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Abstract

Circular features have been commonly used in numerous computer vision
application areas for 3-D pose estimation. However, the estimation of such a feature's
pose from 2-D image coordinates results in an orientation-duality problem. Namely,
although the 3-D position of the circle’s center can be uniquely identified, the solution
process yields two different feasible orientations, of which only one is the true solution.
This duality problem is normally addressed through the acquisition of a second image in
the case of a“static” feature. This solution, however, would not be applicable to “features

in motion”.

In this paper, severa methods are presented for the solution of the orientation-
duality problem for circular features that are in motion. The first approach is applicable to
those features moving on a 3-D line with constant orientation or to those which are
moving on a plane with general motion. The second approach relies on the existence of

additional object features, such as points or lines, which are co-planar to the circular



feature. In this case, the circular feature can undergo an arbitrary 3-D motion.

Experimental results verify the validity of the proposed methods.

1. Introduction

Motion study from consecutive images is one of the key issues in the development
of avision system for moving-object recognition. There exist two common approaches:
Feature-based methods and optical-flow methods. Feature-based techniques require that
correspondence be established between a sparse set of features extracted from one image
with those extracted from the next image in the sequence. Many features have been used
to establish correspondence, including points, lines, planes, conics and combination of
these features, [28-33T]. Although numerous techniques have been established for
extracting and establishing feature correspondence, they are normally suitable for smple

situations (i.e., non-general motions), [12T].

An image sequence of a single point or a line segment may not be sufficient for
estimating all the necessary 3-D motion parameters. Therefore, a more compact primitive
would be better suited for this problem. In this context, conics, particularly circles,
provide the most important clues to 3-D interpretation of images next to straight lines for
the following reasons, [13]:

1. The conic is a more compact primitive than points and line segments, and it
contains the pose information of arigid-body object;

2. The representation of a conic is a symmetric matrix, which is easy to
manipulate mathematically;

3. Circles have shown to have the important property of high image-location
accuracy; and,

4. For motion analysis, no point-wise correspondence between two circles are
necessary.

In general, motion and structure parameters cannot be estimated from only two
images of a single conic [13]. Two images of at least three conics are needed in order to

solve the complex non-linear problem.



The active-vision system developed in our laboratory, for the recognition of
moving objects, uses (artificial) circular features as targets to be tracked, where
correspondence between at |east two consecutive images provides a unique solution to the
3-D pose-estimation problem. As mentioned above, however, for a circle, with a known
radius, a closed-form solution exists for determining its 3-D static pose from a single
image, with the exception of having two possible orientations. A second image of the
static circle is then acquired to determine the true orientation based on the circle's
eccentricity change. This suggests that, in general, for a circular feature of known size,
two images may be sufficient to uniquely determine its 3-D general-motion parameters.

No previous work, addressing this issue, has been reported in the literature.

In this paper, Section 2 will first briefly review the closed-form solution method
presented in [12] for the circular feature pose-estimation problem. Subsequently, Section
3 will introduce the orientation-duality problem. Sections 4 and 5 will propose techniques

to solve this problem using motion constraints and additional features, respectively.

2. Pose Estimation of Circular Features

There have been several active-vision systems proposed in the literature for
recognizing objects in motion [1-7]. However, recognition techniques used by these
systems are highly computationally intensive and sensitive to noise. Object pre-
conditioning has been proposed in numerous occasions to help (static-) object recognition
systemsin thisregard [8,9]. For the 3-D pose estimation of circular features, for example,
several approximate and exact solution methods have been proposed [10-12]. The present
paper is afollow-up to our own work on static-object recognition earlier reported in [12].
Thus, as abovementioned, our current objective is “the use of circular features (i.e.,

markers) in the recognition of moving objects.”

Circular features undergo perspective projection and would be perceived as
elliptical shapesin arbitrarily acquired images. Estimation of the five éliptical parameters
of this image is the first step toward the determination of the 3-D pose of the circular



feature. These parameters can be obtained by using a least-squares type fitting technique,
[38T].

The pose of a circular feature can be solved for analyticaly, [12]. First, based on
the eliptical parameters of its image, the 3-D orientation is estimated; subsequently,
based on the estimated orientation, the 3-D position of the feature is calcul ated.

Circular-feature pose estimation is equivaent to the solution of the following
problem: Given a 3-D conic surface, defined by a base (the perspective projection of a
circular feature in the image plane) and a vertex (the center of the camera's lens) with
respect to a reference frame, determine the pose of the plane (with respect to the same

reference frame), which intersects the cone and generates acircular curve, Figure 1, [12].
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Figure 1. Circular-feature pose estimation [12].

