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DAPHNE KOLLER’S TALK

e Probablistic Models for Complex Domains: Cells, Bodies and Web-
pages
e [hursday 22nd, 4pm, Dempster 310



(GAUSSIAN (NORMAL) DENSITY IN 1D

oIf X ~ N(u,o?), the probability density function (pdf) of X is

defined as 1 ,
1 —55(z—p)

pxle) == ¥
2

We will often use the precision A = 1/¢? instead of the variance o2,

e Note that a density evaluated at a point can be bigger than 1!

e Here is how we plot the pdf in matlab

xs=-3:0.01:3; plot(xs,normpdf(xs,mu,sigma))
ﬂ




THE (GAUSSIAN MAXIMIZES THE DIFFERENTIAL ENTROPY

e Recall that the entropy of a discrete random variable is defined as
Zp ) log p(x

e The maximum entropy distribution is uniform (for discrete RVs).

e The differential entropy of a continuous random variable is defined
as

EIX| =~ [ plo)logp(o)ds

e If we maximize this subject to the following constraints (using La-
grange multipliers) [ p(x)dz =1, [° zp(x)dx = p and
[ — 1)?p(z)dz = o2, we get (Bishop p69)
I —L(r—p)

px() = ——e 2
o2



ENTROPY OF A 1D (GAUSSIAN

e T he differential entropy of a 1D Gaussian is

HIX] = % {1 + 10g(27r02)}

e Hence differential entropy can be negative (if 0% < 1/(2me)).



WHITE SNOW PARADOX

TV news, sports, music,
action movies, etc

~ 0.3 MByte/s

R D (640x480, MPEG4,
— avg. 46,000 frames)




A SURPRISE THEORY OF ATTENTION

e Laurent Itti (USC) and Pierre Baldi (UCI), CVPR 2005.

e Surprising events are ones that changes your beliefs the most

S(o|M) Y KL( P(M|D)||P(M)) = 3 P(m|D)log P%‘j)

where P(M) are your prior beliefs in model M.

e Entropy just refers to data, not models

1(D) =" P(d) log P(d)
d

e |tti and Baldi show that the KL model is able to predict what visual
events humans pay attention to better than looking for events with
high “information” content or which are “salient” (local outliers) wrt
low-level visual cues.



A SURPRISE THEORY OF ATTENTION

P(M) prior

MTV CNN FOX BBC

P(MID) posterior

MTV CNN FOXBBC ... Show
M

After a moment...

P(M),
PMID

MTV CNN FOXBBC ... Snhow
M

Beliefs stabilize, prior and posterior become identical,
and additional snow frames carry no surprise




MULTIVARIATE (GAUSSIAN

o If X € R? is a jointly gaussian random vector, then its pdf is

1 1 | _
pla) = Ne %) = g e { 3o = S a =

e The quantity A? = (z — p)! 271z — p) is called the Mahalanobis
distance between x and u.

e [ he first and second moments are
E|X|=p, CovlX|=2X%

e Sometimes we will use the precision matrix Z ! instead of the co-
variance matrix 2..



QUICK LINEAR ALGEBRA REVIEW (BI1SHOP SEC B.4)

e \We can compute the eigenvectors u; and eigenvalues \; of any square
matrix A:
Aui — )\Z-uz-
e \We can write this in matrix form as
A=UAUt
where the columns of U are the u; and A = diag()\;). This is called
diagonalizing A.
o If A is real and symmetric, then the eigenvalues are real and the
eigenvectors are orthonormal, so that
uTu] 1;
or
UlU =1
e The rank of A is the number of non-zero eigenvalues. If all A\; > 0,
then A is positive semi definite (psd), i.e., oL Az > 0 for all z.
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VISUALIZING THE COVARIANCE MATRIX

e By diagonalizing X = UAUT, we get 1 = Zz—l )\ U U 1" 50 the

Mahalanobis distance can be rewritten as A% = ZZ , where y; =
uj (= p).
e The surfaces of constant probability satisty y; = u]T
which are ellipsoids.

(x — ) = const,

T2
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RESTRICTING THE COVARIANCE MATRIX

e A full covariance matrix has d(d + 1)/2 parameters.

e \We can restrict X to be diagonal; this has d parameters.

e Or we can use a spherical covariance, > = o1

e Later we will see how to use graphical models to represent other
kinds of sparse parameterizations.

