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ABSTRACT

This paper presents an active-vision system for the
recognition of 3D objects moving along predictable
trajectories. The novelty of this system lies in its unique
approach to deal with the problem of moving-object
recognition, by integrating object pre-marking, object-
trajectory-prediction and time-optimal robot-motion
techniques developed in our laboratory. The recognition
technique is an extension of our earlier work on static-
object recognition. Therein, objects were pre-marked
optimally using circular markers, which are utilized during
run time for guiding a robot-mounted camera to acquire
2D standard-views for efficient matching purposes. The
Kalman-filter based prediction of the object trajectory and
the time-optimal movement of the mobile camera for
image acquisition are also based on our earlier research
results on moving-object interception. The discussion of
the various implementation issues and experimental
results presented in this paper should provide researchers
with useful tools and ideas.

1. INTRODUCTION

The development and implementation of an active-
vision system for moving-object recognition involves
numerous issues that currently constitute individual
research endeavors in different laboratories. The two
primary issues, however are (i) tracking and (ii)
recognition of moving objects. The latter area attempts to
obtain information, for the identification of the objects,
from consecutive motion images. Two common
approaches to the solution of motion-image processing
and recognition problems have been: the optical-flow
approach and feature-based approach [1]. Feature-based
approaches require that correspondence be established
between a set of features extracted from one image and
those from its next image [2,3]. Optical-flow approaches,
on the other hand, rely on local spatial and temporal
derivatives of image-brightness values. No
correspondence between successive images is required.
Although many methods have been developed based on
both approaches, they are only partial solutions, suitable

for simplified environments, sensitive to noise, and
computationally expensive [1].

Integration of tracking and recognition techniques to
form robust active-vision systems appear to be a logical
answer to greatly simplify the above-mentioned problems.
Feddema and Lee [4] proposed such an adaptive system
for visually tracking a moving object with a single mobile
camera. This system uses the concept of active sensing to
reduce the time for feature searching and extraction. The
vision system accurately predicts the object location at the
next sampling time. When a tracking task begins, the
vision system uses all a priori knowledge to recognize and
locate the object. After the initial recognition stage, the
image processing is reduced to a simple verification
process. Hwang, Ooi and Ozawa [5] developed an
alternate adaptive-sensing system with the capability of
tracking and zooming onto moving objects using a fuzzy-
logic controlled camera. Another active-vision system,
which uses an active camera mounted on a pan/tilt
platform, was proposed by Murray and Basu, for real-time
motion detection [6]. This system successfully extracted
moving edges from dynamic images. The camera motion
is compensated by the tracking algorithm, which allows
static techniques to be applied to active image sequences.

In contrast to the above proposed methods, the primary
advantage of the active-vision system, designed and
successfully implemented in the CIMLab, is the
recognition of 3D moving-objects using a 2D modeling
and matching process {7]. Based on an integration of
active sensing and object pre-marking principles, the
system is capable of successfully tracking and recognizing
moving-objects defined a priori in a given object library.
In the next sections, we will first briefly describe the
individual components of the system, which would
subsequently lead to the discussion of the implementation
issues and experimental results.

2. THE ACTIVE-VISION SYSTEM - AN
OVERVIEW

The task of moving-object recognition is broken herein
into two sub-tasks: (i) tracking and prediction of the
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object’s trajectory, and (ii) object recognition from
consecutive images. The motivation behind this approach
is twofold: to gain speed via parallel computing and to
simplify the implementation of the system. Based on this
rationale, the active-vision system was designed as a two-
module architecture: namely, comprising the ‘object
recognizer’ module and the ‘object-trajectory predictor
and robot-motion planner’ module, Figure 1. The former
module functions as an image processor and pattern
recognizer. The latter module deals with the prediction of
the object motion and planning of the robot trajectory, so
as to guide the robot-mounted camera to desired locations
for the acquisition of consecutive images.

MODULE 1: OBJECT RECOGNIZER

standard-view locator 2D shape recognizer
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isith standard-view object 3D-pose
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MODULE 2: OBJECT-TRAJECTORY PREDICTOR, AND
ROBOT-MOTION PLANNER

Figure 1. Structure of the Active-Vision System.

The object-recognizer module was based on the
presumption that a 3D-object can be modeled by a pre-
defined set of its 2D views referred to as standard-views
[7]. Run-time recognition is then initiated by acquiring
one of these standard-view images and followed by the
matching process. Since markers placed on an object
define a limited set of unique standard-views, by pre-
marking objects, the 3D-recognition process is simplified
into a fast 2D-matching process.