The general form of the equation of a cone with respect to the image frame is as
follows:

ax? +by? +cz® + 2fyx + 2gzx

1
+2hxy + 2ux + 2vy + 2wz +d =0. @)



An intersection plane can be defined by Ix+ my+nz=0. Therefore, the problem

of finding the coefficients of the equation of a plane, for which the intersection is circular,
can be expressed mathematically as: determine |, m and n such that the intersection of the
conical surface with the following surface is acircle: Ix + my + nz= 0, where I* + n? +

n’= 1.

The above 3-D-orientation problem can be solved analytically by considering the
equation of aconein its central form, [4T]. Thus, it is required to find the coefficients of

the equation of a particular plane (with respect to the canonical XYZ-frame),
| X+mY+ nZ=p, (2
whose intersection with a central cone,
WX+ Y2+ A37%= 0, (3)
would be acircle.
Three possible cases exist:

Casel: If A1 < A, there exist four solutions to the problem. However, these are four
symmetrical solutions with respect to the origin of the XYZ-frame and,
consequently, represent only two unique solutions. If one takes the solutions on

the positive section of Z-axis, then, the two solutions would be:
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Case Il: If A1 > A, following the same arguments for Case |, two solutions can be

derived, which would be acceptable only if A; > Ay:

n=+ bl
M= 2
1im=0 (5)
| =+ /)1_'12.
=2
Case I11: If A1 = A, the equation of the central cone represents a right circular cone,

(which implies that the central surface normal of the circular feature passes
through the origin of the camera frame), and thus, intersection between any
plane in the form Z = k and the cone will generate a circular curve. Thus, there

exists only one solution:

n=1
m=0 (6)
| =0.

It can be concluded that there exist two possible orientations. To obtain a unique
acceptable solution, an extra geometrical constraint, such as the change of eccentricity in

a second image, has to be obtained.

To solve for a unique solution for a marker’s position, the radius of the circular
feature has to be known. There exist two solutions. one on the positive Z-axis, and one
the negative Z-axis, [12]. Only the positive one is acceptable in our case (being located in

front of the camera).

3. Solutions to the Orientation Duality Problem for Circular

Featuresin Motion

The eccentricity of a circular feature's image acquired by a camera, whose focal

axis is perfectly aligned with the circle’'s normal should be equal to one. Therefore, the

6



change of eccentricity of the ellipse in the second image, acquired after a known
movement of the camera, would yield the true orientation of the circular feature. This

simple technique, however, can only be applied to static features.

For circular features in motion, several new effective techniques will be presented
below to distinguish the true orientation from the false one via the use of consecutive
images. In generdl, if acircular feature undergoes arbitrary 3-D motion, it isimpossible to
find its true orientation directly, since both orientations found at a specific position could
be true under certain spatial transformation. In other words, without additional
information, the true orientation of the feature cannot be determined from consecutive
images. Two types of information are used herein to address this problem. One approach
IS to constrain the object motion, e.g., to consider only pure 3-D trandlation or planar
motion. Another approach is to consider extra co-planar features, other than the viewed
circular-feature, such as points and lines, to provide structural information about the

object.

3.1 Pure 3-D Trandlation

By definition, an object is under (pure) translation in 3-D when no rotational
motion exists about any axis. Therefore, when a circle is tranglating, the true solution of
the circle's surface normal can be found directly from two consecutive images. The true

surface normal isthe one that remains constant in both images.

Figure 2 depicts a circle moving from Position 1 to Position 2. At Position 1, we
obtain two possible unit surface-normal vectors of the circle, n; and n,. Likewise, we
obtain n; and n, for the second image acquired at Position 2. Let @ and @ define the
unit directional vectors pointing from the circular-feature's center to the camera's focal

point, which pass through the centers of the images elipses. If n; is assumed to represent



the true orientation, it would remain constant’ during the translation. Based on the
symmetry of the two possible orientations with respect to o, change of @ would then

necessarily imply changein na.

Figure 2. Circular feature in translational motion.

The false orientation of a circular feature changes, except when the circular
marker is trandating along a straight line toward the camera’ s focal center, i.e., when @ =

@ . Let the axia unit vector o be defined herein as follows,

1

w =
Jlky + K, )2+ (1, +1,) +(m +m,)
1

T X Y [+ Z-K), @
PR +yi+Z

> [(k1+k2)'i +(|1+|2)'j+(ml+n‘b)'k]

! Herein and in the following sections the use of empirically defined thresholds is
proposed for determining tangible changes in orientation vectors between consecutive

images.



where (X, Yo, Z) represent Point C, (ky, 11, my) and (kz, |2, mp) are the components of the
orientation vectors ny and ny, respectively, and i, j and k are unit vectors, al defined with

respect to the cameraframe, Figure 1.