:L‘Q"l

©)

(b)

12

Ig‘

S\

(c)



MANIPULATING GAUSSIANS (BISHOP SEC 2.3.1-2.3.2)

e Suppose x = (x4, xp) is jointly Gaussian with parameters

Ha Yaa Zab) —1 (Aaa Aab>
— ; Z = , A — Z — y
8 (Mb> (Zba 2ib Apa App
o It can be shown that P(Xq|zp) = N(Xa; g, X)p) where
—1
Halp = Ha + Sap2yy (Tp — 1)
—1
Za|b = 2ga — Zabzbb 2ba

e Note that the new mean is a linear function of z,, and the new
covariance is independent of z,,.

e Similarly, the marginal P(X,) = N(Xy; tta, 2aa)-

e You should memorize these equations!
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MARGINALS AND CONDITIONALS OF A 2D (GAUSSIAN

] - 10
)
,x"’ﬁf } ’:r: ¢ -
ry, = 0.7 x”’i"j ,;’f p(zqlay = 0.7)
e /
f:*’i;-* g
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s
0.5 /7 5t
s ,»-';"'f ”f//
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0 ' 0
0 0.5 ] 0
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MLE FOR A GAUSSIAN MEAN

e Given NN iid datapoints x,, stored in rows of X, the log-likelihood is

ND N
log p(X|p, 2) = ———log(27) — = log [2]

| N
5> @ =) —
n=1

e Using the following two results (Sam Roweis 5a, 5b)

O(al ) B O(x! Ax) B T
5 =& 5 =(A+ A" )z
we can show (homework!)
9 N
5 -logp(X|p, B) = > 57 (wn — p)
H n=1

SO



MLE FOR A (GAUSSIAN COVARIANCE

e It can be shown that the MLE for X is
N

1
XML = > (w0 — parp)(@n — i) = ~°
n=1

where the scatter matrix is
S = Zazn—m Ty — anx _ Nzzl

e The sufficient statistics are S, x5, and 3, zp2l.

e Note that X X may not be full rank (eg. if N < D), in which
case X /7, Is not invertible.
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BAYESIAN PARAMETER ESTIMATION FOR A (GAUSSIAN

e [ here are various reasons to pursue a Bayesian approach

— The MLE for 2 may not be full rank if we don't have enough
data.

— We would like to update our estimates sequentially over time.

— We may have prior knowledge about the expected magnitude of
the parameters.

e \We will restrict our attention to conjugate priors.
e We will consider various cases, in order of increasing complexity:

— Known o, unknown
— Known g, unknown o

— Unknown 11 and o

17



UNKNOWN [, KNOWN o

e The likelihood is | [,, N (zn|u, o).
e The conjugate prior is p(u|pg, o3).

e By completing the square, it can be shown that the posterior is

p(p|D) = N{ulpy, o)

B o2 N No?
BN = NO'% — OQ'LLO NO'% + OQ'LLML
1 N 1

—_— — __|__
2 2
TN o o

e The posterior mean is a convex combination of the prior and the

MLE, with weights proportional to the relative noise levels.

e T he precision of the posterior 1/0?V is the precision of the prior

1 /o5 plus one contribution of data precision 1/0° for each observed
data point.
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SEQUENTIALLY UPDATING THE MEAN

1" = 0.8 (unknown), (¢2)* = 0.1 (known)
3
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EFFECT OF SINGLE DATA POINT

e The posterior mean is a convex combination of the prior and the
observation x, with weights proportional to the relative noise levels.

o? N 08
i1 = 140 x
o2 + (78 o2+ 08
e [ he posterior mean is the prior mean adjusted towards x:
2
o
0
p1 = po + (T — Ho
( )02 + 08
e [ he posterior mean is the data 'shrunk’ towards the prior mean:
2
o

=x— (r—
2 ( NO>02+03
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UNINFORMATIVE (REFERENCE) PRIOR FOR

e [ he posterior is

p(p|D) = N(ulpy,ox)

