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Abstract

Circular features have been commonly used in numerous computer vision

application areas for 3-D pose estimation. However, the estimation of such a feature’s

pose from 2-D image coordinates results in an orientation-duality problem. Namely,

although the 3-D position of the circle’s center can be uniquely identified, the solution

process yields two different feasible orientations, of which only one is the true solution.

This duality problem is normally addressed through the acquisition of a second image in

the case of a “static” feature. This solution, however, would not be applicable to “features

in motion”.

In this paper, several methods are presented for the solution of the orientation-

duality problem for circular features that are in motion. The first approach is applicable to

those features moving on a 3-D line with constant orientation or to those which are

moving on a plane with general motion. The second approach relies on the existence of

additional object features, such as points or lines, which are co-planar to the circular
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feature. In this case, the circular feature can undergo an arbitrary 3-D motion.

Experimental results verify the validity of the proposed methods.

1. Introduction

Motion study from consecutive images is one of the key issues in the development

of a vision system for moving-object recognition. There exist two common approaches:

Feature-based methods and optical-flow methods. Feature-based techniques require that

correspondence be established between a sparse set of features extracted from one image

with those extracted from the next image in the sequence. Many features have been used

to establish correspondence, including points, lines, planes, conics and combination of

these features, [28-33T]. Although numerous techniques have been established for

extracting and establishing feature correspondence, they are normally suitable for simple

situations (i.e., non-general motions), [12T].

An image sequence of a single point or a line segment may not be sufficient for

estimating all the necessary 3-D motion parameters. Therefore, a more compact primitive

would be better suited for this problem. In this context, conics, particularly circles,

provide the most important clues to 3-D interpretation of images next to straight lines for

the following reasons, [13]:

1. The conic is a more compact primitive than points and line segments, and it
contains the pose information of a rigid-body object;

2. The representation of a conic is a symmetric matrix, which is easy to
manipulate mathematically;

3. Circles have shown to have the important property of high image-location
accuracy; and,

4. For motion analysis, no point-wise correspondence between two circles are
necessary.

In general, motion and structure parameters cannot be estimated from only two

images of a single conic [13]. Two images of at least three conics are needed in order to

solve the complex non-linear problem.
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The active-vision system developed in our laboratory, for the recognition of

moving objects, uses (artificial) circular features as targets to be tracked, where

correspondence between at least two consecutive images provides a unique solution to the

3-D pose-estimation problem. As mentioned above, however, for a circle, with a known

radius, a closed-form solution exists for  determining its 3-D static pose from a single

image, with the exception of having two possible orientations. A second image of the

static circle is then acquired to determine the true orientation based on the circle’s

eccentricity change. This suggests that, in general, for a circular feature of known size,

two images may be sufficient to uniquely determine its 3-D general-motion parameters.

No previous work, addressing this issue, has been reported in the literature.

In this paper, Section 2 will first briefly review the closed-form solution method

presented in [12] for the circular feature pose-estimation problem. Subsequently, Section

3 will introduce the orientation-duality problem. Sections 4 and 5 will propose techniques

to solve this problem using motion constraints and additional features, respectively.

2. Pose Estimation of Circular Features

There have been several active-vision systems proposed in the literature for

recognizing objects in motion [1-7]. However, recognition techniques used by these

systems are highly computationally intensive and sensitive to noise. Object pre-

conditioning has been proposed in numerous occasions to help (static-) object recognition

systems in this regard [8,9]. For the 3-D pose estimation of circular features, for example,

several approximate and exact solution methods have been proposed [10-12]. The present

paper is a follow-up to our own work on static-object recognition earlier reported in [12].

Thus, as abovementioned, our current objective is “the use of circular features (i.e.,

markers) in the recognition of moving objects.”

Circular features undergo perspective projection and would be perceived as

elliptical shapes in arbitrarily acquired images. Estimation of the five elliptical parameters

of this image is the first step toward the determination of the 3-D pose of the circular
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feature. These parameters can be obtained by using a least-squares type fitting technique,

[38T].

The pose of a circular feature can be solved for analytically, [12]. First, based on

the elliptical parameters of its image, the 3-D orientation is estimated; subsequently,

based on the estimated orientation, the 3-D position of the feature is calculated.

Circular-feature pose estimation is equivalent to the solution of the following

problem: Given a 3-D conic surface, defined by a base (the perspective projection of a

circular feature in the image plane) and a vertex (the center of the camera’s lens) with

respect to a reference frame, determine the pose of the plane (with respect to the same

reference frame), which intersects the cone and generates a circular curve, Figure 1, [12].
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Figure 1. Circular-feature pose estimation [12].

The general form of the equation of a cone with respect to the image frame is as

follows:

ax by cz 2fyx 2gzx
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An intersection plane can be defined by lx my nz+ + = 0 . Therefore, the problem

of finding the coefficients of the equation of a plane, for which the intersection is circular,

can be expressed mathematically as: determine l, m and n such that the intersection of the

conical surface with the following surface is a circle: lx + my + nz = 0, where l2 + m2 +

n2 = 1.

