Evolutionary Algorithms

Zhigniew Michalewicz

University of North Carolina, Charlotte Ecole Polytechnique

[. INTRODUCTION
II. AN ALGORITHM
[1l. GENETIC ALGORITHMS
IV. EVOLUTION STRATEGIES
V. EVOLUTIONARY PROGRAMMING
VI. GENETIC PROGRAMMING

GLOSSARY

fitness The measure of adaptation of the individuals
to their artificial environment—basis for Darwin-
ian selection mechanisms.

genotype The representation of an individual that will
be transmitted (after possible modification by vari-
ation operators) to its offspring during evolution.

hybridization Use of existing (nonevolutionary) op-
timization techniques within an evolutionary
algorithm.

individual Possible solution to the problem at hand,
that is, from a mathematical point of view, a point
of the search space.

phenotype The behavioral part of an individual.
The phenotype is computed, or “decoded,” from
the genotype, and the fitness is computed on the
phenotype.

population Set of individuals. The population is gen-
erally of fixed size.

replacement Second phase of artificial Darwinism.
The fittest (deterministically or stochastically) in-
dividuals will survive.

representation Synonym for the genotypic space
(space of genotypes). The choice of a representa-
tion for a given problem is the very first step of the
design of an evolutionary algorithm.

selection First phase of artificial Darwinism. The
fittest (deterministically or stochastically) individu-
als will reproduce.

Encyclopedia of Information Systems, Volume 2
Copyright 2003, Elsevier Science (USA). All rights reserved.

Marc Schoenauer

VIl. MODERN TRENDS: HYBRID METHODS
VIIl. COMPARISON

IX. THEORETICAL RESULTS

X. APPLICATION AREAS

XI. CONCLUSIONS

variation operators Modification of the individuals in
the search space. According to Darwin’s principles,
variation operators are not aware of the fitness of
the individuals.

EVOLUTIONARY COMPUTING is an exciting develop-
ment in computing science. It amounts to building,
applying, and studying algorithms based on the Dar-
winian principles of natural selection (“survival of the
fittest”) and undirected variations. Evolutionary algo-
rithms can also be viewed as an interesting category
of modern heuristic search. This overview article pre-
sents the main paradigms of evolutionary algorithms
(genetic algorithms, evolution strategies, evolutionary
programming, genetic programming) as well as the
trend for unification of these paradigms and hy-
bridization with other existing search techniques. A
brief survey of theoretical results is presented, as well
as a list of application areas ranging from optimiza-
tion, modeling, and simulation to entertainment.

I. INTRODUCTION

The evolutionary computation (EC) techniques are
stochastic algorithms whose search methods model
some natural phenomena: genetic inheritance and
Darwinian strife for survival. The idea behind evolu-
tionary algorithms is to do what nature does. Let us

259

260

take rabbits as an example: At any given time there is
a population of rabbits. Some of them are faster and
smarter than other rabbits. These faster, smarter rab-
bits are less likely to be eaten by foxes, and therefore
more of them survive to do what rabbits do best: make
more rabbits. Of course, some of the slower, dumber
rabbits will survive just because they are lucky. This
surviving population of rabbits starts breeding. The
breeding results in a good mixture of rabbit genetic
material: some slow rabbits breed with fast rabbits,
some fast with fast, some smart rabbits with dumb rab-
bits, and so on. And on the top of that, nature throws
in a “wild hare” every once in a while by mutating
some of the rabbit genetic material. The resulting
baby rabbits will (on average) be faster and smarter
than these in the original population because more
faster, smarter parents survived the foxes. (Itis a good
thing that the foxes are undergoing a similar
process—otherwise the rabbits might become too fast
and smart for the foxes to catch any of them). So the
metaphor underlying evolutionary algorithms is that
of natural evolution. In evolution, the problem each
species faces is one of searching for beneficial adap-
tations to a complicated and changing environment.
The “knowledge” that each species has gained is em-
bodied in the makeup of the chromosomes of its mem-
bers. From the point of view of optimization, EC is a
powerful stochastic zeroth-order method (i.e., requir-
ing only values of the function to optimize) that can
find the global optimum of very rough functions. This
allows EC to tackle optimization problems for which
standard optimization methods (e.g., gradient-based
algorithms requiring the existence and computation
of derivatives) are not applicable. Moreover, most tra-
ditional methods are local in scope, thus they identify
only the local optimum closest to their starting point.

Il. AN ALGORITHM

For the sake of clarity, we shall try to introduce a gen-
eral framework that can account as much as possible
for most of the existing evolutionary algorithms.

Let the search space be a metric space E, and let F
be a function E — N called the objective function. The
problem of evolutionary optimization is to find the
maximum of Fon E (the case of minimization is eas-
ily handled by considering —F).

