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Overview

e Statistical pattern recognition
» Bayesian Decision Theory
Parametric models
Non-parametric models
» Feature reduction and selection
» Non-Bayesian classifiers
Distance-based classifiers
Decision boundary-based classifiers
» Unsupervised learning and clustering
» Algorithm-independent learning issues
Estimating and comparing classifiers
Combining classifiers

e Structural and syntactic pattern recognition
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Bayesian Decision Theory

e Bayesian Decision Theory is a statistical approach that
quantifies the tradeoffs between various decisions using
probabilities and costs that accompany such decisions.

e Fish sorting example: define w, the type of fish we
observe (state of nature), as a random variable where

» w = wj for sea bass

» W = Wy for salmon

» P(w) is the a priori probability that the next fish is
a sea bass

» P(wo) is the a priori probability that the next fish is
a salmon
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Prior Probabilities

e Prior probabilities reflect our knowledge of how likely
each type of fish will appear before we actually see it.

e How can we choose P(w) and P(ws)?
» Set P(wy) = P(wsy) if they are equiprobable (uniform
priors).
» May use different values depending on the fishing
area, time of the year, etc.

e Assume there are no other types of fish
(exclusivity and exhaustivity)

RETINA Pattern Recognition Tutorial, Summer 2005 3/54



Making a Decision

e How can we make a decision with only the prior
information?

(wy if P(wy) > P(ws)

wy otherwise

Decide <

\

e What is the probability of error for this decision?
P(error) = min{ P(w;), P(ws)}
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Class-conditional Probabilities
e Let's try to improve the decision using the lightness
measurement .
e Let x be a continuous random variable.

e Define p(x|w;) as the class-conditional probability
density (probability of x given that the state of nature
is w; for 7 =1,2).

e p(x|w;) and p(x|wsy) describe the difference in lightness
between populations of sea bass and salmon.
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Posterior Probabilities

e Suppose we know P(w,) and p(z|w,) for j = 1,2, and
measure the lightness of a fish as the value x.

e Define P(wj|lxr) as the a posteriori probability
(probability of the state of nature being w; given the
measurement of feature value x).

e We can use the Bayes formula to convert the prior
probability to the posterior probability

z|w;) P(w;)
p(x)
where p(x) = Zizlp(:z;\wj)P(wj).

P(uwy|x) = 2

RETINA Pattern Recognition Tutorial, Summer 2005 6/54



Making a Decision

e p(x|w;) is called the likelihood and p(x) is called the

evidence.

e How can we make a decision after observing the value

of &7

Decide <

’

\

wy if Plwq|x) > P(ws|x)

wy otherwise

e Rewriting the rule gives

Decide

( - plz|wy)  Plwg)
Jwr G > Py
(W otherwise
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Making a Decision
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Figure 1: Optimum thresholds for different priors.
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Probability of Error

e \What is the probability of error for this decision?

P if we decid
P(error|z) = (wy|z) if we decide wo

| P(wz|x) if we decide w;

e \What is the average probability of error?

O

P(error) = /_ " p(error, z) dz = / P(error|z) p(z) dz

O — 00

e Bayes decision rule minimizes this error because

P(error|x) = min{ P(w|z), P(ws|x)}
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Probability of Error
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Figure 2: Components of the probability of error for equal priors and the non-optimal
decision point x*. The optimal point x5 minimizes the total shaded area and gives
the Bayes error rate.
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Receiver Operating Characteristics

e Consider the two-category case and define
» wy: target Is present
» Woy: target I1s not present

Table 1: Confusion matrix.

Assigned
w1 (V00)
- wy | correct detection | mis-detection
e Woy false alarm correct rejection
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Receiver Operating Characteristics

e |f we use a parameter hit
(e.g., a threshold) in our |
decision, the plot of these
rates for different values
of the parameter is called
the receiver operating
characteristic (ROC)
curve.

Pz »x*kk e m,)

false alarm

P(x > x*lx & ) !

Figure 3: Example receiver operating
characteristic (ROC) curves for different
settings of the system.
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Bayesian Decision Theory

e How can we generalize to
» more than one feature?
replace the scalar x by the feature vector x
» more than two states of nature?
just a difference in notation
» allowing actions other than just decisions?
allow the possibility of rejection
» different risks in the decision?
define how costly each action is
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Minimume-error-rate Classification

o Let {wy,...,w.} be the finite set of ¢ states of nature
(classes, categories).

e let x be the d-component vector-valued random
variable called the feature vector.

o If all errors are equally costly, the minimum-error
decision rule is defined as

Decide w; if P(ZUZ X) > P(w]|X) \V/] 7é 1

e [ he resulting error is called the Bayes error and is the
best performance that can be achieved.
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Bayesian Decision Theory

e Bayesian decision theory gives the optimal decision rule under the
assumption that the “true” values of the probabilities are known.