The above 3-D-orientation problem can be solved analytically by considering the

equation of a cone in its central form, [4T]. Thus, it is required to find the coefficients of

the equation of a particular plane (with respect to the canonical XYZ-frame),

l X + m Y +  n Z = p,         (2)

whose intersection with a central cone,

1 X
2 + 2 Y

2 + 3 Z
2 = 0, (3)

would be a circle.

Three possible cases exist:

Case I: If 1 < 2, there exist four solutions to the problem. However, these are four

symmetrical solutions with respect to the origin of the XYZ-frame and,

consequently, represent only two unique solutions. If one takes the solutions on

the positive section of Z-axis, then, the two solutions would be:

n

m

l

= +

=

=

1 3

2 3

2 1

2 3

0.

(4)
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Case II: If 1 > 2, following the same arguments for Case I, two solutions can be

derived, which would be acceptable only if  1 > 2:

n

m

l

= +

=

=

2 3

1 3

1 2

1 3

0

.

(5)

Case III: If 1 = 2, the equation of the central cone represents a right circular cone,

(which implies that the central surface normal of the circular feature passes

through the origin of the camera frame), and thus, intersection between any

plane in the form Z = k and the cone will generate a circular curve. Thus, there

exists only one solution:

n

m

l

=
=

=

1

0

0.

(6)

It can be concluded that there exist two possible orientations. To obtain a unique

acceptable solution, an extra geometrical constraint, such as the change of eccentricity in

a second image, has to be obtained.

To solve for a unique solution for a marker’s position, the radius of the circular

feature has to be known. There exist two solutions: one on the positive Z-axis, and one

the negative Z-axis, [12]. Only the positive one is acceptable in our case (being located in

front of the camera).

3. Solutions to the Orientation Duality Problem for Circular

Features in Motion

The eccentricity of a circular feature’s image acquired by a camera, whose focal

axis is perfectly aligned with the circle’s normal should be equal to one. Therefore, the
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change of eccentricity of the ellipse in the second image, acquired after a known

movement of the camera, would yield the true orientation of the circular feature. This

simple technique, however, can only be applied to static features.

For circular features in motion, several new effective techniques will be presented

below to distinguish the true orientation from the false one via the use of consecutive

images. In general, if a circular feature undergoes arbitrary 3-D motion, it is impossible to

find its true orientation directly, since both orientations found at a specific position could

be true under certain spatial transformation. In other words, without additional

information, the true orientation of the feature cannot be determined from consecutive

images. Two types of information are used herein to address this problem. One approach

is to constrain the object motion, e.g., to consider only pure 3-D translation or planar

motion. Another approach is to consider extra co-planar features, other than the viewed

circular-feature, such as points and lines, to provide structural information about the

object.

3.1 Pure 3-D Translation

By definition, an object is under (pure) translation in 3-D when no rotational

motion exists about any axis. Therefore, when a circle is translating, the true solution of

the circle’s surface normal can be found directly from two consecutive images: The true

surface normal is the one that remains constant in both images.

Figure 2 depicts a circle moving from Position 1 to Position 2. At Position 1, we

obtain two possible unit surface-normal vectors of the circle, n1 and n2. Likewise, we

obtain n1  and n2  for the second image acquired at Position 2. Let  and  define the

unit directional vectors pointing from the circular-feature’s center to the camera’s focal

point, which pass through the centers of the images ellipses. If n1 is assumed to represent
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the true orientation, it would remain constant1 during the translation. Based on the

symmetry of the two possible orientations with respect to , change of  would then

necessarily imply change in n2.
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zc

Figure 2.  Circular feature in translational motion.

The false orientation of a circular feature changes, except when the circular

marker is translating along a straight line toward the camera’s focal center, i.e., when  =

. Let the axial unit vector  be defined herein as follows,

=
+ + + + +

+ + + + +

=
+ +

+ +

1

(k k ) (l l ) (m m )
[(k k ) i (l l ) j (m m ) k]

    
1

x y z
(x i y j z k),

  

1 2
2

1 2
2

1 2
2 1 2 1 2 1 2

c
2

c
2

c
2 c c c (7)

                                                

1 Herein and in the following sections the use of empirically defined thresholds is

proposed for determining tangible changes in orientation vectors between consecutive

images.
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where (xc, yc, zc) represent Point C, (k1, l1, m1) and (k2, l2, m2) are the components of the

orientation vectors n1 and n2, respectively, and i, j and k are unit vectors, all defined with

respect to the camera frame, Figure 1.

