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Abstract The so far developed and widely utilized connectionist systems (artificial neural

networks) are mainly based on a single brain-like connectionist principle of information

processing, where learning and information exchange occur in the connections. This paper

extends this paradigm of connectionist systems to a new trend—integrative connectionist

learning systems (ICOS) that integrate in their structure and learning algorithms principles

from different hierarchical levels of information processing in the brain, including neuronal-,

genetic-, quantum. Spiking neural networks (SNN) are used as a basic connectionist

learning model which is further extended with other information learning principles to

create different ICOS. For example, evolving SNN for multitask learning are presented

and illustrated on a case study of person authentification based on multimodal auditory

and visual information. Integrative gene-SNN are presented, where gene interactions

are included in the functioning of a spiking neuron. They are applied on a case study of

computational neurogenetic modeling. Integrative quantum-SNN are introduced with a

quantum Hebbian learning, where input features as well as information spikes are repre-

sented by quantum bits that result in exponentially faster feature selection and model

learning. ICOS can be used to solve more efficiently challenging biological and engineering

problems when fast adaptive learning systems are needed to incrementally learn in a large

dimensional space. They can also help to better understand complex information processes

in the brain especially how information processes at different information levels interact.

Open questions, challenges and directions for further research are presented.
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1 Integrative adaptive processes in the brain and integrative connectionist
learning systems

1.1 The brain as an integrative adaptive system

The brain is a dynamic information processing system that evolves its structure and func-

tionality in time through information processing at different hierarchical levels as shown in

Fig. 1: quantum-, molecular (genetic)-, single neuron-, ensemble of neurons-, cognitive-,

evolutionary (Kasabov 2007).

At the quantum level, particles, that make every molecule in the material world, are

moving continuously, being in several states at the same time that are characterised by

probability, phase, frequency, energy (Feynman et al. 1965). These states can change, evolve

under certain conditions following the principles of quantum mechanics.

At a molecular level, RNA and protein molecules evolve in a cell and interact in a

continuous way, based on the stored information in the DNA and on external factors, and

affect the functioning of a cell (neuron) (Crick 1970; Dow et al. 1995; Collado-Vides and

Hofestadt 2002).

At the level of a synapse and a single neuron, the internal information processes and the

external stimuli in their interplay cause the synapses to change (learning) and the neuron to

produce a signal that carries information to be transferred to other neurons (Freeman 2000;

Arbib 2003), which is a continuous, evolving process.

At the level of neuronal ensembles, all neurons operate in a ‘‘concert’’, defining the

function of the ensemble through continuous learning, for instance perception of spoken

words (Cooper et al. 2004).

At the level of the whole brain, cognitive processes take place in a life-long incremental

multiple task/multiple modalities learning mode, such as language and reasoning, and

global information processes are manifested, such as consciousness (Grossberg 1982;

Chalmers 1996; Taylor 1999; Arbib 2003).

At the level of a population of individuals, species evolve through evolution, changing

the genetic DNA code for a better adaptation (Darwin 1859).

The information processes at each hierarchical level from Fig. 1 are very complex and

difficult to understand as they evolve all the time, but much more difficult to understand is

the interaction between the different levels and how this interaction affect the learning in

the brain. It may be that understanding the interaction through its modeling is the key to

understanding each level of information processing in the brain and perhaps the brain as a

whole. Building computational models that integrate principles from different information

levels and in particular, models that are based on connectionist learning, may well be the

6. Evolutionary (population/generation) processes  
_______________________________________________ 
5. Brain cognitive processes   
 ______________________________________________ 
4. System information processing (e.g. neural ensemble)  
_______________________________________________ 
3. Information processing in a cell (neuron)  
_______________________________________________ 
2. Molecular information processing (genes, proteins) 
_______________________________________________  
1. Quantum information processing 

Fig. 1 Levels of integrative evolving information processes in the brain
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key towards solving efficiently complex problems. These models are called here Inte-
grative Connectionist Learning Systems (ICOS) as described next in the paper.

1.2 Integrative connectionist learning systems (ICOS)

Principles from several levels of information processing and learning as shown in Fig. 1,

have been already used to create hybrid connectionist learning systems, to name only few

of them:

– evolutionary artificial neural networks (ANN) (Holland 1975; Goldberg 1989; Fogel

et al. 1990; Yao 1993; Fogel and Corne 2003);

– adaptive, cognitive ANN models (Carpenter and Grossberg 1990, 1992; Carpenter

et al. 1991; Kasabov 1996; Kohonen 1997; Arbib 2003);

– evolving connections systems (ECOS) (Kasabov 2001, 2007; Kasabov and Song 2002);

– quantum-inspired (QI) evolutionary optimization (Han and Kim 2002) and ANN models

(Ezhov and Ventura 2000; Narayanan and Meneer 2000; Venayagamoorthy and Gaurav

2005; Kasabov 2006).

Despite the developed so far connectionist systems, there are still no efficient connec-

tionist learning methods for modeling complex brain functions, for adaptive learning of a

large number of objects in a multi-dimensional space, for dynamic learning of multiple

models in a multidimensional and changing environment, such as an ontology (Ashburner

et al. 2000; Kasabov 2002, 2007; Gottgtroy et al. 2006), and for flexible decision support

systems (DSS) for solving global and complex problems in a dynamically changing envi-

ronment, where principles from different information levels (Fig. 1) are properly used in

their dynamic interaction and interdependency. Using, for example evolutionary algorithms

to train an ANN and adjust the connection weights according to a fixed data set given in

advance, does not reflect the nature of learning in the brain (Fogel et al. 1990).

