
On Evolvable Hardware

Timothy G. W. Gordon and Peter J. Bentley

University College London, U.K.

Keywords: Evolvable hardware, evolutionary electronics, evolutionary computation,
genetic algorithm, automatic design, innovation, evolvability, generalization, intrinsic
circuit evolution, FPGAs.

1 Introduction

Electronic circuit production is a significant industry. Ever more complex
behaviors are being demanded from electronic circuits, fuelled by relentless
improvements in circuit embodiment technologies. Consequently a bottleneck is
developing at the point of circuit design. Traditional circuit design methodologies
rely on rules that have been developed over many decades. However the need for
human input to the increasingly complex design process means that modern circuit
production takes one of two paths. The first is to employ more designers with
greater expertise. This is expensive. The second is to simplify circuit design by
imposing greater and greater abstraction to the design space. An example of this is
the use of hardware description languages. This results in mounting waste of
potential circuit behavior.

Recently a new field applying evolutionary techniques to hardware design and
synthesis has emerged. These techniques give us a third option - to use evolution
to design the circuits for us. This field has been coined evolutionary electronics,
hardware evolution and evolvable hardware amongst others. Here it will be
referred to as evolvable hardware

The field of evolvable hardware draws inspiration from a range of other fields.
The most important are shown in Fig. 1. For many years computer scientists have
used ideas from biology to develop algorithms for soft computing. We have seen
the advent of the artificial neural network (ANN) [73] and more recently the
development of evolutionary computation, the field of problem solving using
algorithms inspired by evolution [10]. Ideas from nature have also been used in
electronic engineering for many years. An example of this is simulated annealing
which is used in many partitioning algorithms. (This algorithm is based on the
physical phenomenon of annealing in cooling metals.) Recently the field of bio-
inspired hardware has also developed, using ideas from biology to explore
methods of fault tolerance and reconfigurability in modern hardware designs.

2

There is much interchange of ideas between the fields of evolvable hardware and
bio-inspired hardware, but in this work we focus on the field of evolvable
hardware, which lies at the crossroads between all three of these major sciences.

Biology
Computer
Science

Electronic Engineering

Evolvable
Hardware

Bio-
inspired

Hardware

Bio-
inspired
Software

Fig. 1: The field of evolvable hardware originates from the intersection of three sciences

The interrelationships between areas of hardware design and synthesis, and
evolutionary computation are shown below in Fig. 2. Digital hardware synthesis is
traditionally a combination of two processes. First a human-designed circuit
specification is mapped to a logical representation through the process of logic
synthesis. This is represented as the lower left-hand set in Fig. 2. This netlist is
then undergoes further combinatorially complex optimization processes in order to
place and route the circuit to the target technology. This area is represented as the
lower left-hand set in Fig. 2. Many modern EDA1 tools use intelligent techniques
in these optimization algorithms, and research into use of evolution for these
purposes abounds [54, 14]. Hence we see a set representing evolutionary design
optimization intersect with that of technology mapping, placement and routing in
Fig. 2 to yield evolutionary mapping, placement and routing. However circuit
design, along with some optimization decisions during the synthesis process are
still in the domain of the human designer. It is only recently that significant
interest has developed in implementing evolutionary techniques higher up the
VLSI design flow at circuit design, a move that can allow evolution to generate
creative designs that can rival or improve on human ones. The most widespread
examples of this have been to use evolution for the design of logic, as represented
by the intersection of the areas of creative evolutionary design and logic synthesis
in Fig. 2. Some of the work in this intersection falls into the field of evolvable
hardware. However much work at the logical level is carried out in the spirit of

1 Electronic Design Automation

3

evolving programs or other forms of logic, and so is not specifically considered
here.

The field of evolvable hardware is still in its infancy, and there are many problems
that must be tackled before we will see large-scale industrial use of the techniques.
Hence there is much active research associated with improving the algorithms
used to evolve hardware. Following a brief discussion of applications of evolvable
hardware in section 2, this research will be reviewed in section 3, using level of
abstraction, learning bias and evolving platform as the main features to map out
the area. The areas of research under review are innovation, generalization, and
evolvability.