A population of size P € N is a set of P individuals
(points of E) not necessarily distinct. This population
is generally initialized randomly (at time ¢ = 0) and
uniformly on E. The fitnesses of all individuals are com-
puted (on the basis of the values of the objective func-

Evolutionary Algorithms

tion); a fitness value is represented as a positive real
number—the higher the number, the better the indi-
vidual. The population then undergoes a succession
of generations; the process is illustrated in Fig. 1.

Several aspects of the evolutionary procedure re-
quire additional comments:

o Statistics and stopping criterion: The simplest
stopping criterion is based on the generation
counter ¢ (or on the number of function
evaluations). However, it is possible to use more
complex stopping criteria, which depend either
on the evolution of the best fitness in the
population along generations (i.e., measurements
of the gradient of the gains over some number of
generations) or on some measure of the diversity
of the population.

e Selection: Choice of some individuals that will
generate offspring. Numerous selection processes
can be used, either deterministic or stochastic. All
are based on the fitness of the individuals.
Depending on the selection scheme used, some
individuals can be selected more than once. At
that point, selected individuals give birth to copies
of themselves (clones).

o Application of variation operators: To each one of
these copies some operator(s) are applied, giving
birth to one or more offspring. The choice among
possible operators is stochastic, according to user-
supplied probabilities. These operators are always
stochastic operators, and one usually distinguishes
between crossover (or recombination) and mutation
operators:

e Crossover operators are operators from E* into
L, i.e., some parents exchange genetic material
to build up one offspring. In most cases,
crossover involves just two parents (k = 2),
however, it need not be the case. In a recent

procedure evolutionary algorithm
begin
t <« 0
initialize population
evaluate population
while (not termination-condition do
begin
t « t + 1
select individuals for reproduction
apply variation operators
evaluate newborn offspring
replace some parents by some offspring
end
end

Figure 1 The structure of an evolutionary algorithm.

Evolutionary Algorithms

study, the authors investigated the merits of
“orgies,” where more than two parents are
involved in the reproduction process. Evolution
strategies and scatter search techniques also
proposed the use of multiple parents.
® Mutation operators are stochastic operators
from Einto E.
® [Lvaluation: Computation of the fitnesses of all
newborn offspring. As mentioned earlier, the
fitness measure of an individual is directly related
to its objective function value.
® Replacement: Choice of which individuals will be
part of the next generation. The choice can be
made either from the set of offspring only (in
which case all parents “die”) or from both sets of
offspring and parents. In either case, this
replacement procedure can be deterministic or
stochastic.

Sometimes the variation operators are defined on
the same space as the objective function (called phe-
notype space or behavioral space); in other cases, an in-
termediate space is introduced (called genotype space
or representation space). The mapping from the phe-
notype space in the genotype space is termed coding.
The inverse mapping from the genotype space in the
phenotype space is termed decoding. Genotypes un-
dergo variation operators, and their fitness is evalu-
ated on the corresponding phenotype. The proper-
ties of the coding mappings can greatly modify the
global behavior of the evolutionary algorithm.

lll. GENETIC ALGORITHMS

In the canonical genetic algorithm (GA), the genotype
space is {0,1}". Note that the phenotype space can be
any space, as long as it can be coded into bit string
genotypes. The selection scheme is proportional selec-
tion (the bestknown being the roulette wheel selection): P
random choices are made in the whole population,
each individual having a probability proportional to its
fitness of being selected. The crossover operators re-
place a segment of bits in the first parent string by the
corresponding segment of bits from the second par-
ent, and the mutation operator randomly flips the bits
of the parent according to a fixed user-supplied prob-
ability. In the replacement phase, all P offspring re-
place all parents. Due to that generational replace-
ment, the best fitness in the population can decrease:
The original GA strategy is not elitist.

In more recent works, the genotype space can be
almost any space, as long as some crossover and mu-

261

tation operators are provided. Moreover, proportional
selection has been gradually replaced by ranking se-
lection (the selection is performed on the rank of the
individuals rather than on their actual fitness) or tour-
nament selection (one selects the best individual
among a uniform choice of T individuals, T ranging
from 2 to 10). Finally, most users use the elitist vari-
ant of replacement, in which the best individual of
generation ¢ is included in generation ¢ + 1, when-
ever the best fitness value in the population decreases.

IV. EVOLUTION STRATEGIES

The original evolution strategy (ES) algorithm han-
dles a “population” made of a single individual given
as a real-valued vector. This individual undergoes a
Gaussian mutation: addition of zero-mean Gaussian
variable of standard deviation o. The fittest individual
from the parent and the offspring becomes the par-
ent of the next generation. The critical feature is the
choice of parameter o: Originally, the so-called 1/5
thumb rule [i.e., When more than 1/5 mutations are
successful (respectively, unsuccessful), increase (re-
spectively, decrease) o] was used to adjust parameter
o along evolution.

More recent ES algorithms are population-based
algorithms, termed (w,\) — ES or (w + N\) — ES:
parents generate A offspring. (There is no selection at
that level, i.e., every parent produces N/ offspring
on average.)

