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Abstract 
Bayesian Networks are becoming an increasingly important area for research and application in the 
entire field of Artificial Intelligence. This paper explores the nature and implications for Bayesian 
Networks beginning with an overview and comparison of inferential statistics and Bayes' Theorem. 
The nature, relevance and applicability of Bayesian Network theory for issues of advanced 
computability forms the core of the current discussion. A number of current applications using 
Bayesian networks is examined. The paper concludes with a brief discussion of the appropriateness 
and limitations of Bayesian Networks for human-computer interaction and automated learning.
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Introduction 
Inferential statistics is a branch of statistics that attempts to make valid predictions based on only a 
sample of all possible observations[1]. For example, imagine a bag of 10,000 marbles. Some are 
black and some white, but of which the exact proportion of these colours is unknown. It is 
unnecessary to count all the marbles in order to make some statement about this proportion. A 
randomly acquired sample of 1,000 marbles may be sufficient to make an inference about the 
proportion of black and white marbles in the entire population. If 40% of our sample are white, then 
we may be able to infer that about 40% of the population are also white. 

To the layperson, this process seems rather straight forward. In fact, it might seem that there is no 
need to even acquire a sample of 1,000 marbles. A sample of 100 or even 10 marbles might do. 

This is assumption is not necessarily correct. As the sample size becomes smaller, the potential for 
error grows. For this reason, inferential statistics has developed numerous techniques for stating the 
level of confidence that can be placed on these inferences. 

If we took ten samples of 100 marbles each, we might find the following results: 

We are then in a position to calculate the "Standard Deviation" of these samples: 

 (eq. 1)[2] 

where x2 is the sum of the squares so that the equation is expanded to:
 

 (eq. 2) 

and n is the number of samples. In our example, the mean number of White marbles is . 

We might be tempted to say that about 40% of the marbles are white, but we are unable to argue that 
point with any degree of certainty. Using equation 2 above, we determine that the Standard 

Table 1: Relative proportions of 10 samples from a population of 10,000

Sample Number Number of White  
Marbles Number of Black Marbles

1 40 60
2 35 65
3 47 53
4 50 50
5 31 69
6 25 75
7 36 64
8 20 80
9 45 55
10 55 45
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Deviation is 11.15. We must then determine the "Sample Error of the Mean" (where s=[sigma]): 

 (eq. 4) 

The confidence we can put on our hypothesis that u=40 of the marbles are white is found using a 
standard statistical test called the "z-test": 

 (eq. 5) 

Using a z-test table [3] and our resulting z-value of -.4532, we find that 32% of the area of the 
normal curve would fall below this "z" value. In other words, in 32% of samples given ,  would 
be less than 38.4. Since the distribution is two-sided or "two-tailed" (i.e. the sample average could 
also be greater than the population average), we would also expect  to greater than ((u- )+u=) 41.6 
in another 32% of cases. 

In summary, if we expect 40% of all marbles in the bag to be white, then a series of ten samples with 
only 38.4% of marbles being white would be expected in (100-64%=) 36% of the time. Clearly, the 
confidence we can place in our conclusion is not as good as it was on first glance. This lack of 
confidence is due to the high variability among the samples. If we took more samples or larger 
samples, our confidence in our conclusion might increase. 

Back to the Table of Contents 

An Introduction to Bayesian Inference 
Classical inferential models do not permit the introduction of prior knowledge into the calculations. 
For the rigours of the scientific method, this is an appropriate response to prevent the introduction of 
extraneous data that might skew the experimental results. However, there are times when the use of 
prior knowledge would be a useful contribution to the evaluation process. 

Assume a situation where an investor is considering purchasing some sort of exclusive franchise for 
a given geographic territory. Her business plan suggests that she must achieve 25% of market 
saturation for the enterprise to be profitable. Using some of her investment funds, she hires a polling 
company to conduct a randomized survey. The results conclude that from a random sample of 20 
consumers, 25% of the population would indeed be prepared to purchase her services. Is this 
sufficient evidence to proceed with the investment? 

If this is all the investor has to go on, she could find herself on her break-even point and could just as 
easily turn a loss instead of a profit. She may not have enough confidence in this survey or her plan 
to proceed. 