Based on the above principle, the recognition process
is carried out in two stages. During Stage 1, a marker’s
motion is observed via a fixed camera and its trajectory is
predicted by Module 2. In parallel, a robot-mounted
camera is utilized by Module 1 to acquire two sequential
images of the same viewed marker. The 3D pose of the
circular feature is determined through the use of these two
images. The correspondence between the poses of the
same marker in the two consecutive images identifies the
true orientation of the marker. During Stage 2, a time-
optimal robot trajectory is planned to position the camera
for the acquisition of a standard-view of the moving
object at the right instant. Once a standard-view is
acquired, recognition is conducted by matching the
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object’s shape signature with those in the standard-view
library.

3. THE OBJECT-RECOGNIZER MODULE

An optimal number of circular markers of known size
are used for pre-marking the objects, whose normals
define the necessary standard-viewing axes. A standard-
view is acquired by aligning the optical axis of the camera
with one of the standard-viewing axes of the object.
Visible markers, however, undergo perspective projection
and would be perceived as elliptical shapes in arbitrarily
acquired images. Thus, the parameters of these elliptical
shapes must be used to determine the 3D position and
orientation (pose) of the marker.

3.1 Calculation of the
Parameters [8]
The parameters of the elliptical shape of a circular

marker’s acquired image can be calculated as follows.
Let

Elliptical Shape

X, Y)=aX? +bXY +cY? +dX +eY + f =0 6}

be the general equation of an ellipse, and
(X,Y,) i=LN 2

be a set of boundary points on the marker’s image to be
fitted. The (five) elliptical parameters can be then
computed by minimizing the following error function:

I, =2 1w, 0(X,.7)1", 3)

i=1

where w; are the weighing factors that take into account
the non-uniformity of the data points along the ellipse’s
boundary.

3.2 Estimation of a Circular-Marker’s 3D-Pose
91

In order to move the robot-mounted camera to a
standard-viewing position, the 3D pose of a circular
marker has to be determined first. Circular-marker pose
estimation is equivalent to the solution of the following
problem: Given a 3D conic surface, defined by an
elliptical base (the perspective projection of a circular
feature in the image plane) and a vertex (the center of the
camera’s lens) with respect to a reference frame,
determine the pose of a plane (with respect to the same
reference frame) which intersects the cone and generates a
circular curve.



The general form of the equation of a cone with
respect to the image frame is as follows:

ax? +by2 +cz° +2fyx +2gzx

+2hzy + 2ux +2vy +2wz+d =0. @
An intersection plane can be defined by
Ix+my+nz=0. Therefore, the problem of finding the
coefficients of the equation of a plane, for which the
intersection is circular, can be expressed mathematically
as: determine /, m and n such that the intersection of the
conical surface with the following surface is a circle: Ix +
my + nz = 0, where P+ m* + n’ = 1.
To solve the problem, first the equation of the conical
surface can be reduced to a more compact form:

M+ MY+ M2 =, ®)

where the XYZ-frame is called the canonical frame of
conicoids. It can be shown that the reduction of the
general equation of a cone to the above form results in a
closed-form analytical solution. There exist two possible
solutions to the problem. To obtain a unique acceptable
solution, as part of the moving-object recognition process,
an extra geometrical constraint, such as the change of
eccentricity in a second image, has to be obtained.

To obtain a unique solution for a marker’s position, the
radius of the circular feature has to be known. There exist
two solutions: one on the positive Z-axis, and one on the
negative Z-axis. Since only the positive one is acceptable
in our case (being located in front of the camera), the
coordinates of the center of the circle (X'y, Yy, Z'p) with
respect to the X'Y’Z’-frame are found to be:

X, =——7Z
0 C[}O
Y, =——7, 6
0 AOA ©6)
Zy = L

B*+C*-AD

where A, B, C and D are defined in terms of the elements
of the transformation between the XYZ-frame and X'Y'Z'-
frame, A; (i=1,2,3) and the known radius r.

3.3 Solving the 3D-Orientation-Duality in a
Single-Marker-Scene

As mentioned in Section 3.2, in order to obtain a
unique solution for the orientation of a circular marker,
acquisition of multiple images of the same marker would
be necessary. In general, obtaining a unique solution for
the 3D pose of a circular marker in an unknown motion
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requires two consecutive images with at least three visible
circles [3]. In. our proposed system, however, a unique
solution can be calculated with one circular marker given
that the object is subject to certain motion constraint, and
the size of the marker is known. For example, when the
object is moving in translation or planar motion the
orientation can be uniquely determined. Figure 2 depicts a
situation where the marker undergoes 3D translation.
Point O is the camera’s focal center and Plane I is the
image plane. From the first image, using the technique
presented in Section 3.2, two possible surface normals of
a circular marker, denoted as unit vectors n; and n,, can
be computed. As the marker moves to the second position,
another two possible solutions »; and r, are obtained. By
the definition of translation, the surface normal vector of a
translating plane remains constant. Therefore, the true
solution of the surface orientation can be distinguished as
the one that remains unchanged. In Figure 2, since n;=n,’,
while ny#n,’, n; and n;” are found to be the true solution.