Equation (7) can also be expressed in its component form as,

x 1 2

2

c
2

c
2

c
2 c= k k

r

x y z
x+ =

+ +
, (8-a)

y 1 2

2

c
2

c
2

c
2 c= l l

r

x y z
y ,+ =

+ +
(8-b)

z 1 2

2

c
2

c
2

c
2 c= m m

r

x y z
z+ =

+ +
, (8-c)

where r is defined as

r (k k ) (l l ) (m m )2

1 2

2

1 2

2

1 2

2= + + + + + ,

and represents the magnitude of .

Similarly, for the second image, the vector  is defined as

+ =
+ +x 1 2

2

c
2

c
2

c
2 c= k k

r

x y z
x , (9-a)

+ =
+ +y 1 2

2

c
2

c
2

c
2 c= l l

r

x y z
y , (9-b)

+ =
+ +z 1 2

2

c
2

c
2

c
2 c= m m

r

x y z
z . (9-c)

Ill-Conditioned Case:
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When n1=n1  and n2=n2 , in two consecutive images, the duality problem cannot

be solved by the proposed technique. Then, by definition of  and , we have

 = . (10)

Conjecture 1: Equation (10) indicates that the problem is ill-conditioned when the object

(purely) translates along the line OC.

Experiments:

Experimental Set-up: The imaging system used for all the experiments repeated herein

comprised a JVC CCD color camera, with a 640x480 resolution, mounted on a six

degree-of-freedom GMF S100 robot’s end effector. A PC-based PIP Matrox digitizer

board with a 640x480 resolution was utilized for the acquisition of object images. The

camera was equipped with a 25 mm lens and normally placed 500 mm away from the

circular features. The camera’s extrinsic and intrinsic parameters were obtained using the

mono-view, non-co-planar point technique proposed in [59T]. Additional direct

measurements were made to relate the camera’s frame to the robot’s base frame.

Measurement errors in both x and y directions were less than 0.5%.

One must note that the selection of the camera’s nominal distance to a circular feature is

dependent on the feature’s size. Also, the orientation of the camera must be chosen to

maximize visibility of the feature. Both these issues were addressed in our earlier studies,

[35T, 38T], and the results implemented in this current work.

Experimental Procedure: Experiments were conducted to verify Conjecture 1 stated

above. For increased accuracy, the mobile camera was translated along a certain 3-D path

to simulate (feature’s) translational motion, while the object itself was kept stationary. At

several positions along the path, the possible surface normals of the circular marker on

the object, n1 and n2, were estimated. The relative Root-Mean-Square (RMS) differences

between the vectors and their initial values, i.e., 
n n

n
1 1

1

 and  
n n

n
2 2

2

, were calculated

and recorded.
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In the first test, the object pseudo-translated along a straight line that does not

coincide with . The intervals between consecutive test positions were set at

approximately 20 mm. At every instant, the RMS difference was calculated with respect

to the original normals. As shown in Figure 3, the relative RMS differences in n2 are

significantly greater than those in n1. The RMS-reduction trend of n1 in Figure 3 is

coincidental and primarily due to favorable alignment of the camera’s optical axis with

respect to the normal of the circular feature.
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(iii)

(b)

Figure 3. Translation along the straight line: (a) Experimental results; and, (b) Three

consecutive images.

The expected ill-conditioned case was simulated by translating the camera away

from the object along the vector . Measurements were taken at 40 mm intervals. The

RMS differences for this case, for both n1 and n2 are shown in Figure 4. The results

clearly show that both n1 and n2 remain relatively constant, and therefore the duality

problem remains unsolved.
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Figure 4. Translation along .

3.2 General Planar motion

When a circular feature moves in a general planar motion, it has three degrees of

freedom, (x, y, ). Figure 5 depicts a surface normal n, which is translated from its initial
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position (xc, yc, zc) to a new position (xc , yc , zc ). It is rotated concurrently about the z

axis by . Namely, the vector n is transformed into n .

x
y

z

n n

n

(xc, yc, zc)
(xc , yc , zc )

Figure 5. Planar motion of the normal of a circular feature.

Since the motion is planar, the z component of the vector n will remain constant.

Conjecture 2: The z component of the false orientation vector changes, while that of the

true orientation remains the same, with the exception of certain ill-conditioned cases.

Figure 6 depicts Conjecture 2, stated above, where only a rotation about the z axis

is considered. When the true surface normal n1  rotates around the z axis, the false

solution n2 rotates correspondingly, so as to maintain the symmetry with respect to .

Both vectors n1 and n2 generate respective circular paths, P1 and P2. P1 lies in a plane

parallel to the feature-motion plane because only rotation about the z axis is permitted.

Since  is an arbitrary vector, P2 would normally lie in a plane that is not parallel to the

feature-motion plane. Thus, a rotation of n1 and corresponding rotation of n2 would result

in the change of the z component of n2.
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Figure 6. Changes in the z component of n2.

The problem becomes ill-conditioned, when n2 maintains the same z component

for a specific motion of n1. For every motion, there only exist two such possible positions

on P2, A and A .