Existing connectionist models still fail to solve generic problems of computational

intelligence such as:

– ‘‘the curse of dimensionality’’, i.e. in a large dimensional space existing feature selection

algorithms related to ANN models fail to select an optimal set of input variables and to

modify this set optimally when new data arrives;

– ‘‘the curse of the local optimum’’, i.e. the models usually reach a local, rather than global

optimum solutions;

– ‘‘the curse of multiple modality and multiple task learning’’, i.e. it remains difficult to

dynamically integrate multiple models in order to discover common patterns/relationships,

features, to make the models share knowledge in order to improve the learning processes

(Kasabov 2006, 2007).

We introduce here ICOS, as an extension to the connectionist and the hybrid connec-

tionist systems, being characterized by several principles.

1.2.1 The principle of integration through interaction

The principle of Integration Through Interaction (ITI) between hierarchical levels of

information processing states that information processes at different levels in the infor-

mation hierarchy interact and influence each other. For example, quantum-, genetic- and
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synaptic-information principles are interdependent as they operate on hierarchically

embedded objects (e.g. particles, genes, synapses, neurons) even at different time scales.

Below an exemplar ICOS model is presented that is based on the ITI principle:

A future state Q0 of a particle or a group of particles (e.g. ions, electrons, etc.) depends

on the current state Q and on the frequency spectrum Eq of an external signal, according to

the Max Planck famous equation:

E ¼ hm ð1Þ

Q0 ¼ Fq Q; Eqð Þ: ð2Þ
A future state of a molecule M0 or a group of molecules (e.g. genes, proteins) depends on

its current state M, on the quantum state Q of the particles, and on an external signal Em:

M0 ¼ Fm (Q, M, Em). ð3Þ
A future state N0 of a neuron, or an ensemble of neurons will depend on its current

state N, on the state of the molecules M, on the state of the particles Q and on external

signals En

N0 ¼ Fn (N, M, Q, En). ð4Þ
And finally, a future neuronal state C0 of the brain will depend on its current state C and

also on the neuronal N, on the molecular M, and on the quantum Q states of the brain:

C0 ¼ Fc (C, N, M, Q, Ec). ð5Þ
The above theoretical ICOS model is based on the following assumptions from Physics,

Biology and Cognitive Science:

– A large amount of atoms are characterised by the same quantum properties, possibly

related to the same gene/protein expression profile of a large amount of neurons

characterised by spiking activity that can be represented as a function.

– A large neuronal ensemble can be represented by a single local field potential (LFP)

function.

– A cognitive process can be represented, at an abstract level, as a function Fc that

depends on all lower levels of neuronal, genetic and quantum activities.

1.2.2 The principle of evolvability

As the processes shown schematically in Fig. 1 evolve (develop, unfold, change) in time

through interaction between each other, ICOS have to have these two principles in their

functionality.

The principle of evolvability states that a system evolves its structure and functionality

through incremental learning from data streams and active interaction with the environ-

ment, thus continuously improving its performance (Kasabov 2002, 2007). The evolving

process is based on incremental forming of local clusters of data and developing local

functions. The evolved local structures and functions represent meaningful patterns that

can be interpreted as new information. This principle is fundamental for the brain at

all functional levels from Fig. 1 as already discussed. This principle has already been used

to create simple ANN, one of them being the evolving connectionist systems (ECOS)

(Kasabov 2002, 2007).
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ECOS are adaptive, incremental learning and knowledge representation systems, that

evolve their structure and functionality from incoming data, where in the core of a system

is a connectionist architecture that consists of neurons (information processing units) and

connections between them (Kasabov 2001, 2007; Kasabov and Song 2002).

An ECOS learns continuously in time and adapts its structure and functionality through

a continuous interaction with the environment and with other systems. The adaptive/

evolving learning is defined through:

1. A set of evolving rules.

2. A set of parameters (‘‘genes’’) that are subject to change during the system operation.

3. An incoming continuous flow of information, possibly with unknown distribution.

4. Goal (rationale) criteria (also subject to modification) that are applied to optimize the

performance of the system over time.

ECOS learning algorithms are inspired by brain-like information processing principles

as follows (Kasabov 2002, 2007):

1. ECOS evolve in an open space, where the dimensions of the space can change.

2. They learn via incremental learning, possibly in an on-line mode.

3. They learn continuously in a lifelong learning mode.

4. They learn both as individual systems and as an evolutionary population of such

systems.

5. They use constructive learning and have evolving structures.

6. They learn and partition the problem space locally, thus allowing for a fast adaptation

and tracing the evolving processes over time.

7. They evolve different types of knowledge representation from data, mostly a

combination of memory-based and symbolic knowledge.

At any time of the ECOS continuous incremental learning, meaningful rules can be

derived from the structure, which rules represent clusters of data and local functions asso-

ciated with these clusters, e.g.:

IF \data is in cluster Ncj, defined by a cluster center Nj, a cluster radius Rj and a
number of examples Njex[ THEN \the output function is Fc[

The local rules represent locally learned knowledge.

