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|- Introduction

One of the fundamental problems of our technology driven society is the huge amounts of data
that are being generated by every segment of the society from factories, services, medicine and
individulas alike (Fig 1). Unfortunately we humans seek information not data, and therefore a

growing bottlenck is exactly how to extract information from data.
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Figure 1: Data versus Information

Information has many meanings in our coloquial language, however here, information means a
precise mathematical quantity fully characterized in Information Theory (IT). We utilize this
approach because it is very appropriate to deal with manipulation of information [35]. Shannonin
a1948 classical paper laid down the foundations of IT [36]. IT has had atremendousimpact in the



design of efficient and reliable communication systems [8],[12] because it is able to answer two
key questions: what is the best possible (minimal) code for our data, and what is the maximal
amount of information which can be transferred through a particular channel. In spite of its practi-
cal origins, IT is adeep mathematical theory concerned with the very essence of the communica-
tion process [12]. IT has also impacted statistics [22] and statistical mechanics by providing a
clearer understanding of the nature of entropy as illustrated by Jaynes [19]. These advances are
predicated however on the specification of the data distributions, which is not realistic for the
design of learning machines. In the design of adaptive self-organizing systems, the primary objec-
tive isto develop algorithms that will learn an input-output relationship of interest on the basis of
input patterns alone. We submit that a thrust to innovate IT isto develop methods to directly esti-
mate entropy from a set of data. With entropic measures, we will be able to utilize the full proba-
bility density function for optimization and to lift the present restrictions of linearity and
Gaussianity for the application of IT to real-world problems.

This document addresses the important issue of extracting information directly from data, which
is at the core of the issue of learning from examples in both biological and artificial systems. The
learning from examples scenario startswith adata set which globally conveys information about a
real-world event, and the goal is to capture this information in the parameters of a learning
machine. The information existsin a“distributed” mode in the data set, and appears “ condensed”
in the parameters of the learning machine after successful training. Learning in artificial neural
networks and adaptive filters has used almost exclusively correlation (the L2 norm or mean-
square error) as a criterion to compare the information carried by the signals and the response of
the learning machine, but there is mounting evidence that correlation (a second order moment) is
a poor measure to ascertain the equivalence of information between the desired response and the
output of the mapper. The fundamental issue is to find the appropriate methodology to study this
“change in state” and elucidate the issues of designing systems that are capable of producing the
transfer of information as efficiently as possible.

Here we will develop information-theoretic criteriawhich can train directly from the sampleslin-
ear or nonlinear mappers either for entropy or mutual information maximization or minimization.

We will start by a brief review of Renyi’sentropy and a description of information-theoretic learn-



ing (ITL). The Parzen window method of PDF estimation is fundamental in all our efforts to cre-
ate algorithms to manipulate entropy. The following section covers a more principled approach of
designing practical information-theoretic criteria using Renyi’s definition of entropy of order two
(quadratic entropy). We show that quadratic entropy can be easily integrated with the Parzen win-
dow estimator. The pairwise datainteractions for the computation of entropy are interpreted as an
information potential field and are a powerful analogy between information theoretical learning
and physics. We finally propose the integration of the Cauchy-Schwartz distance and an Euclid-
ean difference with the Parzen window to provide estimators for mutual information. The mutual
information criterion isvery general and can be used either in a supervised or unsupervised learn-

ing framework.

Information Optimization Principles

The most common entropy optimization principles are Jayne's MaxEnt and Kullback’s MinXEnt
[20]. MaxEnt finds the distribution that maximizes Shannon’s entropy subject to some explicit
congtraints. Hence, MaxEnt guarantees that we make no assumptions about possible missing
information. MinXEnt finds a distribution, from all possible distributions satisfying the con-
straints, that minimizes the distance in probability space to the given distribution. The most
widely used measure for MinXEnt is the Kullback-Leibler (K-L) cross-entropy. Effectively, K-L
is a measure of directed divergence between the given and the unknown distribution (a directed
divergenceisarelaxed concept of distance sinceit does not need to be symmetric nor obey the tri-
angular inequality). It turns out that MinXEnt (using the K-L divergence) with respect to the uni-
form target distribution is equivalent to the MaxEnt principle under the same constraints.
However, they are intrinsically different since one maximizes uncertainty while the other mini-
mizes directed divergence between PDFs. Moreover, MinXEnt isinvariant to coordinate transfor-
mations which is an advantage for learning, while MaxEnt does not hold this characteristic in the
continuous case. These principles have been applied using mostly Gaussian assumptions for the

data distribution, which is not very realistic when adapting nonlinear systems.



Information-Theoretic Learning (ITL)

Consider the parametric mapping g:S)iK — %™, of arandom vector X e R (normally M<K),

which is described by the following equation

Y = g(X, W) D
where Y isalso arandom vector Y € %", and W is a set of parameters. For each observation x; of
the random vector X, the parametric mapper responds with y; = g(x;,W). Our goal is to choose the
parameters W of the mapping g(.) such that a figure of merit based on information theory is opti-
mized at the output space of the mapper (Fig. 2). Thisiswhat we call information-theoretic learn-
ing (ITL). Notice that we are only requiring the availability of observations x; and y; or random
vectors without assuming any a priori model for their probability density functions (PDF). Notice
also that the mapper can either be linear or non-linear, and that the criterion may or may not
exploit an added external input normally called the desired response, i.e. information theoretic
learning includes as special cases both the unsupervised and supervised frameworks. We also
want the learning criterion to be external and independent of the mapper. Let us briefly review

work donein this area.