B o2 N NO'%
MN—NO%+02MO NJ%JraQ'LLML
1 N 1
P R

e Hence when 08 — 00 (vague/ flat prior), then E|u|D| — g

21



KNOWN 1, UNKNOWN \ = 1/0?

e [ he likelihood is

N \ N )
p(DIX) = Hlp(:vnM) o ANV 2 exp -5 Zl<$n —p)*

e The conjugate prior is a Gamma with shape a( and rate (inverse

scale) by
1 _
p(Aa, b) = %b%a Lexp(—bA)

e [ he posterior is

p(A|D) = Ga(A|ay,by)
_ +E

ay = ap+

N o

N
12 2
n=—

22



[

(GAMMA DISTRIBUTION

e Gamma with shape a > 0 and rate (inverse scale) b > 0
1

b AL exp(—bA
) exp(—bA)

p()\‘a, b) —

[t
[

.
[~
i
[
i

23
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UNINFORMATIVE (REFERENCE) PRIOR FOR A

olf A\ ~ Ga(a,b), then E|\| = a/b.
e [ he posterior is

p(A[D) = Ga(Aay,by)

N N
an = ag+ —
N 0 9

N

1 N
bN = bo + §Z($n — ,LL)2 — b() + 50']2\4[/

n=1

e Hence the posterior mean is
ag+ N/2
BN D] = 0

e Hence an uninformative prior is ag, bg — 0.

Then E[\|D] — 1/0%,;.

24



(GAMMA OR INVERSE GAMMA®?

2

e \We can either put a prior on the variance o“ or on the precision

A=1/0"
e The conjugate prior for X is A ~ Ga(a,b),
a > 0 is shape, b > 0 is inverse scale
1
Ga(Na,b) = @b“)\a_l exp(—bA)
EX = a/b
e The conjugate prior for o2 is o ~ IG(a, b),
a > 0 is shape, b > 0 is scale
1
G(o®la,b) = Frb(0) ™ exp(—b/ (o)
Eo? =b/(a—1)

25



UNKNOWN /i AND UNKNOWN 0~

e The conjugate prior is Normal-Inverse-Gamma
P(p,0%) = P(plo”)P(o”)
= N(y|m,c*V) IG(c?|a,b)
NIG(u, 0% m, V, a,b)

_ 1 2\—(a+(k/2)+1)
= ZmvVan

xexpl—{ (1= m)"V "= m) + 26} /(207

where

bCL
(2m)F/2|V Y20 (a)

1/Z(m,V,a,b) =

26



SEMI CONJUGATE PRIOR

e If we use a factorized prior,
P(u,0%) = P(p)P(c”) :
= N(plpo, V)IG(07a, b)
then the posterior Py, 0%| D) is still coupled because of

explaining-away (1t — X <« ¢?). Such a factored prior is called
semi-conjugate.

27



2.

MULTIVARIATE CASE“: LIKELIHOOD
e Likelihood
| N
— I'sv—1
plernlin D) = [ ew | =2 (5 —m = (5 - )
1=1

— ]Z|_N/2 exp (—%TT(Z_130)>

where S is the “sum of squares” relative to pu:
N

So=> (i —p)(a; —p)"

1=1

2Here I follow Gelman et al p85-87
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MULTIVARIATE CASE: PRIOR

e [ he conjugate prior is Normal-Inverse-Wishart
P(p,X) = P(M\Z)P(lz)
= Nluluo, ) IV(EIA " w)

where

TWEIAL v) = %|zy—<v+d+1>/2 exp (—%TT(A021)>

and
—1

d :
/2N v) = | 2t DAT 0 ) g2
1=1

29



MULTIVARIATE CASE: POSTERIOR

e [ he posterior is Normal-Inverse-Wishart with parameters

K() n no_
— T
Hn Ko + n,LLQ Ko+ 1N

Kn = Kp+n
Un = Vp+n

KON

_ _ T
- n(ﬂf — 110)(T — po)

where S is the “sum of squares” relative to the sample mean

N
§=3 (i — )i — )T
1=1
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MULTIVARIATE CASE: UNINFORMATIVE PRIOR

e The Jeffrey's prior is the limit of the conjugate case as kg — 0,
vy — —1, [Ag| — 0:

pp, ) o 2] ~AH/2

31



BAYESIAN LINEAR REGRESSION

e So far, we have been considering unconditional density estimation.

e In many cases, we want to condition on known inputs X € RP. In
linear regression, we assume F|Y'|z] is a linear function

w(x) = By + Broy + - + Bpap

e The linear assumption is fairly limiting, but is easy to overcome by
defining a set of fixed basis functions By(z), ..., Bi(x).

e T he basis functions can be polynomials, splines, etc.

