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Abstract. This paper describes the implementation of Data Mining
tasks using Particle Swarm Optimisers. The object of our research has
been to apply such algorithms to classification rule discovery. Results,
concerning accuracy and speed performance, were empirically compared
with another evolutionary algorithm, namely a Genetic Algorithm and
with J48 - a Java implementation of C4.5. The data sets used for ex-
perimental testing have already been widely used and proven reliable
for testing other Data Mining algorithms. The obtained results seem to
indicate that Particle Swarm Optimisers are competitive with other evo-
lutionary techniques, and could come to be successfully applied to more
demanding problem domains.

1 Introduction

Data Mining (DM) and Knowledge Discovery in Databases (KDD) are the most
commonly used names to describe the computational efforts meant to process
database-stored information, in order to obtain valuable high level knowledge,
which must conform to three main requisites: accuracy, comprehensibility and
interest for the user [1].

In a nutshell, DM comprehends the actions of (semi) automatically seeking
out, identifying, validating and using for prediction, structural patterns in data
[2], that might be grouped into five categories: decision trees, classification rules,
association rules, clusters and numeric prediction.

These patterns are ideally searched for in massive data sets, which could
have origins as diverse as medicine, astronomy, fraud detection, loan granting or
agriculture.

Many approaches, methods and goals have been tried out for DM. Evolution-
ary approaches such as Genetic Algorithms (GA) and swarm-based approaches
like Ant Colonies (AC) [3] have been successfully used. In this paper we propose
the use of Particle Swarm Optimisers (PSO) in classification rule discovery.

PSO are a new branch in evolutionary algorithms, which were inspired in
group dynamics and its synergy and were originated from computer simulations
of the coordinated motion in flocks of birds or schools of fish. As these animals
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wander through a three-dimensional space, searching for food or evading preda-
tors, these algorithms make use of particles moving in an n-dimensional space
to search for solutions for an n-variable function optimisation problem. In PSO
individuals are called particles and the population is called a swarm [4].

PSO has proved to be competitive with Genetic Algorithms in several tasks,
mainly in optimisation areas. Previous research, using PSO for classification
tasks [5], has provided results comparing three PSO variants, namely Discrete
PSO (DPSO) [6], Linear Decreasing Weight PSO (LDWPSO) [7] and Constrict
PSO (CPSO) [8], laying, therefore, the foundations to our present research.

In our approach, we opted for the CPSO variant, for it proved to be more
qualified when dealing with continuous attributes, which was one of our goals.
Temporal complexity was another of our concerns, for without optimisation in
this area, expansion to more demanding problems is seriously affected or even
made impossible. Following the experimental platform, of the previously men-
tioned research [5], the same data sets were used, in order to assert whether this
approach could offer significant improvements. These data sets were collected
mainly from biology and medical science domains.

Proving the competitiveness of the PSO Data Miner in these relatively simple
domains will lead to successfully applying the same algorithms to problems in
the more demanding problem domains mentioned before, like molecular biology
and genetics.

In section 2 the structure and algorithms used in our work are described in
detail. In section 3 we describe the experimental setup and discuss the obtained
results which are presented in the section 5. Conclusion and future work are in
Section 4.

2 Design Structure and Algorithms

The overall structure of our work was designed to include three nested algo-
rithms; each one fulfils a specific task and is described in details in the following
sections.

Fig. 1. Three-nested algorithm application structure

The innermost algorithm, which is the classification rule discovery algorithm,
has for its task to find and return the rule, which better classifies the predominant
class in a given instance, set. It is here that the PSO algorithm is used.
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The covering algorithm, receives an instance set (the training set), and in-
vokes the classification rule discovery algorithm to reduce this set by removing
instances correctly classified by the rule returned by the classification rule discov-
ery algorithm. This process is repeated until a pre-defined number of instances
are left to classify in the training set. A sequential rule set is therefore created.

The aim of the validation algorithm - the out most algorithm - is not only
to determine the accuracy of a rule set returned by the covering algorithm but
also to gauge the liability of the whole classifying algorithm - classification rule
discovery and covering algorithms altogether. This is achieved by iteratively di-
viding the initial data set into different test and training sets and computing
average indicators, such as accuracy, time spent, rule number per set and at-
tribute tests number per rule.