By analogy to optimization in Euclidean space, we can adapt the parameters W of the mapper by
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Figure 2: Training a mapper (linear or nonlinear) with ITL

manipulating the output distribution p(Y): maximizing output entropy (MaxEnt) or minimizing



the cross-entropy among the outputs or anong the output and other signals (MinXEnt). The work
of Bell & Sginowski on blind source separation (BSS) [5] is an example of the application of the
MaxEnt principle. In the neural network literature, the work of Barlow [3] and Atick [2] also uti-

lized entropy concepts for learning.

Optimization based on the MinXEnt principle is the one that is potentially more useful to solve
engineering and in particular learning problems[9]. Comon [7], Deco and Obradovic [9], Cardoso
[6] and Amari [37] among others utilized the MinXEnt principle to formulate and solve the blind
source separation (BSS) problem. One solution to BSS is obtained by minimizing the mutual
information (redundancy) among the outputs of a mapper Y, which can be formulated as the K-L

divergence between the joint PDF of Y and its factorized marginds as

[(Y1, --.¥n) = > H() —H(Y) . The problem arisesin estimating the joint output density H(Y).
i=1

These researchers utilize the well known [30] result of using alinear network to directly compute
the output entropy from the input entropy as H(Y) = H(X) +log|det(W)| where Y = WX .
Note that a full rank k-to-k linear mapping W is required in this approach which is a severe con-
straint for learning applications (for instance in sub-space mappings as required in classification).

The next step is the estimation of the marginal entropy of each output H(y;) (a scalar problem).
Comon [7] proposed the use of the Edgeworth expansion of the PDF and Amari [37] the Gram-

Charlier expansion which are both well known and equivalent methods (in the limit) of estimating
PDFs by the moment expansion method. In practice, the expansions must be truncated (a source
of error) and higher order moments of the PDF estimated from the data, which becomes computa-
tionally expensive and requires large amounts of data for robust results. However, after the mar-
ginal PDFs are estimated, then a gradient based agorithm can be formulated to solve the BSS
problem [37]. Although this method is very appealing from the point of view of alearning crite-
rion, notice that it is not general because the criterion is not totally independent of the topology of

the mapper. Recently, Amari and Cardoso proposed a semi-parametric model for BSS[1].

In the neural network literature there is still another information optimization principle, Linsker’s
principle of maximum information preservation (InfoMax), which is a special case of the infor-

mation loss minimization principle of Plumbey [29]. Optimization with mutual information has



not been extensively addressed in the optimization literature. Linsker was interested in finding a
principle that self-organizes biological systems [24]. These systems are adaptable, so the issue is
to find a criterion to adapt the parameters of the mapper g(X,W). The god is to determine the
parameters W such that the output variable Y conveys as much information as possible about X:
that is, aprinciple for self-organization should maximize the average mutual information between
X and Y in the presence of noise. For a linear network and under Gaussianity assumptions, the
mutual information is maximized by maximizing the output variance [24]. Recall that maximiza-
tion of output variance is basicaly principal component analysis (PCA) for which there are
known on-line and local agorithms[10], [27]. Hence, forseeably, a biological network could self-
organize with such a principle. We can see that this method leads to interesting solutions but it
depends on very restrictive assumptions about the PDFs and linearity of the mapping. In fact
Plumbey states [29] that the big challenge is to extend Linsker’s work to arbitrary distributions

and nonlinear networks. Thisis exactly what we propose to accomplish in our work.

From atheoretical perspective, InfoMax is a different principle from MaxEnt and MinXEnt since
it maximizes a divergence measure (mutua information). Linsker applied InfoMax between the
input and the output of deterministic mappers, so the principle reduces to applying MaxEnt at the
output of the mapper [24], [5]. But InfoMax can be applied to any pairs of random variables, such
as the outputs of the mapper and any other external random variable. This new application is
called here information filtering, since it designs a mapper to preserve information maximally
about a source while attenuating other information available in the input data. Information filter-

ing will be exploited later in the chapter for supervised learning applications.

One of the difficulties of these information-theoretic criteria is that analytic solutions are known
only for very restricted cases, e.g. Gaussianity and linear volume preserving mappings (see also
Deco [9]). Otherwise mathematical approximations and computationally complex algorithms
result. A useful neurocomputing algorithm should be applied to any topology, utilizes the data
directly (on a sample-by-sample basis or in batch) and a simple learning rule distilled from the
mathematics, so we submit that none of the above algorithms to train a nonlinear mapper with
MinXEnt criterion is“neura”. In this respect Bell and Sejnowski’s algorithm for maximization of

output entropy is paradigmatic. It utilizes a nonlinear mapper (although restricted to be a percep-



tron), it adapts the weights with a simple batch rule that is not specific to the input data model (as
the solution in [37]) and globally leads to a solution which maximizes an entropic measure.
Recently, Linsker showed that thereisalocal rule for MaxEnt, which only requires extending the
perceptron with lateral connections [25]. Thisis the spirit of a neural computation [17] which we

have been seeking all along.

In our opinion, the two fundamental issues in the application of information-theoretic criteria to
neurocomputing or adaptive filtering are: the choice of the criterion for the quantitative measure

of information, and the estimation of the probability density function (PDF) from data samples.

ITL asan Unifying Criterion for Learning

Figure 3 shows a block diagram of a unifying scheme for learning based on divergence and
entropy. The only difference is the source of information which is shown as a switch with 3 posi-
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Figure 3: Unifying learning models with the mutual information
criterion.