Equation (7) can also be expressed in its component form as,

r.2

wx:k1+k2=_‘/—x§+y§+z§'xc’ (8-9)
r.2

SRR P o0
r2

o,=m+m, =- Xcz+ycz+zcz'zc1 (8-0)

wherer isdefined as
r? :(k1+k2)2+(|l+|2)2+(ml+mz)2,
and represents the magnitude of w.

Similarly, for the second image, the vector @ is defined as

2
]
o, =k +k, =—\/X02+y02+2C2 X, (9-9)
r2
o,=l +l,=- W%’ (9-b)
r2
w,=m+m =- X02+y2+202'zc' (9-0)
C

I11-Conditioned Case:




When ni1=n; and n,=n;, in two consecutive images, the duality problem cannot

be solved by the proposed technique. Then, by definition of ® and @ , we have
0=0. (10)

Conjecture 1: Equation (10) indicates that the problem is ill-conditioned when the object
(purely) trandates aong the line OC.

Experiments:

Experimental Set-up: The imaging system used for al the experiments repeated herein
comprised a JVC CCD color camera, with a 640x480 resolution, mounted on a six
degree-of-freedom GMF S100 robot’'s end effector. A PC-based PIP Matrox digitizer
board with a 640x480 resolution was utilized for the acquisition of object images. The
camera was equipped with a 25 mm lens and normally placed 500 mm away from the
circular features. The camera's extrinsic and intrinsic parameters were obtained using the
mono-view, non-co-planar point technique proposed in [59T]. Additional direct
measurements were made to relate the camera's frame to the robot’s base frame.

Measurement errorsin both x and y directions were less than 0.5%.

One must note that the selection of the camera s nominal distance to a circular feature is
dependent on the feature’s size. Also, the orientation of the camera must be chosen to
maximize visibility of the feature. Both these issues were addressed in our earlier studies,

[35T, 38T], and the results implemented in this current work.

Experimental Procedure: Experiments were conducted to verify Conjecture 1 stated
above. For increased accuracy, the mobile camera was translated along a certain 3-D path
to smulate (feature' s) translational motion, while the object itself was kept stationary. At
several positions along the path, the possible surface normals of the circular marker on
the object, n; and n,, were estimated. The relative Root-Mean-Square (RMS) differences
I, —ny|
In.|

I, —n)
I

and

between the vectors and their initial values, i.e,, , were cdculated

and recorded.
10



In the first test, the object pseudo-translated along a straight line that does not
coincide with @. The intervals between consecutive test positions were set at
approximately 20 mm. At every instant, the RM S difference was calculated with respect
to the origina normals. As shown in Figure 3, the relative RMS differences in n, are
significantly greater than those in ni;. The RMS-reduction trend of n; in Figure 3 is
coincidental and primarily due to favorable alignment of the camera's optical axis with

respect to the normal of the circular feature.
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(b)

Figure 3. Tranglation along the straight line: (a) Experimental results; and, (b) Three

consecutive images.

The expected ill-conditioned case was simulated by tranglating the camera away
from the object along the vector @. Measurements were taken at 40 mm intervals. The
RMS differences for this case, for both n; and n, are shown in Figure 4. The results

clearly show that both n; and n, remain relatively constant, and therefore the duality
problem remains unsolved.
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Figure 4. Trandation along m.

3.2 General Planar motion

When a circular feature moves in a general planar motion, it has three degrees of

freedom, (X, y, 8). Figure 5 depicts a surface normal n, which is translated from itsinitial

12



position (X, Ye, Z) to a new position (X., Ve, Z ). It is rotated concurrently about the z

axis by A6. Namely, the vector n istransformed inton .

Figure 5. Planar motion of the normal of a circular feature.

Since the motion is planar, the z component of the vector n will remain constant.
Conjecture 2: The z component of the false orientation vector changes, while that of the

true orientation remains the same, with the exception of certain ill-conditioned cases.