In light of this reasoning, the procedure for solving the orientation-duality

problem for a circular feature moving in planar motion can be summarized as follows:

Step 1: Acquire the first image of the circular feature, and calculate: (i) its center (xc, yc,

zc), and (ii) the two possible orientation vectors n1 and n2.

Step 2: Check if the z components of both n1 and n2 are equal. If they are, i.e., m1=m2,

the proposed technique cannot be used, since n1 and n2 cannot be distinguished

by their z components. We return to Step 1 to acquire a new image different than

the first.

Otherwise, i.e.,  m1 m2, we proceed to Step 3.

Step 3: Acquire a second image of the same feature in motion (after a period of time),

and, as in Step 1, calculate (i) its center (xc, yc, zc), and (ii) the two possible

orientation vectors n1  and n2 .

Step 4: Compare the z components of the orientation vectors. If one of the z components

remains constant between the two images, i.e., m1=m1 , while the other one
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changes, i.e., m2 m2 , the one that remains unchanged is the true solution. The

duality problem is solved.

Otherwise, i.e., both m1=m1 , and m2=m2 , the problem becomes ill-conditioned,

and an additional image has to be acquired. The procedure returns to Step 3.

Ill-Conditioned Case:

It is important to analytically determine the ill-conditioned case, under which the z

components of both n1 and n2 remain constant, namely m1=m1  and m2=m2 . Rearranging

Equations (11) (i.e., dividing (11-a) and (11-b) by (11-c), and moving k1 and l1 to the

right), k2 and l2 are expressed in terms of k1 and l1 :

k
x

z
(m m ) k

l
y

z
(m m ) l

2
c

c
1 2 1

2
c

c
1 2 1

= +

= + .
(11)

Since n1 and n2 represent unit vectors,

k l m1
2

1
2

1
2+ + =

+ + =

1

12
2

2
2

2
2k l m .

(12)

The substitution of Equation (11) into Equation (12) yields:

[
x

z
(m m ) k ] [

y

z
(m m ) l ] mc

c
1 2 1

2 c

c
1 2 1

2
2
2+ + + + = 1. (13)

Similarly, for Position 2 (in a general planar motion),

[
x

z
(m m ) k ] [

y

z
(m m ) l ] m .c

c

c

c
+ + + + =1 2 1

2
1 2 1

2
2
2 1  (14)

Since we assumed that n1  was the true solution,
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=
k

l

Sin

Sin Cos

k

l
1

1

1

1

Cos
,     -  <   . (15)

Substituting m1=m1  and m2=m2  and Equation (15) into (14), the following

expression is obtained:

[
x

z
(m m ) Cos - l Sin )] [

y

z
(m m ) Sin + l Cos ] m

c

c
1 2 1

2 c

c
1 2 1

2
2
2+ + + + =( ( )k k1 1 1 . (16)

Rearranging Equation (16) into a standard form for circular curves, we obtain,

[x
z

(m m )
Cos - l Sin )] [y

z

(m m )
(k Sin + l Cos ]

z

(m m )
(1 m )

c
c

1 2
1

2
c

c

1 2
1 1

2

2
c

1 2
2 2

2

+
+

+

=
+

( )

.

k1

 (17)

Equation (20) represents a group of circles, whose radius is

r
z

m m
(1 m )a

c

1 2
2

2=
+

, (18)

and whose centers are located on another circle defined by

x
z

m m
(k Cos l Sin )

y
z

m m
(k Sin l Cos )

c

1 2
1 1

c

1 2
1 1

=
+

=
+

+
,            -  <   . (19)

Thus, if Equation (16) is satisfied by the motion at hand, an ill-conditioned

problem results. The physical meaning of Equation (16) is that, if the center of a circular

feature moves from an arbitrary Position 1: (xc, yc, zc) to a new Position 2: (x c, y c, z c),

there exist two singular  values for the rotation of the surface normal. These correspond

to the two solutions of the quadratic Equation (16).
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It is worth noting that the singular  angles are independent of the original

position of the circular feature, whereas they depend on the original surface orientation n1

and the position of the second point B: (xc , yc , zc ).

Experiments:

The experimental set-up described earlier in Section 3.1 was used here as well to

verify the validity of the above technique. The object’s translation was simulated by

moving the camera parallel to the object’s plane, where a rotation on this plane was

achieved by turning the object manually to a desired angle utilizing an accurate set-up.

The parameters m1 and m2 were estimated at two different positions. The normalized

relative (scalar) differences, the z values of n1 and n2, 
m m

m
1 1

1

 and 
m m

m
2 2

2

, were then

calculated.

Figure 7 provides an example of a circular feature in planar motion. The position

of the feature’s center is pseudo-translated from Position 1: [0, 50 , 0] (mm) to Position

2: [0, 0, 0] (mm). Relative changes in m1 and m2 were measured with respect to Position

1. We observe that the change in m2 is significant, except in the 10 ~ range.

Applying Equation (16), the singular value * is calculated to be 50. . This * value is

in agreement with the experimental value noted in Figure 7.
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Figure 7. Changes in m1 and m2 in planar motion.

