

Scalable Biologically Inspired Neural Networks

with Spike Time Based Learning

Lyle N. Long
The Pennsylvania State University

229 Hammond Building

University Park, PA 16802

LNL@PSU.EDU

The California Institute of Technology

200 Beckman Behavioral Biology Building

Pasadena, CA 91025

LNL@CALTECH.EDU

Abstract
This paper describes the software and algorithmic issues

involved in developing scalable large-scale biologically-

inspired spiking neural networks. These neural networks

are useful in object recognition and signal processing

tasks, but will also be useful in simulations to help

understand the human brain. The software is written

using object oriented programming and is very general

and usable for processing a wide range of sensor data

and for data fusion.

1. Introduction

Artificial neural networks (ANN) can broadly be

classified into three generations [1, 2] :

• 1st generation had neurons which restricted the

output signals to discrete '0' or '1' values.
• 2nd generation models used a continuous activation

function allowing for the output to take values

between '0' and '1' and used training methods such

as back propagation.

• 3rd generation are time-dependent spiking neural

networks, as discussed herein.

In a previous paper [3], we showed how the 2nd

generation models could be made scalable and run

efficiently on massively parallel computers. In that work,

we developed an object-oriented, massively-parallel ANN

software package SPANN (Scalable Parallel Artificial
Neural Network). MPI was used to parallelize the C++

code. The back-propagation algorithm was used to train

the network. The training of a problem size with 2 billion

neuron weights on an IBM BlueGene/L computer using

1000 dual PowerPC 440 processors required less than 30

minutes. Various comparisons in training time, forward

propagation time, and error reduction were also shown.

These, however, are not biologically plausible neural

networks, even though they have proven useful in

numerous engineered systems.

Spiking neural networks belong to the 3rd generation

of neural networks and, like their biological counterparts,

use spikes or pulses to represent information flow.

Information is encoded both in the timing as well as the
rate of spiking. The motivation behind exploring the

spiking neuron models is that temporal information can

also be encoded in the input signals and multiplexing can

be achieved using pulse coding. Also, spiking ANNs are

more biologically plausible than traditional ANNs. The

software required for these neural networks are no more

difficult to parallelize than that used for the 2nd generation

networks, and therefore massive parallelization is not

discussed here. The code developed here is meant to run

on multi-processor or multi-core computers using threads.

This type of machine is now being used as the nodes of
massively parallel computers. A $3000 dual quad-core

computer is now roughly the same speed as a 1,000-

processor machine from 10 years ago.

In [4], a spiking neural network model was developed

to identify characters in a simple character set. Spike time

dependent plasticity (STDP) was used for training. These

were small-scale simulations programmed in Matlab. The

emphasis in the present work is in developing large-scale

and scalable systems that can be used for very large

neural networks.

A number of other software systems have been
developed in the past for simulation of spiking neural

networks. They vary in the degree to which they represent

biologically realistic neurons, support parallel computing,

their complexity, operating system support, performance,

etc. Some examples are GENESIS [5], PGENESIS [6],

the neo-cortical simulator (NCS) [7], the Neural

Simulation Tool (NEST) [8], spikeNET [9], NEURON

[10], and Neocognitron [11]. Most of these are medium to

high in biological realism [12]. Systems which are more

biologically meaningful tend to be more complex, and

require more memory and CPU time.

and

lnl
Text Box
Long, Lyle N., "Scalable Biologically Inspired Neural Networks with Spike Time Based Learning," Invited Paper, IEEE Symposium on Learning and Adaptive Behavior in Robotic Systems, Edinburgh, Scotland, Aug. 6-8, 2008.

2. Biological Neural Networks

The human brain is the most complicated systems in

the known universe. It has roughly 10
11

 neurons and 10
15

synapses. The number of neurons in the human brain is

roughly the same as the number of stars in the Milky Way

galaxy. If each synapse represents a byte, then the storage

capacity of the brain is 10 times larger than the data in the

Library of Congress (500 terabytes). These are staggering

numbers, and it would be extremely difficult to simulate

this on even the largest current supercomputers. Even

more daunting than the size of the problem, however, is

the “wiring diagram.” Each neuron can be connected to

up to 10,000 other neurons, there are feedback

connections, and there are different kinds of neurons. In

addition, the number of input sensors and output paths are

about six orders of magnitude larger than so-called

advanced robots.