1.2.3 The principle of multiple modality/multiple task learning

This principle states that a connectionist system consists of multiple interrelated modules

that learn different but related information modalities or/and tasks and share information in

a dynamic way to speed up the learning process and to improve the system performance

and the system adaptation.

One particular type of ANN—spiking neural networks (SNN) is used in this paper for

the purpose of building ICOS that are based on the above principles. Section 2 presents a

recently developed architecture of an evolving SNN (ESNN) for multimodal learning of

audio-visual data and illustrates it on a biometric person authentification case study task.

Section 3 introduces ESNN based on both brain and gene information processing princi-

ples and illustrates them on a computational neurogenetic modeling task. Section 4

introduces for the first time the main principles of quantum-ESNN, which are ESNN where

spikes are represented as quantum bits and quantum Hebbian learning rule is applied.
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Future trends and challenges for ICOS are discussed in each section as well as in the

concluding Sect. 5.

2 Evolving spiking neural networks (ESNN) for multimodal learning
on the case study of audiovisual person authentification

2.1 Spiking neronal models

Spiking models of a neuron and of neural networks—spiking neural networks (SNN), have

been inspired and developed to mimic more biologically the spiking activity of neurons in

the brain when processing information (Gerstner and Kistler 2002; Arbib 2003; Izhikevich

2003; Kasabov 2007; Wysoski et al. 2006). SNN represent information as trains of spikes,

rather than as single scalars, thus allowing use of such features as frequency, phase,

incremental accumulation of input signals, time of activation, etc. (Gerstner and Kistler

2002). This could potentially result in a much higher number of objects (patterns) stored in

a model and more flexible processing.

Neuronal dynamics of a spiking neuron are based on the increase in the inner potential

of a neuron (post synaptic potential, PSP), after every input spike arrival. When a PSP

reaches a certain threshold, the neuron emits a spike at its output (Fig. 2). A wide range of

models to simulate neuronal activity have been proposed (Integrate-and-Fire, Spike

Response Model, Hodgkin–Huxley Model) (Gerstner and Kistler 2002; Izhikevich 2003;

Izhikevich and Desai 2003).

One model—the spike response model (SRM) of a neuron (Gerstner and Kistler

2002; Izhikevich 2003) is described below. It is used here to build an ESNN archi-

tecture. A neuron i receives input spikes from pre-synaptic neurons j [ Ci, where Ci is a

pool of all neurons pre-synaptic to neuron i. The state of the neuron i is described by the

state variable ui(t) that can be interpreted as a total postsynaptic potential (PSP) at the

membrane of soma—Fig. 2. When ui(t) reaches a firing threshold 0i(t), neuron i fires,

i.e. emits a spike. The value of the state variable ui(t) is the sum of all postsynaptic

potentials, i.e.

uiðtÞ ¼
X

j2Ci

X

tj2Fj

Jijeij t � tj � Dax
ij

� �
: ð6Þ

The weight of synaptic connection from neuron j to neuron i is denoted by Jij. It takes

positive (negative) values for excitatory (inhibitory) connections, respectively. Depending

on the sign of Jij, a presynaptic spike generated at time tj increases (or decreases) ui(t) by an

amount of eij t � tj � Dax
ij

� �
. Dax

ij is an axonal delay between neurons i and j which increases

with Euclidean distance between neurons.

Fig. 2 A schematic representation of a spiking neuron model
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The positive kernel eij

�
t � tj � Dax

ij

�
¼ eijðsÞ expresses an individual postsynaptic

potential (PSP) evoked by a pre-synaptic neuron j on neuron i. A double exponential

formula can be used

esynapse
ij ðsÞ ¼ Asynapse exp � s

ssynapse
decay

 !
� exp � s

ssynapse
rise

� � !
: ð7Þ

The following notations are used above: ssynapse
decay=rise are time constants of the rise and fall

of an individual PSP; A is the PSP’s amplitude; synapse represents the type of the activity

of the synapse from the neuron j to neuron i, that can be measured and modeled separately

for a fast_excitation, fast_inhibition, slow_excitation, and slow_inhibition, all integrated in

the formula. These types of PSPs are based on neurobiology and have been used for the

development of computational neuro-genetic models (Benuskova and Kasabov 2007a, b),

where the different synaptic activities are represented as functions of different proteins

(neuro-transmitters and neuro-receptors).

External inputs from the input layer are added at each time step, thus incorporating the

background noise and/or the background oscillations. Each external input has its own

weight Jext input
ik and amount of signal ek (t), such that:

uext inpu
i ðtÞ ¼ Jext input

ik eikðtÞ: ð8Þ

It is optional to add some degree of Gaussian noise to the right hand side of the equation

above to obtain a stochastic neuron model instead of a deterministic one.

2.2 Evolving spiking neural networks (ESNN)

SNN models can be built with the use of the above spiking neuron model. Spiking neurons

within a SNN can be either excitatory or inhibitory. Lateral connections between neurons

in a SNN may have weights that decrease in value with distance from neuron i for instance,

according to a Gaussian formula while the connections between neurons themselves can be

established at random. SNN can be used to build biologically plausible models of brain

functions.

Evolving SNN (ESNN) evolve/develop their structure and functionality in an incre-

mental way from incoming data based on the following principles (Wysoski et al. 2006;

Benuskova and Kasabov 2007a, b; Kasabov 2007):

(1) New spiking neurons are created to accommodate new data, e.g. new output classes,

such as faces in a face recognition system.