2.1 Pre-Processing Routines - Data Extraction and Normalization

In a pre-processing routine, the original data set is extracted from file, parsed
and analyzed. Two data structures are created: a normalized image of the data
set and a structure containing metadata information.

All attribute values are normalized to the range [0.0, t] with 0.0 < t < 1.0,
being t a user pre-defined value, it stands for the indifference threshold where a
higher value will trigger the omission of the corresponding attribute test.

Three types of attributes were contemplated: nominal, integer and real. In-
stances containing missing attribute values are discarded.

Nominal attributes are normalized assigning to each different attribute value
an enumerated index #idx and applying the following equation:

vnorm =
idxv × t

#idx
. (1)

idxv is the index of the attribute value v and #idx the total number of differ-
ent attribute values. Both integer and real types are normalized with equation
2.

vnorm =
(v − vmin)× t

vmax − vmin
. (2)

vmin and vmax are the lower and higher attribute values found for this at-
tribute. A state attribute is assigned to each instance. Manipulating this state
value, it is very easy and computationally efficient, to divide the data set into
training and test sets and to (pseudo-) remove instances. This attribute takes
the following values: TEST, TRAIN and REMOVED.

2.2 Rule Representation

Classification rules are no more than conditional clauses, involving two parts:
the antecedent and the consequent. The former is a conjunction of logical tests,
and the latter gives the class that applies to instances covered by this rule. These
rules take the following format:
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IF attribute_a=value_1
AND attribute_b=value_2
...
AND attribute_n=value_i

THEN class_x

In rule classifier systems there are two distinct approaches to individual or
particle representation: the Michigan and the Pittsburgh approaches [9]. In the
Michigan approach each individual encodes a single rule, whereas in the Pitts-
burgh approach each individual encodes a set of rules. In our work, we follow
the Michigan approach and rules are encoded as a floating-point array; each
attribute is represented by either one or two elements on the array, according
to its type. Nominal attributes are assigned with one element on the array and
attribute-matching tests are defined as follows:

m(vr, vi) =





true if bvr ×#idxc = bvi ×#idxc

false otherwise.
(3)

Being t the indifference threshold value, vr the attribute value stored in the
rule for testing and vi the instance value stored in the normalized image of the
data set.

Integer and real attributes are assigned with an extra element in the array
in order to implement a value range instead of a single value,

m(vr1, vr2, vi) =





true if vr1 ≥ t or (vr1 − vr2) ≤ vi or (vr1 + vr2) ≥ vi

false otherwise.
(4)

vr1 can be seen as the center and vr1 as a neighbourhood radius, inside which
matching will occur.

2.3 Classification Rule Discovery Algorithm - Particle Swarm
Optimisation

As previously mentioned, the rule discovery process is achieved through a PSO
algorithm. PSO are inspired in the intelligent behavior of beings as part of
an experience sharing community as opposed to an isolated individual reactive
response to the environment. The Adaptive Culture Model [6], which is PSO’s
framing theory, states that the process of cultural adaptation is rooted into three
principles: evaluate, compare and imitate.

Evaluation is the capacity to qualify environmental stimuli and the sine qua
non condition to social learning. Evaluation itself is both useless and impossible
without the ability to compare; all of our metrics are but a comparison to a well-
known unit and a single value becomes pointless without the values of its peers.
At last, imitation is the rawest form of experience sharing from the receiver’s
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standpoint; it involves not only observation but also the realization of purpose
and timing adequacy.

In PSO algorithms, a particle decides where to move next, considering its own
experience, which is the memory of its best past position, and the experience of
its most successful neighbour.

There may be different concepts and values for neighbourhood; it can be
seen as spatial neighbourhood where it is determined by the Euclidean distance
between the positions of two particles, or as a sociometric neighbourhood (e.g.:
the index position in the storing array). The latter is the most commonly used
for two main motives: if space coordinates were to represent mental abilities or
skills, two very similar individuals may never come to meet in their lifetime, as
to elements of the same family, which may differ significantly from each other,
but still, they will always be neighbours. The other motive is related with the
computational effort required to process the Euclidean distance, when faced with
large number of particles or dimensions - in each iteration, the distance between
every two particles would have to be calculated and for each particle the nearest
k neighbours would have to be sorted out.

