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Last time
e Co-evolution and “arms races” in nature
e A co-evolutionary GA
e Co-evolved sorting networks

e Further applications in biology and engi-
neering



This time

e Things that can go wrong in a
co-evolutionary GA:
1. disengagement

2. over-specialization

3. relativism
® Parasite virulence
e Diffuse and true co-evolution

e Co-evolution and multi-objective

optimization



Advantages of co-evolution

Compared to a static fithess function, co-

evolution supposedly offers:
® A reachable optimization target
e A relevant target

e A moving target



But. ..

e Co-evolutionary algorithms don’t always

work

e Sometimes the hoped-for arms races don’t

seem to take off

e Why?



A model system for co-evolution

e \Watson and Pollack (2001) looked at “co-

evolution in a minimal substrate.”

e Trivial task: selection pressure for high
iIntegers (0-100).

e Distinction between subjective and objective

fitness.



When everything works
e Two populations of 25 individuals.

e Fitness assessed by competing against 15

iIndividuals from the other population.

e Co-evolution successfully pushes both pop-

ulations to the maximum objective fitness.
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Disengagement

e What if fithess was assessed by competing
against just one individual from the other

population?

e The co-evolving populations periodically
disengage, and fail to provide a fithess

gradient for their opponents.
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Over-specialization

e Change the game: now the objective fit-
ness function is to be high on ten integer

dimensions.

e The outcome of a contest is decided by
comparing two individuals on the dimension

on which they are most different.

e This leads to specialization on a small
number of dimensions at a time, and no true

“generalists” evolve.
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Relativism

e If we use multiple dimensions but decide
contests based on the dimension on which
two individuals are most similar, we can

have intransitive dominance relationships.

® Success is now relative to your opponent,
even though the objectively best genotype

IS to score 10 on all 10 dimensions.

e This setup is not good for co-evolutionary

progress on objective fitness.
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What’'s an intransitive dominance

relationship?

e The game of paper-rock-scissors provides a

good example.

e Intransitive dominance refers to the fact that
P beats R, and R beats S, but S beats P.

e |f co-evolving populations played paper-
rock-scissors against each other, the fre-

guency of the three strategies would cycle.
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Relativism, cont.

e From the graph we can see that relativism
can even push objective fithess down — this

IS not genetic drift.

® Leads to the perverse situation where sub-

jective and objective fitness are opposed.
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Parasite virulence

e Modifying parasite virulence is a way of

addressing disengagement.

® In nature, parasites often experience selec-
tion pressure against being too hard on their
hosts: if you kill the host, there’s nothing left

to parasitize.

e What if parasite fithess was based not on
being as difficult as possible for hosts, but

on being as discriminating as possible?

e Note parallel to teacher-student relationship.
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Parasite virulence and sorting networks

e Cartlidge (in press) has re-addressed Hillis’s

sorting network problem.

e Implemented a non-linear transformation of

fitness for parasites:

Fitness

Proportion of hosts failed

e Simulations show that reduced virulence

helps with disengagement.
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True and diffuse co-evolution

e Diffuse co-evolution is a way of addressing

over-specialization.

e Bullock (1995) draws attention to the dis-
tinction made by Janzen (1980) between
true and diffuse co-evolution, both within
the context of asymmetric, inter-specific

competition.

® True co-evolution is typical of parasites and
hosts, where the mutual adaptation is on a
single trait or a complementary pair of traits
(e.g., egg mimicry and egg discrimination

systems in brood parasitism).
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e Diffuse co-evolution is more typical of preda-
tors, where co-evolution has affected a
whole group of traits (e.g., the hard shells
of crustaceans as a response to a variety
of different predators with distinct shell-

breaching tactics).

e Bullock suggests that the second variety of
co-evolution is a more appropriate model for
evolutionary engineers. True co-evolution
leads to fragile or brittle solutions whereas
diffuse co-evolutionary solutions are more

robust.
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Multi-objective optimization

e Taking multiple fithess objectives seriously
may be a way to address the relativism

problem.

® [s it practical to treat performance against
different opponents as dimensions of suc-

cess, and then apply Pareto optimization?
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Pareto optimality

e Pareto optimal solutions are those for which
no dimension of success can be improved
without reducing performance on one of the

other dimensions.

e Consider a proposed car design that needs

to be both fast and economical . ..

A

Pareto
optimalset o

Speed | " m =

Cost

22



Pareto selection and co-evolutionary games

e |n theory, If we knew the performance of
each strategy against every other, we could

compute the pareto optimal set (POS).
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® In practice, this is computationally infeasible.
But in a GA, we can find the POS for each
generation, and use membership as the

selection criterion.

e This gives us a noisy, partial window onto

the true payoff matrix.
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Pareto selection of poker strategies

® In evolving Texas Hold’em poker strategies,
Noble and Watson (2001) have shown
that a Pareto GA outperforms a standard

co-evolutionary GA.

e Poker interesting because it’s clear that
the success of a strategy depends heavily
on the opponents present, e.g., extreme

bluffing. A lot of room for relativism.

e Pareto selection in co-evolutionary games
seems to be a promising idea, and can be
seen as a way of using the information from

each game more effectively.
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A Pareto-evolved strategy
e Never bluff; check-raise 11% of the time.

e Pre-flop, bet as much as possible if you have an

ace or a pair, otherwise fold.

e On the flop, stay in if you are beating the board,
and/or if you are one short of a straight or a
flush. Bet 2 chips, but call raises up to 42 chips.

If you have a straight or better, call any bet.

e On the turn, keep waiting for a straight or a flush,
but otherwise fold if you have less than a pair of
sixes or if you are not beating the board. If you
stay in, try to bet 6 but call bets up to 59 chips.
If you have two pair, with the top pair sixes or

better, bet the maximum.

e On the river, if you have a pair of aces or better,
then bet the maximum. Otherwise fold, and

definitely fold if your two aces are on the board.
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Next time:

e Evolutionary simulation modelling
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