If the object motion is limited to planar motion, then a
similar concept can be applied. We know that when a
vector in space undergoes planar motion, its z component
remains constant. Therefore, defining m; and m; as the z
component of n; and n; respectively, if m=m,’, while
my#m,’, then n; and r;" are the true orientations of the
circular marker.

ny= fll,
ny # nzl

Figure 2. Elimination of the false solution in the case of
translation.

3.4 Standard-View Matching [11]

When a standard-view image is acquired and the
silhouette of the object is extracted, the resulting chain-
coded contour of the object is used to compute the global
eccentricity measure and the shape signature. The object
is then identified by matching its feature vector, consisting
of a global eccentricity measure and the shape signature,
with the feature information of the standard views in the
database. The identity of the shape is determined by the
minimum-distance rule. However, if the measures of
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dissimilarity between the acquired shape and multiple
standard views are below a certain threshold, the object
cannot be uniquely recognized. In this case, the system
will identify the several candidates in the database and
pass the control back to the active vision system for the
acquisition of an additional standard view to resolve the
ambiguity at hand.

4. THE OBJECT-TRAJECTORY
PREDICTOR AND ROBOT-MOTION
PLANNER MODULE

4.1 Determination of Optimal Initial Camera
Orientation [12]

Optimal camera placement is necessary to maximize
marker detectability, since this would consequently allow
us to minimize the number of markers placed on objects.
Several optimization problems were formulated and
solved in [12]. The specific problem pertinent to this work
is finding: the minimum number of markers to be placed
on a given set of objects, such that the visibility of at least
one marker (on a randomly appearing object) is
guaranteed in a single-camera environment. The outcome
of the optimization is the minimum number and locations
of the markers on the object, as well as the optimal initial-
viewing angle () of the camera.

4.2 Object-Trajectory Prediction [13]

A recursive Kalman filter (KF) was proposed in {13]
to obtain optimal estimates of the object’s present two-
dimensional position, as well as predictions of its future
trajectory. The recursive KF is a computationally efficient
algorithm, which yields an optimal least-squares estimate
of a state from a series of noisy observations. It produces
a new optimal estimate from an additional observation
without having to reprocess past data. The KF can also be
used to obtain multiple-step-ahead predictions by
propagating the KF extrapolation equations (i.e., one-step
ahead predictor). As will be discussed in the next sub-
section, these multiple step-ahead predictions are used in
our system to guide the mobile camera to optimal viewing
locations.

4.3 Motion Planning for Mobile-Camera

The problem addressed here is two-fold: (i) finding an
optimal viewing point within the robot's workspace, and
(ii) generate time-optimal robot trajectory to this viewing-
point. As previously shown in [14] for a moving-object
interception problem, these two issues are strongly
coupled and should be addressed simultaneously for
achieving time-optimal results.
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(i) First Marker-Viewing Location

Given the predicted trajectory of an object’s travel
through the robot’s workspace, a corresponding camera
placement trajectory, {G(f)}, can be determined, via a
constant transformation, to represent potential viewing-
points. Using this camera trajectory and the robot's latest
position, our objective is to find a time-optimal initial-
viewing point on {G(¢)}. A solution of this problem was
provided in [14] and will not be repeated here.

It should be noted however, that while the current
robot trajectory is executing, the planning module
continuously re-plans the unexecuted portion of the robot-
mounted camera’s motion in response to new information
generated by the object-motion prediction algorithm.

(i) Standard-Viewing Location

The robot-mounted mobile camera has to be re-
located, from its first viewing location, in order to acquire
a standard-view of the object. As for the solution utilized
above, this standard-view acquisition location can be
optimally determined for the mobile camera, based on the
information provided by the object-trajectory prediction
module and the calculated standard-viewing-axis
orientation, Section 3.3. In order to allow real-time
applicability, time-optimal task-space quintic polynomials
are used in our work for robot trajectories.

5. EXPERIMENTAL SYSTEM

5.1 Experimental Setup

The experimental system is an integration of the
following, Figure 3:
(a) The “object-trajectory predictor and robot-motion
planner” module:

— Host computer I: 80486 PC DX4 100 MHz.

— Imaging subsystem: A Hitachi 30Hz CCD camera
fixed above the object motion plane. A PC-based
PIP Matrox digitizer board with 640x480
resolution.