(2) Spiking neurons are merged if they represent the same concept (class) and have

similar connection weights.

In Wysoski et al. (2006) an ESNN architecture is proposed. In this architecture the

change in a synaptic weight is achieved through a simple rule:

Dwj;i ¼ modorderðjÞ ð9Þ

where wj,i is the weight between neuron j and neuron i, mod [ (0,1) is the modulation

factor, order(j) is the order of arrival to neuron i of a spike produced by neuron j. For each

training sample, we use the winner-takes-all approach, where only the neuron that has the

highest PSP value has its weights updated.
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The postsynaptic threshold (PSPTh) of a neuron is calculated as a proportion c [ [0, 1] of

the maximum postsynaptic potential (PSP) generated with the propagation of the training

sample into the updated weights, such that:

PSPTh ¼ c maxðPSPÞ: ð10Þ
The procedure for training the network and creating new neurons is proposed in

Wysoski et al. (2006) and is summarized below in a pseudo-code:

Until weights converge

For all input vectors in the training set

For each input vector

Create (evolve) a new neuron

Propagate the input vector into the network

Train the newly created neuron using equations (9) and (10)

Calculate the similarity between weight vectors of newly created neuron and existent

neurons

If similarity [ Threshold

Merge newly created neuron with the most similar neuron using (11) and (12).

To merge a newly created neuron with an existing neuron, the weights W of the existing

neuron n are updated calculating the average as

W ¼ Wnew þ NFramesW

1þ NFrames
ð11Þ

where NFrames is the number of frames previously used to update the respective neuron.

Similarly, the average is also computed to update the corresponding PSPTh:

PSPTh ¼
PSPThnew þ NFramesPSPTh

1þ NFrames
: ð12Þ

Creating and merging neurons based on localized incoming information and on sys-

tem’s performance are main operations in the above architectures that make them

continuously evolvable.

2.3 ESNN for multimodal learning of auditory and visual information

A detailed architecture of an audiovisual crossmodal integrative ESNN system proposed in

Wysoski et al. (2007a, b) is shown in Fig. 3.

The auditory ESNN learning module is described in Wysoski et al. (2007a, b) and the

visual ESNN learning module—in Wysoski et al. (2008). In Fig. 3 two neurons (OR and

AND) constitute a supramodal layer. Each spiking neuron, similarly to the neurons that

compose the ESNNs of individual modalities, has the behavior defined in the above sub-

section. Having supramodal neurons with modulation factor mod = 1 and setting all the

incoming excitatory connection weights W to 1, the PSPTh that implements the OR gate

for two modalities is equal to 1. The neuron implementing the AND gate receives

PSPTh = 2. Notice that, it is only possible to set deterministically these parameters

because of the properties of the neurons we are using (a neuron can spike only once at any

stage of computation).

In this system we effectively model the crossmodal learning and influence through the

modification of PSPTh in the layers responsible for decision making within each modality.
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More precisely, we modify the PSPTh in layer 1 (L1) neurons in the auditory model and

layer 3 (L3) neurons in the visual model. We use the following crossmodal parameters to

denote the strength of the crossmodal influences: CMAVexc (audio to video excitation),

CMAVinh (audio to video inhibition), CMVAexc (video to audio excitation), CMVAinh

(video to audio inhibition), which are implemented with a proportional change in the usual

PSPTh values as:

PSPThNew ¼ PSPThOldð1þ CMexc=inhÞ ð13Þ

where CMexc/inh is negative for crossmodal excitatory influence and positive for inhib-

itory influence. The crossmodal influence starts from the period one individual modality

produces a result and lasts until all modalities finish processing.

Notice that, in the simplest case, setting crossmodal coupling to zero, we will have

effectively each of the modality processed separately, with a simple OR/AND fusion of

opinions.

2.4 A case study implementation on a person authentification task utilizing audiovisual

person information

In Wysoski et al. (2007a, b) an implementation is presented of the integrative learning of

audiovisual modalities with a network of spiking neurons and used for evaluation the

VidTimit dataset (Sanderson and Paliwal 2004), which contains video and audio record-

ings of 43 persons. Our test setup deals specifically with the audiovisual person

authentication learning problem. Thus, a person is authenticated by a personally trained

system based on spoken phrases and the corresponding facial information as the utterance

is recorded (captured in frontal view).

Figure 4 shows the best performance obtained on each individual modality and also on

the cross-modal mode of operation. While the best total error (TE) for the face authenti-

cation is 21%, the auditory authentication is TE & 38% (varying values of L1 PSPTh in the

Fig. 3 Crossmodal audiovisual integrative ESNN
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auditory system and L3 PSPTh in the visual system). Having in mind that the parameters

have been optimized by hand, in Fig. 4 we can see the potential advantages of the inte-

gration module. When the system needs to operate with low FAR levels (below 10%), the

Crossmodal AND provide lower FRR than any singular modality. When the system requires

operating with low FRR (below 10%), OR integration can be used instead, which gives

lower FAR for the same FRR levels (see Wysoski et al. 2007a, b).

2.5 Challenges for ESNN

The following theoretical aspects and models of ESNN need to be further investigated and

developed:

1. Neuronal coding, i.e. how information is efficiently encoded and decoded as spikes.

This is to investigate encoding through precise spiking time, data transmission

efficiency (maximum data transmission), and minimum processing time.

