

vectors assigned to them by pattern assignment rules (section 4.5). The vectors form

generalization sub-databases that are processed by Processing Unit models. Each

Processing Unit produce some set of approximated output vectors.

107

output

PU

PU

PU

DU

DU

DU
PU

PU
DU

PU

PU
DU

DU

Figure 4.9: Dataflow of T-DTS: gathering of the results from individual Processing
Units

4.7 Combining the results

The sets of output vectors are combined to produce the output set for the whole

generalization database. Figure 4.9 represents the dataflow of output values, when

DU units compose a binary tree.

On the figure 4.9 one can notice a tree structure of DU nodes and Processing

Unit leaves. A set of neural network based models (trained from sub-databases) is

available at leaf level and model the system behavior region-by-region in the problem’s

feature space. Each incoming input vector is assigned to specific Processing Unit leaf

by pattern assignment rules. Then the processed data is gathered together from

Processing Unit models by the DUs (in reverse direction).

4.8 Conclusion - Discussion of T-DTS properties

T-DTS (Treelike Divide To Simplify) is a multiple model (in particular Multiple

Neural Networks) processing structure. It is able to reduce complexity on both data

108

and processing chain levels [MCR03b]. T-DTS constructs a treelike evolutionary

architecture of models, where nodes (DU) are decision units and leaves correspond

to Neural Network - based Models (Processing Unit). That results in splitting the

learning database into set of sub-databases. For each sub-database a separate model

is built. Advantages:

• allows simplification of the problem - using many simple local models;

• allows parallel processing - after decomposition, the sub-databases can be processed

independently and joined together after processing;

• task decomposition is useful in cases when information about system is distrib-

uted locally and the models used are limited in strength in terms of computa-

tional difficulty or processing (modelization) power

• modular structure gives universality: it allows using of specialized processing

structures as well as replacing Decomposition Units with another clustering

techniques,

• classification complexity estimation and other statistical techniques may influ-

ence on the parameters to automate the processing i.e. decrease the need for

user intervention

Disadvantages:

• if the problem doesn’t require simplification (problem is solved efficiently with

single model) then Task Decomposition may decrease the time performance,

as learning or executing of some problems divided into subproblems is slower

109

than learning or executing of not split problem; especially if using sequential

processing (in opposition to parallel processing),

• some problems may be naturally suited to solve by one-piece model,

• too much decomposition leads to very small learning sub-databases, that may

lose generalization properties, in extreme case leading to problem solution based

only on distance to learning examples, so equal to nearest-neighbor classification

method.

110

Chapter 5

Applications of T-DTS System

This chapter will present applications of T-DTS paradigm to some problem exam-

ples. It has to answer the question: if D-DTS approach is universal or not? The

answer is yet not simple. T-DTS was validated in number of applications, including

classification, system identification and pattern recognition. It is impossible however

to imagine and test all the cases in which such an approach could be used. The

examples show however that T-DTS is able to process efficiently various tasks: model

identification (section 5.1) and classification (section 5.2). This chapter will try to

present the applications of T-DTS to some of the most popular classes of computing

problems.

Two signal identification problems will be presented. The first is rather simple

academic signal identification problem, where T-DTS were supposed to model a dy-

namic non-linear system, basing on Auto Regressive Moving Average ARMAX(6,6)-

like data (six last outputs and six last inputs are given in order to provision of system

response). It is presented in section 5.1.1. Second signal identification problem con-

cerns real industrial signal identification problem - drilling rubber (section 5.1.2).

111

Several non-linear parameters influence the process of manufacturing rubber and the

goal of T-DTS is is to model the complicated non-linear process in order to identify

the global process.

Three classification problems will be presented. First of them, presented in sec-

tion 5.2.1, is simple academic classification problem of classifying two spiral decision

regions (section 5.2.1). This not linearly separable problem is similar to generalized

Exclusive Or (XOR) - the goal is to classify properly two interlocking data clusters

of spiralled shape. Second application is pattern recognition problem of recognizing

separated printed letters (section(5.2.2). T-DTS uses here support from data extrac-

tion algorithm in order to encode the data. The third and last application is aimed

at showing the usage of complexity estimation techniques in order to automatically

classify problems of various difficulties, when keeping the system aware of problem

difficulty and responding with equivalent amount of resources (section 5.2.3). The

goal of this application is to automatically increase the processing effort for more

complicated problems, when simultaneously keeping it low for simple problems.

5.1 Model identification

5.1.1 Model identification - linear academic problem

To evaluate T-DTS in system identification task, the T-DTS paradigm has been

applied to identify a dynamic non linear system [MCR02]. This system is described

by the following equations:

On = 0.18/On−1 + 0.3/On−2 + 0.6/i3n + 0.18/i2n − 0.2/in (5.1.1)

112

where on represent the system output and in the system input at time step n .

In the learning phase, the signal il(t) is used as system input, in the generalization

phase signal ig(t) is used as system input.

il(t) = 0.7 sin

(
2πt

300

)
+ 0.3 sin

(
2πt

30

)
(5.1.2)

ig(t) = 0.7 sin

(
2πt

300

)
(5.1.3)

As decomposition engine (DU) a competitive network of 2 neurons is used. As

Neural Network Models, multilayer perceptrons were used (1 hidden layer with 4 neu-

rons) with Levenberg-Marquadt learning rule (a variant of back-propagation learn-

ing). MLP input patterns are constituted as an Auto Regressive Moving Average

ARMAX(6,6) vector.

The T-DTS algorithm builds a tree structure as represented in figure 5.1. This

tree is constituted by 3 DU at the node level and 4 Neural Network Models at the

leaf level. The initial problem space is split in two sub-databases 1a and 1b. The

algorithm decides to end decomposition for sub-database 1a and decides to decompose

the second subspace, 1b, in to two sub-spaces 2a and 2b. Then it decides to end

decomposition for the subspace 2a (Processing Unit2) and split the subspace 2b into

sub-databases 3a and 3b. The sub-databases 3a and 3b are not decomposed any

further. That ends decomposition tree building phase. Then the models 1, 2, 3 and

4 are created and trained using the learning sub-databases that have arrived to their

location in the tree. That ends T-DTS learning phase.

Figure 5.2 represents patterns that have been used to train these 4 Processing

Units.

113

PU

DU

DU

PU

PU

PU
DU

1

2

3

4

1a

1b 2a

2b 3b

3b

Figure 5.1: Decomposition tree for the model identification experiment

Figure 5.2: Aggregations of patterns created by decomposition

114

0 1 2 3 4 5 6 7 8
10-7

10-6

10-5

10-4

10-3

10-2

10-1

8 Epochs

Tr
ai

ni
ng

-B
lu

e
G

oa
l-B

la
ck

Performance is 3.07604e-007, Goal is 1e-006

Processing Unit 1

0 2 4 6 8 10 12 14
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

14 Epochs

Tr
ai

ni
ng

-B
lu

e
G

oa
l-B

la
ck

Performance is 9.23377e-007, Goal is 1e-006

Processing Unit 2

0 2 4 6 8 10 12 14 16 18 20 22
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

22 Epochs

Tr
ai

ni
ng

-B
lu

e
G

oa
l-B

la
ck

Performance is 9.79817e-007, Goal is 1e-006

Processing Unit 3

0 10 20 30 40 50
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

58 Epochs

Tr
ai

ni
ng

-B
lu

e
G

oa
l-B

la
ck

Performance is 9.9816e-007, Goal is 1e-006

Processing Unit 4

Figure 5.3: Evolution of learning error for models (LM learning)

Figure 5.4: Learning signals (left) and generalization signals (right)

Figure 5.3 represent the mean square error evolution in the training step for the

4 Processing Units.

Figure 5.4 represents the T-DTS model output in the learning and generalization

steps.

The decision of splitting a subspace is taken basing on the similarity of examples.

The data is split recursively by an unsupervised neural network, competitive network

in this case. The splitting process has discriminated four learning databases that

115

Controller Process

T-DTS based
Identifier

Multi-Model

Control Plant
Output

+

-

- +

Plant
Internal

parameters

Conventional Feedback Loop

Figure 5.5: Implemented industrial processing loop using T-DTS identifier

contain similar patterns (as can be verified by examining the figure 5.2). The reduc-

tion of number of data processed by one Processing Units while keeping the examples

similar inside one learning database makes processing easier and faster: few epochs or

recursion are needed to reach a 10−6 mean square error. The difference between the

system output and the T-DTS estimated output, in the learning and generalization

step, is very low, as seen in the figure 5.4. This assures us that a faithful model was

built, proving the efficiency of T-DTS in system identification task.

5.1.2 Model identification - drilling rubber problem

This is presented in [MCR03a]. This section presents application of T-DTS para-

digm to real industrial problem. The problem is a non-linear process identification,

in industrial process control problem. The process is a drilling rubber process used in

plastic manufacturing industry. Several non-linear parameters influence the manufac-

turing process. To perform an efficient control of the manufacturing quality (process

quality), one should identify the global process.

Similar approach, as described in the previous section 5.1.1, has been implemented.

Input patterns have M-ARMAX shape (Multi inputs ARMAX model). Figure 5.6

116

shows some of process signals shapes. Figures present the main parameters that are

involved in the drilling rubber process. Other parameters, that are less significant,

have been omitted.

Figure 5.6: Example process input order, output (metric properties of produced pro-
files) and some of process parameters (confidential) shapes.

Kohonen SOM based Decomposition Unit (DU) uses a 4x3 grid leading to 12

feature sub-spaces. Consequently, 12 Neural Network based Models (Processing Unit)

have been generated and trained (from learning database). Figure 5.7 shows examples

of database splitting after T-DTS learning phase, giving four among twelve obtained

sub-databases. It shows also, the learning phase validation presenting the learned

process output identification. Figure 5.8 shows system output in the generalization

phase. One can conclude that estimated output is in accord with the measured one.

T-DTS were used here to identify complicated industrial process with many in-

put features. The original data was split into several sub-databases, allowing faster

processing and simplification of modelling task. The models then were built for each

sub-database resulting in good estimation properties of resulting system.

117

Figure 5.7: Examples of database splitting after T-DTS learning phase: four amongst
twelve obtained sub-databases (left). Learned process output identification (right)

Figure 5.8: Identification of an unlearned sequence of drilling rubber plant’s output
in the generalization phase

118

Figure 5.9: Example of Two Spiral problem’s database with 1000 patterns to be
classified

5.2 Classification

5.2.1 Classification - two spirals problem

Two-spiral problem [CMR02] is an academic classification problem, which is often

used as a benchmark. This problem, used for performances comparison, especially in

classification problems, is similar to a generalized Exclusive Or. The data is composed

of two classes, where decision boundary is a spiral; as presented in figure 5.9.