3.3 General Motion  Consideration of Additional Features

The orientation duality cannot be solved for a 3-D general motion without

considering additional information. The reasoning behind the approach of using

additional features is similar to those of the solution proposed in Section 3.1 and 3.2 for

constrained motions, namely, to find a parameter which remains constant, for the true

orientation, over consecutive images, while changing for the false one.

In the case of a constrained motion, we used the feature’s normal vector itself, or

simply its z component, as the invariant to distinguish the true solution from the false

one. Similarly, here, for a “rigid-body” object in 3-D general motion, we use the fact that

the relative distances among all the points on the object remain constant. However, we do

not use assume that these distances are known a priori.

3.3.1 A Co-planar Point

Consideration of an object point co-planar with the circular feature can lead to the

solution of the orientation-duality problem. This co-planar point can, for example, be a

corner point on the same object plane as the circular-feature and visible in the same image

plane. Based on the rigid-body constraint, the distance between the point-feature and

circular-feature’s center, although unknown at the time of image acquisition and analysis,

must remain constant in consecutive images. The concept is illustrated in Figure 8.
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Figure 8. Solution for the duality problem: Considering a co-planar point.

Depicted in Figure 8 is a circular-feature moving from Position 1 to Position 2 in

an arbitrary motion. Let Pt and Pt  be the same “true” point-feature on the object at

Position 1 and Position 2, respectively; and, let Pi and Pi  be the corresponding points on

the image plane I,  defined by (xi, yi, f) and (xi , yi , f), where f is the focal-length of the

camera. Also, let Points Pf  and Pf  be the estimated false position of the point-feature in

both images, resulting from the orientation-duality problem. In Figure 8, d1 is the distance

between the true point Pt and the circular-feature’s center C, and d2 is the distance to the

false point Pf. We define d1  and d2  in the same fashion for the second image.

Conjecture 3: Since all the points on a rigid body remain at constant distances with

respect to one another, the distance between the point feature and circular-feature’s

center at Position 1 should be equal to that at Position 2, i.e.,

d1 = d1 , (20)

while

d2  d2 .  (21)
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It will be shown that, Conjecture 3, described by Equation (20) and Inequality

(21), is always satisfied with a limited number of exceptions. For the solution of the

duality problem using this conjecture, the distances d1, d2, d1  and d2  must be first

calculated. Based on the constraint that the point under consideration is co-planar with the

circular feature, the following equations can be established:

p nt =1 0, (22)

p nf =2 0, (23)

 =p nt 1 0, (24)

=p nf 2 0, (25)

where pt, pf, pt  and pf  are defined as the “distance” vectors, with respect to the camera

frame, pointing from C to points Pt, Pf, Pt  and Pf , respectively.

Similarly, another set of vectors, rt, rf, rt  and rf , can be defined as pointing from

the camera’s origin, Point O, to Pt, Pf, Pt  and Pf , respectively. Lying on the same lines of

sight, OPi and OPi , these vectors can be related to the vectors, ri and ri , pointing from O

to Pi and Pi , as follows:

rt=s1 ri ,  (26-a)

rf=s2 ri , (26-b)

rt =s1  ri  , (26-c)

rf =s2  ri , (26-d)

where s1, s2, s1  and s2  are simply scaling factors. Since vectors ri and ri  are determined

by locating the coordinates of Pi and Pi  in the image plane I, the positions for the point-

feature, Pt and Pf, can be determined by solving for s1, s2, s1  and s2 .
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Substituting Equations (26) into Equations (22) to (25), and expressing the vectors

in terms of their components, we obtain:

s
k x l y m z

k x l y m f

s
k x l y m z

k x l y m f

1
1 c 1 c 1 c

1 i 1 i 1

2
2 c 2 c 2 c

2 i 2 i 2

=
+ +
+ +

=
+ +
+ +

 , (27-a)

and

=
+ +
+ +

=
+ +
+ +

s
k x l y m z

k x l y m f

s
k x l y m z

k x l y m f

1
1 c 1 c 1 c

1 i 1 i 1

2
2 c 2 c 2 c

2 i 2 i 2 . (27-b)

Therefore, the different positions of the point feature, in the camera frame, are

expressed as follows:

P s (x , y , f)
P s (x , y , f)

t 1 i i

f 2 i i

=
=   , (28-a)

and,

=
=

P s (x , y , f)
P s (x , y , f)

t 1 i i

i if 2
  .    (28-b)

The distances between the point-feature and the circular-feature’s center can now

be calculated as,

d (s x x ) (s y y ) (s f z )
d (s x x ) (s y y ) (s f z )

1
2

1 i c
2

1 i c
2

1 c
2

2
2

2 i c
2

2 i c
2

2 c
2

= + +
= + +

, (29-a)

and,

= + +
= + +

d (s x x ) (s y y ) (s f z )
d (s x x ) (s y y ) (s f z )

1
2

1 i c
2

1 i c
2

1 c
2

2
2

2 i c
2

2 i c
2

2 c
2 . (29-b)
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The procedure of solving the duality problem with one additional point-feature

can be summarized as follows:

Step 1: Acquire the first image of the object and determine (i) the circular-feature’s

center (xc, yc, zc), (ii) the two possible orientations n1 and n2, and (iii) the image

coordinates of the additional point feature (xi, yi, f).