2. Learning, i.e. changing the connection weights based on incoming data. That relates

to creating new evolving learning algorithms where connections and neurons are

created incrementally.

3. Model optimization—to explore the principles of minimum energy consumption

(minimum number of spikes).

4. Noise robustness—how robust the ESNN are to incrementally introduced noise.

5. Synchronicity versus asynchronicity as a way to define the dynamic behavior of the

system.

6. Event-driven (only neurons that receive a spike are updated) versus clock-driven

computation (all neurons are updated at a given clock step). The event-driven

approach is particularly appropriate for a very large number of neurons with low

spiking rate that would increase the patterns stored in the ESNN.

7. ESNN methods and systems to analyze olfactory and gustative sensory information.

8. Creating an ESNN methodology and a software environment to combine systems of

different modalities of information to be tested on multimodal biometric case study

0
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20
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40

50

0 10 20 30 40 50

FAR (%)

R
R

F
( %

)

Auditory
Visual
OR Integration
AND Integration
Crossmodal AND
EER line

Fig. 4 Performance of individual modalities for different values of auditory (L1 PSPTh) and visual
parameters (L3 PSPTh) and performance of the OR and AND integration of modalities with a supramodal
layer of spiking neurons. FAR is the false acceptance rate, FRR is the false rejection rate. Comparison
between individual modes (auditory and visual) and different integration scenarios in the FAR–FRR plane.
EER is the equal error rate, where FAR = FRR
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problems of face and speech modality for the recognition of a very large number of

persons (e.g., more than 10,000).

9. Implementing ESNN systems on a massively parallel FPGA hardware machine to

achieve several orders of magnitude faster pattern recognition of a large number of

objects for real time applications (Johnston et al. 2005).

10. ESNN-based large associative visual database memories that perform content-based

visual information retrieval. This needs to be tested on a case study of real time

moving object recognition of a large number of objects.

11. Using ESNN for brain data analysis, modeling and discovery. For example, the brain-

gene-simulation ontology (BGSO) (Kasabov et al. 2007) can be further extended

with the addition of ESNN simulation models and brain-gene data on learning and

memory formation. The BGSO will permit us to search and retrieve relevant data and

construct ESNN models for different tasks of modelling and discovery of brain-gene

relationships (Benuskova and Kasabov 2007a, b; Kasabov 2007).

12. Using ESNN technologies for building embedded systems into robots, cars, human

body, etc.

3 Gene-ESNN integrative learning connectionist systems for computational
neurogenetic modelling

3.1 General notions

With the advancement of molecular and brain research technologies more and more data

and information is being made available about the genetic basis of some neuronal functions

(see for example: the brain-gene map of mouse http://alleninstitute.org; the brain-gene

ontology BGO at http://www.kedri.info). This information can be utilized to create bio-

logically plausible ANN models of brain functions and diseases that include models of

gene interaction. This area integrates knowledge from computer and information science,

brain science, molecular genetics and it is called in (Kasabov and Benuskova 2004;

Benuskova and Kasabov 2007a, b) computational neurogenetic modeling (CNGM).

Several CNGM models have been developed so far varying from modeling a single

gene in a biologically realistic ANN model (Benuskova and Kasabov 2007a, b), to mod-

eling a set of genes forming an interaction gene regulatory network (GRN) (Benuskova and

Kasabov 2007a, b).

3.2 A computational neuro-genetic model (CNGM) that integrates GRN

within an ESNN model

The main idea behind the model, proposed in Kasabov and Benuskova (2004), is that

interaction of genes in neurons affect the dynamics of the whole ANN through neuronal

parameters, which are no longer constant, but change as a function of gene/protein

expression. Through optimization of the GRN, the initial gene/protein expression values,

and the ANN parameters, particular target states of the ANN can be achieved, so that the

ANN can be tuned to model real brain data in particular—Fig. 5.

This idea is further developed and illustrated in Benuskova and Kasabov (2007a, b). The

behavior of the SNN is evaluated by means of the local field potential (LFP), thus making
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it possible to attempt modeling the role of genes in different brain states, where EEG data

is available to test the model. A standard FFT signal processing technique is used to

evaluate the SNN output and to compare it with real human EEG data.

In general, we consider two sets of genes—a set Ggen that relates to general cell

functions, and a set Gspec that defines specific neuronal information-processing functions

(receptors, ion channels, etc.). The two sets form together a set G = {G1, G2, …, Gn}. We

assume that the expression level of each gene is a nonlinear function of expression levels of

all the genes in G:

gjðt þ Dt0Þ ¼ r
Xn

k¼1

wjkgkðtÞ
 !

: ð14Þ

We can also assume for simplicity that: (1) one protein is coded by one gene; (2)

relationship between the protein level and the gene expression level is nonlinear; (3)

protein levels lie between the minimal and maximal values. Thus, the protein level is

expressed by:

pjðt þ DtÞ ¼ pmax
j � pmin

j

� �
r
Xn

k¼1

wjkgkðtÞ
 !

þ pmin
j : ð15Þ

The delay constant introduced in the general formula above corresponds to the delay

caused by the gene transcription, mRNA translation into proteins and posttranslational

protein modifications, and also the delay caused by gene transcription regulation by

transcription factors.

Some proteins and genes are known to be affecting the spiking activity of a neuron

represented in a SNN model by neuronal parameters, such as fast_excitation, fast_inhi-

bition, slow_excitation, and slow_inhibition. Some neuronal parameters and their

correspondence to particular proteins are summarized in Table 1.