The main operator remains mutation. When work-
ing on real-valued vectors (still their favorite universe)
ESs generally use the powerful paradigm of self
adaptive mutation: The standard deviations of Gaussian
mutations are part of the individuals, and undergo
mutation as well. Last, ESs now frequently use a global
recombination operator involving all individuals in
the population.

The replacement step is deterministic, i.e., the best
W individuals become the parents of the next genera-
tion, chosen among the p + N parents plus offspring
in the elitist (u + N) — ES scheme, or among the \
offspring in the nonelitist (w,\) — ES scheme (with A
=). Typical values for (p,\) are (1,7), (10,100) or
(30,200).

V. EVOLUTIONARY PROGRAMMING

Originally designed to evolve finite state machines, evo-
lutionary programming (EP) emphasizes the pheno-
type space. As in ESs, there is no initial selection: Every

262

individual in the population generates one offspring.
Moreover, the only evolution operator is mutation.
Finally, the best P individuals among parents and off-
spring become the parents of the next generation.

Recent advances handle any space, still emphasize
the use of mutation as the only operator, indepen-
dently design the self-adaptive Gaussian deviations for
real-valued variables, and now use a stochastic tour-
nament replacement scheme: Each individual (among
the 2P parents plus offspring) encounters 7" random
opponents, increasing its score by one point if it has
better fitness. The P individuals having the highest
scores get along to the next generation. Note that EP
replacement scheme is always elitist.

Vl. GENETIC PROGRAMMING

Genetic programming as a method for evolving com-
puter programs first appeared as an application of GAs
to tree-like structures. Original GP evolves tree struc-
tures representing LISP-like S expressions. This allows
us to define very easily a closed crossover operator (by
swapping subtrees between two valid S expressions, we
always gets a valid S expression). The usual evolution
scheme is the steady-state genetic algorithm (SSGA): A
parent is selected by tournament (of size 2 to 7 typi-
cally) and generates an offspring by crossover only (the
other parent is selected by a tournament of usually
smaller size). The offspring is then put back in the
population using a death-tournament: 7" individuals
are uniformly chosen, and the one with the worse fit-
ness gets replaced by the newborn offspring.

More recently, mutation operators, for example,
random replacement of a subtree or random change
of a node or a leaf, have been used—see the state-of-
the-art books listed in the Bibliography.

Vil. MODERN TRENDS: HYBRID METHODS

Many researchers modified further evolutionary algo-
rithms by “adding” some problem-specific knowledge
to the algorithm. Several papers have discussed ini-
tialization techniques, different representations, de-
coding techniques (mapping from genetic represen-
tations to phenotypic representations), and the use of
heuristics for variation operators. Davis wrote (in the
context of classical, binary GAs):

It has seemed true to me for some time that we can-
not handle most real-world problems with binary rep-
resentations and an operator set consisting only of bi-

Evolutionary Algorithms

nary crossover and binary mutation. One reason for
this is that nearly every real-world domain has associ-
ated domain knowledge that is of use when one is
considering a transformation of a solution in the do-
main. . . . I believe that genetic algorithms are the ap-
propriate algorithms to use in a great many real-world
applications. I also believe that one should incorpo-
rate real-world knowledge in one’s algorithm by
adding it to one’s decoder or by expanding one’s op-
erator set.

Such hybrid/nonstandard systems enjoy a significant
popularity in evolutionary computation community.
Very often these systems, extended by the problem-
specific knowledge, outperform other classical evolu-
tionary methods as well as other standard techniques.
For example, a system called Genetic-2N, constructed
for the nonlinear transportation problem, used a ma-
trix representation for its chromosomes, a problem-
specific mutation (main operator, used with probabil-
ity 0.4), and arithmetical crossover (background
operator, used with probability 0.05). It is hard to clas-
sify this system; it is not really a genetic algorithm, be-
cause it can run with a mutation operator only with-
out any significant decrease of quality of results.
Moreover, all matrix entries are floating-point num-
bers. It is not an evolution strategy, because it does
not use Gaussian mutation, nor does it encode any
control parameters in its chromosomal structures.
Clearly, it has nothing to do with genetic program-
ming and very little (matrix representation) with evo-
lutionary programming approaches. It is just an evo-
lutionary computation technique aimed at particular
problems.

Vill. COMPARISON

Many papers have been written on the similarities and
differences between these approaches. Clearly, differ-
ent points of view can be adopted.

® The representation issue: Original EP, ESs, and GAs
address only finite state machines, real numbers and
bit strings, respectively. However, recent tendencies
indicate that this is not a major difference. More
important is the adequacy of the variation operators
to the chosen representation and the objective
function (i.e., the fitness landscape).