— Software: A KF-based object-motion-prediction
algorithm. A camera-viewing-location-planner and
robot-motion-planner algorithm.

b) The “object recognizer” module:

~ Host computer 2: 80486 PC DX 33MHz.

— Imaging subsystem: A JVC 30Hz CCD camera
mounted on the a six degree-of-freedom GMF S-100
robot’s wrist (fifth link). A PC-based PIP Matrox
digitizer board with 640x480 resolution.

— Software: Object-recognition algorithms.

¢) Other auxiliary subsystems:

~ Object-motion  simulator: A NC X-Y table,
controllable from a RS-232 port, used to produce the
object motion.
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— Communication interface: Implemented on a 9600-
bps RS-232 serial communication line, to provide
exchange of commands and data amongst Host 1,
Host 2, robot controller and the NC-table controller.

fixed camera
mobile camera

NC XY table

—> l
ob]ect

recognition
host 1 host 2 algorithm

object motion

predictor & robot-

motion planner
algorithm

Figure 3. Experimental setup.

5.2 System Implementation

The Hitachi CCD camera with a 25 mm lens is placed
1.8 m above the surface of the X-Y table. This setup
yields a 600x400 mm? field of view with ~0.93 mim/pixel
resolution. The JVC CCD camera, mounted near the
robot’s end-effector, also had a 25 mm lens. Both
cameras were calibrated using the mono-view non-co-
planar point technique proposed in [15]. The error in X
and Y directions was less than 0.5% for both. Different
object-motion trajectories were induced via programmed
movement of the NC table at speeds from 4~12 mm/s
(limited by the travel length and field of view in our
experiment, but can be increased to higher values in a
different setting).

Since the objects were pre-marked using red markers,
a red-color filter, was used to threshold the analog
camera-signals such that only one feature, the circle’s
centroid, is tracked. After locating the marker in the
camera's field of view, the marker's centroid is
determined, and used to update the KF. One-step-ahead
KF prediction is used to follow the marker across the field
of view. At present, the entire process (i.e., grabbing an
image, finding the object's centroid, and updating the KF)
takes ~65 msec.

Once the object’s trajectory has been predicted and the
robot has reached its initial viewing-position, two
consecutive images are taken. Markers on the object are
detected by the mobile camera. Based on the algorithm
presented earlier, a marker’s pose, represented by a set of
3D coordinates of the marker center and the surface
normal vector of the marker, is determined. The marker’s
pose is passed to the motion-planning system, which in
turn sends the mobile camera to its standard-view-
acquisition location. Subsequently, the recognition system
performs the matching of 2D signature.

5.3 Results

The recognition system was implemented and tested
successfully for a set of seven different objects, shown in
Figure 4. Their sizes ranged from 40x40x35mm’ (Object
#2) to 90x90x70mm’ (Object #5). All the objects were
distinguished and classified successfully in our
experiments. Figure 5(a)-(d) show images taken by the
robot-mounted camera at different stages. Initially (Time
0), the camera is placed at a home position. When the
overhead camera detects the object, the trajectory planner
guides the robot to move to the initial viewing position,
which is approximately 1 m above the X-Y table, aiming
at the randomly posed object at an angle of 63 degrees. At
Time 1, the first image is obtained and a unique solution
for the position of the marker is calculated, Fig. 5(a), (the
elliptical image of the marker is highlighted, and its major
and minor axes are shown). Two possible surface normal
vectors of the surface are calculated and stored. At Time
2, when the X-Y table moves to a second position at an
arbitrary speed, a second image is taken, Fig. 5(b), and the
true surface normal is identified. The surface normal value
is sent to the trajectory planner for the planning of the
camera path. Subsequently, the robot automatically moves
to the standard-viewing position. Without any delay, the
mobile camera is able to take a snapshot of the standard-
view as soon as it arrives at the standard-viewing position,
Fig. 5(c). From this view, the object is successfully
recognized as Object #7, Fig. 5(d).

6. CONCLUSIONS

As existing general approaches for moving-object-
recognition have proven to be difficult to implement,
active-vision systems have shown their potential ' in
simplifying the problem and thus expediting the process.
The active-vision system presented in this paper
demonstrated a collection of novel techniques used in
tracking, trajectory planning, recognition and camera
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placement. This system, which features the principles of
active sensing and object-pre-marking, is capable of
recognizing pre-marked objects moving along predictable
paths.

Our system is only a potential implementation example
and should not be viewed as globally optimal. Variety of
issues, especially in real-time imaging, still remain to be
addressed.

(b)
IDENTITY: OBJECT # 7
;!;m' ~'W.7\\ o~
Lo~
(©) d

Figure 5. (a) Image of the object taken at Time 1;
(b) Time 2; (c) Time 3, a standard-view of the object;
(d) Object is recognized as Object #7.
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