Figure 1 shows the memory and speed of several

biological and human-built systems. The largest computer

in the world (at the moment) is the IBM BlueGene [13]

with 212,992 processors, which is roughly equivalent to

the speed and power of the human brain. This is an overly

optimistic comparison however, since the brain is much

more complex than a simple feed-forward neural network.

In addition, as shown in Figure 2, the power requirements

and volume required of the supercomputer are about six

orders of magnitude larger than the human brain. And

finally, few people (if any) ever have access to all the

processors in this machine at one time. Researchers rarely

get more than 500 processors on any supercomputer. As

shown in the Figure, however, there are relatively

powerful servers (e.g. dual quad-core computers with 32

GB RAM) that have nearly the speed and memory of a

mouse brain (roughly 10
7
 neurons and 10

11
 synapses). So

a great deal of progress can be made by simply using

quad-core chips and thread-based programming.

3. Computational Algorithms

Some of the main issues in developing scalable

biologically-inspired neural networks are:

• Neuron modeling

• Synapse modeling

• Connectivity or wiring diagrams

• Learning

• CPU time and memory requirements

Some of the issues related to these topics are discussed

below and in the paper by Long and Gupta [1].

3.1 Neuron Modeling

One of the most widely known and detailed models of

a biological neuron is due to Hodgkin and Huxley (H-H)

[1, 14, 15]. This model is often discussed in neuroscience,

but is seldom used in engineering applications since it is

very expensive to simulate. This model uses four coupled,

nonlinear ordinary differential equations to model each

neuron. It must be remembered, however, that the number

of neurons in the brain is roughly 10,000 times fewer than

the number of synapses.

Another well known, but much simpler, model of a

neuron is the leaky integrate and fire (LIF) neuron [1, 14].

For neuron i in a system of neurons, this can be modeled

using:

dvi

dt
=
1

RC
(Iinput + Ii)R ! vi[] (1)

where v is voltage, R is resistance, C is capacitance, and

Iinput is the input current (usually zero), and Ii is the

current from the synapses (discussed in the next section).

Table 1 shows some typical values for these parameters.

Figure 1. A comparison of biological and computer

system speed and memory.

Figure 2 Power and volume required by computers

and human brain.

Table 1. Typical values for LIF neuron model.

Parameter Typical Values

v 50 millivolts

R 40 megaOhms

C 0.2 nanoFarads

I 0.5 nanoAmps

RC 8.0 milliSeconds

!t 0.1 milliSeconds

Long and Gupta [1] showed that this method is about

10,000 times faster than solving the H-H equations, but

yet the solution is often quite similar. The details of the

neuron behavior is probably not crucial if one is primarily

interested in developing engineering neural network

systems. Also, simple Euler explicit methods are often

used to integrate the equations, and it isn’t clear that

higher order methods will be useful [1] since the solutions

are not smooth.

3.2 Synapse Modeling

The neurons connect to one another through synapses.

If a neuron fires, a charge is transmitted to the other

neurons through the synapses. The current can be

modeled as:

Ii =
!

N
wi j "(t# t j k)

k=1

M

$
j=1

N

$ (2)

where N is the number of presynaptic neurons and M is

the number of times the j
th

 presynaptic neuron has fired

since the i
th

 neuron fired. The coefficients wij and !,

represent the synapse weights and the increment of

current injected per spike. The weights take on values

from -1.0 to 1.0. This current has a 1/N scaling so that

consistent behavior is obtained no matter how many

synapses a neuron has connected to it. This is somewhat

realistic biologically since neurons and synapses have

limited surface areas and volumes.

3.3 Connectivity or Wir ing Diagrams

The neural connections in the human brain are far

more complex than most artificial neural networks. Figure

3 shows an image of the human frontal cortex from Cajal

[16]. Most neural network software is restricted to fairly

simple feed-forward connections, with possibly some

recurrent connections.

For software with truly arbitrary connections, one

could allow each synapse to store pointers to the two

neurons that connect to it, but this would require two 64-

bit numbers for each synapse. For a network with a billion

synapses (e.g. a cockroach), this would require 16

gigabytes of data just for these two pointers. The

software developed here stores only 1 byte per synapse

(for the synaptic weight).

An alternative approach to simulating complex

networks is used here. Each neuron stores five integers

(20 bytes/neuron). In addition, the network here has

distinct layers, possibly six layers like the neocortex.

These layers each contain a 2-D array of neurons, so the

neurons in each layer can be addressed using i, j indices;

and the layer can be addressed with an index k. The five

integers that each neuron stores for its connectivity data

are: imin, imax, jmin, jmax, and k. So each neuron can

connect to a rectangular patch of neurons in any other

layer (including recurrent connections). This offers a great

deal of flexibility in defining “wiring diagrams” with

minimal memory.

