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Abstract 
This paper describes the software and algorithmic issues 

involved in developing scalable large-scale biologically-

inspired spiking neural networks. These neural networks 

are useful in object recognition and signal processing 

tasks, but will also be useful in simulations to help 

understand the human brain. The software is written 

using object oriented programming and is very general 

and usable for processing a wide range of sensor data 

and for data fusion.  
 

1. Introduction 
 

Artificial neural networks (ANN) can broadly be 

classified into three generations [1, 2] : 

• 1st generation had neurons which restricted the 

output signals to discrete '0' or '1' values.  
• 2nd  generation models used a continuous activation 

function allowing for the output to take values 

between '0' and '1' and used training methods such 

as back propagation. 

• 3rd generation are time-dependent spiking neural 

networks, as discussed herein.  

In a previous paper [3], we showed how the 2nd 

generation models could be made scalable and run 

efficiently on massively parallel computers. In that work, 

we developed an object-oriented, massively-parallel ANN 

software package SPANN (Scalable Parallel Artificial 
Neural Network). MPI was used to parallelize the C++ 

code. The back-propagation algorithm was used to train 

the network. The training of a problem size with 2 billion 

neuron weights on an IBM BlueGene/L computer using 

1000 dual PowerPC 440 processors required less than 30 

minutes. Various comparisons in training time, forward 

propagation time, and error reduction were also shown. 

These, however, are not biologically plausible neural 

networks, even though they have proven useful in 

numerous engineered systems.  

Spiking neural networks belong to the 3rd generation 

of neural networks and, like their biological counterparts, 

use spikes or pulses to represent information flow. 

Information is encoded both in the timing as well as the 
rate of spiking. The motivation behind exploring the 

spiking neuron models is that temporal information can 

also be encoded in the input signals and multiplexing can 

be achieved using pulse coding. Also, spiking ANNs are 

more biologically plausible than traditional ANNs. The 

software required for these neural networks are no more 

difficult to parallelize than that used for the 2nd generation 

networks, and therefore massive parallelization is not 

discussed here. The code developed here is meant to run 

on multi-processor or multi-core computers using threads. 

This type of machine is now being used as the nodes of 
massively parallel computers. A $3000 dual quad-core 

computer is now roughly the same speed as a 1,000-

processor machine from 10 years ago. 

In [4], a spiking neural network model was developed 

to identify characters in a simple character set. Spike time 

dependent plasticity (STDP) was used for training. These 

were small-scale simulations programmed in Matlab. The 

emphasis in the present work is in developing large-scale 

and scalable systems that can be used for very large 

neural networks. 

A number of other software systems have been 
developed in the past for simulation of spiking neural 

networks. They vary in the degree to which they represent 

biologically realistic neurons, support parallel computing, 

their complexity, operating system support, performance, 

etc. Some examples are GENESIS [5], PGENESIS [6], 

the neo-cortical simulator (NCS) [7], the Neural 

Simulation Tool (NEST) [8], spikeNET [9], NEURON 

[10], and Neocognitron [11]. Most of these are medium to 

high in biological realism [12]. Systems which are more 

biologically meaningful tend to be more complex, and 

require more memory and CPU time.  

and 
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2. Biological Neural Networks 
 

The human brain is the most complicated systems in 

the known universe. It has roughly 10
11

 neurons and 10
15

 

synapses. The number of neurons in the human brain is 

roughly the same as the number of stars in the Milky Way 

galaxy. If each synapse represents a byte, then the storage 

capacity of the brain is 10 times larger than the data in the 

Library of Congress (500 terabytes). These are staggering 

numbers, and it would be extremely difficult to simulate 

this on even the largest current supercomputers. Even 

more daunting than the size of the problem, however, is 

the “wiring diagram.” Each neuron can be connected to 

up to 10,000 other neurons, there are feedback 

connections, and there are different kinds of neurons. In 

addition, the number of input sensors and output paths are 

about six orders of magnitude larger than so-called 

advanced robots. 

Figure 1 shows the memory and speed of several 

biological and human-built systems. The largest computer 

in the world (at the moment) is the IBM BlueGene [13] 

with 212,992 processors, which is roughly equivalent to 

the speed and power of the human brain. This is an overly 

optimistic comparison however, since the brain is much 

more complex than a simple feed-forward neural network.  