Besides the genes coding for the proteins mentioned above and directly affecting

the spiking dynamics of a neuron, a GRN model can include other genes relevant to

a problem in hand, e.g. modeling a brain function or a brain disease, for example: c-jun,

mGLuR3, Jerky, BDNF, FGF-2, IGF-I, GALR1, NOS, S100beta (Benuskova et al.

2006).

The goal of the CNGM from Fig. 5 is to achieve a desired SNN output through opti-

mization of the model parameters. The LFP of the SNN, defined as LFP = (1/N)R ui(t), by

means of FFT is evaluated in order to compare the SNN output with the EEG signal

ANN outputGRN 

Fig. 5 A CNGM, where a GRN is used to represent the interaction of genes, and an ESNN is employed to
model a brain function. The model output is compared against real brain data for validation of the model and
for verifying the derived gene interaction GRN after model optimization is applied (from Benuskova and
Kasabov 2007a, b)
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analyzed in the same way. It has been shown that brain LFPs in principle have the same

spectral characteristics as EEG.

In order to find an optimal GRN within the SNN model, so that the frequency char-

acteristics of the LFP of the SNN model are similar to the brain EEG characteristics, the

following evolutionary computation procedure is used:

1. Generate a population of CNGMs, each with randomly, but constrained, generated

values of coefficients for the GRN matrix W, initial gene expression values g(0), initial

values of SNN parameters P(0), and different connectivity.

2. Run each SNN model over a period of time T and record the LFP.

3. Calculate the spectral characteristics of the LFP using FFT.

4. Compare the spectral characteristics of SNN LFP to the characteristics of the target

EEG signal. Evaluate the closeness of the LFP signal for each SNN to the target EEG

signal characteristics. Proceed further according to the standard GA algorithm to find a

SNN model that matches the EEG spectral characteristics better than previous

solutions.

5. Repeat steps 1–4 until the desired GRN and SNN model behavior is obtained.

6. Analyze the GRN and the SNN parameters for significant gene patterns that cause the

SNN model to manifest similar spectral characteristics as the real data.

The proposed CNGM modeling framework can be used to find patterns of gene regu-

lation related to brain functions.

3.3 A case study of modeling a brain function

In Benuskova and Kasabov (2007a, b) some preliminary results of analysis performed on

real human interictal EEG data are presented. The model performance and the real EEG data

are compared for the following relevant to the problem sub-bands: delta (0.5–3.5 Hz), theta

(3.5–7.5 Hz), alpha (7.5–12.5 Hz), beta 1 (12.5–18 Hz), beta 2 (18–30 Hz), gamma (above

30 Hz). This particular SNN had an evolved GRN with only 5 genes out of 16 (s100beta,

GABRB, GABRA, mGLuR3, c-jun) and all other genes having constant expression values.

A GRN is obtained that has a meaningful interpretation and can be used to model what will

happen if a gene/protein is suppressed by administering a drug, for example.

Table 1 Neuronal parameters and related proteins

Neuronal parameter

Amplitude and time constants of Protein

Fast excitation PSP AMPAR

Slow excitation PSP NMDAR

Fast inhibition PSP GABRA

Slow inhibition PSP GABRB

Firing threshold SCN, KCN, CLC

Late excitatory PSP through GABRA PV

Abbreviations: psp = postsynaptic potential, ampar = (amino-methylisoxazole-propionic acid) ampa
receptor, nmdar = (n-methyl-d-aspartate acid) nmda receptor, gabra = (gamma-aminobutyric acid) gabaa
receptor, gabrb = gabab receptor, scn = sodium voltage-gated channel, kcn = kalium (potassium) voltage-
gated channel, clc = chloride channel, pv = parvalbumin
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In ICOS for CNGM new genes can be added to the GRN model at a future time, in

addition to the new spiking neurons and connections created incrementally in the ESNN.

Developing new ICOS to model brain functions and brain diseases, such as epilepsy,

Alzheimer, Parkinson disease, Schizophrenia, mental retardation and others is a chal-

lenging problem for a future research (Benuskova and Kasabov 2007a, b).

3.4 Open questions and challenges for ICOS in CNGM

There were some questions that emerged from the first ICOS for CNGM (ICOS-CNGM):

1. How many different GRNs would lead to similar LFPs and what do they have in

common?

2. What neuronal parameters to include in an ICOS-CNGM and how to link them to

activities of genes/proteins?

3. What genes/proteins to include in the model and how to represent the gene

interaction over time within each neuron?

4. How to integrate in time the output activity of the ICOS-CNGM and the genes as it is

known that neurons spike in millisecond intervals and the process of gene

transcription and translation into proteins takes minutes?

5. How to create and validate an ICOS-CNGM in a situation of insufficient data?

6. How to measure brain activity and the ICOS-CNGM activity in order to validate the

model?

7. What useful information (knowledge) can be derived from an ICOS-CNGM?

8. How to adapt incrementally an ICOS-CNGM in a situation of new incoming data

about brain functions and genes related to them?

9. Is it possible to create a truly adequate ICOS-CNGM of the whole brain? Would

gene-brain maps help in this respect (see http://alleninstitute.org)?

10. How can dynamic ICOS-CNGM be used to trace over time and predict the

progression of a brain diseases, such as epilepsy and Parkinson’s?