® Bottom-up versus top-down, and the usefulness of
crossover: According to the schema theorem of Holland
and Goldberg, GA’s main strength comes from the
crossover operator: Better and better solutions are built

Evolutionary Algorithms

by exchanging building blocks from partially good
solutions previously built, in a bottom-up approach. The
mutation operator is then considered as a background
operator. On the other hand, the philosophy behind EP
and ESs is that such building blocks might not exist, at
least for most real-world problems. This top-down view
considers selective pressure plus genotypic variability
brought by mutation to be sufficient.

The discussion on crossover has been going on for a
long time. And even when crossover was experimentally
demonstrated beneficial to evolution, it could be
because it acts like a large mutation; recent experiments
suggest that the answer is highly problem dependent.

Yet another example of the duality between
crossover and mutation comes from GP history: the
original GP algorithm used only crossover, with no
mutation at all, the very large population size being
assumed to provide all the necessary building blocks
to represent at least one sufficiently good solution.
But more recent works on GP accommodate mutation
also, on a much smaller population.

® Mutation operators: The way in which mutation
operators are applied differs from one algorithm to
another.

GA uses a static mutation rate or user-prescribed
evolution scheme to globally adjust either the
mutation rate (i.e., the number of individuals that
undergo mutation) or the strength of mutation (i.e.,
the average number of bits that are flipped in an
individual undergoing mutation).

Originally, ES used a heuristic adaptation
mechanism (the 1/5 rule), which was later turned
into the modern self-adaptive mutation: All individuals
carry their own copy of the standard deviation(s) of
the mutation. These variances undergo in turn
mutation, and the individual is further modified
according to the new value of the variance, which is
therefore evolved and optimized “for free.” The
strength of mutation in EP is historically defined as a
function of the relative fitness of the individual at
hand before independently turning to self-adaptation.

Note that self-adaptive mutation rates (i.e.,
dependent on the individual) have a significant impact
only when all individuals undergo mutation, which is
not true for GAs where the mutation rate is generally
low. However, the importance of local mutation is
confirmed by theoretical results in ESs. A prerequisite
for convergence is the strong causality principle
emphasized by Rechenberg of ESs: Small mutations
should have small effects on the fitness. This is not the
case when floating-point numbers are encoded into
binary strings (as is the case for classical GAs).

263

® The selection-replacement mechanisms range
from the totally stochastic fitness proportional
selection of GAs with generational replacement, to
the deterministic (., N\) replacement of ES, through
the stochastic, but elitist, tournament replacement of
EP and the steady-state scheme (tournament selection
and death tournament replacement) used in GP.
Though some studies have been devoted to
selection/replacement mechanisms, the choice of a
selection scheme for a given problem (fitness-
representation-operators) is still an open question
(and is probably problem dependent).

The current trend in the EC community is to mix
up all of these features to best fit the application at
hand, on a few pragmatic bases: Some ESs applica-
tions deal with discrete or mixed real-integer spaces,
the “binary is the best” credo of GAs has been suc-
cessfully attacked (Antonisse, 1989), and the schema
theorem extended to any representation. Note that
some ES variations incorporate crossover, mutation
has been added to GP, and so on. And the different
selection operators are more and more being used
now by the whole community.

On the other hand, such hybrid algorithms, by get-
ting away from the simple original algorithms, also es-
cape the few available theoretical results. Thus, the
study of the actual complexity of the resulting algo-
rithms remains unreachable.

IX. THEORETICAL RESULTS

Theoretical studies of evolutionary algorithms are of
two types: An evolutionary algorithm can be viewed as
a Markov chain in the space of populations, because
population at time ¢ + 1 only depends on population
at time ¢ (at least in the standard algorithms). The full
theory of Markov chains can then be applied. On the
other hand, the specific nature of evolution strategies
allowed precise theoretical studies on the rate of con-
vergence of these algorithms using probability calcu-
lus (at least for locally convex functions).

Results based on Markov chains analysis are avail-
able for the standard GA scheme (proportional se-
lection with fixed mutation rate). The need for an
elitist strategy is emphasized by Rudolph. When the
mutation rate is allowed to decrease along genera-
tions, techniques borrowed from the field of simu-
lated annealing give more precise convergence results
in probability. Yet a different approach is used by Cerf
that considers the GA as a stochastic perturbation of

264

a dynamical system (a caricature GA). The powerful
Friedlin-Wentzell theory can then be applied, result-
ing in a lower bound on the population size for a con-
vergence in finite time of a modified GA (in which
the selection strength and mutation rate are carefully
modified along generations). However, even this last
result is nonconstructive, i.e., of limited use when ac-
tually designing an instance of evolutionary algorithm
for a particular problem.