Construction of neural tree to treat the problem consists of decomposing the

input space into a set of subspaces (using Decomposition Units), then performing

classification in each subspace by a specialized neural unit (Processing Unit) at leaf’s

level. The database used for evaluation and validation includes 1000 patterns. The

learning was performed on half of the database, while the other half was used for

generalization.

T-DTS use here local decomposition evaluation based on decomposition parameter

AVStd (as described in 4.2.2).The T-DTS structure on which the validation has been

performed includes two kinds of Decomposition Unit’s (DU): Competitive Network

119

(CN) and Self Organization Map (SOM) [Koh82]. Different configurations, concern-

ing number of neurons (for CN) and network’s topology (different topologies for SOM

as: 2x2, 3x2, 3x3, 4x4 or 5x5), have been implemented. In the case where Kohonen

maps have a grid 2x1 topology, T-DTS builds a binary decision tree. The imple-

mented splitting criterion corresponds to the similarity matching based on AVStd,

which defines the standard deviation maximum value (in each dimension) in a given

sub-database. Concerning Neural Networks based Models (processing units) several

possibilities have been implemented: LVQ (Learning Vector Quantization), LN (Lin-

ear Neuron), RBF (Radial Basis Functions) and MLP (Multi-Layers Perceptron).

80,00%

82,00%

84,00%

86,00%

88,00%

90,00%

92,00%

94,00%

96,00%

98,00%

100,00%

2x1 2x2 3x2 4x2 5x2 3x3 4x3 5x3 4x4 5x4 5x5

CN Learning

CN Testing

SOM Learning

SOM Testing

2 3 4 5 6 7 8 9 10

SOM structure

CN Number of Neurons

Figure 5.10: Classification Rate as a function of number of neurons (for competitive
DU) and as a function of topology (for Kohonen DU)

Figure 5.10 gives a comparative study, expressed as ”Correct Classification Rate”

as a function of number of neurons (for competitive DU) and as a function of consid-

ered topology (for Kohonen DU). Figure 5.11 gives learning and generalization perfor-

mances, expressed in terms of Classification Rates, according to the maximum stan-

dard deviation threshold value’s evolution. Table 5.1 compares the processing time

120

65,00%

70,00%

75,00%

80,00%

85,00%

90,00%

95,00%

100,00%

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7
MaxStd

R
at

e
of

cl
as

si
fic

at
io

n

0,0

200,0

400,0

600,0

800,0

1000,0

1200,0

N
um

be
r

of
N

od
es

Ti
m

e
(s

)

Learning Rate
Generalization Rate
Number of Nodes
Time (s)

testing goodness is stable

Figure 5.11: Learning and generalization evolution rates vs. AVStd value, when LVQ
models are used

for the case of competitive Decomposition based T-DTS and for different Processing

Unit structures. For the presented case, AVStd=0.12 leads to 107 sub-databases in

the case of a Competitive-like ANN based splitting.

121

Table 5.1 Processing time for both DU construction and Processing Unit learning

and generalization.

Splitting (107 nodes) Processing Unit Type Learning Database Testing Database

159.88 s LVQ 261.51 s 6.33 s

159.88 s LN 4.77 s 4.84 s

159.88 s RBF 37.67 s 5.84 s

159.88 s MLP 110.91 s 8.46 s

By dividing the initial database into several sub-databases and by dedicated

processing of each of those data sub-databases, the proposed ANN based data driven

Multiple Model generator (T-DTS) reduces the initial problem’s complexity at several

levels, especially at processing and modelling ones. De facto, dividing the initial prob-

lem into several sub-problems with reduced sizes, on the one hand, simplifies both the

learning complexity and duration (learning of relations between inputs and outputs),

on the other hand reduces the processing procedure’s or unit’s complexity. Finally,

it decreases globally implementation and parameters optimization constraints.

Results obtained in this benchmark show efficiency of such multiple model struc-

ture to enhance processing capability by reducing complexity on both processing and

data levels.

In the next section the T-DTS driven by complexity estimation technique will be

presented, as well as its advantages over the static decomposition parameter.

5.2.2 Classification - Pattern recognition

In order to use T-DTS in pattern recognition problem [RCM+03b], a data extrac-

tion scheme can be used. A feature extraction method, called View-Based approach

122

[Sae00], [SAEE02], [STA03], [Sae03] is used for feature extracting and coding of

printed letters. Encoded data are fed to T-DTS. That entirely composes an orig-

inal pattern recognition system. T-DTS, embedding problem complexity estimation,

decomposes the complex problem into several less complex ones, and builds a set of

models for the resulting sub-problems. The method has been applied with success to

recognize separated printed letters of various shapes [RCM+03b].

View-Based Approach

The View-Based approach [STA02], [STA03] is based on fact, that for correct

character or image recognition one usually need only information about its silhouette

or contour. The idea is based on projection method developed and modified by Saeed

and Tabedzki [STA02]. The approach is used here with printed letters, although

the method has been modified and successfully applied also to handwritten letters

[Sae03].

This method involves examining four ”views” of a single character. On that ground

characteristic vector is allocated, which describes that character. The view is a set

of pixels belonging to the contour of a character and having extreme values of one

of its coordinates. One can distinguish four views - top, down, left and right (5.12).

For example, top view of a letter is a set of points having maximal y coordinate for

a given x coordinate.

Next, characteristic points are marked out on the surface of each view, which

describes shape of that view. The method of choosing these points and number of

them may vary. In experiments seven uniformly distributed points were selected for

every view (Fig. 5.13).

The next step is calculation of y coordinates for points on top (yT1, ..., yT7) and

123

Figure 5.12: Concept of views. (a) Example letters, (b) letters’ contour, (c) top view,
(d) down view, (e) left view, (f) right view

Figure 5.13: Choosing characteristic points for four views

124

xL7

xL1

xL2

xL3

xL4

xL5

xL6

yT1

yT2

yT3

yT4

yT5

yT6

yT7
xR2

xR3

xR4

xR5

xR6

xR7

xR1

yD1 yD2

yD3 yD4 yD5

yD6 yD7

Figure 5.14: Receiving coordinates of characteristic points

Figure 5.15: Database sample

down (yD1, ..., yD7) views, and x coordinates for points on left (xL1, ..., xL7) and right

(xR1, ..., xR7) views (5.14). These values are normalized, so they are in range < 0, 1 >.

Then from these 28 obtained values the characteristic vector is created:

< yT1, ..., yT7, yD1, ..., yD7, xL1, ..., xL7, xR1, ..., xR7 >,

which describes given letter, and is a base for further analysis and classification.

To validate the approach, a database of letters were used. It consisted of 26

capital letters of Latin alphabet written in 66 different styles (fonts). That gives a

total of 1716 cases from 26 classes. The data is stored as images without noise. The

data varies significantly within-class by shape, slope, size (thus image resolution),

some fonts are bold and others have sheriff lines. That increases the difficulty of

classification task. A sample of the database is shown in the figure 5.15.

125

The images have been encoded using View-Based approach. The views of each let-

ter have been sampled and normalized. After that process, letter image is represented

as vector of 28 features. This is the data format fetched to T-DTS.

T-DTS has been learnt on randomly picked 50% of the total data, called Learning

Set. For decomposition decision, the modified Fisher discriminant ratio was used.

As decomposition algorithm, the Competitive Network composed of two neurons was

used, which means splitting a set in two sub-databases each time, what leads to binary

tree structure. One of T-DTS decomposition trees obtained during the experiments

is depicted in the figure 5.16.

PU

PU

PU

DU

DU

DU

DU

PU

PU
DU

DU
PU

PU
DU

PU

PU
DU

Figure 5.16: T-DTS decomposition tree obtained during experiments

After decomposition, a set of models were created, using Probabilistic Neural Net-

works [Was93] as classifiers. For each Processing Unit, a Probabilistic Neural Network

is built, which allowed us to achieve approximately 90% of correct classification total

and 80% of correct classification on the unseen data.

The misclassifications have arisen probably from class ambiguity - similarity of

samples from different classes. This error is unavoidable on the data processing level

126

and is also referred as Bayes error (see chapter 3.3 for more information). On the

feature extraction level it is sometimes possible to avoid that effect by unambiguous

feature encoding. Another argument for that assumption is occurrence of misclas-

sifications between distant (by intuition) classes. This is probably caused by great

variability of the letters in general. It implies that Bayes error is significant [Ho00],

[Pie98], [Sin03]. Considering this, a way to increase the performance of system is to

decrease class ambiguity by using preprocessing techniques like thinning and slope

correction.

The T-DTS with View-based data extraction is a hybrid pattern recognition tech-

nique. The performance of the hybrid intelligent system has been validated on the

varied non-homogenous database of patterns, what resulted in successfully recognized

80% of separated printed capital letters of various shapes.

Further work in the area will be concentrated on preprocessing of the images.

Especially thinning and slope correction [CL96] should be useful in decreasing within-

class variability, which should result in better classification performance. Concerning

classification performance, there are two directions: one is enhancement of View-

Based feature extraction algorithm, second T-DTS capabilities improvement.

5.2.3 Classification with complexity estimation

In the example that follows T-DTS is studied as an auto-adapting system, i.e. system

which structure adapts to difficulty of data [RCM03a]. The goal here is to adjust the

decomposition according to the complication of task. This is done by usingclassifica-

tion complexity estimation methods.

The goal is to examine the adapting of the system to data of various difficulties.

127

Figure 5.17: Sequence of datasets of increasing complexity

Thus a sequence of simple datasets of intuitively increasing complexity has been

created. They are presented in the figure 5.17. The sequence contains both linearly

separable datasets and non-linear separable datasets (spirals of different shape). For

linearly separable datasets the complexity increases with fragmentation of clusters.

For non-linearly separable data the complexity increases as the clusters are twisted

more and more around the centre. The idea here was to make the data obviously

different in complexity and observe the behaviour of the T-DTS (driven by complexity

estimator). The behaviour could be verified by comparing with intuitive complexities

sequence.