When the switch isin position 1 or 2 learning belongs to the unsupervised type (no formal desired
response) and corresponds to manipulating the divergence or mutual information at the output of
the learning system or between its input and output. A practical example with switch in position 1
is the on-going work on independent component analysis (ICA) where the goal isto minimize the
mutual information among the multiple mapper outputs to yield independent components [15].
An example of the block diagram with switch in position 2 is Linsker’s Infomax criterion [20]

where the goal is to transfer as much information between the input and output of a mapper by



maximizing the joint input-output mutual information. However, if the goal is to maximize the
mutual information between the output of a mapper and an external desired response, then learn-
ing becomes supervised. Thisis achieved by setting the switch to position 3. Note that in this case
the desired response appears as one of the marginal pdfs in the mutual information criterion. The
two outstanding cases belong both to function approximation: first, if the desired response is a set
of indicator functions, the task is classification. However, the desired data is aways quantified by
means of its pdf, not by deriving a sample by sample error. Therefore we can think of this case as
supervised learning without numeric targets, just class labels[37]. Second, if the desired response
data is a continuous function then we named the application information filtering [26]. This name
came from the realization that the learning machine is seeking a projection of the input space that
best approximates (in an information sense) the desired response. In engineering this is the model
used for Wiener filtering [16] but where the adaptive system is restricted to be a linear filter and
the criterion is minimization of the error variance. Table | shows a more complete picture of ITL

and can be used as atable of contents for browsing this website and companion documents.

Table 1: ITL asa Unifying Principlefor Learning

Switch One Two Three
entropy minimi- | blind deconvolution novelty filtering information filtering
zation classification
mE
entropy maxi- nonlinear PCA
mization
ME
Mutual informa- ICA
tionminimiza= | blind source separa-
tion tion
mMI
Mutual Infor- clustering Linsker infomax feature extraction
mation maximi- matched filters
zation
MMI




|1- Generalized Definitions of Entropy

Renyi’s Entropy

Information theory is a mathematical formalization of our intuitive notion of information con-
tained in messages. |If amessage is perfectly known a priori, itsinformation content is zero. How-
ever, the less predictable a message is, the larger is its information content. Shannon, using an

axiomatic approach [36] defined entropy of a probability distribution P= (p4, po,...pN) 8

N 1 N
H(P) = Tpdog(ls)  Tpc=1 po @
k=1 k=1

that is, the average amount of information contained in a single observation of a random variable
X which takes values x4, X,,....XN With probabilities p=P(x=%), k=1, 2,..., N. Entropy measures
the average amount of information conveyed by the event x, or aternatively, the amount of miss-
ing information on X when only its a priori distribution is given. Information theory has been
widely applied to the design of communication systems [8], [12], [35]. But the definition of

entropy can be derived even in a more abstract form. In the general theory of means [33], the

mean of the rea numbers x,, ..., Xy With positive weighting (not necessarily probabilities)

Py, ..., Py hasthe form:

N
X= qfl(z pk<p(xk)j 3)
k=1

where ¢(x) is a Kolmogorov-Nagumo function, which is an arbitrary continuous and strictly

monotonic function defined on the real numbers. In general, an entropy measure H obeystherela-

tion:
1 N
H= o (Z pk(P(I(pk))j (4)
k=1
where I(p,) = —log(p,) is Hartley’s information measure [18]. In order to be an information



measure, ¢(.) can not be arbitrary since information is “additive”. To meet the additivity condi-

tion, @(.) canbeeither (x) = x or p(x) = 2"~ for generaized additivity. If @(x) = X is

2(1—a)x

selected, (3) will become Shannon’s entropy. For ¢(x) = Renyi’s entropy of order o is

obtained [32], which we will denote by Hg,,

1

N
Hg, = mlog(kzlpkj o>0,a#1 (5)

Thereisawell known relation between Shannon’s and Renyi’s entropy:

Hgy 2 Hs2Hgg, if 1>0>0 and f>1
lim Hg, = Hg
a—1
It is important to further relate Renyi’s and Shannon’s entropies. Let us consider the probability
distribution P= (p4,po,....PN) @ a point in a N-dimensional space. Due to the conditions on the

N
probability measure ( p, = 0, Z p, = 1) Pawaysliesin thefirst quadrant of an hyperplanein

k=1
N dimensions intersecting each axis at the coordinate 1 (Fig. 3). The distance of P to the origin is

N
theocroot of vV, = 3 Py = |IP|”and the o root of V, is called the ai-norm of the probability dis-
k=1

tribution [16]. Renyi’s entropy (5) can be written as afunction of V

Hey = 72l0gV,, ©)
When different values of o are selected in Renyi’s family, the end result is to select different o-
norms. Shannon entropy can be considered as the limiting case oo — 1 of the probability distribu-
tion norm. Notice that the limit provides an indeterminacy (zero over zero in (6)) but the result
exists and is given by Shannon’s entropy. With this view, Renyi’s entropy is a monotonic function

of the a-norm of the PDF and is essentially amonotonic function of the distance of the probability

distribution to the origin. We have considerable freedom in choosing the o-norm [43]. When

10



N

o = 2, Hg, = -log Z pﬁ is called quadratic entropy due to the quadratic form on the probabil-

k=1
ity, and it corresponds to the 2-norm of the probability distribution.

P3

P=(p1,p2:P3)

P2

P1

Figure 4: Geometric interpretation of entropy for N=3. The distance of P to the
origin is related to the a-norm.

For the continuous random variable Y with PDF f,(y), we can obtain the differential version of

Renyi’s entropy following a similar route to the Shannon differential entropy [32]:

Hg,(Y) = ﬁlog( | fY(z)“dzj

7
Hro(Y) = —Iog( | fY(z)Zdzj

Note that Renyi’s quadratic entropy involves the use of the square of the PDF. An important
observation is that this aternate definition of entropy is equivalent to Shannon's entropy for the

goal of entropy maximization [21].