On the other hand, ESs have considered theoreti-
cal studies from the very beginning: studies on the
sphere and corridor models gave birth to the 1/5
rule, with determination of the optimal update coef-
ficients for the mutation rate. The theory of ESs later
developed to consider global convergence results in
probability for the elitist models, as well as for the
nonelitist (1,) — ES. The whole body of work by
Beyer concentrates on the optimal progress rate for
different variants of evolution strategies (and, for
instance, justify some parameter settings for self-
adaptive mutation given by Schwefel). The main weak-
ness of these results remains that they were derived
on simple models of function; their main results (e.g.,
optimal parameter settings) are nevertheless applied
without further justification to any function—and usu-
ally prove to be efficient hints.

However, one should keep in mind that all of the
above theoretical analyses address some simple mod-
els of evolutionary algorithms. As stated earlier, the
modern trends of EC gave birth to hybrid algorithms,
for which generally no theory is applicable.

X. APPLICATION AREAS

Although it is often stressed that an evolutionary algo-
rithm is not an optimizer in the strict sense, optimiza-
tion problems form the most important application
area of EAs. Some conferences dedicated to applica-
tion of EAS and their proceedings provide a wide
overview of actual applications. Another regularly up-
dated source is the Evonet Evolution@uwork database.

This section will survey the preferred domains of
application of EAs. The different subdomains are dis-
tinguished according to the type of search space they
involve.

A. Discrete Search Spaces

Hard combinatorial optimization problems (NP-hard,
NP-complete) involve huge discrete search spaces,

Evolutionary Algorithms

and have been studied extensively by the operational
research community. Two different situations should
be considered: academic benchmark problems and
large real-world problems.

As far as benchmark problems are concerned, it is
now commonly acknowledged that EAs alone cannot
compete with OR methods. However, recent advances
in hybrid algorithms termed Genetic local search, where
the EA searches the space of local optima with respect
to some OR heuristic, have obtained the best results
so far on a number of such benchmark problems.

The situation is slightly different for real-world prob-
lems: “Pure” OR heuristics generally do not directly
apply, and OR methods have to take into account prob-
lem specificities. This is true of course for EAs, and
there are many success stories where EAs, carefully
tuned to the problem at hand, have been very suc-
cessful, for instance, in the broad area of scheduling.

B. Parametric Optimization

The optimization of functions with floating-point vari-
ables has been thoroughly studied by practitioners,
and many very powerful methods exist. Though the
most well-known address linear or convex problems,
many other cases can be handled successfully. Hence
the niche for EAs is quite limited in that area, and
only highly multimodal and irregular functions should
be considered for EAs. However, successes have been
encountered in such situations, in different domains
ranging from electromagnetism to control and to
fluid dynamics.

The situation drastically changes, however, when
dealing with multiobjective problems: Evolutionary
multi-objective (EMO) algorithms are the only ones
that can produce a set of best possible compromise (the
Pareto set) and have recently received increased atten-
tion. EMO algorithms use the same variation operators
as standard EAs, but the Darwinian components are
modified to take into account the multivalued fitness.

C. Mixed Search Spaces

When it comes to mixed search spaces, that is, when
different types of variables are involved (generally
both continuous and discrete variables), almost no
classical optimization method applies, although some
OR methods can be used if continuous variables are
transformed into intervals, or continuous methods
can be applied to the discrete variables. All of these

Evolutionary Algorithms

approaches can easily fall into traps due to the very
different nature of continuous and discrete variables.

EAs, however, are flexible enough to handle such
search spaces easily. Once variation operators are
known for continuous and discrete variables, con-
structing variation operators for mixed individuals is
straightforward: Crossover, for instance, can either ex-
change values of corresponding variables or use the
variable-level crossover operator. Many problems have
been easily handled that way, like optical filter opti-
mization, where one is looking for a number of lay-
ers, the unknown being the layer thickness (continu-
ous) and the material the layer is made of (discrete).

D. Artificial Creativity

But the most promising area of application of EAs,
where EAs can be much more than yet another opti-
mization method, is probably design. And here again,
progress comes from the ability of EAs to handle al-
most any search space. The idea of component-based
representations can boost innovation in structural de-
sign, architecture, and in many other areas including
art. But the most original idea in that direction is that
of embryogenies: The genotype is a program, and the
phenotype is the result of applying that program to
“grow an embryo”; the fitness is obtained by testing
that phenotype in a real situation. Such an approach
is already leading to astonishing results in analog cir-
cuit design for instance—though exploring a huge
search space (a space of programs) implies a heavy
computational cost. But we firmly believe that great
achievements can come from such original ideas.

KI. CONCLUSIONS

Natural evolution can be considered a powerful prob-
lem solver that brought Homo sapiens out of chaos in
only a couple of billion years. Computer-based evolu-
tionary processes can also be used as efficient prob-
lem solvers for optimization, constraint handling, ma-
chine learning, and modeling tasks. Furthermore,
many real-world phenomena from the study of life,
economy, and society can be investigated by simula-
tions based on evolving systems. Last but not least,
evolutionary art and design form an emerging field of
applications of the Darwinian ideas. We expect that
computer applications based on evolutionary princi-
ples will gain popularity in the coming years in sci-
ence, business, and entertainment.