Fortunately, the franchising company has a wealth of experience in exploiting new markets. Their 
results show that in 20% of cases, new franchises only achieve a 25% market saturation, while in 
40% of cases, new franchises achieve a 30% market saturation. The entire table of their findings 
appears below: 

Table 2: Percent of New Franchises achieving a given Market Saturation
Market Saturation (Proportion) =p Percent of Franchises (Relative Frequency)

0.10 0.05
0.15 0.05
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Our investor's question is simple: "What is the probability that my population will achieve a market 
saturation of greater than 25% given the poll conducted and the results found in other places?" In 
effect, she needs to determine the probability that her population will one of the 70% of cases where 
market saturation is greater than or equal to 25%. She now has the information she needs to make a 
Bayesian inference of her situation. 

Back to the Table of Contents 

Bayes Theorem 
Bayes' Theorem, developed by the Rev. Thomas Bayes, an 18th century mathematician and 
theologian, was first published in 1763.[4] Mathematically it is expressed as: 

 (eq.6) 

where we can update our belief in hypothesis H given the additional evidence E and the background 
context c. The left-hand term, P(H|E,c) is known as the "posterior probability," or the probability of 
H after considering the effect of E on c. The term P(H|c) is called the "prior probability of H given c 
alone. The term P(E|H,c) is called the "likelihood" and gives the probability of the evidence 
assuming the hypothesis H and the background information c is true. Finally, the last term P(E|c) is 
independent of H and can be regarded as a normalizing or scaling factor. 

In the case of our investor, P(H|c) is already known to be 0.40 so the Bayesian equation resolves to: 

 (eq. 7) 

It is important to note that all of these probabilities are conditional. They specify the degree of belief 
in some proposition or propositions based on the assumption that some other propositions are true. 
As such, the theory has no meaning without prior resolution of the probability of these antecedent 
propositions. 

Back to the Table of Contents 

Bayes Theorem Applied 
Let us return the example of the investor. From theory of binomial distributions, if the probability of 
some event occurring on any one trial is p, then the probability of x such events occurring out of n 
trials is expressed as: 

 (eq. 8)[5] 

For example, the likelihood that 5 out of 20 people will support her enterprise should her location 
actually fall into the category where 20% of franchises actually achieve 25% saturation is: 

0.20 0.20
0.25 0.20
0.30 0.40
0.35 0.10

 Total = 1.00
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 (eq. 9) 

The likelihood of the other situations can also be determined: 

The sum of all the Joint Probabilities provides the scaling factor found in the denominator of Bayes 
Theorem and is ultimately related to the size of the sample. Had the sample been greater than 20, the 
relative weighting between prior knowledge and current evidence would be weighted more heavily 
in favour of the latter. The Posterior Probability column of Table 4 shows the results of the Bayesian 
theorem for this case. By adding up the relative posterior probabilities for market shares >=25% and 
those <25%, our investor will see that there is a 75% probability that her franchise will make money-
-definitely a more attractive situation on which to base an investment decision. 

Back to the Table of Contents 

Bayesian Networks 
Introduction 
The concept of conditional probability is a useful one. There are countless real world examples 
where the probability of one event is conditional on the probability of a previous one. While the sum 
and product rules of probability theory can anticipate this factor of conditionality, in many cases 
such calculations are NP-hard. The prospect of managing a scenario with 5 discrete random variables 
(25-1=31 discrete parameters) might be manageable. An expert system for monitoring patients with 
37 variables resulting in a joint distribution of over 237 parameters would not be manageable[6]. 

Back to the Table of Contents 

Definition 
Consider a domain U of n variables, x1,...xn. Each variable may be discrete having a finite or 
countable number of states, or continuous. Given a subset X of variables xi where xi  U, if one can 
observe the state of every variable in X, then this observation is called an instance of X and is 
denoted as X=  for the observations . The "joint space" of U is 

Table 3: Likelihood of An Investor Finding herself in each situation given x=5 and n=20
Event (Market 

Saturation) 

pi

 
Prior 

Probability 
P0(pi)

Likelihood of 
Situation P(x=5|pi)

Joint Probability of 
Situation 

P(x=5|pi)*P0(pi)

Posterior 
Probability 

0.10 0.05 0.03192 0.001596 0.00959
0.15 0.05 0.10285 0.005142 0.00309
0.20 0.20 0.17456 0.034912 0.20983
0.25 0.20 0.20233 0.040466 0.24321
0.30 0.40 0.17886 0.071544 0.43000
0.35 0.10 0.12720 0.012720 0.07645

Totals 1.00 0.81772 0.166381= 
P(x=5) 0.99997
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the set of all instances of U.  denotes the "generalized probability density" that X=
 given Y=  for a person with current state information . p(X|Y, ) then 

denotes the "Generalized Probability Density Function" (gpdf) for X, given all possible 
observations of Y. The joint gpdf over U is the gpdf for U. 