e How can we estimate (learn) the unknown p(x|w;),j7 =1,...,¢c?

e Parametric models: assume that the form of the density functions
are known
» Density models (e.g., Gaussian)
» Mixture models (e.g., mixture of Gaussians)

» Hidden Markov Models
» Bayesian Belief Networks

e Non-parametric models: no assumption about the form
» Histogram-based estimation
» Parzen window estimation
» Nearest neighbor estimation
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The Gaussian Density

e Gaussian can be considered as a model where the feature
vectors for a given class are continuous-valued, randomly
corrupted versions of a single typical or prototype vector.

e Some properties of the Gaussian:

» Analytically tractable

» Completely specified by the 1st and 2nd moments

» Has the maximum entropy of all distributions with a
given mean and variance

» Many processes are asymptotically Gaussian (Central
Limit Theorem)

» Uncorrelatedness implies independence
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Univariate Gaussian

e For x € R:

where
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Univariate Gaussian
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Figure 4: A univariate Gaussian distribution has roughly 95% of its area in the
range |z — pu| < 20.
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Multivariate Gaussian

e For x € R%:

p(x) = N(u,X)

1 1 1

where

p=Elx) = [ xpx)dx

S = Bl(x — p)(x - p)"] = / (x — p)(x — )" p(x) dx
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Multivariate Gaussian

X

Figure 5: Samples drawn from a two-dimensional Gaussian lie in a cloud centered
on the mean u. The loci of points of constant density are the ellipses for which

(x — u)TE " (x — p) is constant, where the eigenvectors of 3 determine the
direction and the corresponding eigenvalues determine the length of the principal

axes. The quantity 72 = (x — p)TX 7 (x — ) is called the squared Mahalanobis
distance from x to pu.
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Bayesian Decision Theory

e Bayesian Decision Theory shows us how to design an
optimal classifier if we know the prior probabilities P(w;)
and the class-conditional densities p(x|w;).

o U

nfortunately, we rarely have complete knowledge of

the probabilistic structure.

e However, we can often find design samples or training
data that include particular representatives of the
patterns we want to classify.
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Gaussian Density Estimation

e [he maximum likelihood estimates of a Gaussian are
n

.1 ) )
2 = 52(&: — ) (x; — )"
1=1

Random sample from 0.5 N(10,0.4%) + 0.5 N(11,0.52)
T T T T

0.7

06

Figure 6: Gaussian density estimation examples.
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Classification Error

e [o apply these results to multiple classes, separate
the training samples to ¢ subsets Dy, ..., D., with the
samples in D; belonging to class w;, and then estimate
each density p(x|w;, D;) separately.

e Different sources of error:
» Bayes error: due to overlapping class-conditional
densities (related to features used)
» Model error: due to incorrect model
» Estimation error: due to estimation from a finite
sample (can be reduced by increasing the amount of
training data)
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Feature Reduction and Selection

e In practical multicategory applications, it is not unusual
to encounter problems involving tens or hundreds of

features.

e Intuitively, it may seem that each feature is useful for
at least some of the discriminations.

e [here are two issues that we must be careful about:

» How is the classification accuracy affected by the
dimensionality (relative to the amount of training
data)?

» How is the computational complexity of the classifier
affected by the dimensionality?
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Problems of Dimensionality

e In general, if the performance obtained with a given set
of features is inadequate, it is natural to consider adding
new features.

e Unfortunately, it has frequently been observed in
practice that, beyond a certain point, adding new
features leads to worse rather than better performance.

e This is called the curse of dimensionality .

e Potential reasons include wrong assumptions in model
selection or estimation errors due to the finite number
of training samples for high-dimensional observations
(overfitting).
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Problems of Dimensionality

e All of the commonly used classifiers can suffer from the
curse of dimensionality.

e While an exact relationship between the probability of
error, the number of training samples, the number of
features, and the number of parameters is very difficult
to establish, some guidelines have been suggested.

e It is generally accepted that using at least ten times
as many training samples per class as the number of
features (n/d > 10) is a good practice.

e The more complex the classifier, the larger should the
ratio of sample size to dimensionality be.
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Problems of Dimensionality

e Dimensionality can be reduced by
» redesigning the features
» selecting an appropriate subset among the existing
features

» transforming to different feature spaces
Principal Components Analysis (PCA) seeks a
projection that best represents the data in a least-
squares sense.
Linear Discriminant Analysis (LDA) seeks a
projection that best separates the data in a least-

Squares SenseE.
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Examples
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Figure 7: Scatter plot (red dots) and the principal axes for a bivariate sample. The
blue line shows the axis e; with the greatest variance and the green line shows the
axis es with the smallest variance. Features are now uncorrelated.
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Examples

Histogram of projection onto principal axis
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(a) Scatter plot. (c) Projection onto the first

LDA axis.