265

SEE ALSO THE FOLLOWING ARTICLES

Cybernetics ® Engineering, Artificial Intelligence in ¢ Expert
Systems Construction ® Game Theory ® Goal Programming e
Hybrid Systems e Industry, Artificial Intelligence in e Intelli-
gent Agents ® Machine Learning ® Neural Networks

BIBLIOGRAPHY

Angeline, P. J., and Kinnear, K. E., Jr. (Eds.) (1996). Advances
in genetic programming II, Cambridge, MA: The MIT Press.

Antonisse, J. (1989). A new interpretation of schema notation
that overturns the binary encoding constraint. 86-91.

Back, Th. (1995). Generalized convergence models for tourna-
ment- and (p, N)-selections. Proc. 6th International Conference
on Genetic Algorithms, L. J. Eshelman (Ed.) San Francisco:
Morgan Kaufmann, 2-8.

Back, Th. (1996). Evolutionary algorithms in theory and practice.
New York: Oxford University Press.

Back, Th., and Schiitz, M. (1995). Evolution strategies for
mixed-integer optimization of optical multilayer systems.
Back, Th., and Schwefel, H.-P. (1993). An overview of evolu-
tionary algorithms for parameter optimization. Evolutionary

Computation, Vol. 1, No. 1, 1-23.

Bick, Th., Rudolph, G., and Schwefel, H.-P. (1993). Evolution-
ary programming and evolution strategies: Similarities and
differences. 11-22.

Bentley, P. J. (Ed.) (1999). Evolutionary design by computers. San
Francisco: Morgan Kaufman.

Beyer, H. G. (1993). Toward a theory of evolution strategies:
Some asymptotical results for the (1, +\)-theory. Evolution-
ary Computation, Vol. 1, No. 2, 165-188.

Beyer, H. G. (1994). Toward a theory of evolution strategies:
The (w, N)-theory. Evolutionary Computation, Vol. 2, No. 4,
381-407.

Beyer, H. G. (1995). Toward a theory of evolution strategies:
On the benefit of sex—the (n/W, N)-theory. Evolutionary
Computation, Vol. 3, No. 1, 81-111.

Beyer, H. G. (1995). Toward a theory of evolution strategies:
Self-adaptation. Fvolutionary Computation, Vol. 3, No. 3,
311-347.

Blythe, P. W. (1998). Evolving robust strategies for autonomous
flight: A challenge to optimal control theory. Adaptive com-
puting in design and manufacture, 1. Parmee (Ed.), New York:
Springer Verlag, 269-283.

Bonnans, F., Gilbert, J., Lemarechal, C., and Sagastizbal, C.
(1997). Optimisation numrique, aspects thoriques et pratiques,
Vol. 23 of Mathematiques & applications. New York: Springer
Verlag.

Cerf, R. (1996). An asymptotic theory of genetic algorithms.
Artificial evolution,]J.-M. Alliot, E. Lutton, E. Ronald,
M. Schoenauer, and D. Snyers (Eds.), Vol. 1063 of LNCS.
New York: Springer Verlag.

Chakraborty, U., Deb, K., and Chakraborty, M. (1996). Analysis
of selection algorithms: A markov chain approach. Evolu-
tionary Computation, Vol. 4, No. 2, 133-168.

266

Davidor, Y., Schwefel, H.P., and Ménner, R. (Eds.) (1994). Pro-
ceedings of the Third International Conference on Parallel Problem
Solving from Nature (PPSN). New York: Springer-Verlag.

Davis, L. (Ed.) (1987). Genetic algorithms and simulated anneal-
ing. San Francisco: Morgan Kaufmann.

Davis, L. (1989). Adapting operator probabilities in genetic al-
gorithms. 61-69.

Davis, L., and Steenstrup, M. (1987). Genetic algorithms and
simulated annealing: An overview. 1-11.

Davis, T. E., and Principe, J. C. (1991). A simulated annealing
like convergence theory for simple genetic algorithm. Proc.
4th International Conference on Genetic Algorithms, R. K. Belew
and L. B. Booker (Eds.). San Francisco: Morgan Kaufmann,
174-181.

Davis, T. E., and Principe, J. C. (1993). A markov chain frame-
work for the simple genetic algorithm. Evolutionary Compu-
tation, Vol. 1, No. 3, 269-292.

DeJong, K. A. (1992). Are genetic algorithms function opti-
mizers? Proc. 2nd Conference on Parallel Problems Solving
from Nature, R. Manner and B. Manderick (Eds.). Amster-
dam: North Holland, 3-13.

Eiben, A. E., Aarts, E. H. L., and Van Hee, K. M. (1991). Global
convergence of genetic algorithms: A markov chain analysis.
Proc. 1st Parallel Problem Solving from Nature, H.-P. Schwefel
and R. Manner (Eds.). New York: Springer Verlag, 4-12.