The number of neighbours (k) usually considered is either k = 2 or k = all.
Although some actions differ from one variant of PSO to the other, the

pseudo-code for PSO is as follows:

Initiate_Swarm()
Loop
For p=1 to number of particles

Evaluate(p)
Update_past_experience(p)
Update_neighbourhood_best(p,k)
For d=1 to number of Dimensions

Move(p,d)
Until Criterion .

Inevitably, with more or less iterations, the swarm converges to an optimum
(possibly just a local one). In our implementation, the criterion used to trigger
the ending of the loop is the realization all particles in the swarm are within a
user-defined distance from the best particle in the swarm. In order to manipu-
late equivalent threshold distances, considering that distance ranges will differ
accordingly to the dimension number, the distance formula used is the normal-
ized Euclidean distance

d(p1, p2) =

√
n∑

i=1

(pi
1 − pi

2)
2

√
d.

(5)

p1 and p2 are particles and d the dimension number, pi
n stands for the ith

coordinate value of particle pn. As each dimension coordinate is bounded to the
interval [0.0, 1.0] the maximum value for (pi

1 − pi
2) is 1.0, which when squared
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remains 1.0, therefore to normalize a distance, all that is needed is to divide it
by
√

d.
The output of this algorithm is the best point in the hyperspace the swarm

visited - and in this case, converged to. There are several variants of PSO, typi-
cally differing in the representation: Discrete or Continuous PSO[6]; in the mech-
anism used to avoid spatial explosion of the swarm and guaranteeing conver-
gence: Linear Decreasing Weight[7] or Constricted PSO[8]; or in the mechanism
used to avoid premature convergence to local optima: Predator Prey[10] or Colli-
sion Avoiding Swarms[11]. The variant used in our work was the Constrict PSO
(CPSO).

There is a need to maintain and update the particle’s previous best position
(Pid) and the best position in the neighbourhood (Pgd). There is also a velocity
(Vid) associated with each dimension, which is an increment to be made, in each
iteration, to the dimension associated (equation 6), thus making the particle
change its position in the search space.





vid(t) = χ(vid(t− 1) + ϕ1id(Pid − xid(t− 1)) + ϕ2id(Pgd − xid(t− 1)))

xid(t) = xid(t) + vid(t)
(6)

ϕ1 and ϕ2 are random weights defined by an upper limit, χ is a constriction
coefficient [8] set to 0.73. The general effect of equation 6 is that each particle
oscillates in the search space between its previous best position and the best
position of its best neighbour, hopefully finding new best points during its tra-
jectory.

If the particle’s velocity were allowed to change without bounds the swarm
would never converge to an optimum, since particles oscillations would grow
larger. The changes in velocity are therefore limited by χ - the constriction
coefficient - forcing the swarm to converge.

The value for this parameter and for the upper limits on ϕ1 and ϕ2 can be
chosen to guarantee convergence [8]. In our experiments χ was set o 0.73 while
ϕ1 and ϕ2 upper limits were set to 2.05.

2.4 Rule Evaluation - Establishing Points of Reference

Rules must be evaluated during the training process in order to establish points of
reference for the training algorithm: best particle positioning. The rule evaluation
function must not only consider instances correctly classified but also the ones
left to classify and the wrongly classified ones.

The formula used to evaluate a rule and therefore set its quality is expressed
in equation 7 [9]:

Q(X) =





TP
TP+FN × TN

TN+FP if 0.0 ≤ xi ≤ 1.0, ∀i ∈ d

−1.0 otherwise
(7)

Where:
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• TP - True Positives = number of instances covered by the rule that are
correctly classified, i.e., its class matches the training target class.

• FP - False Positives = number of instances covered by the rule that are
wrongly classified, i.e., its class differs from the training target class.

• TN - True Negatives = number of instances not covered by the rule, whose
class differs from the training target class.