Evolutionary
Design

Optimization

Evolvable
Hardware

Creative Logic
Design

Creative
Evolutionary

Design

Evolutionary
Map, Place,

Route

Technology Map,
Place, Route

Logic
Synthesis

Hardware
Synthesis

Fig. 2: Evolvable hardware can include aspects of design, optimization and traditional
hardware development techniques

A particularly exciting branch of evolvable hardware research is that of intrinsic
evolution, where evolved circuit designs are synthesized and evaluated directly on
programmable logic devices (PLDs). Here the success of evolution can depend on
the choice of platform. Platforms that have been used for evolvable hardware will
be appraised at the end of section 3, including those that are commercially
available and those developed as research tools. Two case studies will then
presented in section 4. One of these is carried out in simulation and one on a
commercially available platform. Finally, a summary will be given in section 5.

2 Applications of Evolvable hardware

Evolutionary Computation is the field of solving problems using learning
algorithms inspired by biological evolution. These algorithms are collectively

4

known as evolutionary algorithms, and model the cycle of selection,
recombination and reproduction that biological organisms undergo. Typically they
work on a population of prospective solutions at any one time. Each member of
the population is evaluated according to a problem-specific fitness function, which
tests how well the trial solution performs the required task. A selection operator
then probabilistically chooses the solutions within the population that the
algorithm will subsequently focus on, based on the fitness function evaluation.
The selected solutions are recombined and mutated in order to search new but
related areas of the problem space. Finally they are reinserted into the population,
and the process iterates. The evolutionary algorithm most commonly used to
evolve hardware designs is the genetic algorithm [15], where each trial circuit
design is encoded as a bitstring. Recombination, or crossover, is achieved by the
probabilistic exchange of bits between individuals, and mutation by the
probabilistic toggling of bits in each individual, normally according to predefined
rates. Thus the algorithm explicitly separates the genetic information that is
recombined and mutated (the genotype) from the actual circuit that is evaluated
(the phenotype). Another evolutionary algorithm commonly used is genetic
programming [3], where an individual solution is a computer program typically
represented by a tree, with no explicit mapping between genotype and phenotype.
Here crossover and mutation typically operate on branches of the trees. Variations
of these and other evolutionary algorithms have been also used to evolve
hardware, but for the purposes of this paper the differences between any of these
are not important.

Using evolution to design circuits brings a number of important benefits to
electronics, allowing design automation and innovation for an increasing range of
applications. Some of the more important areas where evolvable hardware can be
applied include:

• Automatic design of low cost hardware;
• Coping with poorly specified problems;
• Creation of adaptive systems;
• Creation of fault tolerant systems and
• Innovation in poorly understood design spaces.

The remainder of this section will explore these benefits in a little more detail.

2.1 Automatic Design of Low Cost Hardware

Automation of circuit synthesis has been with us for many years. Traditional
digital design involves the mapping of an abstract human-designed circuit to a
specific technology through the application of simple minimization, placement
and routing rules. As our capability for synthesizing more complex circuits has
grown, so has the need for more resourceful processes to handle the
combinatorially complex mapping procedures. Intelligent techniques such as

5

simulated annealing [76] and ANNs [96] have been routinely used to search these
exploding spaces of mappings and minimizations for some time. More recently so
has evolution [54, 14].

Useful though this work on searching mapping spaces is, it is not the focus of our
discussion here. Instead we are interested in automating generation of the input to
this process - the circuit design - from the specified behaviors of the circuit. The
required behavior may be presented in the form of pairs of input/output response
required to carry out a specified computation, or some other representation of
circuit behavior in cases where this is more convenient. The important point here
is that to allow evolution to design, a circuit is best evaluated as a black box:
according to what it does, not how it does it.

These ideas of design automation can be of significant benefit to hardware that
requires a low cost per unit. One example of this is low volume hardware. Low
cost reconfigurable hardware can be used to embody evolved designs. For low
volume designs this reduces cost by avoiding the need for a VLSI fabrication
process. Use of reconfigurable hardware also allows changes in specification to be
applied not only to new applications of a design, but also to hardware already in
use, thus avoiding replacement costs. Risk, and its associated cost may also be
reduced, as design faults could be corrected, either by hand or through further
evolution.