Figure 6 depicts Conjecture 2, stated above, where only a rotation about the z axis
is considered. When the true surface normal n; rotates around the z axis, the false
solution n; rotates correspondingly, so as to maintain the symmetry with respect to @.
Both vectors n; and n, generate respective circular paths, P; and P,. P, lies in a plane
paralel to the feature-motion plane because only rotation about the z axis is permitted.
Since w is an arbitrary vector, P, would normally lie in a plane that is not paralld to the
feature-motion plane. Thus, arotation of ny and corresponding rotation of n, would result

in the change of the z component of ny.
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Figure 6. Changes in the z component of n..

The problem becomes ill-conditioned, when n, maintains the same z component
for a specific motion of n;. For every motion, there only exist two such possible positions

onP,, AandA .

In light of this reasoning, the procedure for solving the orientation-duality

problem for acircular feature moving in planar motion can be summarized as follows:

Step 1. Acquire the first image of the circular feature, and calculate: (i) its center (X, Ve,

Z), and (ii) the two possible orientation vectors n; and no.

Step 2: Check if the z components of both n; and n, are equal. If they are, i.e.,, M=,
the proposed technique cannot be used, since n; and n, cannot be distinguished
by their z components. We return to Step 1 to acquire a new image different than
thefirst.

Otherwise, i.e., m=mp, we proceed to Step 3.

Step 3: Acquire a second image of the same feature in motion (after a period of time),
and, as in Step 1, calculate (i) its center (X, Ye, Z), and (ii) the two possible

orientation vectorsn; andn,.

Step 4. Compare the z components of the orientation vectors. If one of the z components

remains constant between the two images, i.e, my=m;, while the other one

14



changes, i.e.,, my=m, , the one that remains unchanged is the true solution. The

duality problem is solved.

Otherwisg, i.e., both my=my , and m,=n, , the problem becomes ill-conditioned,

and an additional image has to be acquired. The procedure returns to Step 3.

[11-Conditioned Case:

It isimportant to analytically determine the ill-conditioned case, under which the z

components of both n; and n, remain constant, namely my=nmy and m,=m, . Rearranging
Equations (11) (i.e, dividing (11-a) and (11-b) by (11-c), and moving k; and I, to the

right), ko and I, are expressed in terms of k; and | :

k, =%(ml+mz)—k1

Ye
1, =Z(ml+mz)—ll-

Since n; and n, represent unit vectors,

kZ+17+mf =1
KZ+12+m =1

The substitution of Equation (11) into Equation (12) yields:
X 2 1 Y 2 _
[Sm+m) =k 1*+[=5(m+m)- 1]+ =1
% %

Similarly, for Position 2 (in agenera planar motion),
[%(nh+mz)—k1]2+[%(nvnrb)—h]“mzzﬂ-

Since we assumed that n; was the true solution,

(11)

(12)

(13)

(14)
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ki|_[Cos® —Sn@ ||kg i <
LJ"{Sne COSG:||:|1:|’ m<dsm. (15)

Substituting my=m; and mp=m, and Equation (15) into (14), the following

expression is obtained:
(-2 (my +mp )~ (1 Cosa -11Sn8)| 2 +[ 22 (my +mp )~ (kg Sing+ 11Cos6)] 2 +m3 =1. (16)
C C

Rearranging Equation (16) into a standard form for circular curves, we obtain,

[Xc — ﬁ(klcose 1,9n0)]2 + [ye — ﬁ(k15n6+ 1,C0s6)] 2
2. , (17)
=2 a-m)
(my +my)?

Equation (20) represents a group of circles, whose radiusis

Zc

= 1—2, 18
ml+mz(mz) (18)

fa

and whose centers are located on another circle defined by

Z; .
X= (k1Cos6—1,9n80)
my +mp

Z. !
y= (k;Sn6 +1,Cosb)
m +Mp

, -T<O<T. (29

Thus, if Equation (16) is satisfied by the motion at hand, an ill-conditioned
problem results. The physical meaning of Equation (16) is that, if the center of a circular
feature moves from an arbitrary Position 1: (X, Y., Z) to a new Position 2. (X¢, Y, Z¢),
there exist two singular 6 values for the rotation of the surface normal. These correspond

to the two solutions of the quadratic Equation (16).
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It is worth noting that the singular 6 angles are independent of the origina
position of the circular feature, whereas they depend on the original surface orientation n;

and the position of the second point B: (X, Yc , Z ).

Experiments:

The experimental set-up described earlier in Section 3.1 was used here as well to
verify the validity of the above technique. The object’s trandation was simulated by
moving the camera paralel to the object’s plane, where a rotation on this plane was
achieved by turning the object manually to a desired angle utilizing an accurate set-up.
The parameters m; and m, were estimated at two different positions. The normalized
mlr;lml and mzr; m

2

relative (scalar) differences, the z values of n; and n, , were then

caculated.