Renyi’s entropy is just one example of a large class of alternate entropy definitions which have
been called generalized entropy measures [20]. One may wonder why the interest in measures
more complex than Shannon’s entropy or Kullback-Leibler direct divergence (also called cross-
entropy). Here we will only provide a brief overview of this important question. The reader is
referred to the entropy optimization literature for further study [20], [21], [32]. The reason to use
generalized measures of entropy stems from practical aspects when modeling real world phenom-

ena through entropy optimization algorithms. It has been found that when we apply the two basic

11



optimization principles based on Shannon's entropy definition (which are Jayne’'s maximum
entropy principle (MaxEnt) and Kullback’s minimum cross-entropy principle (MinXEnt)) either
just one solution from a spectrum of solutionsis found, or not even “natural” solutions are found.
To improve on this situation, researchers have proposed alternative definitions of entropy. An
example of a generalized entropy measure in the digital signal processing arenais Burg's entropy

estimator [4], which has been successfully applied in spectral analysis[26].

In our study of learning from examples, the interest in generalized entropy measures comes from
apractical difficulty. We wish to directly estimate entropy from the data samples, without impos-
ing assumptions about the PDF. Shannon’s definition of entropy (the sum of terms which are
weighted logarithms of probability) is not amenable to ssimple estimation algorithms, while
Renyi’s logarithm of the sum of the power of probability is much easier to estimate, and has been
utilized in physics[15]. We will show in section 11 how avery effective algorithm can be derived.
Renyi’s entropy has been utilized successfully in nonlinear dynamics to estimate the correlation
dimension of attractors. One important question stemming from the use of generalized entropy
measures is the justification for the selected measure. We have not yet addressed this question in
our research. At this point we can only state that the experimental results obtained with the use of
Renyi’s entropy estimator and its extension to mutual information have produced practical solu-
tionsto difficult problemsin signal processing and pattern recognition. Since learning from exam-
ples is an inverse problem, we believe that the choice of an appropriate generalized entropy

measure will play an important role in the quality of the final solution.

12



I11- Information Theoretic L earning: Unsupervised learning with
Renyi’s Quadratic Entropy

ITL agorithms are based on a combination of a nonparametric PDF estimator and a procedure to
compute entropy. In this section we will overcome the difficulty in approximating Shannon’s
entropy by utilizing Renyi’s generalized entropy. Before we start the derivation of the algorithm

let us state a property of Gaussian functions which will be very useful in the method.

1
(ZE)M/2|2|1/2

exp(—:—LzTZ_lz) be the Gaussian kernel in M-dimensional space,

Let G(z %) = 5

where T isthe covariance matrix, ze R" . Let Yy, € R" and y; € R" betwo data samplesin the

space, X, and X, be two covariance matrices for two Gaussian kernels in the space. Then it can

be shown that the following relation holds:

+oo

[ G(z-y,, Z)G(z-Y;, Z)dz = G((Y; -y, (£, +E,)) ®)

—oo

Similarly, the integration of the product of three Gaussian kernels can aso be obtained and so on.

(8) can also beinterpreted as a convol ution between two Gaussian kernels centered at y; andy; and

itis easy to seethat the result should be a Gaussian function with a covariance equal to the sum of

theindividual covariances and centered at d;;= (y; - ¥))-

Quadratic Entropy Cost function for Discrete Samples
Let y, R"i = 1,..,N, beaset of samples from arandom variableY € R" in M-dimensional

space. An interesting question is what will be the entropy associated with this set of data samples,
without pre-specifying the form of the PDF. Part of the answer liesin the methodology of estimat-

13



ing the data PDF by the Parzen window method using a Gaussian kernel:

~ N
f(z {yh) = 1Y Gz-y, o7) ©

i=1
where G(.,.) isthe Gaussian kernel as above and 62l is the covariance matrix. When Shan-
non's entropy (2) is used along with this PDF estimation, an algorithm to estimate entropy
becomes unrealistically complex as Viola [39] also realized. So, we conclude that Shannon’s def-
inition of information does not yield a practical measure for ITL. Fortunately, Renyi’s quadratic
entropy leads to a much ssimpler form. Using (9) in (7) we obtain an entropy estimator for a set of

discrete datapoints {y} as

H(LYD) = Hey(Y1y}) = —Iog( i fY<z>2dzj = JogV({y})
- (10)

+

1NN 1 X 2
V({y}>—N—§z:_LG(z Y, 6°1)G(z— y,,csI)dz—N—gz: (Yi—Y; 20°1)

We will simplify the notation by representing y={y} whenever there is no confusion. The combi-
nation of Renyi’s quadratic entropy with the Parzen window leads to an estimation of entropy by
computing interactions among pairs of sampleswhichisapractical cost functionfor ITL. Thereis
no approximation in this evaluation (apart from the PDF estimation).

Quadratic Entropy and Information Potential

We wrote (10) in this way because there is a very interesting physical interpretation for this esti-
mator of entropy. Let us assume that we place physical particlesin the locations prescribed by the
data samples y; and y;. For this reason we will call them information particles (IPCs). Since
G Y 2671 ) isaways positive and isinversely proportional to the distance between the IPCs,

we can consider that a potential field was created in the space of interactions with a local field

strength dictated by the Gaussian kernel (an exponential decay with the distance square)

Vij = G(y; — yJ,20 ) = G(d,l,202l). Physical particles interact with an inverse of distance

14



rule, but Renyi’s quadratic entropy with the Gaussian kernel imposes a different interaction law.

Control of the interaction law is possible by choosing different windows in the Parzen estimator.

