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Abstract

This paper describes the software and algorithmic issues
involved in developing scalable large-scale biologically-
inspired spiking neural networks. These neural networks
are useful in object recognition and signal processing
tasks, but will also be useful in simulations to help
understand the human brain. The software is written
using object oriented programming and is very general
and usable for processing a wide range of sensor data
and for data fusion.

1. Introduction

Artificial neural networks (ANN) can broadly be
classified into three generations [1, 2] :

e 1% generation had neurons which restricted the

output signals to discrete '0' or '1' values.

+ 2™ generation models used a continuous activation
function allowing for the output to take values
between '0' and 'l' and used training methods such
as back propagation.

+ 3" generation are time-dependent spiking neural
networks, as discussed herein.

In a previous paper [3], we showed how the 2™
generation models could be made scalable and run
efficiently on massively parallel computers. In that work,
we developed an object-oriented, massively-parallel ANN
software package SPANN (Scalable Parallel Artificial
Neural Network). MPI was used to parallelize the C++
code. The back-propagation algorithm was used to train
the network. The training of a problem size with 2 billion
neuron weights on an IBM BlueGene/L computer using
1000 dual PowerPC 440 processors required less than 30
minutes. Various comparisons in training time, forward
propagation time, and error reduction were also shown.
These, however, are not biologically plausible neural
networks, even though they have proven useful in
numerous engineered systems.
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Spiking neural networks belong to the 3™ generation
of neural networks and, like their biological counterparts,
use spikes or pulses to represent information flow.
Information is encoded both in the timing as well as the
rate of spiking. The motivation behind exploring the
spiking neuron models is that temporal information can
also be encoded in the input signals and multiplexing can
be achieved using pulse coding. Also, spiking ANNs are
more biologically plausible than traditional ANNs. The
software required for these neural networks are no more
difficult to parallelize than that used for the 2" generation
networks, and therefore massive parallelization is not
discussed here. The code developed here is meant to run
on multi-processor or multi-core computers using threads.
This type of machine is now being used as the nodes of
massively parallel computers. A $3000 dual quad-core
computer is now roughly the same speed as a 1,000-
processor machine from 10 years ago.

In [4], a spiking neural network model was developed
to identify characters in a simple character set. Spike time
dependent plasticity (STDP) was used for training. These
were small-scale simulations programmed in Matlab. The
emphasis in the present work is in developing large-scale
and scalable systems that can be used for very large
neural networks.

A number of other software systems have been
developed in the past for simulation of spiking neural
networks. They vary in the degree to which they represent
biologically realistic neurons, support parallel computing,
their complexity, operating system support, performance,
etc. Some examples are GENESIS [5], PGENESIS [6],
the neo-cortical simulator (NCS) [7], the Neural
Simulation Tool (NEST) [8], spikeNET [9], NEURON
[10], and Neocognitron [11]. Most of these are medium to
high in biological realism [12]. Systems which are more
biologically meaningful tend to be more complex, and
require more memory and CPU time.
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2. Biological Neural Networks

The human brain is the most complicated systems in
the known universe. It has roughly 10'" neurons and 10"
synapses. The number of neurons in the human brain is
roughly the same as the number of stars in the Milky Way
galaxy. If each synapse represents a byte, then the storage
capacity of the brain is 10 times larger than the data in the
Library of Congress (500 terabytes). These are staggering
numbers, and it would be extremely difficult to simulate
this on even the largest current supercomputers. Even
more daunting than the size of the problem, however, is
the “wiring diagram.” Each neuron can be connected to
up to 10,000 other neurons, there are feedback
connections, and there are different kinds of neurons. In
addition, the number of input sensors and output paths are
about six orders of magnitude larger than so-called
advanced robots.