T-DTS were used in two cases to validate the assumptions about the increas-

ing difficulty of the benchmark problems. In first case, the decomposition tree is

composed of quasi-static structure - T-DTS generates here approximately the same

tree structure and number of Processing Units. AVStd measure was used here as

decomposition criterion to achieve similar degree of decomposition. In the second

case, a classification complexity estimator was used in order to accommodate the

128

MAXSTD = 0.5

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

1 2 3 4 5 6 7 8 9 10 11 12
Data

ra
te

(%
)

0

20

40

60

80

100

Ti
m

e
(s

)/
Su

bs
et

s
(n

um
be

r)

Learning Rate %
Generalization Rate %
Prototypes (number)
Time (s)

Figure 5.18: Statistics of computational effort for T-DTS without adaptation

decomposition structure to case difficulty.

On the figure 5.18 there are results for static decomposition structure. classifica-

tion rates drop significantly for more complicated datasets (going to right). Processing

times are approximately the same for each dataset. This is due to fact that the de-

composition tree structures are practically identical and they are too simple for more

difficult datasets.

When T-DTS adapts to classification complexity, Fisher discriminant ratio were

used as decomposition threshold. Fisher decomposition ratio measures the separabil-

ity of different class clusters. The results are depicted on figure 5.19.

One can notice in figure 5.19, that classification rates for learning phase are alike,

and for generalization rates there is only small dropping tendency. Number of proto-

types (related to processing time) significantly increases for more complex datasets.

This fact is in contrast with the experiments with static structure presented on fig-

ure 5.18. Thus T-DTS structure with complexity estimation adapts to difficulty of

dataset, creating tree structure of size proportional to data complication.

129

Fisher = 0.75

50,0%
55,0%
60,0%
65,0%
70,0%
75,0%
80,0%
85,0%
90,0%
95,0%

100,0%

1 2 3 4 5 6 7 8 9 10 11 12

Data

R
at

e
(%

)

0

20

40

60

80

100

Ti
m

e
(s

)/
S

ub
se

ts
(n

um
be

r)Learn. Rate %
Gener. Rate %
Prototypes (number)
Time (s)

Figure 5.19: Statistics of computational effort for T-DTS adapting to problem diffi-
culty

5.3 Applications - Conclusion

This chapter has presented T-DTS in different classes of applications: system iden-

tification, classification and Pattern Recognition. The example applications shown

here present good performance in terms of processing quality in all presented tasks.

Generally speaking, solutions based on modular structure are universal, as it is

easy to replace modules and thus modify part of system. This is also the case for

T-DTS, where not only processing modules can be replaced this way, as well as data

decomposition (clustering) modules and knowledge acquisition modules (complexity

estimators and other techniques that are used to optimize the structure and parame-

ters). This proves universality of T-DTS approach up to some point.

The application of T-DTS presented in this chapter are of various origin. First

we present academic classification problem to show the benefices of decomposition

when the problem overwhelms processing model used. This shows the flexibility of

130

our approach, where processing is limited only by the nature of Processing Units.

The limitation is surely data decomposition issue, because not all problems are

well suited for decomposition. Task decomposition insures the local processing the

may be unsuitable for problems that need global processing. Existence of processing

algorithms that from their nature already contain local processing (RBF) also makes

Task Decomposition less desirable. Even for these problems T-DTS still offer benefices

resulting from simplification of local models and breaking up the problem weight from

one model into several. This could be valuable even for such local approximation

Processing Units.

Next chapter is a conclusion of all work contained in the thesis.

131

CONCLUSIONS

Main idea of T-DTS is to take advantage from distributed processing and task sim-

plification. Another goal is to decrease the amount of user intervention in specify-

ing processing parameters, by using statistical techniques of Complexity Estimation.

When dealing with classification, identification or regression task T-DTS decomposes

the problem using Decomposition Units and thus creates decomposition tree. The

decomposition tree is used to decompose data into sub-databases. Neural Network

Models are then used to process resulting data sub-databases. The processing phase

can be done using distributed parallel processing.

The efficiency of T-DTS design was shown in academic classification problem of

Two-Spirals classification. In the next example classification complexity method was

incorporated into T-DTS to aid the decomposition, what allows the system to be

user-independent and adapt to classification task difficulty automatically. System

identification task was studied with two examples. The first was academic system

identification problem, the second real complex industrial problem. In both cases T-

DTS decomposed the data to reduce processing complexity and build a set of models

to identify the partial signals of data sub-databases. In both cases T-DTS was proven

to build faithful models. Finally T-DTS was linked together with feature extraction

technique (View-Based Approach) to build a pattern classification system. That

132

combination allowed achieving 80% recognition rate of non-homogenous and rather

difficult letters set. In order to summarize: T-DTS were tested in classification,

Pattern Recognition and system identification area. Solutions based on modular

structure are generally universal, as it is easy to replace modules and thus modify

some part of system. T-DTS processing modules can be replaced this way, as well

as data decomposition modules and knowledge acquisition modules. This proves

universality of T-DTS approach to some point.

One may criticize the T-DTS approach as unsuitable for the tasks that are solved

well with classical methods (of any kind). There is however always a possibility of

incorporating such classical method as a processing tool in T-DTS and allow task

decomposition that in such case may prove itself useful by decreasing the processing

time with parallel processing. It is also frequent and almost natural that a solution

individually designed for a specific problem will outperform solution that is universal

and can serve many purposes (not just this particular problem). The power of uni-

versal solution lies though in widespread area of applications, so one doesn’t need to

design a new tool that is individually suited for the problem but modify and use a

universal tool that is already created and ready to go.

T-DTS is implemented in Matlab 6.1 language with addition use of GUIDE en-

vironment to create user interface. Matlab environment gives easy access to library

of useful functions. GUIDE environment although rather simple comparing to other

GUI environments is sufficient to build a system of academic use.

The user-independent and automated processing of data is a very distant goal. By

linking together statistical methods and universal data processors as Artificial Neural

Networks one can expect to make that objective a little closer. T-DTS was intended

133

to be a small step in that direction. The further development of the system could be

in two main directions. The first is development of task processing tools library in

order to process efficiently many tasks of different nature. The second is connected

to identify nature of processing task in order to choose most appropriate tool from

tools library.

134

APPENDIXES

135

Appendix A

Computer T-DTS Implementation

This appendix will present details of T-DTS paradigm computer implementation.

T-DTS is currently implemented in Matlab 6.1 language, using GUIDE user in-

terface. Figure A.1 gives overall view of main application window.

One can see groups of controls related to input parameters, decomposition crite-

rion, classification complexity, experiment run and output presentation.

A.1 Structure of functions call of main frame

Figure A.2 presents dynamic structure of most important T-DTS functions.

The functions will be consequently described.

Graphical user Interface (GUI) function This function creates a window

(presented in figure A.2), which presents graphically most used parameters and al-

lows fast modifications and experiment conduction with presentation of results. It’s

encoded in file named aaa.mat. The code here was implemented with support of

136

Figure A.1: T-DTS implementation

GUI window (aaa)

Invocation

Choose Learning Set DTS Execute Testing Set

Main

Preprocess
Count

NMMDataMining
ForPU

CutInto SubsetsDivide

FlatCutIntoSubsetsFind Prototypes

Execute Learning Set

Figure A.2: Static functions structure

137

GUIDE (Graphical User Interface Development Environment) incorporated in Mat-

lab. Button callback functions in the file call functions related to T-DTS experiment

execution as well as presentations of data and results.

Invocation function The function is a wrapper for any T-DTS experiment,

loads the data, chooses the learning set (if necessary), calls T-DTS structure building

and learning, finally obtains the results for learning and generalization set.

Choose Learning Set function This function is responsible for random divid-

ing the dataset fed to system into learning set and generalization set. It could be

based on the learning database percentage ratio parameter called Percentage.

DTS function The function invokes all task connected with. It calls Main which

creates and performs learning of T-DTS structure. Execute Learning Set func-

tion That function uses T-DTS processing structure created by DTS function to

process learning data. Execute Testing Set function That function uses T-DTS

processing structure created by DTS function to process generalization data.

Main function It creates and performs learning of T-DTS structure. That in-

cludes pre-processing (pre-process count), recurrent dividing of the sub-databases by

DU (divide), final dividing of the learning set according to dividing prototypes struc-

ture created by divide, choosing of the Processing Unit(Data mining For Processing

Unit) and creation of Processing Unit models for each prototype (sub-database) of

the learning set.

Preprocess Count function This function pre-processes the incoming data,

what can include normalization and reduction of input’s dimensionality by Principal

Component Analysis (PCA).

138

Divide function The function performs dividing of given dataset into sub-

databases. It is called recurrently. It works by finding prototypes by using De-

composition Units, which perform unsupervised learning and dividing the set into

sub-databases.

Cut Into Subsets function The function finally divides the learning set ac-

cording to dividing prototypes structure created by divide.

Data Mining For Processing Unit function The function chooses the struc-

ture and parameters of Processing Unit to process the specific data sub-database.

Processing Unit function The function performs learning of Processing Unit

for the sub-database data.

Find Prototype function This function uses Decomposition Unit with unsuper-

vised competitive neural network structures to find prototypes for given sub-database

of data.

Flat Cut Into Subsets function This function uses prototypes to divide given

set of data into sub-databases.

A.2 User interface

As marked in the figure there are five groups of controls. There will be subsequently

explicated.

T-DTS input parameters These concern T-DTS algorithm parameters as well

as database preprocessing.

DU choosing combo box allows selection of DU decomposition algorithm. One can

choose either Competitive Network (CN) or Kohonen Self Organizing Map (SOM).

139

Some detailed parameters (like structure of the Map or number of neurons for com-

petitive network are available only on programming level.

Using Processing Unit choosing combo box one can specify the type of ANN

processing Model at leaf level of the decomposition tree. The possible choices are:

Learning Vector Quantization (LVQ), Linear Neuron (LN), Radial Basis Function

(RBF), Multi-Layer Perceptron with Levenberg-Marquadt learning (MLP LM), Prob-

abilistic Neural Network (PNN), Generalized Regression Neural Network (GRNN)

[Arb89].

By using data combo box, one can choose one of databases to process or choose

empty one and load it manually from Matlab command line (using symbol ’*’).

’Normalize’ combo box allows choosing if and what type of normalization the

system will apply to database. Available types are: ’norm’ - Normalization to achieve

Gaussian distribution in each data dimension separately; ’ones’ - normalization to

compartment ¡-1,1¿; and finally ’none’ when no data normalization is required.