The sum of interactions on the ith IPC is V, = >V :ZG(dij,Zozl). Now
i i

V(y) = NizZZVi i » which is the sum of all pairs of interactions, can be regarded as an overal
i

potential energy of the data set. We will call this potential energy an information potential (IP). So

maximizing entropy becomes equivalent to minimizing the IP. Our estimator for quadratic

entropy is the negative logarithm of the IP. It was a pleasant surprise to verify that our quest for

ITL algorithms ended up with a procedure that resembles the world of interacting physical parti-

cles which originated the concept of entropy.

We can also expect from (7) that this methodology can be applied to Renyi’s entropy of higher
order (o # 2). In fact, Renyi’s entropy of order o will compute interactions among tuples of sam-
ples, using an alpha norm to quantify the complex structure of the data set. These interactions can
be estimated with an extension of (10) when the Parzen window method implemented with the

Gaussian kernel is utilized in the estimation.

I nfor mation Forces

Just like in mechanics, the derivative of the potential energy isaforce, in this case an information

driven force that moves the data samples in the space of the interactions. Therefore,

9

3y G0 =¥ 20°) = Gy -y}, 20°)(¥i-¥)/(207) (12)

can be regarded as the force F;; that IPC y; impinges upon y;, and will be called an information

force (IF). Figure 4 depicts the information forces created by alPC. If all the data samples arefree
to move in a certain region of the space, then the information forces between each pair of IPCs
will drive all the samplesto a state with minimum IP. If we add all the contributions of the IF from

the ensemble of samples on y; we have the net effect of the information potential on sample y;,
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Figure 5: Two dimensional attractor functions. The Xj;-component is
shown at the top while the X,-component is shown at t lhe bottom. The
function represents the local influence of each data point in the output
space.

N
(y) - _N21 ZZG(y' yJ,ZG I)(y| y]) = N2 ZZVdeI] (12)

j=1 j=1

F.=

ay.
“Force” Back-Propagation

The concept of IP creates a criterion for ITL, which is externa to the mapper of Fig. 2. The only
missing step is to integrate the criterion with the adaptation of a parametric mapper as the MLP.
Suppose the IPCs y are the outputs of our parametric mapper of (1). If we want to adapt the MLP

such that the mapping maximizes the entropy at the output H(y), the problem is to find the MLP
parameters w;; so that the IP V(y) is minimized. In this case, the IPCs are not free but are a

function of the MLP parameters. So, the information forces applied to each IPC by the informa-
tion potential can be back-propagated to the parameters using the chainrule [34], i.e.

N

0 _
V() = ;[ V( )] ZF 2 gow. x) (13)

where y; = (Yig, --os yiM)T is the M-dimensional MLP output. Notice that from (13) the sensitiv-
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. ay; . . .
ity of the output with respect to a MLP parameter 8_3\2/ Is the “transmission mechanism’

through which information forces are back-propagated to the parameter (Fig. 5). From the anal-
ogy of (13) with the backpropagation formalism we conclude that F; = ¢;, that is, information

forces take the place of the injected error in the backpropagation algorithm. So, we obtain a gen-
eral, nonparametric, and sample-based methodology to adapt arbitrary nonlinear (smooth and dif-
ferentiable) mappings for entropy maximization (Fig. 5). Notice that we are adapting a MLP
without a desired response, hence this is an unsupervised criterion. We have established an ITL
criterion that adapts the MLP with a global property of its output sample distribution. It is very
useful to analyze this expression in detail and compare it with the well known MSE. Note that
MSE is computed with a single data sample/desired response combination. However, the entropy

is estimated with pairs of data samples, that is, more information about the data set is being

extracted here than with the M SE criterion (in aN sample data set there are @l) different pairs).

Q Y1 | Inf i

X N U e o) nformation

! Q O y > o’ Potential Field

X _2> ) V(y)
\4

Dual Information
Network Force

Figure 6: Training a MLP with the information potential

As a consequence, we can also expect that the algorithm will be computationally more expensive

(O(N?)).

This criterion can be utilized to directly implement Jayne’'s MaxEnt optimization principle, but
instead of requiring analytic manipulations it solves the problem using the iterative approach so
common in adaptive filtering and neurocomputing. The constraints in MaxEnt are here specified

by the topology of the mapper. The weights of any MLP PE will be adapted with the backpropa-

17



gation algorithm [16] as

AW;; = ;X

wherem isthe stepsize, x; is theinput to the PE, and §; isthelocal error at the PE (see[16]). I the
goal isto maximize output entropy (asrequired by MaxEnt), the + signisused, and if the purpose
is to minimize output entropy, the - sign is required. Notice that this will change the interactions

among | PCs in the output space from repulsion to attraction.

Ee conclude this section by stating that the methodology presented here lays down the framework
to construct an “ entropy machine”, that is alearning machine that is capable of estimating entropy
directly from samplesin its output space, and can modify its weights through backpropagation to

manipulate output entropy. An electronic implementation using the laws of physics to speed up

the calculations is an intriguing possibility. The algorithm has complexity O(Nz) since the crite-
rion needs to examine the interactions among all pairs of output samples. Note that we are extend-
ing Bell and Sejnowski approach to ICA. Bell's approach is conceptually very elegant, but it
cannot be easily extended to ML Ps with arbitrary topologies nor to data distributions which are
multimodal in nature. On the other hand, Renyi’s quadratic entropy becomes essentially a gen-

eral-purpose criterion for entropy manipulation.
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IV Information-Theoretic Criteria: Unsupervised Learning with
Quadratic Mutual Information