32



DENISON BOOK

HWILEY

Bayesian Methods
for Nonlinear
Classification and
Regression

D. G. T. Denison C. C. Holmes
B. K. Mallick A. F. M. Smith
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BAYESIAN LINEAR REGRESSION

e [ he model is

Zﬁ] G\ ‘1’6@

or, In matrix notation

Y = B@+¢
where Y = (y1,...,yn), € = (€1,...,€n), and
Bi(xz) -+ Bylay)
B = : :
Bi(xn) - Bp(an)
e Standard linear regression can be modelled using
By(¥) = xp and B 1 = 1.
e An unconditional 1D Gaussian can be modelled using
B =1, ﬁ ,uanda =V.

34



PRIOR, LIKELIHOOD, POSTERIOR, EVIDENCE

e Prior
p(8,0%) = NIG(B,0°|m, V, a,b)
e Likelihood
p(D|B,0%) = N(BB,o°I)
e Posterior

p(B,0%|D) = NIG(83,0°|m*, V*, a*, b¥)
m* = (V7 '+ BB (V'm+ BY)
vV =V 14+BB)"!

a* = a+ N/2
1
b = b+ 5<mT Vilm+ Yty — m*T (v~ Im*)
e Marginal likelihood
V|11 2par (o
oy — VAT

VIR D@
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POSTERIOR PREDICTIVE DISTRIBUTION

olf P(B) = NIG(B|m,V,a,b), then the posterior predictive density
Is a Student or ¢-distribution

p(yle, D) = / p(ylz, 8, o2)p(B, 02| D)dido”
= Stp(ylu’ m*,b*(I + v V*u), a¥)

where u = (By(x), ..., Bj(x)) and

Cie/2+1/2) | I

St =
D(y|N,U,C) F(C/Q)\/ﬁ V
where EY = g and Var Y =v/(c — 2).

e | follow the parameterization of Denison p29. This is different from
Bishop p115!

36



STUDENT DISTRIBUTION IS A MIXTURE OF (FAUSSIANS

e [ he Student distribution is an infinite mixture of Gaussians with

different variances

Stpyli A v) = / N (ylu, 7)Galr]a, b)dr

where v = 2a and A = a/b and Stp is Bishop's parameterization

Stp(ylu, A, v) = [(v/2+1/2) ( A

['(v/2) TV
where EY = i and VarY = %ﬁ

)1/2

1+

A — p)

vV

—(v+1)/2

e Hence a student distribution has wider tails than a Gaussian.

e As v — oo, St(y|u, A\, v) — N (y|u, precision = \).

37



STUDENT HAS WIDER TAILS THAN (FAUSSIAN

0.5

38



ROBUSTNESS OF STUDENT DISTRIBUTION TO OUTLIERS

0.5 - . 0.5
04r 047t

03+ 03}

(a) (h)
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MODEL SELECTION

e Let model M;. be polynomial regression of order k:
k .
Ey =0+ » B’
1=1

e Which model should we choose?

i /K\ M=0 { i
o

40



(FENERALIZATION ERROR

e A complex model will always fit the training data better, but may
not generalize to test data. This is called overfitting.

—— Train
—a— Test

Erums
n

41



CROSS VALIDATION

e A simple approach to picking the right model is to compare perfor-
mance of the different models on a holdout/ validation set.

e If data is scarce, we can use K-fold cross validation, which uses
K /(K — 1) of the data for training and the rest for testing.

o If K\ = N, this is called leave-one-out cross validation.

e Unfortunately, this is slow, especially if there are many parameters.

run |

run 2

I I | rua .

run 4
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BAYESIAN MODEL COMPARISON

e If we wish to compare two models, M, and Mj, we can compute
their posterior odds

pMi|D) _ p(DIM;)  p(M;)
p(M;|D)  p(D[M;)  p(Mj)

e \We can cancel out any prior preference of model 7 to 5 by computing

the Bayes factor
(Mz!D)/p(Mz) _ p(D|M;)
(M;|D)" p(Mj)  p(D|M;)
e If the prior on models is uniform, so p(M;) = p(M;), and if each
model has prior p(3, 0%|M;) = NIG(m;, Vi, a,b), then
’Vj|1/2"/%*|1/2<b;)a*
‘%’1/2“{7*’1/2([):)@*

where a* = a; = a;'f =a+n/2.