By checking the box marked as ’Princ. Comp. A’ one can order Principal Com-

ponent Analysis on the data before feeding it to further processing. The process is

expected to eliminate redundancy in data and reduce the number of dimensions.

Slider and edit box marked ’Percent. to learn’ allows to choose the amount of

database available to learning algorithm.

Finally ’Print params’ button displays all learning parameters in the Matlab com-

mand window.

Decomposition criterion controls The controls in the box allow choosing and

setting value for the decomposition criterion. ’AVStd’ parameter is a decomposition

parameter described in chapter 4.2.2. ’Fisher ratio’ is a threshold based on Fisher

140

discriminant ratio (classification complexity estimator described widely in chapter

3.5.4.2). Purity parameter is a threshold based on purity classification complexity

estimator described in 3.5.3.2.

Output presentation methods These controls are designed to present the re-

sults obtained by T-DTS.

’Plot sub-databases’ shows first two dimensions of data and its decomposition by

colour marking the data sub-databases. The decomposition is marked separately for

the learning and generalization data. The button ’v.2’ on the right draws the same

without colour using different symbols.

Button ’Print Processing Unit properties’ outputs in Matlab command window

structure and parameters of Processing Unit models created during learning.

’Plot tree’ shows first two dimensions of data, draws the data and shows the

process of decomposition tree creation in time. The button ’v.2’ on the right draws

the same with alternate colours.

’Plot A and C’ is used only in signal processing task and shows the original desired

signal in comparison with signal outputted by the system.

’Print result’ and ’All’ allows outputting consequently last and all experiment

results obtained by T-DTS.

’Post regression’ button shows regression analysis of output signal and desired

signal dependence, to verify the performance.

Classification Complexity computation for a set of databases This buttons

allow computation of classification complexity for a set of databases.

’Complexities -means’ shows computed complexities for a set of databases.

’Count complexities dbc’ performs the set of T-DTS experiments on structure

141

containing a set of databases in order to compare the results of multiple databases

for the same T-DTS configuration (contained in cell array variable dbc).

Launching buttons Launching buttons allow initialization (’Init’), saving the

T-DTS configuration data (’Save’) and starting of experiment (’Go’). To perform

repeated experiments one can check the box marked as ’Multiple Times’. Unless the

mentioned box is checked system will make only a single experiment.

A.3 T-DTS Controlling Parameters structure

T-DTS parameters are stored in PARAMS structure available at command line level

and stored in file paramsfile.mat. Most important parameters are available visually

from GUI level as controls (as described in A.2). Here follow all the parameters with

explanation:

PARAMS =

Compm: [1x1 struct]

Method: ’AVStd’

Purity: 0.2000

Fisher: 10

AVStd: 0.2000

Preprocess: [1x1 struct]

Normalization: ’ones’

PrinComp: [1x1 struct]

Percentage: 0.3000

nPar: [1x1 struct]

Processing Unit: ’LVQ’

142

DU: ’CN’

Dataname: ’spirals’

GoAll: 0

Clustering: ’independent’

IntOut: 1

ConsPro: 0

AVStd: 0.4000

Percentage: 0.5000

Showdisplay: 0

MaxClusters: 1000

DistanceFunction: ’dist’

Display: [1x1 struct]

PlotControlPar: 1

DecU: ’normal’

Compm - holds decomposition complexity method currently selected and thresholds for all

complexity methods available.

Pre-process - contains preprocessing related parameters: selected normalization

method, Principal Component Analysis related parameters, default percentage of

database taken for learning, normalization shift and magnifier are stored in nPar

structure.

Processing Unit- type of ANN Method selected to process (model) all leaf level

sub-databases. DU - specifies type of Decomposition Unit selected to perform decom-

position of dataset

143

Dataname - contains name of frequently used at file which will be load to do

experiment. If that field contains ’*’ no file will be load and the data will be taken

from command line workspace instead.

GoAll - the Boolean value will specify if the experiments will be performed by

all Processing Units available to compare the efficiency of modelling.

Clustering - defines clustering strategy - independent means that final clustering

is done with all prototypes taken together independently of tree structure after divid-

ing, while ’treelike’ means that final clustering is done simultaneously with dividing.

IntOut - parameter specifying the output format of processing task, for regression

Processing Units it’s sometimes necessary to convert floating point numbers to integer

ones.

ConsPro - the parameter specifies if the prototypes are to be taken from previous

experiments. That allows to speed up processing by skipping the decomposition phase

and doing only modelling phase.

AVStd, Percentage - ancient and obsolete parameters, moved to branches of

the structure.

Showdisplay - the parameter allows skipping some displaying of computation in

case one doesn’t want to watch them, it speeds the processing.

MaxClusters - specifies maximum number of clusters allowed to system, it’s a

safety valve if clustering algorithm went out of control.

DistanceFunction - specifies distance function used during clustering phase by

DUs, possible values are: ’dist’ - Euclidean distance, ”streetdist’ - Manhattan (street)

distance. Another distance functions can be added by editing the code in CutIntoSub-

databases.

144

Display - parameters related with display, PlotControlPar - parameter used in

PlotControl function to decide if the sub-databases point representation should be

coloured or should differ with shape.

DecU - parameter allowing restructuring the decomposition tree, possible values:

’Normal’, or ’restructure’.

145

Appendix B

History of ANN

This appendix will present in short the history of Artificial Neural Networks.

The field of ANN has a history of about 60 years. However ANN have found solid

application only in past 20 years. This field is still developing rapidly. Due to their

relative short age and rapid development the terminology of ANN area is not entirely

clear like other fields i.e. optimization and control systems, where the terminology,

design procedures and mathematical basics are known and applied for many years.

First approach in modern era was a paper of McCulloch and Pitts in 1943, which

describes a logical calculus of neural networks that unifies neurophysiology and math-

ematical logic. They described a network composed of all-or-none neurons and have

proved that such structure can, in principle, compute any computable function.

In 1949 Hebb published his book ”The organization of behavior”, where physiolog-

ical learning rule of synaptic modification was presented. Hebb states that the brain

connectivity is continually changing, as organism learns different function tasks, and

neural assemblies are created by such changes. Hebb introduces a postulate of learn-

ing, which declared that the effectiveness of variable synapse between two neurons

146

is increased by the repeated activation (charges or data flow) across that synapse.

The paper of Rochester, Holland, Haibt and Duda from 1956 [RHHD56] describes a

computer simulation which tests with success Hebb’s postulate of learning.

In 1950 Taylor initiated work on the associative memory. This was followed by the

introduction of learning matrix by Steinbuch in 1961; this matrix consists of a planar

network of switches interposed between arrays or ”sensory” receptors and ”motor”

effectors. In 1972 Anderson, Kohonen and Nakano independently introduced the idea

of a correlation matrix memory based on the outer product learning rule.

In 1954 Gabor proposed an idea of nonlinear adaptive filters. He has built such

a machine, where learning were accomplished by feeding samples from stochastic

process into machine, together with the target function, that the machine was ex-

pected to produce.

Very important approach to the pattern recognition area was the work of Rosen-

blatt on the supervised learning method called perceptron. In 1960 Widrow and

Hoff introduced least mean square (LMS) algorithm and used it to formulate Adaline

(adaptive linear element). It was expanded in 1962 by Widrow and his students, who

introduced Madaline (multiple-adaline), which is one of the earliest trainable layered

neural networks with multiple trainable elements.

In the 70’tees, von der Malsburg as first demonstrated the idea of self-organizing

maps using competitive networks. In 1976 von der Malsburg and Willshaw published

a paper on the formulation of self-organizing maps, motivated by topologically ordered

maps in the brain. The work was continued with success by Kohonen in 1982, who

introduce one or two-dimensional lattice structure.

147

Grossberg building on his previous work on the self-organizing networks estab-

lished a new principle of self-organization known as adaptive resonance theory (ART).

The theory involves a bottom-up recognition layer and a top-down generative layer.

If the input pattern and learned feedback pattern match, a dynamical state called

”adaptive resonance” (amplification and prolongation of neural activity) takes place.

This formulates the principle of forward/backward projections.

In 1975, Little and Shaw described a probabilistic model of a neuron and used the

model to create a theory of short-term memory.

In 1982, Hopfield basing on the idea of an energy function has formulated a new

way of understanding the computation performed by recurrent networks with symmet-

ric synaptic connections. He created a connection between such recurrent networks

called Hopfield networks and an Ising model used in statistical physics.

In 1983, Kirkpatrick, Gelatt and Vecchi described a new procedure called simu-

lated annealing, useful for solving combinatorial optimization problems. Simulated

annealing is rooted in statistical mechanics. It is based on a relatively simple tech-

nique used first in computer simulation by Metropolis et al. (1953). The idea was

used later in the work of Ackley, Hinton and Seynowski (1985) in the development

of a stochastic machine called Boltzmann machine, which was the first successful re-

alization of multilayered neural network. The Boltzmann machine was later used for

subsequent development of sigmoid belief networks by Neal.

In 1986 Rumelhart, Hinton and Williams reported a development of a back-

propagation algorithm. In fact, the Backpropagation algorithm was discovered in-

dependently in two other places about the same time (Parker, 1985; LeCun, 1985).

After the discovery of the back-propagation algorithm in the mid-1980s, it turned

148

out that the algorithm was described earlier by Werbos in his PhD thesis at Harvard

University in August 1974.

In 1988 Broomhead and Lowe described a design procedure of layered feedforward

networks using Radial Basis Functions (RBF). The idea of RBF is based on method

of potential functions, originally proposed by Bashkirov, Braverman and Muchnik in

1964 and developed by Aizerman, Braverman, and Rozonoer [ABR64].

In 1989 a book of Mead entitled ”Analog VLSI and Neural Systems” provided

a mix of concepts from neurobiology and VLSI technology. Most significant ideas

contained there are silicon retina and silicon cochlea.

In 1990 Vapnik and co-workers introduced a powerful class of supervised learning

networks called Support Vector Machines (SVM). SVM can be used to solve pattern

recognition, regression and density estimation problems. This method is based on

the results in theory of learning with finite samples sizes. SVM in natural way in-

corporated an idea of Vapnik-Chervonenkis (VC) dimension in their design. The VC

dimension provides a measure for the capacity of neural network to learn from a set

of examples.

149

Appendix C

Biological neuron and its artificial

models

Brain is composed of about 10 billion (1010) neurons. The biological neurons are inter-

connected cells, processing and transmitting information in parallel way. A simplified

model of biological neuron is presented in figure C.1.