In the previous section we implemented a nonparametric method to solve MaxEnt. Here we will
develop an ITL criterion to estimate the mutual information among random variables which
enables the implementation of MinXEnt and InfoMax. Mutual Information is capable of quantify-
ing the entropy between pairs of random variables so it is a more general measure than entropy

and can be applied more flexibly to engineering problems. Mutual information at the output of a
mapper can be computed as a difference of Shannon entropies 1(x,y) = H(y) —H(y|x). But we

have to remember that Shannon entropy is not easily estimated from exemplars. Therefore this
expression for 1(x,y) can only be utilized in an approximate sense to estimate mutual information.
An alternative to estimate mutua information is the Kullback-Leibler (KL) divergence [22]. The

KL divergence between two PDFs f(x) and g(x) is:

K(f,g) = If(x)logf((x))dx (14)

where implicitly Shannon’s entropy is utilized. Likewise, based on Renyi’s entropy, Renyi’'s

divergence measure [32] with order o for two PDFs f(x) and g(Xx) is:

f(x)”
gx)*”

Hg,(f,0) = Iogj 7dx (15)

(a—1)

The relation between the two divergence measuresis:

lim HRa(fa g) = K(f') g)
a—>1

that is, they are equivalent in the limit o=1. The K-L between two random variables Y; and Y,

essentially estimates the divergence between the joint PDF and the factorized marginal PDFs, i.e.

fyv,(Z1, 2)

fv,(zDfy,(22)

where fy y (z,, 2,) isthejoint PDF, f (z,) and fy (z,) are marginal PDFs. From these formulas,

I5(Y2, Y2) = KL(fy, (21 2). fy, (20, (22)) = [[fy,v, (21 2109 dz,dz, (16)
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we can aso observe that unfortunately none of them is quadratic in the PDF so they cannot be
easily integrated with the information potential described in section I11. Therefore, we propose
below new distance measures between two PDFs which contain only quadratic termsto utilize the
tools of IP and IF developed in section I11. There are basically four different ways to write adis-

tance measure using L, norms, but here we will concentrate on two:

1- Based on the Euclidean difference of vectorsinequality we can write

X1+ Iyl *—2x"y = 0 (17)
2- Based on the Cauchy-Schwartz inequality (inner produce distance) we can write

- a8)
T .2
(X'y)
Notice that both expressions utilize the same quadratic quantities, namely the length of each vec-
tor and their dot product. We will utilize these distance measures to approximate the K-L directed
divergence between PDFs, with the added advantage that each term can be estimated with the IP

formalism developed in the previous section.

For instance, based on the Cauchy-Schwartz inequality (18), we propose to measure the diver-

gence of two PDFs f(x) and g(x) as

(Jfo0° ([ ae0 dx)

2
(Jfeog0dx)
It is easy to show that |-4(f, g) 20 (non-negativity) and the equality holds true if and only if

les(f, 9) = log (19)

f(X) = g(x) (identity) if f(x) and g(x) are PDFs. So (19) estimates the distance between the joint
guadratic entropy and the product of the quadratic entropy marginals. But it does not preserve all

the properties of the K-L divergence. Likewise we can propose to estimate the divergence

between two PDFs f(x) and g(x) based on the Euclidean distance as

leo(f, @) = [f00 dx+ [g0 dx—2[fO0 g0 dx (20)
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Estimatorsfor Quadratic Mutual I nformation

For two random variables Y, and Y, (with marginal PDFs fy (z), fy () and joint PDF

fy,v,(z1, 25)), the “quadratic mutual information” based on the distance measure (19) becomes:

. (”fvlvz( 2}, Z,) Zdzl dz) (”le(zl)szz( Z,) Zdzldzz)

les(Y1, Yp) = lo >
(”fvlvz(zla )y (z)fy,(2,)dz,dz))

(21)

It is obvious that |-5(Y, Y,) IS an appropriate measure for the independence of two variables

(minimization of mutual information). We also have experimental evidence that 1 -¢(Y;, Y,) isan
appropriate measure for dependence of two variables (maximization of mutual information).
Although we are unable to provide yet a strict justification that 1-4(Y;, Y,) isappropriate to mea-
sure dependence, we will call (21) “Chauchy-Schwartz Quadratic Mutua Information” or CS-

QMI for convenience. Now, suppose that we observe a set of data samples

{y1}={Yyi, 1= 1, ..., N} for thevariable Y, {y,}= {Vi,, i= 1, ..., N} for thevariable Y,. Let
Vi = (Y Yi2)"- Then y= {y},i= 1, ..., N} are data samples for the joint variable (Y, Y,)T.
Based on the Parzen window method (9), the joint PDF and marginal PDF can be estimated as:

~ N
(2 2) = =5 G(z—Yin, 6°1)G(Zo—Yin, 621)
N

i=1

R N
f(z) = X3 Gz -Yi, 6°1) (22)
i=1

N
P 1
fr(z) = 53 G(z-Yi2 61)

i=1

Combining (21), (22) and using (10), we obtain the following expressions to estimate the Qua-
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dratic Mutual Information I-4(Y;, Y,) based on aset of data samples:

V(y)V' ({yl})V ({Y>1)
nc(y)

les((Y1, Y2)|y) =log

where

1N N2 ,
V(y) = N_Z Z(HG(YH—leaZG |)j
—1j=1

N
Vi (9D = XY G- 207, 1= 1,2 (23)

i=1

N
Viyh =3y Vo v 1= 12

=1

Vnc(y) =

N 2
> (HV'(y,-, {y.})j
=1

_Zlr

In order to interpret these expressions in terms of information potentials we have to introduce
some further definitions. We will use the term marginal when the IP is calculated in the subspace

of each of the variables y; or y,, and partial when only some of the IPCs are used. With thisin

mind, V(y) isthejoint information potentia (JP) in the joint space, Vi': V'(yi, {y,}) isthepar-
tial marginal information potential (PMIP) because it isthe potentia of the sample y; inits corre-

sponding marginal information potential field (indexed by 1). V'= V'({y|}) is the |-th marginal
information potential (MIP) because it averages all the partial marginal information potentials for
one index |, and V,.(y) is the un-normalized cross-information potential (UCIP) because it

measures the interactions between the partial marginal information potentials [40]. We will uti-

lize the simplified notation herein. All these potentials can be computed from sums of pairs of
interactions among the IPCs in each of the marginal fields, namely V'ij. PMIP (V'i), and MIP (V)

have the same definitions as for Renyi’s entropy but now qualified by the superscript | to describe

which field we are referring to.