Figure 8: Scatter plot and the PCA and LDA axes for a bivariate sample with two
classes. Histogram of the projection onto the first LDA axis shows better separation
than the projection onto the first PCA axis.
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Examples

Scatter plot and the PCA and LDA axes or

Histogram of projection onto principal axis
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(a) Scatter plot.
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Figure 9: Scatter plot and the PCA and LDA axes for a bivariate sample with two
classes. Histogram of the projection onto the first LDA axis shows better separation
than the projection onto the first PCA axis.
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Non-Bayesian Classifiers

e Distance-based classifiers:
» Minimum distance classifier
» Nearest neighbor classifier

e Decision boundary-based classifiers:
» Linear discriminant functions
» Support vector machines
» Neural networks
» Decision trees
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The k-Nearest Neighbor Classifier

e Given the training data D = {x1,...,X,} as a set of n
labeled examples, the nearest neighbor classifier assigns
a test point x the label associated with its closest
neighbor in D.

e The k-nearest neighbor classifier
classifies x by assigning it the e
label most frequently represented - @
among the £ nearest samples. AR

Figure 10: Classifier for k = 5.

e Closeness is defined using a distance function.
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Distance Functions

e A general class of metrics for d-dimensional patterns is the
Minkowski metric

d 1/p
Lp(x,y) = (Z |x; — yip>
1=1

also referred to as the L, norm.

e The Euclidean distance is the Lo norm

p 1/2
Ly(x,y) = (Z x; — y7;2>
1=1

e The Manhattan or city block distance is the L1 norm

d
Li(x,y) = Z xi — ¥
i=1
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Distance Functions

e The L., norm is the maximum of the distances along individual
coordinate axes
d

Loo(x,y) = max |x; — y;]

Figure 11: Each colored shape consists of points at a distance 1.0 from the origin,
measured using different values of p in the Minkowski L, metric.
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Linear Discriminant Functions
Hli

H,

Figure 12: Linear decision boundaries produced by using one linear discriminant for
each class.
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Support Vector Machines

(©IEEE)
Figure 13: A binary classification problem of separating balls from diamonds.

Support vector machines find hyperplane decision boundaries that yield the
maximum margin of separation between the classes. The optimal hyperplane
is orthogonal to the shortest line connecting the convex hulls of the two classes

(dotted), and intersects it half way between the two classes.
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Neural Networks
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Figure 14: A neural network consists of an input layer, an output layer and usually
one or more hidden layers that are interconnected by modifiable weights represented
by links between layers. They learn the values of these weights as a mapping from

the input to the output.
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Decision Trees
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Figure 15: Decision trees classify a pattern through a sequence of questions, in
which the next question asked depends on the answer to the current question.
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Unsupervised Learning and Clustering

e Clustering is an unsupervised procedure that uses
unlabeled samples.

e Unsupervised procedures are used for several reasons:

» Collecting and labeling a large set of sample patterns
can be costly.

» One can train with large amount of unlabeled data,
and then use supervision to label the groupings
found.

» Exploratory data analysis can provide insight into the
nature or structure of the data.
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Clusters

e A cluster is comprised of a number of similar objects
collected or grouped together.

e Patterns within a cluster are more similar to each other
than are patterns in different clusters.

e Clusters may be described as connected regions of a
multi-dimensional space containing a relatively high
density of points, separated from other such regions
by a region containing a relatively low density of points.
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Clustering

e Clustering is a very difficult problem because data can
reveal clusters with different shapes and sizes.
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Figure 16: The number of clusters in the data often depend on the resolution (fine
vs. coarse) with which we view the data. How many clusters do you see in this

figure? 5, 8, 10, more?
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Clustering

e Most of the clustering algorithms are based on the
following two popular techniques:
» |terative squared-error partitioning
» Agglomerative hierarchical clustering

e One of the main challenges is to select an appropriate
measure of similarity to define clusters that is often both
data (cluster shape) and context dependent.
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Squared-error Partitioning

e Suppose that the given set of n patterns has somehow been
partitioned into k clusters D, ..., Dy.

e Let n; be the number of samples in D, and let m; be the mean of

those samples
1
m; — — E X
Uz
xeD;

e Then, the sum-of-squared errors is defined by

k
Je=2 > lx—m?

=1 XEDi

e For a given cluster D;, the mean vector m; (centroid) is the best
representative of the samples in D;.

RETINA Pattern Recognition Tutorial, Summer 2005 43/54



Squared-error Partitioning

e A general algorithm for iterative squared-error partitioning:

1. Select an initial partition with k& clusters. Repeat steps 2
through 5 until the cluster membership stabilizes.

2. Generate a new partition by assigning each pattern to its closest
cluster center.

3. Compute new cluster centers as the centroids of the clusters.

4. Repeat steps 2 and 3 until an optimum value of the criterion
function is found (e.g., when a local minimum is found or a
predefined number of iterations are completed).