”A neuron’s dendritic tree is connected to a thousand neighboring neurons. When

one of those neurons fires, a positive or negative charge is received by one of the

dendrites. The strengths of all the received charges are added together through

the processes of spatial and temporal summation. Spatial summation occurs when

several weak signals are converted into a single large one, while temporal summation

converts a rapid series of weak pulses from one source into one large signal. The

aggregate input is then passed to the soma (cell body). The soma and the enclosed

nucleus don’t play a significant role in the processing of incoming and outgoing data.

Their primary function is to perform the continuous maintenance required to keep

the neuron functional. The part of the soma that does concern itself with the signal

150

Figure C.1: Biological neuron

is the axon hillock. If the aggregate input is greater than the axon hillock’s threshold

value, then the neuron fires, and an output signal is transmitted down the axon. The

strength of the output is constant, regardless of whether the input was just above the

threshold, or a hundred times as great. The output strength is unaffected by the many

divisions in the axon; it reaches each terminal button with the same intensity it had

at the axon hillock. This uniformity is critical in an analogue device such as a brain,

where small errors can snowball, and where error correction is more difficult than in a

digital system. Each terminal button is connected to other neurons across a small gap

called a synapse [left]. The physical and neurochemical characteristics of each synapse

determine the strength and polarity of the new input signal. This is where the brain

is the most flexible, and the most vulnerable. Changing the constitution of various

neuro-transmitter chemicals can increase or decrease the amount of stimulation that

the firing axon imparts on the neighboring dendrite. Altering the neurotransmitters

can also change whether the stimulation is excitatory or inhibitory.” [CS92]

151

Synaptic
weights

�(·) �

Bias
bk

Activation
function wk1

wk2

wkm

Summing
node

vk

x1

x2

xm

Inputs

Output yk

Figure C.2: Artificial neuron example

Artificial neuron inherits many biological neuron properties. There exist many

artificial neuron models, the properties in common are distributed processing and

high connectivity of elements. In this section the most popular and general neuron

model will be presented. General artificial neuron model is depicted on the figure

C.2.

This model is similar to biological neuron: The inputs x (electrical charges in

biological neuron) are weighted by synaptic weights wkj (properties of the dendrites)

and summed creating linear combiner output uk.

uk =
m∑

j=1

wkjxj (C.0.1)

Summing node (soma) adds linear combiner input and bias bk what results in

induced local field vk (also known as activation potential).

vk = uk + bk (C.0.2)

152

Induced local field is modified by transfer function f(·) producing output yk and

propagated through output (axon) to other neurons.

yk = ϕ(vk) = ϕ(uk + bk) = ϕ(
m∑

i=1

wkjxj + b) (C.0.3)

The model is a greatly simplified version of the mechanism created by nature,

although it shows great capabilities and universality. Artificial neuron output value a

is a function (called transfer function) of weighted input values p1..pk and bias b. In

the biological neuron one can find also output values called axons and inputs called

dendrons. In fact, transfer function in biological neuron is much more complicated

than in artificial one. Biological neural networks show great complexity and function-

ality not even approximately met by their artificial descendant. Most known transfer

functions used with the model are:

• Piecewise-linear function

ϕ(v) =


1, v ≥ 1

2

v, 1
2
> v > −1

2

−1, v ≤ −1
2

This transfer function can be seen as approximation of non-linear amplifier.

The amplification factor in the linear region is here equal to 1. By modification

of the amplification one can achieve many different functions in particular:

– signum function, when linear region length is reduced to 0 by setting

amplifier factor to plus infinity;

– threshold function, similar shape to signum function, just with different

values;

153

Figure C.3: Sigmoid (logistic) transfer function

– linear combiner function,when linear region is maintained in the whole

area.

• Sigmoid function

ϕ(v) =
1

1 + e−av
(C.0.4)

This is the most common transfer function, which exhibits a balance between

linear and nonlinear behavior. By modifying the parameter a one can achieve

different slopes of the function. Sigmoid function is differentiable, which is an

important feature, as it allows achieving efficient learning algorithm optimiza-

tions used in the learning session.

• hyperbolic tangent function

ϕ(v) = tanh(v) (C.0.5)

Hyperbolic tangent function is similar to sigmoid function, but it is antisym-

metric and its values are ranged in [−1, 1], which sometimes shows analytical

154

Figure C.4: Hyperbolic tangent transfer function

Figure C.5: Signum transfer function

benefits. Next section will show how the artificial neurons are linked together

to create more powerful structures.

C.1 Signum function

ϕ(v) =


−1 v < 0

0 v = 0

1 v > 0

(C.1.1)

It is sometimes desirable to have output values from range [-1, 1]. The signum

function is an odd function (antisymmetric).

155

Figure C.6: Threshold transfer function

Figure C.7: Linear combiner transfer function

C.2 Threshold (Heaviside) function

ϕ(v) =

 0 v < 0

1 v ≥ 0
(C.2.1)

Threshold function is also referred in literature as linear threshold gate. Neuron

with threshold transfer function is known also as McCulloch-Pitts model [Roj96].

Behavior of this model is described as all-or-none because it produces either 0 or 1.

Slight modification of this function is the signum transfer function.

C.3 Linear combiner function

ϕ(v) = v (C.3.1)

156

C.4 Softmax transfer function

Softmax transfer function is a a normalized exponential. Softmax transfer function

for a input vector ai gives the output vector yk given by:

yk =
exp[ak]

K∑
i=1

exp[ai]

(C.4.1)

Softmax transfer function has following properties:

0 ≤ yi ≤ 1, for alli (C.4.2)

K∑
i=1

yi = 1 (C.4.3)

157

Appendix D

Artificial Neural Networks’

structures

In this appendix some of the most popular neural network architectures are presented.

D.1 Single-layer perceptron

Perceptron is one of the simplest, oldest and most known ANN structure. [HDB1996]

Rosenblatt created many variations of the perceptron [Ros61]. One of the simplest

was a single layer network which weights and biases could be trained to produce a

correct target vector when presented with the corresponding input vector.

Perceptron neuron uses a threshold transfer function:

y = ϕ(
m∑

i=1

wixi + b) = ϕ(v) ϕ(v) =

 0 v < 0

1 v ≥ 0
(D.1.1)

Perceptron output is either 0 or 1, as it contains threshold transfer function ϕ(·)

158

 �(·) �

Threshold
function w1

w2

wm

v

x1

x2

xm

Output y

b

Figure D.1: Perceptron neuron

(see section C). Thus, its activity can be seen as transformation from k-dimensional

surface of inputs into output values < 0; 1 >. Perceptron boundary is the so-called

hyperplane. Perceptron hyperplane can be seen here as a plane in k-dimensional

space, which classifies all the points in space as zeros or ones. Simple example of

hyperplane in two-dimensional space is depicted in the figure D.2.

Position and orientation of classifying surface depends on the perceptron input

weights and bias. It is changed by training technique called the perceptron learning

rule:

W ′ = W + exT

b′ = b+ e

e = t− y

(D.1.2)

where W is the perceptron weights matrix, x is a single input vector, b is the

perceptron bias value and e is the error of classification for specified input vector

(difference between desired target value t and real output value y).

Single perceptron neuron use is limited to so-called linearly separable problems.

159

Figure D.2: Perceptron hyperplane

It means that it should be possible to separates the input values originating from dif-

ferent classes by hyperplane. In the other case, perceptron will not be able to classify

them correctly. Another limitation of perceptron use is that it can produce only two

values: zero and one. These limitations can be overcome by using layer of perceptron

neurons. For example two perceptrons can take values (0; 0), (0; 1), (1; 0), (1; 1), which

in fact is equivalent to four classes. However single layer of perceptron neurons is still

able to solve only linearly separable problems. To overcome this limitation a multiple

layers of perceptron neurons are needed.

D.2 Linear networks

Linear networks are similar to perceptron, but instead of hard-limit transfer function

they use linear transfer function. That allows their outputs to take any value, while

Perceptron output is limited to values 0, 1. However used as classifiers they can model

160

Figure D.3: Linear network example

only linearly separable problems (like perceptrons). They can be however used for

regression i.e. to produce continuous output from compartment < −∞; +∞ >.

Example of linear network hyperplane in two-dimensional space is given in the

D.3.

Line corresponds to network output equal to zero, upper right grey area represents

values greater than zero and lower left white area represent values lower than zero.

If presented in three-dimensional space then linear network values form a surface.

Very popular algorithm used to train linear network is called the Least Mean

Square Error (LMS). It is known well in optimalization area. Learning rule is

provided with a set of k examples of desired network behavior:

p1, t1, p2, t2, ..., pk, tk (D.2.1)

Here pi is an input to network, ti is corresponding target output. The error is

calculated as the difference between real output and target output. The goal is to

161

minimize average squared sum of errors (called also L2 metric):

mse =
1

k

k∑
i=1

e2i =
1

k

k∑
i=1

(ti − ai)
2 (D.2.2)

ai is the current response of the network to input vector xi. The LMS algorithm

adjusts the weights and biases of the linear network so as to minimize this mean

square error function.

The mean square error is a quadratic function, thus it will have either one global

minimum, weak minimum or no minimum, depending on the characteristics of the

input vectors.

D.3 Multi-Layer Perceptron

Multi-Layer Perceptron is one of the most popular structures for general applications

like pattern recognition. MLP are multilayered feedforward networks, which consist

of input layer (sensors), one or more hidden layers and an output layer.

MLP has three distinctive characteristics:

1. Neurons in the network have nonlinear transition functions. The important

property of the function is that the nonlinearity is smooth (the function is

differentiable everywhere). Commonly used function is sigmoid nonlinearity

defined by the logistic function:

ϕ(v) =
1

1 + exp(−vj)
(D.3.1)

where vj is the induced local field (weighted sum of all synaptic outputs plus

the bias) of neuron j. The nonlinearity is important because otherwise the

162

Input layer Hidden layer Output layer

sensors

Synaptic weights

Sensor

Synaptic weight

Neuron

Figure D.4: Example of MLP network

functionality of the network could be reduced to that of a single-layer percep-

tron. The use of logistic transfer function is biologically motivated, because it

attempts to account for the refractory phase of real neurons.

2. The network contains one or more hidden layers. These hidden layers enable the

network to extract progressively more meaningful properties of input patterns.

