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Last time

� Co-evolution and “arms races” in nature

� A co-evolutionary GA

� Co-evolved sorting networks

� Further applications in biology and engi-

neering
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This time

� Things that can go wrong in a

co-evolutionary GA:

1. disengagement

2. over-specialization

3. relativism

� Parasite virulence

� Diffuse and true co-evolution

� Co-evolution and multi-objective

optimization
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Advantages of co-evolution

Compared to a static fitness function, co-

evolution supposedly offers:

� A reachable optimization target

� A relevant target

� A moving target
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But. . .

� Co-evolutionary algorithms don’t always

work

� Sometimes the hoped-for arms races don’t

seem to take off

� Why?
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A model system for co-evolution

� Watson and Pollack (2001) looked at “co-

evolution in a minimal substrate.”

� Trivial task: selection pressure for high

integers (0–100).

� Distinction between subjective and objective

fitness.
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When everything works

� Two populations of 25 individuals.

� Fitness assessed by competing against 15

individuals from the other population.

� Co-evolution successfully pushes both pop-

ulations to the maximum objective fitness.
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Disengagement

� What if fitness was assessed by competing

against just one individual from the other

population?

� The co-evolving populations periodically

disengage, and fail to provide a fitness

gradient for their opponents.
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Over-specialization

� Change the game: now the objective fit-

ness function is to be high on ten integer

dimensions.

� The outcome of a contest is decided by

comparing two individuals on the dimension

on which they are most different.

� This leads to specialization on a small

number of dimensions at a time, and no true

“generalists” evolve.
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Relativism

� If we use multiple dimensions but decide

contests based on the dimension on which

two individuals are most similar, we can

have intransitive dominance relationships.

� Success is now relative to your opponent,

even though the objectively best genotype

is to score 10 on all 10 dimensions.

� This setup is not good for co-evolutionary

progress on objective fitness.
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What’s an intransitive dominance

relationship?

� The game of paper-rock-scissors provides a

good example.

� Intransitive dominance refers to the fact that

P beats R, and R beats S, but S beats P.

� If co-evolving populations played paper-

rock-scissors against each other, the fre-

quency of the three strategies would cycle.
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Relativism, cont.

� From the graph we can see that relativism

can even push objective fitness down — this

is not genetic drift.

� Leads to the perverse situation where sub-

jective and objective fitness are opposed.
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Parasite virulence

� Modifying parasite virulence is a way of

addressing disengagement.

� In nature, parasites often experience selec-

tion pressure against being too hard on their

hosts: if you kill the host, there’s nothing left

to parasitize.

� What if parasite fitness was based not on

being as difficult as possible for hosts, but

on being as discriminating as possible?

� Note parallel to teacher-student relationship.
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Parasite virulence and sorting networks

� Cartlidge (in press) has re-addressed Hillis’s

sorting network problem.

� Implemented a non-linear transformation of

fitness for parasites:

Proportion of hosts failed

Fitness

� Simulations show that reduced virulence

helps with disengagement.
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True and diffuse co-evolution

� Diffuse co-evolution is a way of addressing

over-specialization.

� Bullock (1995) draws attention to the dis-

tinction made by Janzen (1980) between

true and diffuse co-evolution, both within

the context of asymmetric, inter-specific

competition.

� True co-evolution is typical of parasites and

hosts, where the mutual adaptation is on a

single trait or a complementary pair of traits

(e.g., egg mimicry and egg discrimination

systems in brood parasitism).
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� Diffuse co-evolution is more typical of preda-

tors, where co-evolution has affected a

whole group of traits (e.g., the hard shells

of crustaceans as a response to a variety

of different predators with distinct shell-

breaching tactics).

� Bullock suggests that the second variety of

co-evolution is a more appropriate model for

evolutionary engineers. True co-evolution

leads to fragile or brittle solutions whereas

diffuse co-evolutionary solutions are more

robust.
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Multi-objective optimization

� Taking multiple fitness objectives seriously

may be a way to address the relativism

problem.

� Is it practical to treat performance against

different opponents as dimensions of suc-

cess, and then apply Pareto optimization?
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Pareto optimality

� Pareto optimal solutions are those for which

no dimension of success can be improved

without reducing performance on one of the

other dimensions.

� Consider a proposed car design that needs

to be both fast and economical . . .

Speed

Cost

optimal set
Pareto
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Pareto selection and co-evolutionary games

� In theory, if we knew the performance of

each strategy against every other, we could

compute the pareto optimal set (POS).

A B C D

A 0 2 3 -1

B -2 0 2 -1

C -3 -2 0 0

D 1 1 0 0

� In practice, this is computationally infeasible.

But in a GA, we can find the POS for each

generation, and use membership as the

selection criterion.

� This gives us a noisy, partial window onto

the true payoff matrix.
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Pareto selection of poker strategies

� In evolving Texas Hold’em poker strategies,

Noble and Watson (2001) have shown

that a Pareto GA outperforms a standard

co-evolutionary GA.

� Poker interesting because it’s clear that

the success of a strategy depends heavily

on the opponents present, e.g., extreme

bluffing. A lot of room for relativism.

� Pareto selection in co-evolutionary games

seems to be a promising idea, and can be

seen as a way of using the information from

each game more effectively.
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A Pareto-evolved strategy

� Never bluff; check-raise 11% of the time.

� Pre-flop, bet as much as possible if you have an

ace or a pair, otherwise fold.

� On the flop, stay in if you are beating the board,

and/or if you are one short of a straight or a

flush. Bet 2 chips, but call raises up to 42 chips.

If you have a straight or better, call any bet.

� On the turn, keep waiting for a straight or a flush,

but otherwise fold if you have less than a pair of

sixes or if you are not beating the board. If you

stay in, try to bet 6 but call bets up to 59 chips.

If you have two pair, with the top pair sixes or

better, bet the maximum.

� On the river, if you have a pair of aces or better,

then bet the maximum. Otherwise fold, and

definitely fold if your two aces are on the board.
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Next time:

� Evolutionary simulation modelling
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