Figure 1 shows the memory and speed of several
biological and human-built systems. The largest computer
in the world (at the moment) is the IBM BlueGene [13]
with 212,992 processors, which is roughly equivalent to
the speed and power of the human brain. This is an overly
optimistic comparison however, since the brain is much
more complex than a simple feed-forward neural network.
In addition, as shown in Figure 2, the power requirements
and volume required of the supercomputer are about six
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Figure 1. A comparison of biological and computer
system speed and memory.

orders of magnitude larger than the human brain. And
finally, few people (if any) ever have access to all the
processors in this machine at one time. Researchers rarely
get more than 500 processors on any supercomputer. As
shown in the Figure, however, there are relatively
powerful servers (e.g. dual quad-core computers with 32
GB RAM) that have nearly the speed and memory of a
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Figure 2 Power and volume required by computers
and human brain.

mouse brain (roughly 107 neurons and 10" synapses). So
a great deal of progress can be made by simply using
quad-core chips and thread-based programming.

3. Computational Algorithms

Some of the main issues in developing scalable

biologically-inspired neural networks are:

¢ Neuron modeling

*  Synapse modeling

¢ Connectivity or wiring diagrams

* Learning

¢ CPU time and memory requirements
Some of the issues related to these topics are discussed
below and in the paper by Long and Gupta [1].

3.1 Neuron Modeling

One of the most widely known and detailed models of
a biological neuron is due to Hodgkin and Huxley (H-H)
[1, 14, 15]. This model is often discussed in neuroscience,
but is seldom used in engineering applications since it is
very expensive to simulate. This model uses four coupled,
nonlinear ordinary differential equations to model each
neuron. It must be remembered, however, that the number
of neurons in the brain is roughly 10,000 times fewer than
the number of synapses.

Another well known, but much simpler, model of a
neuron is the leaky integrate and fire (LIF) neuron [1, 14].
For neuron i in a system of neurons, this can be modeled
using:

dv, 1

7;=E[(Iinput+li)R_vi] (D
where v is voltage, R is resistance, C is capacitance, and
Lipwe 1s the input current (usually zero), and /; is the
current from the synapses (discussed in the next section).
Table 1 shows some typical values for these parameters.



Table 1. Typical values for LIF neuron model.

Parameter Typical Values
v 50 millivolts
R 40 megaOhms
C 0.2 nanoFarads
I 0.5 nanoAmps
RC 8.0 milliSeconds
At 0.1 milliSeconds

Long and Gupta [1] showed that this method is about
10,000 times faster than solving the H-H equations, but
yet the solution is often quite similar. The details of the
neuron behavior is probably not crucial if one is primarily
interested in developing engineering neural network
systems. Also, simple Euler explicit methods are often
used to integrate the equations, and it isn’t clear that
higher order methods will be useful [1] since the solutions
are not smooth.

3.2 Synapse Modeling

The neurons connect to one another through synapses.
If a neuron fires, a charge is transmitted to the other
neurons through the synapses. The current can be
M
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where N is the number of presynaptic neurons and M is
the number of times the jth presynaptic neuron has fired
since the i™ neuron fired. The coefficients wi; and a,
represent the synapse weights and the increment of
current injected per spike. The weights take on values
from -1.0 to 1.0. This current has a 1/N scaling so that
consistent behavior is obtained no matter how many
synapses a neuron has connected to it. This is somewhat
realistic biologically since neurons and synapses have
limited surface areas and volumes.

3.3 Connectivity or Wiring Diagrams

The neural connections in the human brain are far
more complex than most artificial neural networks. Figure
3 shows an image of the human frontal cortex from Cajal
[16]. Most neural network software is restricted to fairly
simple feed-forward connections, with possibly some
recurrent connections.

For software with truly arbitrary connections, one
could allow each synapse to store pointers to the two
neurons that connect to it, but this would require two 64-
bit numbers for each synapse. For a network with a billion
synapses (e.g. a cockroach), this would require 16
gigabytes of data just for these two pointers. The

software developed here stores only 1 byte per synapse
(for the synaptic weight).

An alternative approach to simulating complex
networks is used here. Each neuron stores five integers
(20 bytes/neuron). In addition, the network here has
distinct layers, possibly six layers like the neocortex.
These layers each contain a 2-D array of neurons, so the
neurons in each layer can be addressed using i, j indices;
and the layer can be addressed with an index k. The five
integers that each neuron stores for its connectivity data
are: imin, imax, jmin, jmax, and k. So each neuron can
connect to a rectangular patch of neurons in any other
layer (including recurrent connections). This offers a great
deal of flexibility in defining “wiring diagrams” with
minimal memory.