3. High degree of connectivity between the neurons

3. Error back-propagation is a standard algorithm for the training of multilayer

perceptrons. This algorithm is based on the error correction learning rule. It

may be seen as a generalization of least-mean-square (LMS) algorithm for the

special case of single linear neuron.

Back-propagation learning consists of two phases. In the first phase (forward pass),

an activity pattern is applied to the network and the network produces response. In

163

the backward pass the synaptic weights are adjusted according to the error-correction

rule. This is based on the error signal which is a difference between actual response

of network, and desired response. The error signal is propagated backward through

the network.

Backpropagation algorithm with sequential updating of weights composes of fol-

lowing steps:

1. Initialization - pick the synaptic weights and thresholds

2. Sequential presentation of training examples - n-th presentation to the network

with an epoch of training examples. For each example in the set perform steps

3 and 4.

3. Forward computation - the weights remain unaltered while an example is prop-

agated through the network and error signal e(n) is computed:

e(n) = t(n)− o(n) (D.3.2)

where t(n) is the desired output and o(n) is the real output of network for

current example.

4. Backward computation Adjust the synaptic weights of the network according to

the generalized delta rule ??? where wji(n) represent weight connecting neuron

i to neuron j at time step n; wji(n+ 1) represent the same weight in time step

n+1 (after back-propagation learning) and ∆wji(n) represent weight correction.

Weight correction equals ???, where η is the learning parameter, δj(n) is local

gradient and yi(n) is the input signal of neuron j.

164

Local gradients of the network δj(n) are computed depending on the location of

neurons:

• for the output layer neurons:

δj(n) = ej(n)ϕ′
j(vj(n)) (D.3.3)

, where ej(n) is the error signal for the output neuron j, ϕ′ is the derivative of

neuron transfer function and vj(n) is the induced field of neuron j.

• for the hidden neurons:

δj(n) = ϕ′
j(vj(n))

∑
k

δk(n)wkj(n) (D.3.4)

, where vj(n) is the induced field of neuron j at time step n,

Finally the adjustment of the weight connecting neuron i to neuron j equals:

w
(l)
ji (n+ 1) = w

(l)
ji (n) + ηδ

(l)
j (n)y

(l−1)
i (n) (D.3.5)

where w
(l)
ji (n) is the synaptic weight of the neuron j in layer l that is feed from

neuron i in layer l− 1; y
(l−1)
i (n) is the output signal of neuron i in the previous layer

l − 1 at iteration n; δ
(l)
j (n) is the local gradient j in layer l and η is the learning

rate parameter. Additional technique to ameliorate the performance is adding the

momentum:

w
(l)
ji (n+ 1) = w

(l)
ji (n) + αw

(l)
ji (n− 1) + ηδ

(l)
j (n)y

(l−1)
i (n) (D.3.6)

where α is the momentum constant

165

Figure D.5: Example of RBF network structure

D.4 Radial-Basis Function Networks

Structure of Radial-Basis Function (RBF) network is unusual because it has only one

hidden layer and its hidden neurons are completely different from that of its output

units. Theory in that field is linked closely with radial basic functions theory, which is

one of the main fields of study in numerical analysis [Sin92]. Their outputs layer with

linear weights is on the other hand closely linked with literature on linear adaptive

filters [Hay99].

RBF networks [Pow88] have form of a function F :

F (x) =
N∑

i=1

wiϕ(‖x− xi‖) (D.4.1)

where ϕ(·) is a set of N nonlinear functions known as radial-basis functions., and

166

|| · || denotes a distance which is usually Euclidean. The known points xi are the

centers of the radial-basis functions (points in the input space). Weighting matrix

w determines the influence of radial-basis functions on the network output. Radial

basis function is a function of distance mentioned above. It can take many forms, for

example:

ϕ(x) = e−‖x−xi‖2

(D.4.2)

where x denotes input pattern and xi denotes center of the radial basis function.

The number of radial basis functions (in network called RBF hidden neurons) is

usually smaller than the number of available training examples (generalized RBF net-

work). In the regularization RBF network, it is however equal to number of learning

examples. Interesting property of RBF is that it constructs local approximations of

nonlinear input-output mappings; it is in opposite to MLP which constructs global

approximations.

Learning strategies for RBF networks:

1. fixed centers selected at random - radial-basis function are fixed and their centers

are chosen randomly. Then the only parameters that would need to be learned

are the linear weights matrix of the output layer. The drawback is that the

method may need a large training set to achieve satisfactory performance

2. self-organized selection of centers - the methods compounds of two steps, first

estimating appropriate location for the RBF centers, and then estimating the

linear weights for the output layer by supervised learning. For the first step,

one need a clustering algorithm, example of which can be k-means algorithm,

[DH73] which is a special case of self-organizing map - neural network technique

167

described in section D.5. Simple method to estimate the output weights in the

second phase is to use Least Mean Squares algorithm

3. supervised selection of centers - all free parameters of the network and the

centers of RBF undergo a supervised learning process. Such a process can

be an error correction learning using a gradient-descent procedure, which is a

generalization of the LMS algorithm

4. strict interpolation with regularization [Yee88] - the method uses elements of

the regularization theory and the kernel regression estimation The input-output

mapping function of a Gaussian RBF network is similar to that realized by

mixture of experts (2.2.3).

D.5 Competitive networks and Self Organizing Maps

Output neurons during competitive learning compete among themselves to be acti-

vated (fired). Only one neuron or one neuron per group is active. A neuron which

wins the competition is called a winning neuron of winner-takes-all neuron. One of

the methods of inducing the competition between neurons is to establish negative

feedback path between them [Ros58].

In a self-organizing map, the neurons are placed at the nodes of a lattice (usually

one- or two-dimensional). The winning neurons become selectively tuned to various

input patterns during the competitive learning and finally they form a topographic

map of the input patterns in which the spatial locations of the neurons in the lattice

indicate intrinsic statistical features contained in the input patterns.

168

First model of self-organizing map was proposed by Willshaw and von der Mals-

burg. It consisted of two two-dimensional lattices of neurons, one representing presy-

naptic (input) layer and second postsynaptic (output) layer. The two lattices are

interconnected by synapses of Hebbian type.

The second model of self-organizing map was introduced by Kohonen [Koh82].

The model provides a topological mapping that optimally places a fixed number of

vectors into a higher dimensional place, therefore makes data compression easier. It

consists of one lattice of neurons, which are fully connected to the source nodes in

input layer. The model may be able to dimensional reduction on the input (compres-

sion). The Kohonen model belongs to the class of vector encoding algorithms.

D.6 Support Vector Machines

Support Vector Machine (SVM) is a linear machine. The technique can be used to

pattern classification and nonlinear regression.

SVM works as an approximate implementation of the method of structural risk

minimalization. It depends on the fact that error rate on test data is bounded by the

sum of the training-error rate and a term that depends on the Vapnik-Chervonenkis

(VC) dimension.

The base notion for the construction of SVM is the inner-product kernel between

”support vector” xi and the vector x drawn from the input space. The support

vectors consist of small sub-database of the training data extracted by the algorithm.

Depending on how the inner-product is generated, one can construct different learning

machines, in particular:

169

• Polynomial learning machines

• Radial-basis function networks

• Two-layer perceptrons (i.e. with a single hidden layer)

For each of these feedforward networks, we may use support vector learning to

implement the learning process using a given set of training data, automatically de-

termining the required number of hidden units. The support vector machines learning

algorithm has wide applicability and can be used with many network structures.

170

Appendix E

Applications of ANN

This appendix will present some of the successful applications of Artificial Neural

Networks,. Applications below are listed in Defence Advanced Research Projects

Agency [DARP] (DARPA) Neural Network Study.

Aerospace High performance aircraft autopilot, flight path simulation, aircraft

control systems, autopilot enhancements, aircraft component simulation, aircraft

component fault detection.[SD01], [AC98], [DAM00].

Automotive Automobile automatic guidance system, warranty activity analysis

[JCC99]. Banking Check and other document reading, credit application evaluation

[Rud95].

Defence Weapon steering, target tracking, object discrimination, facial recogni-

tion, new kinds of sensors, sonar, radar and image signal processing including data

compression, feature extraction and noise suppression, signal/image identification

[BC91].

Electronics Code sequence prediction, integrated circuit chip layout, process

control, chip failure analysis, machine vision, voice synthesis, nonlinear modelling

171

[FGMM99].

Entertainment Animation, special effects, market forecasting [GC98].

Financial Real estate appraisal, loan advisor, mortgage screening, corporate bond

rating, credit line use analysis, portfolio trading program, corporate financial analysis,

currency price prediction [TT92].

Insurance Policy application evaluation, product optimization [ADW01].

Manufacturing Manufacturing process control, product design and analysis,

process and machine diagnosis, real-time particle identification, visual quality inspec-

tion systems, beer testing, welding quality analysis, paper quality prediction, com-

puter chip quality analysis, analysis of grinding operations, chemical product design

analysis, machine maintenance analysis, project bidding, planning and management,

dynamic modelling of chemical process system [AR01].

Medical: Breast cancer cell analysis, EEG and ECG analysis, prosthesis de-

sign, optimization of transplant times, hospital expense reduction, hospital quality

improvement, and emergency room test advisement [LLFM98], [BD03].

Oil and Gas Exploration [VM96], [YDA02].

Robotics Trajectory control, forklift robot, manipulator controllers, vision sys-

tems [LT99].

Speech Speech recognition, speech compression, vowel classification, text to speech

synthesis [OL03].

Securities Market analysis, automatic bond rating , stock trading advisory sys-

tems [BvSP+02].

Telecommunications Image and data compression, automated information ser-

vices, real-time translation of spoken language, customer payment processing systems

172

[Ans94].

Transportation Truck brake diagnosis systems, vehicle scheduling, routing sys-

tems [SC95].

173

Appendix F

System identification

This appendix will present in detail system identification learning task in it’s three

variants: model identification, inverse system identification and plant control.