Actualy, the argument of the logarithm in the first equation of (23) can be regarded as a normal-
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ization for the UCIP, that is V,.(y) normalized by the joint information potential and the mar-

ginal information potentials. The cross-information potential (CIP) can then be defined as:

Vi) _ Vie(y)
V) Vi) Vi)
So quadratic mutual information is measured by the CIP. With the CIP concept and the compari-

V(y) = (24)

son between (10) and (24), we obtain consistent definitions from entropy to cross-entropy as
shown by

{mﬂw=4mww 25)

les((Y1, Yo)|y) = —logVc(y)

which relates the quadratic entropy with the IP and the quadratic mutual information with the CIP
[40]. Therefore, maximizing the quadratic entropy is equivalent to minimizing I P, while maximiz-
ing the quadratic mutual information is equivalent to minimizing the CIP. Likewise, minimizing
the quadratic mutual information is equivalent to maximizing the CIP. If we write the CIP as a
function of the individual fields we obain

N N
(ézz%@ww>

i=1j=1

wze)

i=1

Vely) = (26)

and conclude that V(y) is a generalized measure of crosscorrelation between the MIPs at differ-

ent levels (at the individua IPC interactions, at the partial marginal information potential and
marginal information potential levels).

The quadratic mutual information described above can easily be extended to the case with multi-

plevariables Y,, ...Y,. as
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C((Yy, Yy [{ah)= —logV,({a})

1 NN , 1 NN
V(y) = N_Z ZG(Yi—YjaZG 1) = N_Z Z(HG(YH —Yji» 20 |)j
=1j=1 =1i=

1,...,k

N
Vi, (Y = 53 60 -¥p 2071), |

i=1

1
=
=~

N
Vyh = XY VO, b, |

i=1

1N K |
Vo) = 53 (vaj, {y.})j

j=1M=1
Vv 2
V(y) = EC(y)
V(Y)Hvl({Y|})

=1

“Forces’ in the Cross-Information Potential

The cross-information potential is more complex than the information potential [40]. Three differ-
ent information potentials contribute to the cross-information potential of (24), namely the JP
(V). the PMIP (V!), and the MIP (V). So, the force applied to each IPC y; which isthe derivar
tive of the IP comes from three independent sources, which we call the marginal information
forces (MIF). The overall marginal force from k=1,2 that the IPC vy, receives is, according to

(26),

3 1 o 1 0

= —_"V _— v
LYo T W, (y)+\/({yk})ay.k U =2 Vi)

(27)
Notice that the forces from each source are normalized by their corresponding information poten-

tialsto balance them out. Thisis a consequence of the logarithm in the definition of 1-5(Y4, Y5).

Each marginal force k that operates on the data sample y; can be calculated according to the fol-
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lowing formulas obtained by differentiating the corresponding fields [40]

P y Vi — yk
—V()=—— ( G(I ,20|)j
3y y N Z H Yik— Yik 2

N

WV ({Ye}) = —NzlzlG(y.k Yio 26° |) = (28)

9
ik

Voely) = sz (1Y 05 1)) By 20D B

=1 1£k

Once the forces that each IPC receives are calculated by (28), they represent the injected error
which can again be back-propagated to all the parameters of the mapper with backpropagation so
that the adaptation with quadratic mutual information takes place. The marginal force for the two

variable case isfinally given by

ZV.,Vd Zv,,d,J 2zvj1vﬁdij
J

ZZVuVu ZZVu SV
i

Quadratic Mutual Information W|th the Euclldean Difference measure

k _ _ 1

(29)

We can also utilize (17) to express quadratic mutual information using the Euclidean difference
(ED-QMI) of vectors inequality

lep(Yq: Yp) = U [ fy, v, (% Zz)zdﬁdzz) * G [ le(Zl)szZ(Zz)zdzldzg ‘ZG [ fy v, % ZZ)le(Zl)sz(ZZ)dzldzz)(SO)

Obvioudly, lgp(Y;, Y,) >0 and equality holdsif and only if Y, and Y, are statistically indepen-
dent, so it is also a divergence. Basically (30) measures the Euclidean distance between the joint

pdf and the factorized marginals. With the previous definitionsit is not difficult to obtain

len((Y1, Y2)|Y) = VED(Y)

N
Veo(y) = Nizz $ViVi- sz L2 4 V12
2.

1j=1 i=1

(31)

25



Although (31) and (23) differ in form, we can seethat V., is still an overall measure of cross-corre-
lation between two marginal IPs. We have found experimentally that 1. (Y;, Y,) is better behaved

than 1-5(Y;, Y,) for maximization of the quadratic mutual information, while they both provide

similar results for the minimization of quadratic mutual information.