3.4 Learning

The learning approach used here is based on the ideas
that Hebb proposed in 1949 [17]:

“When an axon of cell A is near enough to excite cell

B and repeatedly or persistently takes part in firing it,

some growth process or metabolic change takes place

in one or both cells such that A's efficiency, as one of
the cells firing B, is increased.”
Experimental evidence has proven the above idea to be
quite accurate [18]. He goes on to say later in the book:

“The old, long-established memory would then last,

not reversible except with pathological processes in

the brain; less strongly established memories would

gradually disappear unless reinforced.”
which has also been shown to be true. This second phrase
is as important as the first one but is seldom mentioned,
partly because the book was fairly difficult to find for
many years. Hebb’s book has been called the second most
important biology book. Darwin’s book [19] is clearly
first, and it is brilliantly discussed relative to intelligence
and consciousness by Dennett [20, 21] and Pinker [22].
While philosophers have debated the subject of
consciousness for more than 2000 years, it is now clear
that intelligence and consciousness are emergent
properties of the neural and synaptic systems in the
human brain [20, 23, 24].

Spike-time dependent plasticity (STDP) [4, 25] is one
form of Hebbian learning and has been observed by
neuroscientists [18]. In one form of STDP the synaptic
weights are assumed to change according to:

4% o) At <0
, At>0

where the variables are typically: =20 ms, A'=0.005, A"
=0.006, and At=(tpe — tyos) is the time delay between the
presynaptic spike and the postsynaptic spike. If the
presynaptic spike occurs before the postsynaptic spike, it
probably helped cause the postsynaptic spike, and
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Figure 3 Drawing from Cajal of human frontal
cortex.

consequently we should encourage this by increasing the
synaptic weight. And if the presynaptic spike occurs after
the postsynaptic spike, then we reduce the weight of the
synapse since there was no cause and effect in this case.
STDP can be used for inhibitory or excitatory neurons.
This is one example of Hebbian-style learning, the
increase in synapse weights is larger if the two neurons
fire closer together.

One approach to implementing the weight change is to
use:

Wold + AW (Wmax - Wold) b AW = 0

4
Wold - Aw (Wmin - Wold) H Aw < 0 ( )
But there are many possible ways of implementing the
change. The above form allows the use of a minimum and
maximum weight, but it is not very robust
computationally. The weights often simply end up at the
minimum or maximum values or fluctuate endlessly.
Also, as the weight approaches either the minimum or the
maximum the relative weight change gets reduced.

The above algorithm is not necessarily the optimal
learning approach for spiking networks, even though it
has worked well on a number of applications and Eqn. (3)
has been shown to roughly agree with experimental data.

One issue with STDP involves causality. When a post-
synaptic neuron fires in a time-marching code, it is
unknown (at that time) whether one of the presynaptic
neurons will fire in the future (and at what time). In the

laboratory, current can be injected near individual neurons
after they fire, but this is not necessarily an efficient
computational algorithm. The above algorithm can be
easily implemented for very small systems where memory
storage, computational work, and scalabilty are not an
issue, but for millions of neurons and billions of synapses
we need extremely efficient algorithms and minimal
gather/scatter operations (i.e. neurons sending messages
to both pre- and post-synaptic connections). The above is
relatively straight-forward to implement for small neural
networks, but for large systems where memory and
computations must be minimized, it is not necessarily
effective. This is especially true for complex wiring
diagrams, connections that span multiple layers of the
network, and connections that have delays.

Hebbian learning based on spike timing is
implemented very efficiently in the software developed
here. It is implemented in essentially an “event driven”
manner. That is, if a neuron fires, then the learning
method is called by the neuron that fired. This neuron has
ready access to all the presynaptic neurons that connect to
it (but it does not need to know who its post-synaptic
connections are). When the postsynaptic neuron fires (and
learning is turned on), it can then loop thru all the
presynaptic neurons and compute which ones also fired
during the time interval between this and the previous
postsynaptic firing. Since the current is reset each time a
neuron fires, we simply need to know which presynaptic
neurons fired between the last two firings of the
postsynaptic firings. These are the neurons that that are
strengthened. Any neuron that has not contributed to the
postsynaptic neuron firing has its weight decreased. This
approach is spike-time dependent, but it is different than
STDP, and it is scalable and efficient.