Step 2: Solve for the two possible positions of the point-feature, Pt and Pf, using

Equation (28-a).

Step 3: Apply Equation (29-a) to calculate the distances between the two possible point

features and the circular-feature’s center, namely d1 and d2.

Step 4: Acquire a second image of the object and repeat Steps 1 through 3 to determine

Pt  and Pf   using Equation (28-b), and d1  and d2  using Equation (29-b).

Step 5: Check whether d1=d1  and d2 d2 ; if true, then n1, n1  must be the true

orientations of the circular feature, while Pt and Pt  are the true positions of the

point feature. Thus, the duality problem is solved.

 If, however, both d1=d1  and d2=d2 , the duality problem is ill-conditioned, and

a third image is necessary.

Ill-Conditioned Case:

In order to determine analytically when the ill-conditioned case occurs, the

problem is formulated here as follows: Given a rigid-body object, with a circular feature

and a point feature on one of its surfaces, moving from Position 1 to Position 2, what

values of n1  and n2 , will result in an ill-conditioned problem, i.e., for which d1=d1  and

d2=d2 ?

In mathematical terms, the above implies solving for s1  and s2  in the following,

which are obtained by equating (29-a) and (29-b),
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= + + =d (s x x ) (s y y ) (s f z ) d1
2

1 i c
2

1 i c
2

1 c
2

1
2 , (30-a)

and

= + + =d (s x x ) (s y y ) (s f z ) d2
2

2 i c
2

2 i c
2

2 c
2

2
2 . (30-b)

Since the only unknown in Equation (30-a) is s1 , and the only unknown in

Equation (30-b) is s2 , we can solve for s1  and s2  individually. As scaling factors, s1  and

s2  must have real values. Since n1 and n1  are assumed to be the true orientations for the

circular feature, there must exist real roots for Equation (30-a). For Equation (30-b),

however, real solutions for s2  might not exist. Therefore, the ill-conditioned problem can

only occur when there is a real solution for s2  in Equation (30-b).

Once the values of s1  and s2  (assuming s2  has a real solution) are obtained, we

can solve for n1   and n2  that satisfy the ill-conditioned problem. Rearranging Equations

(27a and 27b), by moving the denominator of the right-hand-side to the left and moving

all the terms to the left, we obtain:

+ + =k (x s x ) l (y s y ) m (z s f) 01 c 1 i 1 c 1 i 1 c 1 , (31-a)

and

+ + =k (x s x ) l (y s y ) m (z s f) 02 c 2 i 2 c 2 i 2 c 2 . (31-b)

In the above equations, there are six unknowns, three for n1  (k1 , l1 , m1 ) and

three for n2  (k2 , l2 , m2 ).

Based on the symmetry of the two orientations for the circular-feature, we can

obtain four more equations:

 + = +k k (m m )
x

z1 2 1 2
c

c

, (31-c)
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+ = +l l (m m )
y

z1 2 1 2
c

c

, (31-d)

+ + =k l m 11
2

1
2

1
2 ,   (31-e)

and + + =k l m 12
2

2
2

2
2 . (31-f)

Combining (31-a) through (31-f), we have six equations and six unknowns. The

first four equations are linear, while the last two are quadratic. By Bezout’s theorem [7],

since all Equations (31) are independent, there exist 14 22=4 solutions. As (k1 , l1 , m1 )

and (k2 , l2 , m2 ) are feature orientations, only real solutions are acceptable. The number

of acceptable orientations should therefore be less than four. In other words, when the

object moves from Position 1 to Position 2 in a general motion, there would not be more

than four possible orientations of the object that would result in an ill-conditioned

problem for the detection of the true orientation of the circular-feature.

Experiments:

The technique described above was verified by experiments using an object with a

circular feature and an artificial co-planar point feature. The object motion was simulated

by moving the camera on a virtual sphere’s surface, with the camera always pointing

toward the circular feature’s center to maximize visibility, Figure 9, [Xiaoyu paper].

Camera moving on
the virtual sphere’s

surface
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Figure 9. (a) 3-D camera movement; and, (b) Artificial features.