• FN - False Negatives = number of instances not covered by the rule, whose
class matches the training target class.

This formula penalizes a particle, which as moved out of legal values, assign-
ing it with negative value (−1.0), forcing it to return to the search space.

2.5 Covering Algorithm - Rule Set Construction

The covering algorithm is basically a divide-and-conquer technique. Being given
a instance training set, it runs the rule discovery algorithm in order to obtain
the highest quality rule for the predominant class in the training set.

Correctly classified instances are then removed from the training set and the
rule discovery algorithm is run once more. Iteratively a sequential rule set is built,
and the covering algorithm runs until only a pre-defined number of instances are
left to classify. This threshold criteria value is user-defined as a percentage and
it is typically set to 10%.

A default rule, to capture and classify instances not classified by the previous
rules is added to the rule set. Containing no attribute tests and predicting the
same class as the one predominant in the remaining instances, this rule takes
the form:

IF true
THEN class_x.

2.6 Validation Algorithm - Rule Set and Overall Evaluation

The purpose of the validation algorithm is to statistically evaluate the accuracy
of the rule set obtained by the covering algorithm. This is done using a method
known as tenfold cross validation [2].

The tenfold cross validation consists in dividing the data set into ten equal
partitions and iteratively using one of this sets as a test set and the remaining
nine as training sets. In the end ten different rule sets are obtained and average
indicators, such as accuracy, time spent, rule number per set and attribute tests
number per rule are computed.

Several other numbers for partitioning have been tried out, but theoretical
research [2] has shown that ten offers the best estimate of errors.

Rule set accuracy is evaluated and presented as the percentage of instances
in the test set correctly classified. An instance is considered correctly classified,
when the first rule in the rule set, whose antecedent matches this instance and
the consequent (predicted class) matches this instance’s class.
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2.7 Post-Processing Routines -Rule Pruning and Rule Set Cleaning

Recall that high level knowledge extracted from databases must conform to three
main requisites: accuracy, comprehensibility and interested for the user [1].

In classification rule discovery problems, the number of attribute tests per
rule and the number of rules per set is a major contributor for the comprehensi-
bility of the obtained results - fewer attribute tests and rules eases comprehen-
sibility.

After a rule is returned from the classification rule discovery algorithm it goes
through a pruning process in order to remove unnecessary attribute tests. This
is done by iteratively removing each attribute test whenever the newly obtained
rule has the same or higher quality value than the original rule.

Just after the covering algorithm returns a rule set, another post-processing
routine is used: rule set cleaning, where rules that will never be applied are
removed from the rule set.

As rules in the rule set are applied sequentially, in this routine, rules are
removed from the rule set if:

• There is a previous rule in the rule set that has a subset of the rule’s attribute
tests.

• If it predicts the same class as the default rule and is located just before it.

So in the example below, rules number 2 and 3 will be removed and the rule set
will be reduced to the first and last rules:

Rule #1
If attribute_a = x_a
Then class=c_1

Rule #2
If attribute_a = x_a and attribute_b=x_b
Then class=c_2

Rule #3
If attribute_c = x_c
Then class=c_3

Rule #4 - Default Rule
If TRUE
Then class=c_3.

3 Experimental Results

Experimental results are presented and discussed in this section. To maintain
a fair experimental platform with [5] the same data sources were used: two
regarding Breast-Cancer diagnosis, and the other, animal classification. These
are standard benchmark problems which can easily be used to compare results
with a vast number of other implemented algorithms thus allowing us to compare
the effectiveness of our PSO based algorithms, not only with the other algorithms
implemented by us, but also with previous results obtained from the literature.
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To help benchmarking the evolutionary algorithms implemented, results were
also obtained with a well-known standard tree induction algorithm, J48, a Java
implementation of C4.5.

3.1 Experimental Setup

In [5] attribute testing, indifference was implemented with an extra bit (particles
were coded in binary strings), as a result indifference probability occurrence will
vary accordingly to the attribute assigned bit number and its range of possible
values, in the interval ]1/2, 3/4].