F.1 Model identification

Both original system and model are given input values xi, the responses are compared

to determine error ei, which is used to train the Processing Unit. d = f(x) - d are

outputs of real system f(·) to inputs x ŷ = M(x) - y are outputs of model M(·) to

inputs x

F.2 Inverse system identification

Original system is provided with input data xi, its output is given to inverse model

which produces values yi expected to be close to original input xi. d = f(x) , where d

are outputs of real system f(·) to inputs x ŷ = M(x) , where y are outputs of model

174

Model

Unknown
system

+

-
xi

di

yi

ei

Figure F.1: System identification

di Inverse
model

Unknown
system + -

xi

yi

ei

Figure F.2: Inverse system modelling

M(·) to original system outputs d

The error ei is determined by comparing yi and xi, and used to tune the inverse

model. The inverse model may be described as inverse function of f(·):

F.3 Plant control

This system identification task concerns control of a plant (important process, usually

in real time). The objective of the controller (ANN) is to supply appropriate inputs

175

+ Controller Plant

-

d u e y

Figure F.3: Feedback control system

to the plant to make its outputs y track the reference signal d. In order to train

the controller (adjust free ANN parameters) it is provided with error signal e from

comparison between reference signal d and plant output y. The controller has to

invert the plant’s input-output behavior.

176

Bibliography

[ABR64] M. A. Aizerman, E. M. Braverman, and L. I. Rozono. Theoretical foun-

dations of the potential function method in pattern recognition learning.

Automation and Remote Control, 25:821–837, 1964.

[AC98] S. Agarwal and S. Chaudhuri. Determination of aircraft orientation for

a vision-based system using artificial neural networks. Journal of Math-

ematical Imaging and Vision, 8, Issue 3:255 – 269, May 1998.

[ADW01] A. Agarwal, J. T. Davis, and T. Ward. Supporting ordinal four-state

classification decisions using neural networks. Information Technology

and Management archive, 2:5 – 26, 2001.

[AG92] N. Avouris and L. Gasser. Distributed Artificial Intelligence: Theory and

Practics. Kluwer Academic Press, 1992.

[AK89] E. H. L. Aarts and J. H. Korst. Simulated Annealing and Boltzmann

Machines. John Wiley & Sons, 1989.

[Ans94] N. Ansari. Neural Networks in Telecommunications. Kluwer Academic

Publishers, 1994.

[AR01] T. Alifantis and S. Robinson. Manufacturing applications: Using sim-

ulation and neural networks to develop a scheduling advisor. Winter

177

Simulation Conference archive, Proceedings of the 33nd conference on

Winter simulation, pages 954 – 958, 2001.

[Arb89] Michael A. Arbib. The Metaphorical Brain. New York: Wiley, 2 edition,

1989.

[BC91] R. H. Baran and James P. Coughlin. A neural network for target clas-

sification using passive sonar. Analysis of Neural Net Applications Con-

ference Proceedings(2):188 – 198, 1991.

[BD03] A-S. Bellanger-Dujardin. Contribution a l’etude de structures neuronales

pour la classification de signatures : application au diagnostic de pannes

des systemes industriels et a l’aide au diagnostic medical. Ph.d. thesis,

Paris XII Val De Marne - Creteil, 2003.

[Bel57] R. Bellman. Dynamic Programming. NJ: Princenton University Press,

1957.

[Ber94] R. Berlind. An alternative method of stochastic discrimination with ap-

plications to Pattern Recognition. Doctoral dissertation, Department of

Mathematics, SUNY at Buffalo, 1994.

[BL73] T. V. Bliis and P. Lomo. Long lasting potential in the dentate area

of anaesthetized rabbit following simulation of the perforatant path. J.

Physiol, 232:331–356, 1973.

[BLR92] J. Bates, A. Bryan Loyall, and Scott W. Reilly. Integrating reactivity,

goals and emotion in a broad agent. Technical report cmu-cs-92-142,

School of Computer Science, Carnegie-Mellon University, Pittsburgh,

PA, 1992.

178

[Bri90] J. S. Bridle. Probabilistic interpretation of feedforward classification

network outputs, with relationships to statistical pattern recognition.

Neurocomputing: Algorithms, architectures and applications, 1990.

[BS95] J. Bruske and G. Sommer. Dynamic cell structure. Advances in Neural

Information Processing Systems, 7:497–504, 1995.

[BvSP+02] M. Botha, R. von Solms, K. Perry, E. Loubser, and G. Yamoyany. Re-

search papers: information security and risk management: The utiliza-

tion of artificial intelligence in a hybrid intrusion detection system. In

South Africa Port Elizabeth, editor, Proceedings of the 2002 annual re-

search conference of the South African institute of computer scientists

and information technologists on Enablement through technology, pages

149 – 155, 2002. ISBN:1-58113-596-3.

[CH67] T. M. Cover and P. E. Hart. Nearest neighbour pattern classification.

IEEE Transactions on Information Theory, 13:21–27, 1967.

[CL96] J. Covie and W. Lehnert. Information extraction. Communications of

the ACM, 39(1):80–91, 1996.

[CMR02] A. Chebira, K. Madani, and M. Rybnik. La structure neuronale arbores-

cente dts divide to simplify. Colloque CNRS Neurosciences et Sciences

pour Ingnieur (CNRS-NSI 2002), pages 16–18, Septembre 2002.

[Com91] Comon. Independent component analysis. In Proc. Int. Workshop on

Higher-Order Stat., pages 111–120, Chamrousse, France, 1991.

[CS92] P. S. Churchland and T. J. Sejnowski. The computational Brain. Cam-

bridge, MA: MIT Press, 1992.

179

[CSS00] M. Collins, R. E. Schapire, and Y. Singer. Logistic regression, adaboost

and bregman distances. Computational Learing Theory, pages 158–169,

2000.

[DAM00] N. Durand, J-M. Alliot, and F. Mdioni. Neural nets trained by genetic

algorithms for collision avoidance. Applied Intelligence archive, 13(3):205

– 213, November-December 2000.

[Dev87] L. Devroye. A course in Density Estimation. Birkhauser, Boston, MA,

1987.

[DH73] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis.

New York: Wiley, 1973.

[DSW97] K. Decker, K. Sycara, and M. Williamson. Middle-agents for the internet.

In Proceedings of the 15th International Joint Conference on Artificial

Intelligence, 1997.

[Fer98] J. Ferber. Multi-Agent Systems: Towards a Collective Intelligence. Read-

ing, MA: Addison-Wesley, 1998.

[FGMM99] A. Fanni, A. Giua, M. Marchesi, and A. Montisci. A neural network

diagnosis approach for analog circuits. Applied Intelligence archive, 11

Issue 2(2), 1999.

[Fis00] A. Fisher. The mathematical theory of probabilities. John Wiley, 2000.

[FK71] K. Fukunaga and D. L. Kessel. Estimation of statistical error. IEEE

Transactions on Computers, pages 1521–1527, December 1971.

[FL90] S. E. Fahlman and C. Lebiere. The cascaded-correlation learning archi-

tecture. Advances in Neural Information Processing Systems, 2:524–534,

1990.

180

[FR79] J. H. Friedman and L. C. Rafsky. Multi-variate generalizations of the

wald-wolfowitz and smirnov two sample tests. The Annals of Statistics,

7(issue 4):697–717, 1979.

[Fuk90] K. Fukunaga. Introduction to statistical pattern recognition. Academic

Press, new York, 2nd edition, 1990.

[GBD92] S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the

bias-variance dilemma. Neural Computation, 4(1):1–58, 1992.

[GC98] S. Grand and D. Cliff. Creatures: Entertainment software agents with

artificial life. Autonomous Agents and Multi-Agent Systems archive, 1 ,

Issue 1:39 – 57, 1998.

[GK96] S. Goonatilake and S. Khebbal. Intelligent hybrid systems: Issues, clas-

sification and future directions. Intelligent Hybrid Systems, pages 1–20,

1996.

[Gor83] R. L. Gorsuch. Factor analysis. Hillsdale, NJ: Erlbaum, 2 edition, 1983.

[Gro88] S. Grossberg. Neural Networks and Natural intelligence. Cambridge,

MA: MIT Press, 1988.

[Han93] A. Hannibal. Vlsi building block for neural networks with on chip back

learning. Neurocoputing, 5:25–37, 1993.

[Hay99] S. Haykin. Neural Networks - a Comprehensive foundation. Prentice

Hall Int., 1999.

[HB97] T. K. Ho and H. S. Baird. Large scale simulation studies in pattern

recognition. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, 1997.

181

[HB98] T. K. Ho and H. S. Baird. Pattern classification with compact distribu-

tion maps. Computer Vision and Image Understanding, 70(1):101–110,

1998.

[HB02] T. K. Ho and M. Basu. Complexity measures of supervised classification

problems. IEEE Transactions on pattern Analysis and Machine Intelli-

gence, 24, issue 3:289–300, March 2002.

[Heb49] D. O. Hebb. The organization of behaviour: A Neuropsychological The-

ory. New York: Wiley, 1949.

[HMS01] D. Hand, H. Mannila, and P. Smyth. Principles of data mining. Massa-

chusetts Institute of Technology, 2001.

[Ho00] T. K. Ho. Complexity of classification problems and comparative ad-

vantages of combined classifiers. Lecture Notes in Computer Science,

2000.

[Ho01] T. K. Ho. Data complexity analysis for classifier combination. In the

2nd International Workshop on Multiple Classifier Systems, pages 53–67,

Cambridge, UK, July 2001.

[Hoa62] C. A. R. Hoare. Quicksort. Computer Journal, 5(1):10–15, 1962.

[Hub85] P. J. Huber. Projection pursuit. The Annals of Statistics, 13(2):435–475,

1985.

[Irv65] J. G. Irving. The Estimation of Probabilities: An Essay on Modern

Bayesian Methods. M. I.T. Press, 1965.

[JCC99] I. Jou, C. Chang, and H. Chen. A hybrid neuro-fuzzy system for adaptive

vehicle separation control. Journal of VLSI Signal Processing Systems

archive, 21, Issue 1:15 – 29, 1999.

182

[JJ95] Jordan and Jacobs. ??? ???, 1995.

[KD82] J. Kittler and P. A. Devijver. Statistical properties of error estimators

in performance assessment of recognition systems. IEEE Transactions

on PAMI, 4(2):215–220, March 1982.

[Kle96] E. Kleinberg. An overtraining-resistant stochastic modelling method

for pattern recognition. Annals of statistics, 4(6):2319–2349, December

1996.

[KNM96] A. Kohn, L. G. Nakano, and V. Mani. A class discriminability measure

based on feature space partitioning. Pattern Recognition, 29(5):873–887,

1996.

[Koh82] T. Kohonen. Self organized formation of topologically correct feature

maps. Biological Cybernetics, 43:59–69, 1982.

[KV95] A. Krogh and J. Vedelsby. Neural network ensembles, cross validation,

and active learning. Advances in Neural Information Processing Systems,

7:231–238, 1995.