Figure 7 provides an example of a circular feature in planar motion. The position
of the feature's center is pseudo-translated from Position 1: [0, — 50, 0] (mm) to Position
2: [0, 0, 0] (mm). Relative changes in my and m, were measured with respect to Position
1. We observe that the change in m, is significant, except in the —10°~0° range.
Applying Equation (16), the singular value 6* is calculated to be —5.0°. This 6* valueis

in agreement with the experimental value noted in Figure 7.
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Figure 7. Changesin m; and m; in planar motion.

3.3 General Motion — Consideration of Additional Features

The orientation duality cannot be solved for a 3-D genera motion without
considering additional information. The reasoning behind the approach of using
additional features is similar to those of the solution proposed in Section 3.1 and 3.2 for
constrained motions, namely, to find a parameter which remains constant, for the true

orientation, over consecutive images, while changing for the false one.

In the case of a constrained motion, we used the feature’ s normal vector itself, or
simply its z component, as the invariant to distinguish the true solution from the false
one. Similarly, here, for a“rigid-body” object in 3-D general motion, we use the fact that
the relative distances among all the points on the object remain constant. However, we do

not use assume that these distances are known apriori.

3.3.1 A Co-planar Point

Consideration of an object point co-planar with the circular feature can lead to the
solution of the orientation-duality problem. This co-planar point can, for example, be a
corner point on the same object plane as the circular-feature and visible in the same image
plane. Based on the rigid-body constraint, the distance between the point-feature and
circular-feature’ s center, although unknown at the time of image acquisition and analysis,

must remain constant in consecutive images. The concept isillustrated in Figure 8.
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P

Position 2 Position 1

Figure 8. Solution for the duality problem: Considering a co-planar point.

Depicted in Figure 8 is a circular-feature moving from Position 1 to Position 2 in
an arbitrary motion. Let P, and P; be the same “true” point-feature on the object at
Position 1 and Position 2, respectively; and, let P, and P, be the corresponding points on
the image plane |, defined by (X, vi, f) and (X , Vi , f), where f is the focal-length of the
camera. Also, let Points P; and P; be the estimated false position of the point-feature in
both images, resulting from the orientation-duality problem. In Figure 8, d; is the distance
between the true point P; and the circular-feature’ s center C, and d; is the distance to the

false point Pr. We defined; and d, in the same fashion for the second image.

Conjecture 3: Since all the points on a rigid body remain at constant distances with
respect to one another, the distance between the point feature and circular-feature's

center at Position 1 should be equal to that at Position 2, i.e.,
di=dy, (20)
while

d#d;. (22)
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It will be shown that, Conjecture 3, described by Equation (20) and Inequality
(21), is always satisfied with a limited number of exceptions. For the solution of the
duality problem using this conjecture, the distances di, dy, di and d, must be first
calculated. Based on the constraint that the point under consideration is co-planar with the
circular feature, the following equations can be established:

p,-n, =0, (22)
P -n, =0, (23)
PNy =0, (29
P -n, =0, (29)

where p;, pr, pr and pr are defined as the “distance” vectors, with respect to the camera

frame, pointing from C to points P, Py, P, and P, respectively.

Similarly, another set of vectors, ry, I, ry and ry, can be defined as pointing from
the camera’ s origin, Point O, to P, P;, P; and Ps, respectively. Lying on the same lines of
sight, OP; and OP; , these vectors can be related to the vectors, r; and r; , pointing from O

to P, and P, , asfollows:

r=siri, (26-a)
r=sr, (26-b)
re=siri, (26-c)
r=s ri, (26-d)

where s, s, 1 and s, are simply scaling factors. Since vectors r; and r; are determined
by locating the coordinates of P, and P, in the image plane I, the positions for the point-

feature, P; and P, can be determined by solvingfor s, s, 5 and s, .