In our work a user defined threshold level maintains attribute-testing indiffer-
ence, therefore different values for this threshold were tested in order to evaluate
its influence.

The data sources used were obtained from the Department of Computer
Science, University of Waikato, Hamilton, New Zealand[13], and Information
and Computer Science, University of California [14].

In section 5 we present the experimental results obtained. Accuracy values
are in percentage of success, and are obtained by averaging ten-fold accuracy
results.

The swarms were set to 25 particles, convergence radius to 0.1 and minimum
uncovered instances to 10%.

3 data sets were used: Zoo, Wisconsin-Breast-Cancer and Breast-Cancer. Zoo
is a data set that classifies animals according to their characteristics. Wisconsin-
Breast-Cancer and Breast-Cancer are real data sets that classify if the tumour
was malignant/benign and if recurrence of events did happen.

3.2 Discussion

Results obtained clearly state the competitiveness of CPSO with industrial tree
induction algorithms like J48, a Java implementation of C4.5. Trees obtained
with J48 are easily converted to rules - each path from the root to a leaf stands
for a rule.

There is a clear relation between indifference threshold level value and accu-
racy results: best results were obtained with lower values for indifference thresh-
old level.

Rule pruning and rule set cleaning routines indicate as expected to be strong
contributors comprehensibility. Both CPSO versions did surpass J48 in the
Wisconsin-Breast-Cancer relation.

Regarding accuracy, all tested algorithms seem to be equivalent. Nevertheless,
temporal complexity of both CPSO versions are still much more demanding than
J48, possibly due to the nature of the algorithm and processing involved.

4 Conclusions and Future Work

We proposed to improve one of the PSO variants investigated in [5] and evalu-
ate the possible influence of the indifference threshold values. We implemented
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and compared this variant with the corresponding one in [5] and J48, in some
benchmark data.

From the results, we can conclude that PSO can obtain competitive results
against J48 in the data sets used, although there is some increase in the compu-
tational effort needed. We can also conclude, that lower values for indifference
threshold offer the best accuracy results. Both post-processing routines: rule
pruning and rule set cleaning, contribute greatly to comprehensibility.

Directions for future work include an empirical analysis of the influence of
indifference threshold with exploration and exploitation. Applying this tool to
more demanding data sources, containing continuous attributes. We hope that
a more focused and better-tuned PSO based algorithm will surpass the results
obtained with this approach, making PSO a real competitive technique in DM.
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5 Apendix: Results

Table 1. Relation Zoo

J48 CPSO[5] CPSO

Indifference — 0.5 - 0.7 0.1 0.5 0.7 0.1 0.5 0.7
Pruning — y n n n y y y
Rule Set Cleaning — y n n n y y y

Accuracy 92.07 76.67 89.00 86.33 80.33 89.04 77.00 46.67
Time Spent 0.09 11.75 11.00 16.00 48.00 17.36 13.01 3.35
Number of Rules 13 7 6 10 181 6 6 5
Tests per Rule 5 2 6 31 1224 5 4 4

Table 2. Relation Breast-Cancer

J48 CPSO[5] CPSO

Indifference — 0.5 - 0.7 0.1 0.5 0.7 0.1 0.5 0.7
Pruning — y n n n y y y
Rule Set Cleaning — y n n n y y y

Accuracy 72.92 76.42 75.80 74.56 74.44 76.66 75.18 73.33
Time Spent 0.03 7.04 26.45 11.54 25.73 28.13 13.19 17.81
Number of Rules 4 5 6 6 7 6 6 6
Tests per Rule 2 2 5 5 8 5 5 5
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Table 3. Relation Winsconsin-Breast-Cancer

J48 CPSO[5] CPSO

Indifference — 0.5 - 0.7 0.1 0.5 0.7 0.1 0.5 0.7
Pruning — y n n n y y y
Rule Set Cleaning — y n n n y y y

Accuracy 92.82 93.92 92.89 90.63 92.00 92.84 91.81 76.61
Time Spent 0.02 17.34 117.42 87.84 114.27 85.01 67.16 18.05
Number of Rules 55 7 7 8 40 7 7 5
Tests per Rule 2 1 4 7 122 4 4 4