A Bayesian network for domain U represents a joint gpdf over U. This representation consists of a 
set of local conditional gpdfs combined with a set of conditional independence assertions that allow 
the construction of a global gpdf from the local gpdfs. As shown previously, the chain rule of 
probability can be used to ascertain these values: 

 (eq. 10) 

One assumption imposed by Bayesian Network theory (and indirectly by the Product Rule of 
probability theory) is that each variable xi,  must be a set of variables that renders xi and 
{x1,...xi-1} conditionally independent. In this way: 

 (eq. 11)[7] 

A Bayesian Network Structure then encodes the assertions of conditional independence in equation 
10 above. Essentially then, a Bayesian Network Structure Bs "is a directed acyclic graph such that 
(1) each variable in U corresponds to a node in Bs, and (2) the parents of the node corresponding to 
xi are the nodes corresponding to the variables in [Pi]i."[8] 

"A Bayesian-network gpdf set Bp is the collection of local gpdfs  for each node in the 
domain."[9] 

Back to the Table of Contents 

Bayesian Networks Illustrated 
Given a situation where it might rain today, and might rain tomorrow, what is the probability that it 
will rain on both days? Rain on two consecutive days are not independent events with isolated 
probabilities. If it rains on one day, it is more likely to rain the next. Solving such a problem involves 
determining the chances that it will rain today, and then determining the chance that it will rain 
tomorrow conditional on the probability that it will rain today. These are known as "joint 
probabilities." Suppose that P(rain today) = 0.20 and P(rain tomorrow given that it rains today) = 
0.70. The probability of such joint events is determined by: 

 (eq. 12) 

which can also be expressed as: 

 (eq. 13)[10] 

Working out the joint probabilities for all eventualities, the results can be expressed in a table 
format: 

Table 4: Marginal and Joint Probabilities for rain both today and 
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From the table, it is evident that the joint probability of rain over both days is 0.14, but there is a 
great deal of other information that had to be brought into the calculations before such a 
determination was possible. With only two discrete, binary variables, four calculations were 
required. 

This same scenario can be expressed using a Bayesian Network Diagram as shown ("!" is used to 
denote "not"). 

  

 

Figure 1: A Bayesian Network showing the probability of rain 

One attraction of Bayesian Networks is the efficiency that only one branch of the tree needs to be 
traversed. We are really only concerned with P(E1), P(E2|E1) and P(E2,E1). 

We can also utilize the graph both visually and algorithmically to determine which parameters are 
independent of each other. Instead of calculating four joint probabilities, we can use the 
independence of the parameters to limit our calculations to two. It is self-evident that the 
probabilities of rain on the second day having rained on the first are completely autonomous from 
the probabilities of rain on the second day having not rained on the first. 

At the same time as emphasizing parametric indifference, Bayesian Networks also provide a 
parsimonious representation of conditionality among parametric relationships. While the probability 
of rain today and the probability of rain tomorrow are two discrete events (it cannot rain both today 
and tomorrow at the same time), there is a conditional relationship between them (if it rains today, 
the lingering weather systems and residual moisture are more likely to result in rain tomorrow). For 
this reason, the directed edges of the graph are connected to show this dependency. 

tomorrow

  Rain 
Tomorrow

No Rain 
Tomorrow

Marginal 
Probability of Rain 

Today
Rain Today 0.14 0.06 0.20

No Rain Today 0.16 0.64 0.80
Marginal Probability 

of Rain Tomorrow 0.30 0.70  
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Friedman and Goldszmidt suggest looking at Bayesian Networks as a "story". They offer the 
example of a story containing five random variables: "Burglary", "Earthquake", "Alarm", 
"Neighbour Call", and "Radio Announcement".[11] In such a story, "Burglary" and "Earthquake" are 
independent, and "Burglary" and "Radio Announcement" are independent given "Earthquake." This 
is to say that there is no event which effects both burglaries and earthquakes. As well, "Burglary" 
and "Radio Announcements" are independent given "Earthquake"--meaning that while a radio 
announcement might result from an earthquake, it will not result as a repercussion from a burglary. 