11. How to use ICOS-CNGM to model gene mutation effects?

12. How to use ICOS-CNGM to predict drug effects?

13. How ICOS-CNGM can help understand better brain functions, such as memory and

learning?

14. What engineering problems can be efficiently solved with the use of a brain-gene

inspired ICOS?

4 Quantum evolving spiking neural networks (QESNN)

4.1 The quantum principles of superposition and entanglement

The quantum principle of superposition of states (Feynman et al. 1965; Hey 1999) assumes

that a system is in a superposition of all of its possible states at the same time defined by a

probability density amplitude and all states can be processed in parallel in order to opti-

mize a global objective function.

The potential for using quantum computing principles became apparent when Shor

(1997) and Grover (1996) published their specialized quantum algorithms that performed

exponentially faster than any traditional algorithms.
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The smallest information unit in today’s digital computers is one bit, existing as state

‘1’ or ‘0’ at any given time. The corresponding analogue on a quantum computer is

represented by a quantum bit or qbit (Hey 1999). Similar to classical bits a qbit may be in

‘1’-state or ‘0’-state but also in a superposition of both states. A qbit state Wj i can be

described as:

Wj i ¼ a 0j i þ b 1j i ð16Þ

where a and b are complex numbers defining probabilities which of the corresponding state

are likely to appear when a qbit is read (measured, collapsed). aj j2 and bj j2 give the

probability of a qbit being found in state ‘0’ or ‘1’ respectively. Normalization of the states

to unity guarantees:

aj j2 þ bj j2 ¼ 1 ð17Þ

at any time. The qbit is not a single value entity, but is a function of parameters which

values are complex numbers. After the loss of coherence the qu-bit will ‘‘collapse’’ into

one of the states |0i or |1i.
In order to modify the probability amplitudes quantum gates can be applied to the states

of a qbit. A quantum gate is represented by a square matrix operating on the amplitudes aj j
and bj j with the only condition that the operation is reversible. Such gates are: NOT-gate,

rotation gate, Hadamard gate (Hey 1999).

Another quantum principle is entanglement—two or more particles, regardless of their

location, can be viewed as ‘‘correlated’’, undistinguishable, ‘‘synchronized’’, coherent. If

one particle is ‘‘measured’’ and ‘‘collapsed’’ it causes for all other particles to ‘‘collapse’’

too. An example is a laser beam consisting of millions of photons.

Quantum systems can be described by a probability density w that exists in a Hilbert

space.

4.2 Principles of QESNN

Recent research activities focus on using quantum principles for ANN. Considering

quantum ANN seems to be important for at least two reasons. There is evidence for the role

that quantum processes play in the living brain. Roger Penrose argued that a new physics

binding quantum phenomena with general relativity can explain such mental abilities as

understanding, awareness and consciousness (Penrose 1994). The second motivation is the

possibility that the field of classical ANN could be generalized to the promising new field

of quantum computation. Both considerations suggest a new understanding of mind and

brain functions as well as new unprecedented abilities in information processing. Ezhov

and Ventura are considering the quantum neural networks as the next natural step in the

evolution of neurocomputing systems (Ezhov and Ventura 2000).

Several quantum inspired ANN models have been proposed and illustrated on small

examples. In Venayagamoorthy and Gaurav (2005) a quantum evolutionary algorithm is

used to train a MLP ANN. Narayanan and Meneer simulated classical and quantum

inspired ANN and compared their performance on small scale examples (Narayanan and

Meneer 2000). These methods unfortunately did not go beyond a fixed structure ANN and

therefore have only illustrative meaning rather than a practical one.

Here a QESNN learning architecture is proposed based on six principles (Q1–Q6).

Creating and merging neurons based on localized incoming information and on system’s
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performance are main operations in the above architectures that make them continuously

evolvable.

4.2.1 (Q1) A quantum representation of a spike

A spike at any time is both present (1) and not present (0), which is represented as a

quantum bit (qbit) defined by a probability wave function. When the spike state is eval-

uated, it is either present or not present. Representing a spike as a quantum entity is

supported by the quantum character of the operation of the ion channels in the synapses.

To modify the probability amplitudes of a spike we suggest the rotation gate as it seems

adequate when considering the cylindrical shape of the ion channels:

UðhÞ ¼ cos h � sin h
sin h cos h

� �
: ð18Þ

A spike arriving at a moment t at each synapse Sij connecting a neuron Ni to a neuron Nj

is represented as a qbit Qij(t) with its probability bij(t) for a pre-synaptic spike to occur.

A neuron Nj is represented as a qbit vector, representing all m synaptic connections to this

neuron:

a1

b1

a2

b2

:::
:::

				
am

bm

				

				
� �

: ð19Þ

4.2.2 (Q2) A quantum integrate and fire model of a spiking neuron

At a time t all pre-synaptic qbits representing a neuron are collapsed into spikes (or no

spikes) and their cumulative input ui(t) to the neuron Ni is calculated:

uiðtÞ ¼
X

j¼l;mQ
ij
ðtÞwi;jðtÞ ð20Þ

where Qij(t) is the ‘‘collapsed’’ value of the qbit Qij(t) and wi,j(t) is the connection weight of

the jith synapse.

If ui(t) is above a spiking threshold h(t), a quantum output spike is produced by Ni with a

probability Pi(t):

IfðuiðtÞ[ hðtÞÞ ! Ni Spike: ð21Þ
The probability Pi(t) can be considered as a constant unless there is specific requirement

for a more biologically plausible model.