Eiben, A. E., Raue, P-E., and Ruttkay, Z. (1994). Genetic algo-
rithms with multi-parent recombination, 78-87.

Eshelman, L. J. (Ed.) (1995). Proceedings of the Sixth International
Conference on Genetic Algorithms. San Francisco: Morgan
Kaufmann.

Eshelman, L. J., Caruana, R. A., and Schaffer, J. D. (1989). Bi-
ases in the crossover landscape. 10-19.

European Network on Evolutionary Computing. Successful
applications of evolutionary algorithms. Available at
http://evonet.dcs.napier.ac.uk/.

Fogel, D. B. (1995). Evolutionary computation. Toward a new phi-
losophy of machine intelligence. Piscataway, NJ: IEEE Press.
Fogel, D. B., and Atmar, W. (1992). Proceedings of the First An-
nual Conference on Evolutionary Programming, La Jolla, CA.

Evolutionary Programming Society.

Fogel, D. B., and Atmar, W. (1993). Proceedings of the Second An-
nual Conference on Fvolutionary Programming, La Jolla, CA.
Evolutionary Programming Society.

Fogel, D. B., and Stayton, L. C. (1994). On the effectiveness of
crossover in simulated evolutionary optimization. BioSystems,
Vol. 32, 171-182.

Fogel, L. J., Owens, A. J., and Walsh, M. J. (1966). Artificial in-
telligence through simulated evolution. New York: John Wiley.

Fogel, D. B., Fogel, L. J., Atmar, W., and Fogel, G. B. (1992).
Hierarchic methods of evolutionary programming. 175-182.

Galinier, P., and Hao, J. (1999). Hybrid evolutionary algorithms
for graph coloring. Journal of Combinatorial Optimization, Vol.
3, No. 4, 379-397.

Gero, J. (1998). Adaptive systems in designing: New analogies
from genetics and developmental biology. Adaptive comput-
ing in design and manufacture, 1. Parmee (Ed.). New York:
Springer Verlag, 3—-12.

Glover, F. (1977). Heuristics for integer programming using
surrogate constraints. Decision Sciences, Vol. 8, No. 1, 156-166.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization
and machine learning. Reading, MA: Addison-Wesley.

Evolutionary Algorithms

Goldberg, D. E., and Deb, K. (1991). A comparative study of se-
lection schemes used in genetic algorithms. Foundations of
genetic algorithms, G. J. E. Rawlins (Ed.). San Francisco: Mor-
gan Kaufmann, 69-93.

Hamda, H., and Schoenauer, M. (2000). Adaptive techniques
for evolutionary topological optimum design. Evolutionary
design and manufacture, 1. Parmee (Ed.). 123-136.

Hart, E., and Ross, P. (1998). A heuristic combination method
for solving job-shop scheduling problems. Proc. 5th Confer-
ence on Parallel Problems Solving from Nature, T. Back, G. Eiben,
M. Schoenauer, and H.-P. Schwefel (Eds.).

Holland, J. H. (1975). Adaptation in natural and artificial systems.
Ann Arbor: University of Michigan Press.

Jones, T. (1995). Crossover, macromutation and population-
based search. 73-80.

Kinnear, K. E,, Jr. (Ed.) (1994). Advances in genetic programming,
Cambridge, MA: The MIT Press.

Koza, J. R. (1992). Genetic programming: On the programming of
computers by means of natural evolution. Cambridge, MA: The
MIT Press.

Koza, J. R., et al. (1999). Genetic programming III: Automatic syn-
thesis of analog circuits. Cambridge, MA: The MIT Press.
Levine, D. (1997). An evolutionary approach to airline crew
scheduling. Handbook of evolutionary computation, T. Back,
D. B. Fogel, and Z. Michalewicz (Eds.). New York: Oxford

University Press, G9.4:1-8.

Martin, S., Rivory, J., and Schoenauer, M. (1995). Synthesis of
optical multi-layer systems using genetic algorithms. Applied
Optics, Vol. 34, 2267.

McDonnell, J. R., Reynolds, R. G., and Fogel, D. B. (Eds.)
(1995). Proceedings of the Fourth Annual Conference on Evolu-
tionary Programming. Cambridge, MA: The MIT Press.

Merz, P., and Freisleben, B. (1999). Fitness landscapes and
memetic algorithm design. New ideas in optimization,
D. Corne, M. Dorigo, and F. Glover (Eds.). London: Mc-
Graw-Hill, 245-260.

Michalewicz, Z. (1996). Genetic algorithms + data structures = evo-
lution programs, 3rd ed. New York: Springer Verlag.

Miettinen, K., Mkel, M. M., Neittaanmki, P., and Périaux, J.
(Eds.) (1999). Evolutionary algorithms in engineering and com-
puter science. New York: John Wiley.

Miller, B. L., and Goldberg, D. E. (1996). Genetic algorithms,
selection schemes, and the varying effects of noise. Evolu-
tionary Computation, Vol. 4, No. 2, 113-132.