20



Substituting Equations (26) into Equations (22) to (25), and expressing the vectors

in terms of their components, we obtain:

_ kaxe tlyye +myz,

ko +1py; +my f 27-
= k2Xc +|2yc + mZZc ’ ( a)
? Kox; +15y + my f

and

— klxc + Ich + mlzc
kX + 1y, +my f
_ koXe +1oyc + myz,

Kox; +1oy + my f _ (27-b)

2

Therefore, the different positions of the point feature, in the camera frame, are

expressed as follows:

R =s1(%,Yi, f)
{P: :Slz(xi'Yivf) ' (28-3)
and,
R =s(x,Y,f)
{P: =312(Xiin'f) ' (28-D)

The distances between the point-feature and the circular-feature’ s center can now
be calculated as,

df = (s =% )2 +(8Yi — Ve )P+ (s -2 ) i
dlzz=<szxi—xc)2+<szyi—yc)2+(szf—zc)2’ (29-9)

and,

dy? =(s% = % )2+ (s = Ve )2 +(s,f —2.)°
dy? =(S,% =X )2 +(SY - Ve )* +(s, T -2 )% . (29-b)
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The procedure of solving the duality problem with one additional point-feature

can be summarized as follows:

Step 1:  Acquire the first image of the object and determine (i) the circular-feature’s
center (X, Ye, Z), (ii) the two possible orientations ny and ny, and (iii) the image

coordinates of the additional point feature (x, v, ).

Step 2: Solve for the two possible positions of the point-feature, P, and P, using
Equation (28-a).

Step 3 Apply Equation (29-a) to calculate the distances between the two possible point

features and the circular-feature’ s center, namely d; and d,.

Step 4:  Acquire a second image of the object and repeat Steps 1 through 3 to determine
P. and Py using Equation (28-b), and d; and d, using Equation (29-b).

Step 5: Check whether di=d; and dy#d,; if true, then ni, n; must be the true
orientations of the circular feature, while P; and P; are the true positions of the

point feature. Thus, the duality problem is solved.

If, however, both d;=d; and d,=d; , the duality problem is ill-conditioned, and

athird image is necessary.

[11-Conditioned Case:

In order to determine analytically when the ill-conditioned case occurs, the
problem is formulated here as follows: Given a rigid-body object, with a circular feature
and a point feature on one of its surfaces, moving from Position 1 to Position 2, what
values of n; and n, will result in an ill-conditioned problem, i.e., for which d;=d; and

d2:d2 ?

In mathematical terms, the above implies solving for s, and s, in the following,

which are obtained by equating (29-a) and (29-b),
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di? = (5% — % )2 +(sy - Yo )P + (s f -z, )* =df, (30-a)

and

0, = (5% — % )2 +(SY ~ Yo P+ (5 ~2)? =d. (30-b)

Since the only unknown in Equation (30-a) is s;, and the only unknown in
Equation (30-b) is s, , we can solvefor s; and s, individualy. As scaling factors, s; and
S, must have real values. Since n; and n; are assumed to be the true orientations for the
circular feature, there must exist rea roots for Equation (30-a). For Equation (30-b),
however, real solutionsfor s, might not exist. Therefore, the ill-conditioned problem can

only occur when thereisarea solution for s, in Equation (30-b).

Oncethevauesof 53 and s, (assuming s, has area solution) are obtained, we
can solve for n; and n, that satisfy the ill-conditioned problem. Rearranging Equations
(27a and 27b), by moving the denominator of the right-hand-side to the left and moving

all the termsto the left, we obtain:
Ky(e =51 )+ 11 (Ve = 81y )+ my(z, -5, f) =0, (31-8)
and
Ko (%o = 9% )+ 15 (Ve — S )+ My(z. -, f) =0. (31-b)

In the above equations, there are six unknowns, three for ny (ky, I1, my) and

threefor ny (kz, l2, Mp).

Based on the symmetry of the two orientations for the circular-feature, we can

obtain four more equations:

ky +k; :(nh+m2)%1 (31-¢)
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I +1, = (my +mz)%1 (31-d)

k2 +1,2+m? =1, (31-¢)
and k2 +1,2 +m? =1. (31-f)

Combining (31-a) through (31-f), we have six equations and six unknowns. The
first four equations are linear, while the last two are quadratic. By Bezout’s theorem [7],
since all Equations (31) are independent, there exist 1*-2°=4 solutions. As (kg , |1, my)
and (k2 , 12, mp) are feature orientations, only real solutions are acceptable. The number
of acceptable orientations should therefore be less than four. In other words, when the
object moves from Position 1 to Position 2 in a general motion, there would not be more
than four possible orientations of the object that would result in an ill-conditioned

problem for the detection of the true orientation of the circular-feature.

Experiments:

The technique described above was verified by experiments using an object with a
circular feature and an artificial co-planar point feature. The object motion was simulated
by moving the camera on a virtual sphere’s surface, with the camera aways pointing

toward the circular feature' s center to maximize visibility, Figure 9, [ Xiaoyu paper].

Camera moving on
the virtual sphere's
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Figure 9. (a) 3-D camera movement; and, (b) Artificial features.