3.4 Learning

The learning approach used here is based on the ideas

that Hebb proposed in 1949 [17]:

“When an axon of cell A is near enough to excite cell

B and repeatedly or persistently takes part in firing it,

some growth process or metabolic change takes place

in one or both cells such that A's efficiency, as one of

the cells firing B, is increased.”

Experimental evidence has proven the above idea to be

quite accurate [18]. He goes on to say later in the book:

“The old, long-established memory would then last,

not reversible except with pathological processes in

the brain; less strongly established memories would

gradually disappear unless reinforced.”

which has also been shown to be true. This second phrase

is as important as the first one but is seldom mentioned,

partly because the book was fairly difficult to find for

many years. Hebb’s book has been called the second most

important biology book. Darwin’s book [19] is clearly

first, and it is brilliantly discussed relative to intelligence

and consciousness by Dennett [20, 21] and Pinker [22].

While philosophers have debated the subject of

consciousness for more than 2000 years, it is now clear

that intelligence and consciousness are emergent

properties of the neural and synaptic systems in the

human brain [20, 23, 24].

Spike-time dependent plasticity (STDP) [4, 25] is one

form of Hebbian learning and has been observed by

neuroscientists [18]. In one form of STDP the synaptic

weights are assumed to change according to:

()

()!"

!
#
$

>%&

'%
=% &

+

%&&

%+

0,

0,
/

/

teA

teA
w

t

t

(

(

 (3)

where the variables are typically: "=20 ms, A
+
=0.005, A

-

=0.006, and #t=(tpre – tpost) is the time delay between the

presynaptic spike and the postsynaptic spike. If the

presynaptic spike occurs before the postsynaptic spike, it

probably helped cause the postsynaptic spike, and

consequently we should encourage this by increasing the

synaptic weight. And if the presynaptic spike occurs after

the postsynaptic spike, then we reduce the weight of the

synapse since there was no cause and effect in this case.

STDP can be used for inhibitory or excitatory neurons.

This is one example of Hebbian-style learning, the

increase in synapse weights is larger if the two neurons

fire closer together.

One approach to implementing the weight change is to

use:

()
()!

"
#

<$%$%

&$%$+
=

0,

0,

min

max

wwwww

wwwww
w

oldold

oldold
 (4)

But there are many possible ways of implementing the

change. The above form allows the use of a minimum and

maximum weight, but it is not very robust

computationally. The weights often simply end up at the

minimum or maximum values or fluctuate endlessly.

Also, as the weight approaches either the minimum or the

maximum the relative weight change gets reduced.

The above algorithm is not necessarily the optimal

learning approach for spiking networks, even though it

has worked well on a number of applications and Eqn. (3)

has been shown to roughly agree with experimental data.

One issue with STDP involves causality. When a post-

synaptic neuron fires in a time-marching code, it is

unknown (at that time) whether one of the presynaptic

neurons will fire in the future (and at what time). In the

laboratory, current can be injected near individual neurons

after they fire, but this is not necessarily an efficient

computational algorithm. The above algorithm can be

easily implemented for very small systems where memory

storage, computational work, and scalabilty are not an

issue, but for millions of neurons and billions of synapses

we need extremely efficient algorithms and minimal

gather/scatter operations (i.e. neurons sending messages

to both pre- and post-synaptic connections). The above is

relatively straight-forward to implement for small neural

networks, but for large systems where memory and

computations must be minimized, it is not necessarily

effective. This is especially true for complex wiring

diagrams, connections that span multiple layers of the

network, and connections that have delays.

Hebbian learning based on spike timing is

implemented very efficiently in the software developed

here. It is implemented in essentially an “event driven”

manner. That is, if a neuron fires, then the learning

method is called by the neuron that fired. This neuron has

ready access to all the presynaptic neurons that connect to

it (but it does not need to know who its post-synaptic

connections are). When the postsynaptic neuron fires (and

learning is turned on), it can then loop thru all the

presynaptic neurons and compute which ones also fired

during the time interval between this and the previous

postsynaptic firing. Since the current is reset each time a

neuron fires, we simply need to know which presynaptic

neurons fired between the last two firings of the

postsynaptic firings. These are the neurons that that are

strengthened. Any neuron that has not contributed to the

postsynaptic neuron firing has its weight decreased. This

approach is spike-time dependent, but it is different than

STDP, and it is scalable and efficient.