In addition, as shown in Figure 2, the power requirements 

and volume required of the supercomputer are about six 

orders of magnitude larger than the human brain. And 

finally, few people (if any) ever have access to all the 

processors in this machine at one time. Researchers rarely 

get more than 500 processors on any supercomputer. As 

shown in the Figure, however, there are relatively 

powerful servers (e.g. dual quad-core computers with 32 

GB RAM) that have nearly the speed and memory of a 

mouse brain (roughly 10
7
 neurons and 10

11
 synapses). So 

a great deal of progress can be made by simply using 

quad-core chips and thread-based programming. 

 

3. Computational Algorithms 
 

Some of the main issues in developing scalable 

biologically-inspired neural networks are: 

• Neuron modeling 

• Synapse modeling  

• Connectivity or wiring diagrams 

• Learning 

• CPU time and memory requirements 

Some of the issues related to these topics are discussed 

below and in the paper by Long and Gupta [1]. 

 

3.1  Neuron Modeling 
 

One of the most widely known and detailed models of 

a biological neuron is due to Hodgkin and Huxley (H-H) 

[1, 14, 15]. This model is often discussed in neuroscience, 

but is seldom used in engineering applications since it is 

very expensive to simulate. This model uses four coupled, 

nonlinear ordinary differential equations to model each 

neuron. It must be remembered, however, that the number 

of neurons in the brain is roughly 10,000 times fewer than 

the number of synapses.   

Another well known, but much simpler, model of a 

neuron is the leaky integrate and fire (LIF) neuron [1, 14]. 

For neuron i in a system of neurons, this can be modeled 

using: 

dvi

dt
=
1

RC
(Iinput + Ii)R ! vi[ ]           (1) 

where v is voltage, R is resistance, C is capacitance, and 

Iinput is the input current (usually zero), and Ii is the 

current from the synapses (discussed in the next section). 

Table 1 shows some typical values for these parameters. 

Figure 1. A comparison of biological and computer 

system speed and memory. 

 

 

 
Figure 2 Power and volume required by computers 

and human brain. 



 

Table 1. Typical values for LIF neuron model. 

Parameter Typical Values 

v 50 millivolts 

R 40 megaOhms 

C 0.2 nanoFarads 

I 0.5 nanoAmps 

RC 8.0 milliSeconds 

!t 0.1 milliSeconds 

 

Long and Gupta [1] showed that this method is about 

10,000 times faster than solving the H-H equations, but 

yet the solution is often quite similar. The details of the 

neuron behavior is probably not crucial if one is primarily 

interested in developing engineering neural network 

systems. Also, simple Euler explicit methods are often 

used to integrate the equations, and it isn’t clear that 

higher order methods will be useful [1] since the solutions 

are not smooth. 

 

3.2 Synapse  Modeling 
 

The neurons connect to one another through synapses. 

If a neuron fires, a charge is transmitted to the other 

neurons through the synapses. The current can be 

modeled as: 

Ii =
!

N
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k=1
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j=1

N

$              (2) 

where N is the number of presynaptic neurons and M is 

the number of times the j
th

 presynaptic neuron has fired 

since the i
th

 neuron fired. The coefficients wij and !, 

represent the synapse weights and the increment of 

current injected per spike. The weights take on values 

from -1.0 to 1.0. This current has a 1/N scaling so that 

consistent behavior is obtained no matter how many 

synapses a neuron has connected to it. This is somewhat 

realistic biologically since neurons and synapses have 

limited surface areas and volumes. 

 

3.3 Connectivity or Wir ing Diagrams 
 

The neural connections in the human brain are far 

more complex than most artificial neural networks. Figure 

3 shows an image of the human frontal cortex from Cajal 

[16]. Most neural network software is restricted to fairly 

simple feed-forward connections, with possibly some 

recurrent connections.  

For software with truly arbitrary connections, one 

could allow each synapse to store pointers to the two 

neurons that connect to it, but this would require two 64-

bit numbers for each synapse. For a network with a billion 

synapses (e.g. a cockroach), this would require 16 

gigabytes of data just for these two pointers.  The 

software developed here stores only 1 byte per synapse 

(for the synaptic weight). 

An alternative approach to simulating complex 

networks is used here. Each neuron stores five integers 

(20 bytes/neuron). In addition, the network here has 

distinct layers, possibly six layers like the neocortex. 