It is aso not difficult to obtain the formula for the calculation of the information force produced

by the CIP field in the case of the Euclidean difference measure of (31)

Cff = Vi —VI-Vf+ VK, k=12

oVep -1 N
Fl = =1 = 55> chVid]

M N (32
i=1..,N, Ik, I =12

where cff are cross matrices which serve as force modifiers.
Interpretation of the CIP

Another way to look at the CIP comes from the expression of the factorized marginal PDFs. From
(22), we have:

1 N N
f@h@ = 53 3 Gz-yin 0)GE-Yp o) (33)
i=1j=1
This suggests that in the joint space, there are N’ “virtual IPCs’ {(Yi1, yjz)', i,j= 1,...,N}
whose coordinates are given by each of the coordinates of the IPCs, that is, for every rea IPC
location (y;1,j0), N virtual IPCs are placed at points given by the coordinate y;; of the real IPC
and yjp, j=1,...N, of all the other real IPCs. The PDF of (33) is exactly the factorized marginal

PDFs of the IPCs. The relation between all types of IPCsisillustrated in Figure 6 for two extreme
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cases.
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Y2 Yin Yi2) (Yiv ¥j2) Y2 (Vi sz)T
Yi2 X % <>
I\
Yio 128 Yoo H®
4 oo
Q A8 V7N
,@P 715 SIS 25 85X
N S JEANZAN
>
A\ . —s—pY
Yi1 Yi1
® red IPC o virtual 1PC
n margina 1PC

Figure 7: lllustration of “real IPC” & “virtual IPC”

In the left panel, the IPCs are distributed along a diagonal line. In this case the virtual IPCs are
maximally scattered in the joint field, and the difference between the distribution of the real IPCs
and virtual 1PCs is maximized. In the right panel of Fig. 6 the IPCs are in a more compact distri-
bution in the joint field. In this case the virtual IPCs occupy the same locations asthereal IPCs. In
this case the two fields are the same and the CIP is zero, which corresponds to the case of statisti-
cal independence of the two marginal variablesY, and Y,. All the other distributions of IPCs will

provide intermediate conditions between these two extremes.

From the above description, we can re-interpret the CIP as the square of the Euclidean distance
between the IP (formed by real 1PCs) and the virtual 1P fields (formed by virtual IPCs). CIPisa
general measure for the statistical relation between two variables (based merely on the given
data). It may also be noted that both Y; and Y, can be multidimensional variables, and their

dimensions can be even different.
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IV Conclusions

This chapter describes our efforts to develop an information-theoretic criterion which can be uti-
lized in adaptive filtering and neurocomputing. The optimization criteria should be external to the
mapper, and should work directly with the information contained in the samples, without any fur-
ther assumptions. We found the answer in a combination of a nonparametric density estimator
(Parzen windows) and easily computable definitions of entropy and mutual information.
Although Shannon’s entropy definition is the only one that obeys all the properties of information,
alternate definitions have been shown of practical value. We have explored the parametric defini-
tion of entropy proposed by Renyi, and settled on the member of the family with order o. = 2, or
guadratic entropy. Renyi’s quadratic entropy can be readily integrated with the Parzen window
estimator, yielding without any approximation (besides the PDF estimation step) an optimization

criterion that is appropriate for our concept of “neural processing”.

We explained how the idea of PDF estimation with Parzen windows leads to the integrated square
error (I1SE) method which was the first reported practical non-parametric method for ITL. ISEisa
criterion external to the mapper so it can be used with any mapper, linear or nonlinear. An analysis
of the computations showed that the PDF estimation can be bypassed and the criterion computed

with local interactions among samples with an influence function. The algorithm has a computa-

tional complexity of O(N?), where N is the number of training patterns. We showed that the
method is practical and works well, extending the work of Bell and Sejnowski for blind source
separation. But the criterion seems to have other very interesting properties (such as neighbor-

hood preservation) which have not been explored.

With Renyi’s quadratic entropy we have a more principled approach to directly manipulate
entropy. We provided an interpretation of the local interactions among pairs of samples as an
information potential field. The injected error for the mapper can also be interpreted as an infor-
mation force. This physical analogy raises hope of building an “entropy machine” based on this
approach. We also showed the relationship between the information potential and the influence
function obtained in ISE.
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An important conclusion of this work is the form of the Renyi’s entropy estimator. Although
entropy is afunction of the PDF, we do not need to estimate the PDF to estimate Renyi’s entropy.
Thisis due to the fact that Renyi’s entropy is afunction of the norm of the PDF which can be esti-
mated directly by interactions among o.-plets of data samples. A similar simplification happensin
the design of classifiers, where the a posteriori probability is estimated without the need to
directly estimate the PDF. Thisis a saving grace that will make ITL practical.

Mutual information was estimated using the Cauchy-Schwartz (CS-QMI) and the Euclidean Dis-
tance (ED-QMI) inequalities as measures of divergence between the joint density and the factor-
ized marginals. Thisis a proxy (approximation) for the Kullback-Leibler divergence, but has the
advantage of being easily integrated with the Parzen window method to implement sample esti-
mators. We showed that the minimization of this cost function efficiently separates instanta-
neously mixed speech sources. The ideaisto minimize the mutual information among the outputs
of the de-mixing filter, as described in previous chapters. But with the information potential
method we are using solely the information from samples, so we can potentially separate nonlin-

early mixed sources.

But quadratic mutual information transcends the independent component analysis application. It
can also be used for supervised learning by interpreting the variables as the desired response and
the output of the mapper. We showed that the maximization of the quadratic mutual information
works as an information filtering criterion to estimate pose from vehicle images in synthetic aper-
ture radar. We also showed how to adapt an MLP layer-by-layer without error backpropagation.
Each layer of the MLP isinterpreted as an information filter with the explicit goal of maximizing
mutual information between the desired response and the output of the layer. No backpropagation
of errorsis necessary to discover complex mappings.

Many challenging steps lie ahead in this area of research, but we hope to have shown that infor-
mation-theoretic learning criteria are flexible, usable and provide more information about the data

than the mean-square error (M SE) criterion which is still the workhorse of neurocomputing.
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