BF(M;, Mj) =~
p

BF(M;, M;)
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BAYESIAN OCCAM’S RAZOR

e Amazingly, even if we have no explicit penalty on complex models (so
P(M;) is uniform), merely by integrating over all possible parameter
values (i.e., by using P(D|M;) = | P(D,0|M;)df), we automati-
cally prefer models that are not too complex (provided they fit the
data well).

e This is called the Bayesian Occam's razor. (Occam'’s razor says:
“if two models are equally good at predicting, pick the simpler one” .)
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USING THE MARGINAL LIKELIHOOD TO SELECT K

degree 1 degree 2 degree 3
H
o XK
* H
Xx #
H - * >a< X i *
= Ed
0 HE
degree 4 degree 5 degree &
-54 s -61 ;
%10 Likelihood Evidence
2 4 =10
3.4
&
3
1.5 -
Z
1 15
1
0.5
0.5
] O
1 3 4 5 1 3 4
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BAYESIAN OCCAM’S RAZOR

e Let us evaluate the quality of a model with one parameter w using
the evidence (marginal likelihood) p(D) = [ p(D|w)p(w)dw.

e Suppose the posterior P(w|D) o P(D|w)P(w) is sharply peaked
around wys 4p and has width Awp,st. Then we may approximate
the integral by the peak times the width.

e Also, suppose the prior is flat with width Aw,,.;or, so p(w) =
1/Awppior. Then

p(D) = / p(Dlw)p(w)dw ~ p(Dlway 4p)
} WNAP \

46
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OCCAM FACTORS

. A
e The ratio AwPOSt

—— of posterior accessible volume of the parameter
prior

space compared to the prior is called the Occam factor.

e T his measures the degree to which the hypothesis space shrinks on
arrival of data.

e If in the posterior the parameters have to be finely tuned, then the
penalty is large (since Awpost/Awprior <K 1).

o If there are M parameters, we may approximate
Awpost

log p(D) = log p(D]wyrap) + M log

w
Apn:)aterin:)r
A

WNAP

Awp?"ior

/

A

Av
prior
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Too SIMPLE, TOO COMPLEX, JUST RIGHT

e An overly simple model M has low P(D|Mj) since it has poor fit
to the data.

e An overly complex model /5 has lower P(D) than a medium model
M>, since a complex model spreads its probability mass over more
possible datasets.

e We trust an expert who predicts a few specific (and correct!) things
more than an expert who predicts many things.

p(D)

9
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MINIMUM DESCRIPTION LENGTH (MDL)

e Another way of thinking about Bayesian Occam’s razor is in terms
of information theory.

e To losslessly send a message about an event = with probability P(x)
takes L(x) = — logy P(x) bits.

e Suppose instead of sending the raw data, you send a model and then
the residual errors (the parts of the data not predicted by the model).

e This takes L.(D, H) bits:
L(D,H)=—log P(H) —log(P(D|H))

e [ he best model is the one with the overall shortest message.
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MINIMUM DESCRIPTION LENGTH (MDL)

#bits total
\/ #bits for model
#bits for data
best model
L(H1) L(wZ‘l) | H1) L(D| W 7—[1)
L(Ho)||  L(wiy, | Ha) L(D [ Wy, Ho)
L(Hs) (W | Hs) L(D Wy, M)




BAYESIAN IMAGE INTERPRETATION

e How many boxes behind the tree?

e The intrepretation that the tree is in front of one box is much more
probable than there being 2 boxes which happen to have the same
height and color (suspicious coincidence).

e This can be formalized by assuming (uniform) priors on the box
parameters, and computing the Occam factors.

1?7

A 1 .

o1