The other key to a robust spike-time learning algorithm
is homeostatic behavior. This is true for biological and
computational systems. Homeostasis is defined as “a
relatively stable state of equilibrium.” This prevents all
the synaptic weights from becoming very large or very
small. In the present code, the sum of all the synaptic
weights for a particular neuron remains constant.

4. Software approach

The software developed here uses an object-oriented
programming (OOP) approach. It is programmed in Java,
but it could be easily changed to C++ . We have had a lot
of success using the OOP approach for a wide variety of
scientific computing applications [26-28]. Long [29]
discusses the importance of software engineering, and the
need for increased education in this area. The OOP
approach (encapsulation, polymorphism, and inheritance)
allows one to develop very understandable and
maintainable code.

Java has many of the advantages of C++, but without
many of the problems of C++. It has many features built



into the language that few other languages can claim, such
as threads, exception handling, OOP, graphics, graphical
user interfaces, and remote method invocation (RMI).
Early Java implementations were fairly inefficient, due to
immature compilers and being run in interpreted mode,
but now the speed of Java is often equal or close to C++.
Reference [1] showed that Java was only 7% slower than
C++ for a linear algebra task.

Using an OOP approach allows one to efficiently
develop very complex software systems. In this case, we
were able to first develop a Neuron class, and we could
thoroughly debug that piece before moving on to the
higher level functions (Layer class, Network class, and
Vision class) of the code. The ability to encapsulate data
and methods is especially useful.

Figure 4 shows the time history of neuron voltages in a
neural network that used a webcam to provide the input to
the first layer of neurons.

Neurons

3
Time Step Number

Figure 4. Neuron output.

5. CPU Time and Memory Requirements

Figure 5 shows the performance of the code, running
on a 2.4 GHz (Intel Core 2 Duo) MacBook Pro laptop
with 2 GB RAM using Java Version 1.5.0 13. The code
was run for 250 time steps (67 milliseconds of simulation
time). The networks had three layers. The neurons in the
first layer each had only one synapse, but in layers 2 and
3 all the neurons were connected to all the neurons in the
previous layer. The number of neurons in these
simulations ranged from 300 to 67,500. Figure 5 shows
the CPU time vs. number of synapses. Other than for very
small problems, the performance is linear with the
number of synapses. In addition, it shows that due to the
low memory requirements the laptop can run up to a
billion synapses (which is roughly equivalent to a
cockroach). The largest case had each neuron connected
to up to 22,000 other neurons. The human brain has
neurons with up to 10,000 connections each.

Also shown in Figure 5 are cases that performed the
Hebbian learning algorithm. It is extremely encouraging

to see that the learning case required essentially the same
amount of CPU time/time step as the cases with no
learning. The performance of the code is linear with
number of neurons also (with no synapses).

The software was designed to use as little memory and
CPU time as possible. Since we expect to use hundreds or
thousands of synapses/neuron, the synapses dominate
both the memory and CPU requirements. Also, in order to
minimize memory used, the synapse weights are stored as
byte values. When they are needed for calculations, they
are converted to floats. Also, the spikes occur relatively
rarely, so most of the time steps can be computed quite
rapidly with roughly one floating point
operation/synapse/step plus some logical operations. If a
spike occurs there are additional operations, and if
learning is turned on there are some additional operations,
but these are relatively rare events. If a neuron spikes at a
rate of 100 Hz and the time step size is 0.1 milliseconds,
then there is roughly one spike every 100 time steps.

7. Conclusions

In this paper the algorithms and software for spiking
neural network simulations have been described. These
neural networks offer the promise of better computer
vision systems, as well as the hope of increasing our
understanding of biological systems. Some preliminary
results were included to demonstrate the algorithms and
software. These neural networks can be designed to
require minimal memory and processing per synapse, but
they do require a large number of very small time steps to
march the solutions forward in time. We plan to
parallelize these codes and to apply them to more
complicated applications in the near future.
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