4.2.3 (Q3) A quantum Hebbian learning rule

The probability bij(t) of a pre-synaptic spike to occur increases if both Ni and Nj spike

depending on the time interval between the two spikes; or bij(t) decreases otherwise, which

changes are calculated using the rotation gate (18).

In a more detailed model, bij(t) will depend on the strength and the frequency of the

spikes from Ni, on the distance Dij, on many other physical and chemical parameters that

are ignored in this model but can be added if necessary.
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4.2.4 (Q4) Quantum probabilistic encoding of input information

An input vector Xp(t) presented to the inputs of a QESNN is represented as a qbit vector, each

qbit Qk representing the probability bk(t, t + dt) for a spike at the input Ik at any discrete time

from the time interval (t + dt). The values bk(t, t + dt) depend on the real input values.

Example 1: An input vector [7, 1, 2] will be represented as a vector of probabilities

[b1(t, t + dt), b2(t, t + dt), b3(t, t + dt)] = [0.7, 0.1, 02].

Example 2: If QESNN inputs represent frequency components of the input vectors, this

frequency can be used to calculate the quantum input probabilities.

Example 3: If input signals arrive at the inputs at different times as spikes, e.g. from

sensors, there is no need for another encoding of the input information.

4.2.5 (Q6) Quantum input feature selection

A population of n qbit individuals at time t can represent the use of each input variable

x1,x2,…,xn (Defoin-Platel et al. 2007a, b): 0—a variable is not used in the current QESNN

model, 1—the variable is used:

QðtÞ ¼ qt
1; qt

2; . . .; qt
n


 �
ð22Þ

where n is the size of the population and the probability bi(t) defining the use of variable xi

in the current QESNN model. In Defoin-Platel et al. (2007a, b) a versatile quantum

inspired evolutionary algorithm is proposed applicable to feature selection for an ANN

model as illustrated in the case study below.

4.3 A case study

The proposed in Defoin-Platel et al. (2007a, b) versatile quantum inspired evolutionary

algorithm (VQIEA) is applied for feature selection (time lags) of an ANN time series

prediction model across hundreds of time series. This algorithm shows a fast convergence

towards a global optimum solution—see Fig. 6. It is superior in terms of number of eval-

uations and accuracy than the classical evolutionary computation algorithms. It is applicable

for a large number of variables (e.g. thousands), while the classical exhaustive search

algorithm is not practical. For an example of 1,000 variables, it is required 21000 evaluations

to be performed using the classical bit-representation if all possible combinations of these

variables need to be tested for an optimal solution. If one evaluation is performed for 1 s on

a contemporary computer, this means approximately 10294 years of testing, which is

impractical. Using qbits and the VQIEA, to reach an optimal solution for some class of

optimization problems it will require only approximately 1,000 tests. In this respect the

VQIEA is exponentially faster than the classical computation.

4.4 Challenges for ICOS and QESNN in particular

Many open questions and challenges need to be addressed in the future related to ICOS and

QESNN in particular, such as:
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1. How quantum processes affect the functioning of a living system in general and how

can this knowledge be efficiently used for computational modelling?

2. How quantum processes affect cognitive and mental functions?

3. Is it true that the brain is a quantum machine—working in a probabilistic space with

many states (e.g. thoughts) being in a superposition all the time and only when we

formulate our thought through speech or writing, then the brain ‘‘collapses’’ in a single

state?

4. Is fast pattern recognition in the brain, involving far away segments, a result of both

parallel spike transmissions and particle entanglement?

5. Is communication between people and between living organisms in general, a result of

entanglement processes?

6. How does the energy in the atoms relate to the energy of the proteins, the cells and the

whole brain?

7. How to implement the QESNN in order to benefit from their high speed and accuracy?

Should we wait for the quantum computers to be realized as hardware some years from

now, or we can implement QESNN efficiently on specialized computing devices based

on classical principles of physics?

5 Conclusion and future directions

Several reasons can be given in support to the research in integrating principles from

quantum-, molecular-, and brain information processing into ICOS. This may lead to a

better understanding of neuronal-, molecular-, and quantum information processes. This

may lead to new computer devices—million times faster and more accurate than the

current ones. At the nano-level of microelectronic devices, quantum processes would have

a significant impact and new methods of computation would be needed anyway.

This paper presents some ICOS inspired by principles from different levels of infor-

mation processing in the brain—including neuronal level, gene/protein level, and quantum

level, and argues that models that integrate principles from different levels of information

Fig. 6 A quantum inspired evolutionary algorithm based on the superposition principle performs
exponentially faster and more accurately than the classical algorithms when evaluating combinations of
variables for a modelling task with a large number of variables (from Defoin-Platel et al. 2007a, b)
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processing would be useful tools for a better understanding of brain functions and for the

creation of more powerful methods and systems of computational intelligence.

Further directions are:

1. Building a brain-gene-quantum ontology system that integrates facts, information,

knowledge and models of different levels of information processing in the brain and

their interaction.

2. Building novel brain-, gene-, and quantum inspired ICOS models, studying their

characteristics and interpreting the results.

3. Applying ICOS to solving complex problems in neuro-informatics and brain diseases,

bioinformatics and cancer genetics, multimodal information processing and biometrics.
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