The other key to a robust spike-time learning algorithm

is homeostatic behavior. This is true for biological and

computational systems. Homeostasis is defined as “a

relatively stable state of equilibrium.” This prevents all

the synaptic weights from becoming very large or very

small. In the present code, the sum of all the synaptic

weights for a particular neuron remains constant.

4. Software approach

The software developed here uses an object-oriented

programming (OOP) approach. It is programmed in Java,

but it could be easily changed to C++ . We have had a lot

of success using the OOP approach for a wide variety of

scientific computing applications [26-28]. Long [29]

discusses the importance of software engineering, and the

need for increased education in this area. The OOP

approach (encapsulation, polymorphism, and inheritance)

allows one to develop very understandable and

maintainable code.

Java has many of the advantages of C++, but without

many of the problems of C++. It has many features built

Figure 3 Drawing from Cajal of human frontal

cortex.

Figure 4. Neuron output.

into the language that few other languages can claim, such

as threads, exception handling, OOP, graphics, graphical

user interfaces, and remote method invocation (RMI).

Early Java implementations were fairly inefficient, due to

immature compilers and being run in interpreted mode,

but now the speed of Java is often equal or close to C++.

Reference [1] showed that Java was only 7% slower than

C++ for a linear algebra task.

Using an OOP approach allows one to efficiently

develop very complex software systems. In this case, we

were able to first develop a Neuron class, and we could

thoroughly debug that piece before moving on to the

higher level functions (Layer class, Network class, and

Vision class) of the code. The ability to encapsulate data

and methods is especially useful.

Figure 4 shows the time history of neuron voltages in a

neural network that used a webcam to provide the input to

the first layer of neurons.

5. CPU Time and Memory Requirements

Figure 5 shows the performance of the code, running

on a 2.4 GHz (Intel Core 2 Duo) MacBook Pro laptop

with 2 GB RAM using Java Version 1.5.0_13. The code

was run for 250 time steps (67 milliseconds of simulation

time). The networks had three layers. The neurons in the

first layer each had only one synapse, but in layers 2 and

3 all the neurons were connected to all the neurons in the

previous layer. The number of neurons in these

simulations ranged from 300 to 67,500. Figure 5 shows

the CPU time vs. number of synapses. Other than for very

small problems, the performance is linear with the

number of synapses. In addition, it shows that due to the

low memory requirements the laptop can run up to a

billion synapses (which is roughly equivalent to a

cockroach). The largest case had each neuron connected

to up to 22,000 other neurons. The human brain has

neurons with up to 10,000 connections each.

Also shown in Figure 5 are cases that performed the

Hebbian learning algorithm. It is extremely encouraging

to see that the learning case required essentially the same

amount of CPU time/time step as the cases with no

learning. The performance of the code is linear with

number of neurons also (with no synapses).

The software was designed to use as little memory and

CPU time as possible. Since we expect to use hundreds or

thousands of synapses/neuron, the synapses dominate

both the memory and CPU requirements. Also, in order to

minimize memory used, the synapse weights are stored as

byte values. When they are needed for calculations, they

are converted to floats. Also, the spikes occur relatively

rarely, so most of the time steps can be computed quite

rapidly with roughly one floating point

operation/synapse/step plus some logical operations. If a

spike occurs there are additional operations, and if

learning is turned on there are some additional operations,

but these are relatively rare events. If a neuron spikes at a

rate of 100 Hz and the time step size is 0.1 milliseconds,

then there is roughly one spike every 100 time steps.

7. Conclusions

In this paper the algorithms and software for spiking

neural network simulations have been described. These

neural networks offer the promise of better computer

vision systems, as well as the hope of increasing our

understanding of biological systems. Some preliminary

results were included to demonstrate the algorithms and

software. These neural networks can be designed to

require minimal memory and processing per synapse, but

they do require a large number of very small time steps to

march the solutions forward in time. We plan to

parallelize these codes and to apply them to more

complicated applications in the near future.

8. Acknowledgements

I would like to gratefully acknowledge the California

Institute of Technology, where most of this work was

performed, for supporting me as a Moore Distinguished

Scholar. The Office of Naval Research (Grant No.

N00014-05-1-0844) also supported this work and is

gratefully acknowledged.

9. References

[1] L. N. Long and A. Gupta, "Biologically-Inspired

Spiking Neural Networks with Hebbian Learning

for Vision Processing," in 46th AIAA Aerospace

Sciences Meeting Reno, NV: AIAA, 2008.