Mueller, S. D., et al. (2001). Evolution strategies for film cool-
ing optimization. AIAA Journal, Vol. 39, No. 3.

Nissen, V. (1997). Quadratic assignment. Handbook of evolution-
ary computation, T. Back, D. B. Fogel, and Z. Michalewicz
(Eds.). New York: Oxford University Press, G9.10:1-8.

Nix, A. E., and Vose, M. D. (1992). Modeling genetic algo-
rithms with markov chains. Annals of Mathematics and Artifi-
cial Intelligence, Vol. 5, No. 1, 79-88.

Obayashi, S. (1997). Pareto genetic algorithm for aerodynamic
design using the Navier-Stokes equations. Genetic algorithms
and evolution strategies in engineering and compuler sciences,
D. Quadraglia, J. Périaux, C. Poloni, and G. Winter (Eds.).
New York: John Wiley, 245-266.

Oussedik, S., and Delahaye, D. (1998). Reduction of air traffic
congestion by genetic algorithms. Proc. 5th Conference on Par-
allel Problems Solving from Nature, T. Back, G. Eiben, M. Schoe-

Evolutionary Algorithms

nauer, and H.-P. Schwefel (Eds.). New York: Springer Verlag,
885-894.

Paechter, B., Rankin, R., Cumming, A., and Fogarty, T. C.
(1998). Timetabling the classes of an entire university with
an evolutionary algorithm. Proc. 5th Conference on Parallel
Problems Solving from Nature. T. Back, G. Eiben, M. Schoe-
nauer, and H.-P. Schwefel (Eds.). New York: Springer Verlag.

Parmee, 1. (Ed.) (1998). Adaptive computing in design and man-
ufacture. New York: Springer Verlag.

Parmee, 1. (Ed.) (2000). Adaptive computing in design and man-
ufacture—ACDM’2000. New York: Springer Verlag.

Périaux, J., and Winter, G. (Eds.) (1995). Genetic algorithms in
engineering and computer sciences. New York: John Wiley.

Quadraglia, D., Périaux, J., Poloni, C., and Winter, G. (Eds.)
(1997). Genetic algorithms and evolution stralegies in engineering
and compuler sciences. New York: John Wiley.

Radcliffe, N. J. (1991). Equivalence class analysis of genetic al-
gorithms. Complex Systems, Vol. 5, 183-220.

Rechenberg, 1. (1973). Evolutionstrategie: Optimierung technisher
systeme nach prinzipien des biologischen evolution. Stuttgart:
Fromman-Holzboog Verlag.

Rosenman, M. (1999). Evolutionary case-based design. Proc.
Artificial Evolution’99, New York: Springer-Verlag, 53-72.
Rudolph, G. (1994). Convergence analysis of canonical genetic
algorithm. [EEE Transactions on Neural Networks, Vol. b,

No. 1, 96-101.

Rudolph, G. (1994). Convergence of non-elitist strategies. Proc.

First IEEE International Conference on Evolutionary Computation,

267

Z. Michalewicz, J. D. Schaffer, H.-P. Schwefel, D. B. Fogel,
and H. Kitano (Eds.). New York: IEEE Press, 63-66.

Schaffer, J. D. (Ed.) (1989). Proceedings of the Third International
Conference on Genetic Algorithms. San Francisco: Morgan
Kaufmann.

Schwefel, H.-P. (1995). Numerical optimization of computer models,
2nd ed. New York: John Wiley & Sons.

Syswerda, G. (1991). A study of reproduction in generational
and steady state genetic algorithm. Foundations of genetic al-
gorithms, G.]. E. Rawlins (Ed.). San Francisco: Morgan Kauf-
mann, 94-101.

Torn, A., and Zilinskas, A. (1989). Global optimization. New York:
Springer-Verlag.

Whitley, D. (1989). The GENITOR algorithm and selection pres-
sure: Why rank-based allocation of reproductive trials is best.
Proc. 3vd International Conference on Genetic Algorithms, J. D.
Schaffer (Ed.). San Francisco: Morgan Kaufmann, 116-121.

Whitley, D., Scott, V. S., and Béhm, P. W. (1997). Knapsack
problems. Handbook of evolutionary computation, T. Back,
D. B. Fogel, and Z. Michalewicz (Eds.). New York: Oxford
University Press, G9.7:1-7.

Zalzala, A. (Ed.) (1995). Genetic algorithms in engineering systems:
Innovations and applications. London: IEE.

Zalzala, A. (Ed.) (1995). Second conference on genetic algorithms in
engineering systems: Innovations and applications. London: IEE.

Zitzler, E., Deb, K., Thiele, L., Corne, D., and Coello, C. (Eds.)
(2001). Proceedings of Evolutionary Multi-Critrion Optimization
'01. New York: Springer Verlag.