Following Steps 1 through 4 stated above, the relative changes in the parameters d1 and

d2, i.e., d d

d
1 1

1

 and d d

d
2 2

2

, were calculated and plotted in Figure 10, for -incremented

camera movements. As can be noted, d1 remains almost constant, while change in d2

varies significantly. Thus, d1 is clearly the true solution.
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Figure 10. Changes in the distance d1 and d2, when the camera is moved on the sphere’s

surface.

In another example, the camera was moved along the radius of the sphere toward

the object, [Tony Thesis]. As in the  case of motion over the sphere’s surface, d2 changed

while d1 remained relatively constant. It was noted that, the rate of change in d2 was

higher at closer camera distances to the object. Thus, one must operate in optimal

distance range in order to determine the true feature orientation with high confidence.

3.3.2 A Co-planar Line

Since the object in motion is assumed to be a rigid body, the distance between a

co-planar line feature and the circular-feature’s center can be used as an invariant to solve

the duality problem, even though its value is not known a priori. In this section, we

assume that a co-planar linear edge has already been extracted from the image using
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common edge detectors, and that its mathematical form has also been determined. Figure

11.  depicts an object motion from Position 1 to Position 2. l1 and l1  are the line-features

on the object in Position 1 and 2, respectively, while l2 and l2  are the corresponding

possible lines due to the orientation duality. li and li  are the projections of the same lines

in the image Plane I in the two consecutive images.

O

I

n2

n1

n
2

C

Cn
1

li

li

l2

l1

l1

l2

X

Y
Z

Position 1

Position 2
1

2

1

2

V 2

V1

V 2

V 1

U

U

Figure 11. Solution for the duality problem with an additional line-feature.

The parameter 1 is defined as the shortest distance between the line-feature l1 and

the circular-feature’s center C. Similarly, 2, 1  and 2  represent corresponding distances

between the line-feature and the circular-feature’s center.

Conjecture 4: Since the object is assumed to be a rigid body, i.e., the distances among all

the points on the object surface remain constant during object motion,

1 = 1 , (32)

if one assumes that l1 is the true position of the line feature. On the other hand, it will be

shown that, with a limited number of exceptions,

2  2 . (33)
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To use Conjecture 4, defined by Equation (32) and Inequality (33), 1, 2, 1  and

2  have to be calculated first. Knowing the camera’s focal length,  f, the image plane I

can be defined at z=f with respect to the camera frame, Figure 11.  The projection of the

line-feature li within the plane I can be defined by:

ax by c 0+ + = . (34)

Let us define the plane that passes through both the focal point O and Line li as

Plane U, and the planes on which the circular feature possibly lies as Planes V1 and V2.

Since the line-feature must lie in Plane U, also given that the line and the circular-feature

are co-planar, we can solve for the line positions by intersecting Plane U with Planes V1

and V2.

First, we obtain the equation for Plane U as:

ax by
c

f
z 0+ + = . (35)

To simplify the last coefficient of the equation, let f=1. Equation (35), with a modified

constant, c, is then reduced to,

ax by cz 0+ + = . (36)

 Similarly, at Position 2, for Line li  :

+ + =a x b y c 0 , (37)

and for Plane U :

+ + =a x b y c z 0  . (38)

The orientations of Planes V1 and V2 are defined by unit surface normals, n1 and

n2. Plane V1 can then be expressed by:

k (x x ) l (y y ) m (z z ) 01 c 1 c 1 c+ + = , (39)
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where (k1, l1, m1) are the components of n1, and (xc, yc, zc) are the coordinates of the

circular-feature’s center. After collecting all the constant terms, Equation (39) is reduced

to,

k x l y m z w 01 1 1 1+ + + = , (40)

where parameter w1 is defined by,

w k x l y m z1 1 c 1 c 1 c= . (41)

Similarly, for Plane V2, we have,

k x l y m z w 02 2 2 2+ + + = , (42)

where parameter w2 is defined by,

w k x l y m z2 1 c 1 c 1 c= .  (43)

The intersection of Plane U and Plane V1 yields Line l1 in the following form:

N x bw

L

N y + w a

M
z1 1

1

1 1

1

= = ,  (44)

where,                                     

L = b c
l m

M c a
m k

N a b
k l

1
1 1

1
1 1

1
1 1

=

=

.

Similarly, the equation for Line l2 is obtained as,

N x bw

L

N y + w a

M
z2 2

2

2 2

2

= = , (45)
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where,                                      

L = b c
l m

M c a
m k

N a b
k l

2
2 2

2
2 2

2
2 2

=

=

.

For Position 2, l1  and l2  can be acquired in the same fashion. Once the line

equations are determined, the distances 1, 2, 1  and 2   can be calculated [7]. For

Position 1, and n1, we have

[ ]1
2

1
2

1
2

1
2 c 1 c 1 1

2
c 1 c 1 1

2
c 1 c 1 1

21

L M N
(y N z M aw ) (z L x N bw ) (x M y L cw )=

+ +
+ + + + + .