These layers each contain a 2-D array of neurons, so the 

neurons in each layer can be addressed using i, j indices; 

and the layer can be addressed with an index k. The five 

integers that each neuron stores for its connectivity data 

are: imin, imax, jmin, jmax, and k. So each neuron can 

connect to a rectangular patch of neurons in any other 

layer (including recurrent connections). This offers a great 

deal of flexibility in defining “wiring diagrams” with 

minimal memory.  

 

3.4 Learning 
 

The learning approach used here is based on the ideas 

that Hebb proposed in 1949 [17]: 

“When an axon of cell A is near enough to excite cell 

B and repeatedly or persistently takes part in firing it, 

some growth process or metabolic change takes place 

in one or both cells such that A's efficiency, as one of 

the cells firing B, is increased.” 

Experimental evidence has proven the above idea to be 

quite accurate [18]. He goes on to say later in the book: 

“The old, long-established memory would then last, 

not reversible except with pathological processes in 

the brain; less strongly established memories would 

gradually disappear unless reinforced.”  

which has also been shown to be true. This second phrase 

is as important as the first one but is seldom mentioned, 

partly because the book was fairly difficult to find for 

many years. Hebb’s book has been called the second most 

important biology book. Darwin’s book [19] is clearly 

first, and it is brilliantly discussed relative to intelligence 

and consciousness by Dennett [20, 21] and Pinker [22]. 

While philosophers have debated the subject of 

consciousness for more than 2000 years, it is now clear 

that intelligence and consciousness are emergent 

properties of the neural and synaptic systems in the 

human brain [20, 23, 24].  

Spike-time dependent plasticity (STDP) [4, 25] is one 

form of Hebbian learning and has been observed by 

neuroscientists [18]. In one form of STDP the synaptic 

weights are assumed to change according to: 
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where the variables are typically: "=20 ms, A
+
=0.005, A

-

=0.006, and #t=(tpre – tpost) is the time delay between the 

presynaptic spike and the postsynaptic spike. If the 

presynaptic spike occurs before the postsynaptic spike, it 

probably helped cause the postsynaptic spike, and 



consequently we should encourage this by increasing the 

synaptic weight. And if the presynaptic spike occurs after 

the postsynaptic spike, then we reduce the weight of the 

synapse since there was no cause and effect in this case. 

STDP can be used for inhibitory or excitatory neurons. 

This is one example of Hebbian-style learning, the 

increase in synapse weights is larger if the two neurons 

fire closer together. 

One approach to implementing the weight change is to 

use: 
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But there are many possible ways of implementing the 

change. The above form allows the use of a minimum and 

maximum weight, but it is not very robust 

computationally. The weights often simply end up at the 

minimum or maximum values or fluctuate endlessly. 

Also, as the weight approaches either the minimum or the 

maximum the relative weight change gets reduced. 

The above algorithm is not necessarily the optimal 

learning approach for spiking networks, even though it 

has worked well on a number of applications and Eqn. (3) 

has been shown to roughly agree with experimental data.  

One issue with STDP involves causality. When a post-

synaptic neuron fires in a time-marching code, it is 

unknown (at that time) whether one of the presynaptic 

neurons will fire in the future (and at what time). In the 

laboratory, current can be injected near individual neurons 

after they fire, but this is not necessarily an efficient 

computational algorithm. The above algorithm can be 

easily implemented for very small systems where memory 

storage, computational work, and scalabilty are not an 

issue, but for millions of neurons and billions of synapses 

we need extremely efficient algorithms and minimal 

gather/scatter operations (i.e. neurons sending messages 

to both pre- and post-synaptic connections). The above is 

relatively straight-forward to implement for small neural 

networks, but for large systems where memory and 

computations must be minimized, it is not necessarily 

effective. This is especially true for complex wiring 

diagrams, connections that span multiple layers of the 

network, and connections that have delays.  

Hebbian learning based on spike timing is 

implemented very efficiently in the software developed 

here. It is implemented in essentially an “event driven” 

manner. That is, if a neuron fires, then the learning 

method is called by the neuron that fired. This neuron has 

ready access to all the presynaptic neurons that connect to 

it (but it does not need to know who its post-synaptic 

connections are). When the postsynaptic neuron fires (and 

learning is turned on), it can then loop thru all the 

presynaptic neurons and compute which ones also fired 

during the time interval between this and the previous 

postsynaptic firing. Since the current is reset each time a 

neuron fires, we simply need to know which presynaptic 

neurons fired between the last two firings of the 

postsynaptic firings. These are the neurons that that are 

strengthened. Any neuron that has not contributed to the 

postsynaptic neuron firing has its weight decreased. This 

approach is spike-time dependent, but it is different than 

STDP, and it is scalable and efficient.  