Because of the independence among these variables, the probability of P(A,R,E,B) (The joint 
probability of an alarm, radio announcement, earthquake and burglary) can be reduced from: 

P(A,R,E,B)=P(A|R,E,B)*P(R|E,B)*P(E|B)*P(B) 

involving 15 parameters to 8: 

P(A,R,E,B) = P(A|E,B)*P(R|E)*P(E)*P(B) 

This significantly reduced the number of joint probabilities involved. This can be represented as a 
Bayesian Network: 

 

Figure 2: The conditional probabilities of an alarm given the independent events of a burglary and 
earthquake. 

Using a Bayesian Network offers many advantages over traditional methods of determining causal 
relationships. Independence among variables is easy to recognize and isolate while conditional 
relationships are clearly delimited by a directed graph edge: two variables are independent if all the 
paths between them are blocked (given the edges are directional). Not all the joint probabilities need 
to be calculated to make a decision; extraneous branches and relationships can be ignored (One can 
make a prediction of a radio announcement regardless of whether an alarm sounds). By optimizing 
the graph, every node can be shown to have at most k parents. The algorithmic routines required can 
then be run in O(2kn) instead of O(2n) time. In essence, the algorithm can run in linear time (based 
on the number of edges) instead of exponential time (based on the number of parameters).[12] 

Associated with each node is a set of conditional probability distributions. For example, the "Alarm" 
node might have the following probability distribution:[13] 

Table 5: Probability Distribution for 
the Alarm Node given the events of 

"Earthquakes" and 
"Burglaries" (N.B. "!" denotes 
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For example, should there be both an earthquake and a burglary, the alarm has a 90% chance of 
sounding. With only an earthquake and no burglary, it would only sound in 20% of the cases. A 
burglary unaccompanied by an earthquake would set off the alarm 90% of the time, and the chance 
of a false alarm given no antecedent event should only have a probability of 0.1% of the time. 
Obviously, these values would have to be determined a posteriori. 

Back to the Table of Contents 

Algorithmic Implications of Bayesian Networks
Bayesian networks are useful for both inferential exploration of previously undetermined 
relationships among variables as well as descriptions of these relationships upon discovery. In the 
former case, raw computational power can be brought to bear upon a problem. In the case of 
determining the likelihood of rain the next day following a rainy day, raw meteorological data can be 
input into the computer and the computer can determine the resultant probability network. This 
process of network discovery is discussed by Friedman & Goldszmidt[14]. Such a process is 
computationally intensive and NP-hard in its algorithmic implications. The benefit of such a process 
is evident in the ability to describe the discovered network in the future. The calculation of any 
probability branch of the network can then be computed in linear time. 

Back to the Table of Contents 

Practical Uses for Bayesian Networks 
AutoClass 
The National Aeronautic and Space Administration has a large investment in Bayesian research. 
NASA's Ames Research Center is interested in deep-space exploration and knowledge acquisition. 
In gathering data from deep-space observatories and planetary probes, an apriori imposition of 
structure or pattern expectations is inappropriate. Researchers do not always know what to expect or 
even have hypotheses for which to test when gathering such data. Bayesian inference is useful 
because it allows the inference system to construct its own potential systems of meaning upon the 
data. Once any implicit network is discovered within the data, the juxtaposition of this network 
against other data sets allows for quick and efficient testing of new theories and hypotheses. 

The AutoClass project is an attempt to create Bayesian applications that can automatically 
interpolate raw data from interplanetary probes, and deep space explorations.[15] A graphical 
example of AutoClass's capabilities is displayed in Figure 3. Incidentally, the source code for 
AutoClass is available in both LISP and C on an Open Source basis.

"not")

E B
P(A 

| 
E,B)

P(!
A|E,B)

E B 0.90 0.10
E !B 0.20 0.80
!E B 0.90 0.10
!E !B 0.01 0.99
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Figure 3: An AutoClass interpolation of raw data with no predefined categories. Sorted data is 
grouped by colour and shape. The top area is sorted into green-blue shapes, the middle into blues, 

and the bottom into red-orange-yellow shapes. 

An applied example of AutoClass's capabilities was the input of infrared spectra. Although no 
differences among this spectra were initially suspected, AutoClass successfully distinguished two 
subgroups of stars.[16] 

Back to the Table of Contents 

Introduction of Search Heuristics 
Searching for a solution to a problem is usually an NP-hard problem resulting in a combinatorial 
explosion of possible solutions to investigate. This problem is often ameliorated through the use of 
heuristics, or sub-routines to make "intelligent" choices along the decision tree. An appropriately 
defined heuristic can quicken the search by eliminating obviously unsuccessful paths from the search 
tree. An inappropriately defined heuristic might eliminate the successful solutions and result in no 
evident solution. 