5. Adjust the number of clusters by merging and splitting existing
clusters or by removing small or outlier clusters.

e This algorithm, without step 5, is also known as the k-means
algorithm.
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Squared-error Partitioning

e k-means is computationally efficient and gives good
results if the clusters are compact, hyperspherical in
shape and well-separated in the feature space.

e However, choosing k£ and choosing the initial partition
are the main drawbacks of this algorithm.

e The value of k is often chosen empirically or by prior
knowledge about the data.

e The initial partition is often chosen by generating k
random points uniformly distributed within the range of
the data, or by randomly selecting k£ points from the
data.
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Hierarchical Clustering
e In some applications, groups of patterns share some
characteristics when looked at a particular level.

e Hierarchical clustering tries to capture these multi-level
groupings using hierarchical representations.
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Figure 17: A dendrogram can represent the results of hierarchical clustering
algorithms.
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Algorithm-Independent Learning Issues
e \We have seen many learning algorithms and techniques
for pattern recognition.

e Some of these algorithms may be preferred because of
their lower computational complexity.

e Others may be preferred because they take into account
some prior knowledge of the form of the data.

e Given practical constraints such as finite training data,
no pattern classification method is inherently superior
to any other.
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Estimating and Comparing Classifiers

e Classification error can be estimated using
misclassification and false alarm rates.

e [o compare learning algorithms, we should use
independent training and test data generated using
» static division,
» rotated division (e.g., cross-validation),
» bootstrap methods.

e Using the error on points not In the training set
(also called the off-training set error) is important for
evaluating the generalization ability of an algorithm.
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Combining Classifiers

e Just like different features capturing different properties of a
pattern, different classifiers also capture different structures and
relationships of these patterns in the feature space.

e An empirical comparison of different classifiers can help us choose
one of them as the best classifier for the problem at hand.

e However, although most of the classifiers may have similar error
rates, sets of patterns misclassified by different classifiers do not
necessarily overlap.

e Not relying on a single decision but rather combining the advantages
of different classifiers is intuitively promising to improve the overall
accuracy of classification.

e Such combinations are variously called combined classifiers,
ensemble classifiers, mixture-of-expert models, or pooled classifiers.
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Combining Classifiers

e Some of the reasons for combining multiple classifiers to solve a
given classification problem can be stated as follows:

» Access to different classifiers, each developed in a different
context and for an entirely different representation /description
of the same problem.

» Availability of multiple training sets, each collected at a
different time or in a different environment, even may use
different features.

» Local performances of different classifiers where each classifier

may have its own region in the feature space where it performs
the best.

» Different performances due to different initializations and
randomness inherent in the training procedure.
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Combining Classifiers

e In summary, we may have different feature sets, training sets,
classification methods, and training sessions, all resulting in a set
of classifiers whose outputs may be combined.

e Combination architectures can be grouped as:

» Parallel: all classifiers are invoked independently and then their
results are combined by a combiner.

» Serial (cascading): individual classifiers are invoked in a linear
sequence where the number of possible classes for a given
pattern is gradually reduced.

» Hierarchical (tree): individual classifiers are combined into a
structure, which is similar to that of a decision tree, where the
nodes are associated with the classifiers.
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Combining Classifiers

e Examples of classifier combination schemes are:

» Majority voting where each classifier makes a binary decision
(vote) about each class and the final decision is made in favor
of the class with the largest number of votes

» Bayesian combination: sum, product, maximum, minimum and
median of the posterior probabilities from individual classifiers

» Bagging where multiple classifiers are built by bootstrapping
the original training set

» Boosting where a sequence of classifiers is built by training each
classifier using data sampled from a distribution derived from
the empirical misclassification rate of the previous classifier
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Structural and Syntactic Pattern
Recognition

e Statistical pattern recognition attempts to classify patterns based
on a set of extracted features and an underlying statistical model
for the generation of these patterns.

e |deally, this is achieved with a rather straightforward procedure:
» determine the feature vector
» train the system
» classify the patterns

e Unfortunately, there are also many problems where patterns contain
structural and relational information that are difficult or impossible
to quantify in feature vector form.
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Structural and Syntactic Pattern
Recognition

e Structural pattern recognition assumes that pattern structure is
quantifiable and extractable so that structural similarity of patterns
can be assessed.

e Typically, these approaches formulate hierarchical descriptions of
complex patterns built up from simpler primitive elements.

e This structure quantification and description are mainly done using:
» Formal grammars
» Relational descriptions (principally graphs)

e Then, recognition and classification are done using:
» Parsing (for formal grammars)
» Relational graph matching (for relational descriptions)
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