Evolutionary automation can even make realistic the prospect of evolving
hardware designs to suit an individual. Many medical applications have not been
suitable for hardware solutions owing to the expense of personalization. Evolvable
hardware allows cheap fast solutions to such medical applications. For example, a
system has been developed to control a prosthetic hand by recognizing patterns of
myoelectric signals in a user’s arm [35]. The implementation was an entirely
hardware based solution with reconfigurable logic, a hardware genetic algorithm
unit, a CPU core for evaluation, a chromosome memory and a random number
generator implemented on the same integrated chip.

A related application is the use of evolution to tune reconfigurable analog circuits.
Often the components in analog circuits differ slightly from their original
specification due to variations during fabrication. It has been shown that such
discrepancies can be corrected using evolution to guide the circuit to its desired
behavior [66]. In this case the solution was developed for tuning intermediate
frequency filters for mobile telephones to allow the use of cheaper components,
and increase yields.

2.2 Poorly Specified Problems

It is difficult to specify the functionality of some problems. In these cases design
automation may allow solutions to be generated from a behavioral description of

6

the problem. Evolution is one of a range of soft computing techniques that can be
used to handle poor specifications. For instance ANNs have been applied to
problems such as noisy pattern recognition for many years [73]. Evolvable
hardware techniques have similarities with and advantages over ANNs, as noted
by Yao and Higuchi [95]. Both can be feed-forward networks, and both can learn
non-linear functions successfully. But in addition hardware is by nature a fast
medium and in many cases such as when restricted to feed-forward networks,
evolved hardware designs are more easily understood than ANNs. Therefore it is
often suited to problems usually tackled with ANNs, but which require fast
operation and good solution tractability. Evolvable hardware suitable for such
purposes has already been developed for industrial use [68].

One problem where evolved hardware can rival ANNs is pattern recognition. For
example high-speed robust classifiers have been developed by Higuchi et al. [24,
32]. One of the advantages of evolutionary systems is the ease with which learning
biases can be incorporated. Here, robust generalization characteristics were
incorporated into the solutions by specification of a bias towards short description
lengths, a recommendation that results from the application of the Minimum
Description Length principle to hypothesis representation in a Bayesian context
[64, Chapter 6].

The ability to generate solutions to poorly specified problems can be considered as
a form of creativity [72]. Creativity and innovation are important features of
evolutionary processes, and will be discussed later.

2.3 Adaptive systems

With sufficient automation (i.e. real-time synthesis provided by PLDs), evolvable
hardware has the potential to adapt autonomously to changes in its environment.
This can be very useful for situations where real-time control over systems by
humans is not possible, such as on deep space missions. It could be particularly
useful when harsh or unexpected conditions are encountered.

Stoica et. al have noted that current lack of validation for on-line evolutionary
systems mean that critical spacecraft control systems cannot realistically be
evolved on-line [77]. This follows for other mission-critical problem control
systems. However, sensors and sensory information control systems are not so
critical, and their work has focused on these. Much of the data that spacecraft
sensors acquire, process and transmit is highly specialized, but perhaps unknown
until it is encountered. Hence systems designed to capture, process and transmit
such data are suitable for evolutionary design. For instance an example of evolved
hardware compression for space images is presented in [12]. Here a function is
regressed for each image that is to be transmitted using genetic programming.

Other adaptive hardware compression systems have also been developed. Two

7

systems have been developed at the Electrotechnical Lab. (ETL) in Japan, both
using predictive coding. The first breaks images into smaller sections and uses
evolution to model a function for each section [74]. They also suggested that a
similar system could be used for real-time adaptive compression of video signals.
The other approach at ETL also aims to predict each pixel from a subset of
surrounding pixels. The particular pixels that are chosen for the job are
collectively known as the pixel template. This time a fixed function is used for
prediction, but for each new image or image fragment, a genetic algorithm
searches for the overall best pixel template to input to the prediction function. This
works particularly well when the type of image to be compressed does not exhibit
close correlation between neighboring pixels, but between wider ranging pixels.
Hence this technique was used in [75] to compress bi-level images for high
precision electrophotographic printers, images that exhibit this quality. The
images were broken into smaller sections, and pixel templates to be used by a
standard encoding engine (a QM-Coder) were successfully evolved. These
templates and the compressed images were transmitted for decoding. It was found
that this system could outperform JBIG, the ISO standard for bi-level image
compression, by an average of around 50%.