Bayesian networks can replace heuristic methods by introducing a method where the probabilities 
are updated continually during search. 

One class of search algorithms called Stochastic searching utilizes what are known as "Monte-Carlo" 
procedures. These procedures are non-deterministic and do not guarantee a solution to a problem. As 
such they are very fast, and repeated use of these algorithms will add evidence that a solution does 
not exist even though they never prove that such a solution is non-existent. 

"Coupling such procedures with knowledge of properties of the distribution from which problem 
instances are drawn may be an effective way of extending the utility of these algorithms"[17] by 
helping to focus in on areas of the search tree not previously studied. 

Back to the Table of Contents 

Lumiere 
Microsoft began work in 1993 on Lumiere, its project to create software that could automatically and 
intelligently interact with software users by anticipating the goals and needs of these users. 
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This research was in turn based on earlier research on pilot-aircraft interaction.[18] The concern of 
this investigation was the ability of a system to supply a pilot with information congruent with the 
pilot's current focus of attention. Extraneous information or information not related to the pilot's 
current task list was suppressed. 

"This ability to identify a pilot's focus of attention at any moment during a flight can provide an 
essential link to the provision of effective decision support. In particular, understanding the current 
goals of a pilot decision maker can be applied to select the presentation of alternative systems and 
displays."[19] 

The Lumiere project at Microsoft eventually resulted in the "Office Assistant" with the introduction 
of the Office 95 suite of desktop products.[20] 

Back to the Table of Contents 

Limitations of Bayesian Networks 
In spite of their remarkable power and potential to address inferential processes, there are some 
inherent limitations and liabilities to Bayesian networks. 

In reviewing the Lumiere project, one potential problem that is seldom recognized is the remote 
possibility that a system's user might wish to violate the distribution of probabilities upon which the 
system is built. While an automated help desk system that is unable to embrace unusual or 
unanticipated requests is merely frustrating, an automated navigation system that is unable to 
respond to some previously unforeseen event might put an aircraft and its occupants in mortal peril. 
While these systems can update their goals and objectives based on prior distributions of goals and 
objectives among sample groups, the possibility that a user will make a novel request for information 
in a previously unanticipated way must also be accommodated. 

Two other problems are more serious. The first is the computational difficulty of exploring a 
previously unknown network. To calculate the probability of any branch of the network, all branches 
must be calculated. While the resulting ability to describe the network can be performed in linear 
time, this process of network discovery is an NP-hard task which might either be too costly to 
perform, or impossible given the number and combination of variables. 

The second problem centers on the quality and extent of the prior beliefs used in Bayesian inference 
processing. A Bayesian network is only as useful as this prior knowledge is reliable. Either an 
excessively optimistic or pessimistic expectation of the quality of these prior beliefs will distort the 
entire network and invalidate the results. Related to this concern is the selection of the statistical 
distribution induced in modelling the data. Selecting the proper distribution model to describe the 
data has a notable effect on the quality of the resulting network. 

Back to the Table of Contents 

Conclusion 
These concerns aside, Bayesian networks have incredible power to offer assistance in a wide range 
of endeavours. They support the use of probabilistic inference to update and revise belief values. 
Bayesian networks readily permit qualitative inferences without the computational inefficiencies of 
traditional joint probability determinations. In doing so, they support complex inference modelling 
including rational decision making systems, value of information and sensitivity analysis. As such, 
they are useful for causality analysis and through statistical induction they support a form of 
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automated learning. This learning can involve parametric discovery, network discovery, and causal 
relationship discovery.[21] 

In this paper, we discussed the premises of Bayesian networks from Bayes' Theorem and how such 
Bayesian inference differs from classical treatments of statistical inference. The reasons, 
implications and emerging potential of Bayesian networks in the area of Artificial Intelligence were 
then explored with an applied focus profiling some current areas where Bayesian networks and 
models are being employed to address real-life problems. Finally, we examined some of the 
limitations of Bayesian networks. 

At best, such a paper can only be a snapshot of the state of Bayesian research at a given time and 
place. The breadth and eclectic foci of the many individuals, groups and corporations researching 
this topic makes it one of the truly dynamic areas within the discipline of Artificial Intelligence. 

Back to the Table of Contents 
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