[Lin91] J. Lin. Divergence measures based on the shannon entropy. IEEE Trans-

actions on Information Theory, 37(1):145–151, 1991.

[LLFM98] S-C. B. Lo, J-S. J. Lin, M. T. Freedman, and S. K. Mun. Application of

artificial neural networks to medical image pattern recognition: Detec-

tion of clustered microcalcifications on mammograms and lung cancer on

chest radiographs. Journal of VLSI Signal Processing Systems archive,

18, Issue 3:263 – 274, April 1998.

[LT99] S-T. Lin and S-J. Tzeng. Neural network force control for industrial

robots. Journal of Intelligent and Robotic Systems archive, 24 , Issue

3:253 – 268, March 1999.

183

[LW98] K. J. Lang and M. J. Witbrock. Learning to tell two spirals apart. In

Connectionist Models Summer School, pages 52–59, 1998.

[Mad90] J. Maddox. Complicated measure of complexity. Nature, 344:705, April

1990.

[Mae] P. Maes. Social interface agents: Acquiring competence by learning from

users and other agents. Software Agents - Papers from the 1994 Spring

Symposium (Technical Report SS-94-03), pages 71–78.

[Mat67] K. Matusita. On the notion of anity of several distributions and some of

its applications. Annals Inst. Statistical Mathematics, 19:181–192, 1967.

[MB88] G. J. McLachlan and K. E. Basford. Mixture Models: Interference and

Applications to Clustering. New York: Marcel Dekker, 1988.

[MCR02] K. Madani, A. Chebira, and M. Rybnik. Multi-neural networks approach

reducing complexity on both modelling and processing chain levels: ap-

plication to classification and systems identification. IAR International

Workshop on Intelligent Control and Diagnosis (IAR/ICD 2002), No-

vember 2002.

[MCR03a] K. Madani, A. Chebira, and M. Rybnik. Data driven multiple neural

network models generator based on a tree-like scheduler. Lecture Notes in

Computer Science: Computational Methods in Neural Modelling, pages

382–389, 2003.

[MCR03b] K. Madani, A. Chebira, and M. Rybnik. A neural network based evo-

lutionary treelike multi-models generator reducing complexity on both

data and processing levels. International Multi-conference on Computa-

tional Engineering in Systems Applications CESA 2003, July 2003.

184

[NIH97] U. Naftaly, N. Intrator, and D. Horn. Optimal ensebmble averaging of

neural networks. Network, 8:283–296, 1997.

[OL03] M. Ogihara and O. Li. Clustering: A comparative study on content-

based music genre classification. In Canada Toronto, editor, Annual

ACM Conference on Research and Development in Information Retrieval

archive, Proceedings of the 26th annual international ACM SIGIR con-

ference on Research and development in information retrieval, pages 282

– 289, 2003. ISBN:1-58113-646-3.

[Pie98] W. E. Pierson. Using boundary methods for estimating class separability.

Phd thesis, Department of Electrical Engineering, Ohio State University,

1998.

[Pow88] M. J. D. Powell. Radial basis function approximations to polynominals.

Numerical Analysis 1987 Proceedings, pages 223–241, 1988.

[RCM03a] M. Rybnik, A. Chebira, and K. Madani. Auto-adaptive neural network

tree structure based on complexity estimator. Lecture Notes in Computer

Science: Computational Methods in Neural Modelling, pages 558–565,

2003. Edited by: Jose Mira, Jose R. Alvarez - Springer Verlag Berlin

Heidelberg.

[RCM+03b] M. Rybnik, A. Chebira, K. Madani, K. Saeed, M. Tabedzki, and

M. Adamski. Hybrid neural based information processing approach com-

bining a view based feature extractor and a tree like intelligent classifier.

International Conference on Computer Information Systems and Indus-

trial Management Applications 2003 - CISIM 2003, June 2003. Elk,

Poland.

185

[RF98] A. F. R. Rahman and M. Fairhurst. Measuring classification complexity

of image databases : a novel approach. Proceedings of International

Conference on Image Analysis and Processing, pages 893–897, 1998.

[RHHD56] N. Rochester, J. H. Holland, L. H. Haibt, and W. L. Duda. Tests on

a cell assembly theory of the action of the brain, using a large digital

computer. IRE Transactions on information Theory, IT-2:80–93, 1956.

[RJ91] S. Raudys and A. K. Jain. Small sample size effects in statistical pattern

recognition: recommendation for practictioners. IEEE Transactions on

PAMI, pages 252–264, 1991.

[Roj96] R. Rojas. Neural Networks, A Systematic Introduction. Springer, Berlin,

1996.

[Ros58] F. Rosenblatt. The perceptron: a probabilistic model for information

storage and organization in the brain. Psychological Review, 65:386–408,

1958.

[Ros61] F. Rosenblatt. Principles of Neurodynamics. Washington D.C.:Spartan

Press, 1961.

[Rud95] G. Rudorfer. Early bankruptcy detection using neural networks. In-

ternational Conference on APL archive Proceedings of the international

conference on Applied programming languages, pages 171 – 178, 1995.

[RZ85] D. E. Rumelhart and D. Zipser. Feature discovery by competitive learn-

ing. Cognitive Science, 9:75–112, 1985.

[Sae00] K. Saeed. A projection approach for arabic handwritten characters recog-

nition. New Trends and Approaches in Computational Intelligence, pages

106–111, 2000. Sinck J. Vack ed., Physica Verlag Heidelberg, New York.

186

[Sae03] K. Saeed. Object classification and recognition using toeplitz matrices.

Artificial Intelligence and Security in Computing Systems, pages 167–

172, 2003. Kluwer Academic Publishers, Nowell, Massachutsetts, USA,

J. Soldek, L. Drobiazgowicz (Ed.).

[Sar94] W. S. Sarle. Neural networks and statistical methods. Proceedings of the

Nineteenth Anuual SAS Users Group International Conference, April

1994.

[SC95] R. H. Smith and D. C. Chin. Evaluation of an adaptive traffic control

technique with underlying system changes. In 27th conference on Winter

simulation, Winter Simulation Conference archive, pages 1124 – 1130,

Arlington, Virginia, United States, 1995. ISBN:0-7803-3018-8.

[Sch99a] R. E. Schapire. A brief introduction to boosting. IJCAI, pages 1401–

1406, 1999.

[Sch99b] Robert Schapire. Theoretical views of boosting and applications. Tenth

International Conference on Algorithmic Learning Theory, pages 13–25,

1999.

[SD01] Simon and L. Donald. A hybrid neural network-genetic algorithm tech-

nique for aircraft engine performance diagnostics. AIAA-2001-3763,

2001. (NASA/TM-2001-211088.

[Sej77] T. J. Sejnowski. Strong covariance with nonlinearly interacting neurons.

Journal of Mathematical Biology, 4:303–321, 1977.

[SG02] S. Singh and A. P. Galton. Pattern recognition using information slicing

model (prism). Proc. 15th International Conference on Pattern Recog-

nition (ICPR2002), August 2002. Quebec.

187

[Sin92] S. P. Singh. Approximation Theory, Spline Functions and Applications.

Kluwer, Dortrecht, The Netherlands, 1992.

[Sin02a] S. Singh. Estimating classification complexity. IEEE Transactions on

Pattern Analysis and Machine Intelligence submission, 2002.

[Sin02b] S. Singh. Prism, cells and hypercuboids. Pattern Analysis and Applica-

tions, 5, 2002.

[Sin03] S. Singh. Multi-resolution estimates of classification complexity. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2003.

[SN95] K. K. Sung and P. Niyogi. Active learning for function approximation.

Advances in Neural Information Processing Systems, 7:593–600, 1995.

The MIT Press, Ed by G. Tesauro.

[STA02] K. Saeed, M. Tabedzki, and M. Adamski. A new approach for object-

feature extract and recognition. 9th International Conference ACS (Ad-

vanced Computer Systems), pages 389–397, October 2002. Miedzyzdroje

2002, Poland,.

[STA03] K. Saeed, M. Tabedzki, and M. Adamski. A view-based approach for

object recognition. Conradi Research Review, 2, Issue 1:85–95, 2003.

Finland.

[TB97] M. Tipping and C. Bishop. Probabilistic principal component analysis.

Technical report, Neural Computing Research Group, Aston University,

1997.

[TKM87] T. Takeshita, F. Kimura, and Y. Miyake. On the estimation error of

mahalanobis distance. Trans. IEICE, pages 567–573, 1987.

188

[Tou74] G. T. Toussaint. Bibliography on estimation of misclassification. IEEE

Transactions on information Theory, pages 472–479, July 1974.

[Tre01] Volker Tresp. Handbook for Neural Network Signal Processing, chapter

Committee Machines. CRC Press, 2001.

[TSM85] D. M. Titterington, A. F. Smith, and V. E. Makov. Statistical Analysis

of Finite Mixture Distributions. New York: Wiley, 1985.

[TT92] Robert R. Trippi and Efraim Turban. Neural Networks in Finance and

Investing: Using Artificial Intelligence to Improve Real World Perfor-

mance. McGraw-Hill, Inc. New York, NY, USA, 1992.

[Vap98] V. N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

[VM96] M. A. Vukelic and E. N. Miranda. Neural networks in petroleum engi-

neering. International Journal of Neural Systems, 7, 187, 1996.

[Was93] P. D. Wasserman. Advanced Methods in Neural Computing. New York:

Van Nostrand Reinhold, 1993.

[WJ95a] M. Wooldridge and N. Jennings. Intelligent agents: theory and practice.

The Knowledge Engineering Review, 10:2:115–152, 1995.

[WJ95b] Michael J. Wooldridge and Nicholas R. Jennings. Agent Theories, Ar-

chitectures, and Languages: A Survey. In Michael J. Wooldridge and

Nicholas R. Jennings, editors, Workshop on Agent Theories, Architec-

tures & Languages (ECAI’94), volume 890 of Lecture Notes in Artificial

Intelligence, pages 1–22, Amsterdam, The Netherlands, January 1995.

Springer-Verlag.

[YDA02] S. Yilmaz, C. Demircioglu, and S. Akin. Application of artificial neural

networks to optimum bit selection. Computers & Geosciences archive,

28, Issue 2:261 – 269, March 2002.

189

[Yee88] P. V. Yee. Regularized Radial Basis Function Networks: Theory and

Applications to Probability Estimation, Classification and Time Series

Prediction. Ph.d. thesis, McMaster university, Hamilton, Ontario, 1988.

190