(46)

2, 1  and 2  can be calculated similarly. Using Equation (32) and Inequality (33), we

can determine the true surface orientation.

The procedure of solving the duality problem with one additional co-planar line-

feature can be therefore summarized as follows:

Step 1: Acquire the first image of the object, extract a line-feature and represent it in the

form of Equation (34). Calculate (i) the circular-feature’s center (xc, yc, zc), and

(ii) the two possible orientations, n1 and n2, for the same circular-feature. The

parameters a, b, c, w1 and w2 are subsequently determined.

Step 2: Solve for the possible 3-D position of the line-features, using Equations (44)

and (45). The parameters L1, M1, N1, L2, M2 and N2 are then calculated.

Step 3: Apply Equation (46) to calculate the distances between the line-feature and

circular-feature’s center, 1 and 2.

Step 4: Acquire a second image of the object. Follow the same steps as for the first

image, to solve for l1 , l2 , 1  and 2 , (Steps 1 through 3).
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Step 5: Compare  1 and 2 with 1  and 2 , if both Equation (32) and Inequality (33)

are satisfied, n1 and n1  would be the true orientations of the circular feature.

Also, l1 and l1  would be the true positions of the line feature. Thus, the duality

problem is solved.

 If, however, Inequality  (33)  is not satisfied, i.e.,

 1 = 2 , (47)

the duality problem cannot be solved. This situation is an ill-conditioned

problem. Similar to the previous cases, a third image is needed to solve the

duality ill-conditioned problem.

Ill-Conditioned Case:

When the object is first moved to Position 1, the values of 1 and 2 are

determined. For the problem to become ill-conditioned, 1  and 2 , at Position 2, have to

be equal to 1 and 2, respectively. Therefore, the following equations, obtained by

combining Equations (32), (33), (46) and (47), must be satisfied:

[ ]
1

2
1
2

1
2

1
2

1
2 c 1 c 1 1

2
c 1 c 1 1

2
c 1 c 1 1

21

L M N
(y N z M a w ) (z L x N b w ) (x M y L c w )

=

=
+ +

+ + + + +

(48-a)

and

[ ]
2

2
2
2

2
2

2
2

2
2 c 2 c 2 2

2
c 2 c 2 2

2
c 2 c 2 2

21

L M N
(y N z M a w ) (z L x N b w ) (x M y L c w )

=

=
+ +

+ + + + + .

(48-b)
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Based on the relationships in Equation (44) and (45), there exist three unknowns

(k1 , l1  and m1 ) in Equation (48-a), and three unknowns (k2 , l2  and m2 ) in Equation (48-

b). Due to the symmetry condition of n1  and n2 :

+ = +k k (m m )
x

z1 2 1 2
c

c

,  (48-c)

+ = +l l (m m )
y

z1 2 1 2
c

c , (48-d)

and, since n1  and n2  are unit vectors,

+ + =k l m 11
2

1
2

1
2

 (48-e)

+ + =k l m 12
2

2
2

2
2 . (48-f)

The set of Equations (48) comprises six equations for six unknowns. The roots of

this set of equations, (k1 , l1 , m1 ) and (k2 , l2 , m2 ), are the singular orientations of the

circular feature that result in the ill-conditioned problem. Based on Bazout’s Theorem [7],

since each equality in (48) is independent of one another, there exist 24 12=16 solutions.

(k1 , l1 , m1 ) and (k2 , l2 , m2 ) being orientations of the circular feature, only real solutions

are allowed. Therefore, there should be no more than 16 possible orientations that will

result in an ill-conditioned problem for the detection of the true orientation of the

features.

Experiments:

The technique described above was verified by experiments using an object with

co-planar artificial circular and linear features, Figure 13. . The camera was moved in the

same fashion as depicted in Figure 9. Figure 13. is a plot of relative changes in 1 and 2

at different test positions when the camera was moved on the sphere’s surface at 

increments. As can be noted, 1 remains relatively constant, while 2 changes

significantly as the object moves away from the initial position.
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Figure 12. Artificial features.
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Figure 13. Changes in 1 and 2, when the camera is moving on a virtual sphere’s surface.

4. Discussion and Conclusions

Circular features can be very useful in object-motion estimation. However, their

orientation-duality problem must be solved first. The first solution presented in this paper

is applicable to constrained motions: motion along 3-D straight lines or general planar

motion. Experiments showed that the methods are in general effective in practice.
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The second solution approach for 3-D general motion advocates the use of

additional features. Based on the assumption that the object is a rigid body, the distances

from the circular feature to additional features, though unknown a priori, are used as

invariants to solve the duality problem. Experiments also showed that the methods are

effective in practice. Ill-conditioned positions do exist, however they can be found by

solving a set of linear and quadratic equations.

In conclusion, for all the methods proposed in this paper, two consecutive images

are sufficient to obtain uniquely the circular feature’s 3-D pose estimation.
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