[2] J. Vreeken, "Spiking neural networks, an

introduction," Institute for Information and

Computing Sciences, Utrecht University

Technical Report UU-CS-2003-008, 2002.

[3] L. N. Long and A. Gupta, "Scalable massively

parallel artificial neural networks," Journal of

Aerospace Computing, Information, and

Communication, vol. 5, Jan., 2008.

[4] A. Gupta and L. N. Long, "Character recognition

using spiking neural networks," in International

Joint Conference on Neural Networks, Orlando,

FL, 2007, pp. 53-58.

[5] GENESIS, http://www.genesis-sim.org/, Dec.

31, 2007.

[6] R. D. Traub and etal, "A single-column

thalamocortical network model exhibiting

gamma oscillations, sleep spindles and

epileptogenic bursts," Journal of

Neurophysiology, vol. 93, pp. 2194-2232, 2005.

[7] NeoCortical Simulator, http://brain.unr.edu/

ncsDocs/, Dec. 31, 2007.

[8] NEST, www.nest-initiative.uni-freiburg.de, Dec.

31, 2007.

[9] SpikeNet, http://www.sccn.ucsd.edu/~arno/

spikenet/, Dec. 31, 2007.

[10] NEURON, http://www.neuron.yale.edu/neuron/,

Dec. 31, 2007.

[11] K. Fukushima, "Neocognitron: A Hierarchical

Neural Network Capable of Visual Pattern

Recognition," Neural Networks, vol. 1, pp. 119-

130, 1988.

[12] T. P. Weldon, W. E. Higgins, and D. F. Dunn,

"Gabor filter design for multiple texture

segmentation," Optical Engineering, vol. 35, pp.

2852-2863, 1996.

[13] TOP500 Computer List, http://www.top500.org/,

Dec. 31, 2007.

[14] C. Koch, Biophysics of Computation:

Information Processing in Single Neurons:

Oxford Press, 1999.

[15] A. L. Hodgkin and A. F. Huxley, "A quantitative

description of ion currents and its applications to

conduction and excitation in nerve membranes,"

Journal of Physiology, vol. 117, pp. 500-544,

1952.

[16] S. Ramón y Cajal, http://nobelprize.org/

nobel_prizes/medicine/articles/cajal/,

[17] D. O. Hebb, The Organization of Behavior: A

Neuropsychological Theory: Erlbaum Pub.,

1949.

[18] G. Bi and M. Poo, "Synaptic Modifications in

Cultured Hippocampal Neurons: Dependence on

Spike Timing, Synaptic Strength, and

Postsynaptic Cell Type," Journal of

Neuroscience, vol. 18, pp. 10464-10472, 1998.

[19] C. Darwin, The Origin of Species: (available at

books.google.com), 1859.

[20] D. C. Dennett, Consciousness Explained: Back

Bay Books, 1992.

[21] D. C. Dennett, Darwin's Dangerous Idea:

Evolution and the Meanings of Life: Simon and

Schuster, 1996.

[22] S. Pinker, How the Mind Works: Norton &

Company, 1999.

[23] L. N. Long, T. D. Kelley, and M. J. Wenger,

"The Prospects for Creating Conscious

Machines," in Toward a Science of

Consciousness Conference, Tucson, AZ, 2008.

[24] C. Koch, The Quest for Consciousness: A

Neurobiological Approach: Roberts and

Company, 2004.

[25] S. Song, K. D. Miller, and L. F. Abbott,

"Competitive Hebbian learning through spike-

timing-dependent synaptic plasticity," Nature

Neuroscience, vol. 3, pp. 919-926, 2000.

[26] T. E. Fritz and L. N. Long, "Object-Oriented

Unsteady Vortex Lattice Method for Flapping

Flight," Journal of Aircraft, vol. 41, 2004.

[27] S. D. Hanford, O. Janrathitikarn, and L. N. Long,

"Control of a Six-Legged Mobile Robot Using

the Soar Cognitive Architecture," in 46th AIAA

Aerospace Sciences Meeting, AIAA Paper No.

2008-0878, Reno, NV, 2008.

[28] P. D. O'Connor, L. N. Long, and J. B. Anderson,

"The Direct Simulation of Detonations (Invited

Paper)," in AIAA Joint Propulsion Conference

(AIAA Paper No. 2006-4411). vol. Paper 2006-

4411 Sacramento, CA: AIAA, 2006.

[29] L. N. Long, "The Critical Need for Software

Engineering Education," CrossTalk, vol. 21, pp.

6-10, 2008.