The other key to a robust spike-time learning algorithm 

is homeostatic behavior. This is true for biological and 

computational systems. Homeostasis is defined as “a 

relatively stable state of equilibrium.” This prevents all 

the synaptic weights from becoming very large or very 

small. In the present code, the sum of all the synaptic 

weights for a particular neuron remains constant.  

 

4. Software approach 
 

The software developed here uses an object-oriented 

programming (OOP) approach. It is programmed in Java, 

but it could be easily changed to C++ . We have had a lot 

of success using the OOP approach for a wide variety of 

scientific computing applications [26-28]. Long [29] 

discusses the importance of software engineering, and the 

need for increased education in this area. The OOP 

approach (encapsulation, polymorphism, and inheritance) 

allows one to develop very understandable and 

maintainable code.  

Java has many of the advantages of C++, but without 

many of the problems of C++. It has many features built 

 
 
Figure 3 Drawing from Cajal of human frontal 

cortex. 



 

 
Figure 4. Neuron output. 

 

into the language that few other languages can claim, such 

as threads, exception handling, OOP, graphics, graphical 

user interfaces, and remote method invocation (RMI). 

Early Java implementations were fairly inefficient, due to 

immature compilers and being run in interpreted mode, 

but now the speed of Java is often equal or close to C++. 

Reference [1] showed that Java was only 7% slower than 

C++ for a linear algebra task.  

Using an OOP approach allows one to efficiently 

develop very complex software systems. In this case, we 

were able to first develop a Neuron class, and we could 

thoroughly debug that piece before moving on to the 

higher level functions (Layer class, Network class, and 

Vision class) of the code. The ability to encapsulate data 

and methods is especially useful.  

Figure 4 shows the time history of neuron voltages in a  

neural network that used a webcam to provide the input to 

the first layer of neurons.     

5. CPU Time and Memory Requirements 
 

Figure 5 shows the performance of the code, running 

on a 2.4 GHz (Intel Core 2 Duo) MacBook Pro laptop 

with 2 GB RAM using Java Version 1.5.0_13. The code 

was run for 250 time steps (67 milliseconds of simulation 

time). The networks had three layers. The neurons in the 

first layer each had only one synapse, but in layers 2 and 

3 all the neurons were connected to all the neurons in the 

previous layer. The number of neurons in these 

simulations ranged from 300 to 67,500. Figure 5 shows 

the CPU time vs. number of synapses. Other than for very 

small problems, the performance is linear with the 

number of synapses. In addition, it shows that due to the 

low memory requirements the laptop can run up to a 

billion synapses (which is roughly equivalent to a 

cockroach). The largest case had each neuron connected 

to up to 22,000 other neurons. The human brain has 

neurons with up to 10,000 connections each.  

Also shown in Figure 5 are cases that performed the 

Hebbian learning algorithm. It is extremely encouraging 

to see that the learning case required essentially the same 

amount of CPU time/time step as the cases with no 

learning. The performance of the code is linear with 

number of neurons also (with no synapses).  

The software was designed to use as little memory and 

CPU time as possible. Since we expect to use hundreds or 

thousands of synapses/neuron, the synapses dominate 

both the memory and CPU requirements. Also, in order to 

minimize memory used, the synapse weights are stored as 

byte values. When they are needed for calculations, they 

are converted to floats. Also, the spikes occur relatively 

rarely, so most of the time steps can be computed quite 

rapidly with roughly one floating point 

operation/synapse/step plus some logical operations. If a 

spike occurs there are additional operations, and if 

learning is turned on there are some additional operations, 

but these are relatively rare events. If a neuron spikes at a 

rate of 100 Hz and the time step size is 0.1 milliseconds, 

then there is roughly one spike every 100 time steps.  

 

7. Conclusions 
 

In this paper the algorithms and software for spiking 

neural network simulations have been described. These 

neural networks offer the promise of better computer 

vision systems, as well as the hope of increasing our 

understanding of biological systems. Some preliminary 

results were included to demonstrate the algorithms and 

software. These neural networks can be designed to 

require minimal memory and processing per synapse, but 

they do require a large number of very small time steps to 

march the solutions forward in time. We plan to 

parallelize these codes and to apply them to more 

complicated applications in the near future. 
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