Following Steps 1 through 4 stated above, the relative changes in the parameters d; and

dld" dy and dzd_ d; , were calculated and plotted in Figure 10, for 10°-incremented

1 2

dz, i.e.,

camera movements. As can be noted, d; remains aimost constant, while change in d,

varies significantly. Thus, d; is clearly the true solution.

Relative changes in d1 and d2 (%)

Angle on the virtual sphere's surface (°)

| —o—d1 —m—d2 |

Figure 10. Changesin the distance d; and d,, when the camerais moved on the sphere’s

surface.

In another example, the camera was moved aong the radius of the sphere toward
the object, [Tony Thesis]. Asin the case of motion over the sphere’s surface, d, changed
while d; remained relatively constant. It was noted that, the rate of change in d, was
higher at closer camera distances to the object. Thus, one must operate in optimal

distance range in order to determine the true feature orientation with high confidence.

3.3.2A Co-planar Line

Since the object in motion is assumed to be a rigid body, the distance between a
co-planar line feature and the circular-feature’ s center can be used as an invariant to solve
the duality problem, even though its value is not known a priori. In this section, we
assume that a co-planar linear edge has already been extracted from the image using
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common edge detectors, and that its mathematical form has also been determined. Figure
11. depicts an object motion from Position 1 to Position 2. |, and |, are the line-features
on the object in Position 1 and 2, respectively, while I, and |, are the corresponding
possible lines due to the orientation duality. I; and |; are the projections of the same lines

in theimage Plane | in the two consecutive images.

Figure 11. Solution for the duality problem with an additional line-feature.

The parameter 6, is defined as the shortest distance between the line-feature |; and
the circular-feature’ s center C. Similarly, &, 61 and &, represent corresponding distances

between the line-feature and the circul ar-feature’' s center.

Conjecture 4: Since the object is assumed to be a rigid body, i.e., the distances among all

the points on the object surface remain constant during object motion,

61 = 61 , (32)
if one assumes that |, is the true position of the line feature. On the other hand, it will be

shown that, with a limited number of exceptions,
0 # 0, . (33)
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To use Conjecture 4, defined by Equation (32) and Inequality (33), &, &, 61 and
&, have to be caculated first. Knowing the camera's focal length, f, the image plane |
can be defined at z=f with respect to the camera frame, Figure 11. The projection of the

line-feature |; within the plane | can be defined by:
ax+by+c=0. (34)

Let us define the plane that passes through both the focal point O and Line |; as
Plane U, and the planes on which the circular feature possibly lies as Planes V; and V.
Since the line-feature must lie in Plane U, also given that the line and the circular-feature
are co-planar, we can solve for the line positions by intersecting Plane U with Planes V;
and V.

First, we obtain the equation for Plane U as:

ax+by+%z:0. (35)

To simplify the last coefficient of the equation, let f=1. Equation (35), with a modified
constant, ¢, is then reduced to,
ax+by+cz=0. (36)
Similarly, at Position 2, for Linel; :
ax+by+c =0, (37)
and for Plane U :

ax+by+cz=0 . (38)

The orientations of Planes V1 and V, are defined by unit surface normals, n; and

n,. Plane V1 can then be expressed by:
kl(x_xc)+|1(y_ yc)+rnl(z_zc)=01 (39)
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where (ki, 11, my) are the components of nj, and (X, Y., Z) are the coordinates of the

to,

ki x+ly+mz+w, =0,

where parameter w; is defined by,

wy ==k Xe =1y - myz.

Similarly, for Plane V5, we have,

kox+l,y+myz+w, =0,
where parameter w;, is defined by,
W, = —K; X, — 1Yo — Mz, .
The intersection of Plane U and Plane V yields Line | in the following form:

Ll Ml ,
_b c
L= b m
where, Mlz‘n(fh l?l
_la b
N1 =l 1y

Similarly, the equation for Linel, is obtained as,

L2 MZ ’

circular-feature’' s center. After collecting all the constant terms, Equation (39) is reduced

(40)

(41)

(42)

(43)

(44)

(45)
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_|b ¢

L2—|2 m,

where, M, =S¢ 2.
27 my ky

_la b

N2 =l 1,

For Position 2, I; and I, can be acquired in the same fashion. Once the line

equations are determined, the distances 6;, &, & and &, can be calculated [7]. For

Position 1, and n1, we have

1
8,% = 2[ (VeN1 = ZeMy +aw; ) +(z,Ly — XNy +bwy ) + (X My — YLy +ow; )? ]

L2+ M2+ N3

(46)

&, 6, and & can be calculated similarly. Using Equation (32) and Inequality (33), we

can determine the true surface orientation.

The procedure of solving the duality problem with one additional co-planar line-

feature can be therefore summarized as follows:

Step 1. Acquire thefirst image of the object, extract aline-feature and represent it in the
form of Equation (34). Calculate (i) the circular-feature's center (X, Ye, Z), and
(i) the two possible orientations, n; and ny, for the same circular-feature. The

parameters a, b, ¢, w; and w;, are subsequently determined.

Step 2. Solve for the possible 3-D position of the line-features, using Equations (44)
and (45). The parameters L, M;, N1, L, M, and N, are then calcul ated.

Step 3: Apply Equation (46) to calculate the distances between the line-feature and

circular-feature s center, 6; and 6.

Step 4. Acquire a second image of the object. Follow the same steps as for the first

image, to solvefor |, 1>, & and &, , (Steps 1 through 3).
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Step 5: Compare 61 and & with 6, and &, , if both Equation (32) and Inequality (33)
are satisfied, n; and n; would be the true orientations of the circular feature.
Also, I; and I; would be the true positions of the line feature. Thus, the duality

problem is solved.
If, however, Inequality (33) isnot satisfied, i.e.,
01 =0, (47)

the duality problem cannot be solved. This situation is an ill-conditioned
problem. Similar to the previous cases, a third image is needed to solve the

duality ill-conditioned problem.

I11-Conditioned Case:

When the object is first moved to Position 1, the values of &, and &, are
determined. For the problem to become ill-conditioned, 8; and &, , at Position 2, have to
be equal to 6, and d,, respectively. Therefore, the following equations, obtained by
combining Equations (32), (33), (46) and (47), must be satisfied:

=m[ (VeN1 = 2 My +aw; )2 +(Z Ly = XNy +b wy )% + (X My — y Ly +cwy)? ]
1 1 1

(48-a)

and

:m[ (YeNg =2 My +aw, )2 +(zoLy = XNy +b Wy )% + (X My — Yo Ly +C W, ) ]
2 2 2

(48-b)
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Based on the relationships in Equation (44) and (45), there exist three unknowns
(ky, 11 and my ) in Equation (48-a), and three unknowns (kz , I, and ) in Equation (48-

b). Due to the symmetry condition of n; and n;:

ky + ko =<ml+mz>§, (48-c)

_ Ye
I+ =(my +my) 2
1 2 Zc

, (48-d)

and, sincen; and n, are unit vectors,
k2 +1,2+m?2=1 (48-€)
k2 +1,2+m2 =1. (48-f)

The set of Equations (48) comprises six equations for six unknowns. The roots of
this set of equations, (ky, I1, m ) and (k2, |2, my), are the singular orientations of the
circular feature that result in the ill-conditioned problem. Based on Bazout’s Theorem [7],
since each equality in (48) is independent of one another, there exist 2*-1°=16 solutions.
(Ky, 11, m ) and (k2 , I2, my) being orientations of the circular feature, only real solutions
are allowed. Therefore, there should be no more than 16 possible orientations that will
result in an ill-conditioned problem for the detection of the true orientation of the
features.

Experiments:

The technique described above was verified by experiments using an object with
co-planar artificial circular and linear features, Figure 13. . The camera was moved in the
same fashion as depicted in Figure 9. Figure 13. is a plot of relative changes in 8; and o,
a different test positions when the camera was moved on the sphere’'s surface at 10°
increments. As can be noted, 8; remains relatively constant, while &, changes

significantly as the object moves away from theinitial position.
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Relative changes in Deltal and Delta2
(%)

Angles on the virtual sphere's surface (°)

| —8—Deltal —®—Delta2 |

Figure 13. Changesin d; and &, when the camerais moving on avirtua sphere’s surface.

4. Discussion and Conclusions

Circular features can be very useful in object-motion estimation. However, their
orientation-duality problem must be solved first. The first solution presented in this paper
is applicable to constrained motions: motion along 3-D straight lines or general planar

motion. Experiments showed that the methods are in general effective in practice.
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The second solution approach for 3-D genera motion advocates the use of

additional features. Based on the assumption that the object is a rigid body, the distances

from the circular feature to additional features, though unknown a priori, are used as

invariants to solve the duality problem. Experiments also showed that the methods are

effective in practice. Ill-conditioned positions do exist, however they can be found by

solving a set of linear and quadratic equations.

In conclusion, for al the methods proposed in this paper, two consecutive images

are sufficient to obtain uniquely the circular feature’' s 3-D pose estimation.
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