Adaptive control systems have also been developed with evolvable hardware.
Most commonly, this has been for robot control. For example, see [39, 70].
Industrial real-time control applications may also be suitable for this approach.

Damiani et al. have developed an on-line adaptive hashing system [8]. They have
proposed that this could be used to map cache blocks to cache tags dependent on
the access patterns of the data over time.

2.4 Fault Tolerant Systems

Another practical class of adaptive system is one that can adapt to faults in its own
hardware, thereby implementing a level of fault-tolerance. Higuchi et al. [24]
developed an adaptive hardware system that learned the behavior of an expert
robot controller by example using a genetic algorithm. It could then be used as a
backup controller if the expert controller failed.

On-line autonomous hardware fault detection and repair mechanisms have been
developed [13, 69]. But although these architectures are examples of bio-inspired
hardware and have been proposed as a platform for evolutionary experiments, they
do not use evolution as an adaptive repair mechanism. Off-line systems can also
be evolved to provide fault tolerance, as first shown by Thompson [81].
Thompson also showed that evolution may also generate fault tolerant solutions
implicitly through the incremental nature of the evolutionary design process. Fault
tolerance can exhibit itself at a population level as well as at an individual level.
This is discussed in section 3.

8

2.5 Design Innovation in Poorly Understood Design Spaces

The design space of all circuits contains an infinitely large number of components
that can be wired together in an infinite number of ways. In order to find useful
circuits, human designers need to reduce this search space to a manageable size.
To do this, they work in a space of lower dimensionality in which they are skilled
in searching. For instance, some designers treat all components as perfect digital
gates, when the components used in the embodied design are in fact high gain
analog devices. The evolutionary approach may allow us to search spaces with a
lower (or different) abstraction. This means that exploration of designs from the
much larger, and often richer, solution space beyond the realms of the traditional
hardware search spaces is possible, resulting in novel designs.

Such innovative solutions are needed when we do not have a good understanding
of the design space. For instance, when compared to the logic design space, analog
design is less well understood with no formal methods of abstracting the design
process. Hence circuit design in this domain requires more expert knowledge.
Much work has gone into using evolutionary algorithms to produce human-
competitive (and better) analog circuit designs [41].

A good deal of this work centers around the optimization of parameters for current
designs, and as such fits more with the field of evolutionary optimization, rather
than evolutionary circuit design [2, 66]. Work in less abstract search spaces more
relevant to this discussion was also been carried out. Grimbleby developed a
hybrid genetic algorithm / numerical search method, using the genetic algorithm to
search netlist topologies, and a numerical design optimization method to select
parameter values for the evolved topologies [18]. Koza et al. and Lohn &
Columbano have both evolved circuit designs at the analog netlist level [41, 49].
Handling the increase in search space when moving from optimization to design
may require additional techniques which will be discussed later.

Developments in electronic engineering are beginning to generate new kinds of
circuit. The design spaces of new technologies such as these are often very poorly
understood. In these cases evolution can prove a useful technique in searching for
innovative designs. An example of this is the field of nanoelectonics, where
Thompson and Wasshuber have successfully evolved innovative (but at this stage
not particularly useful) single electron NOR gates [87].

Although the digital search space is much better mapped than the spaces
mentioned above, traditional logic synthesis techniques such as Karnaugh maps
and the Quine McCluskey procedure are best suited to generating sum-of-products
solutions. If there is a requirement to design a different representation of the
circuit, for instance if it is required to optimize the map to a technology including
XOR gate or multiplexers in addition to designing the logic, then the evolutionary
approach can work with a design abstraction more related to the technology and
potentially search areas of space that a human designer would miss if using the

9

techniques above. This possibility has been demonstrated in work where
evolutionary algorithms have been used to discover more parsimonious circuits for
representations, for instance those with multiplexer and XOR gate primitives [56].

3 Research in Evolvable Hardware

Having discussed the benefits of evolvable hardware, and some of the applications
that these benefits allow, this section reviews the main thrusts of research in this
field. The research is decomposed into three areas - innovation, generalization and
evolvability. Before we review this work, however, it is instructional to classify
the research according to a number of other features.

3.1 Classifying Evolvable hardware

A number of schemes have been developed for classifying work on evolvable
hardware [97, 25, 1, 89]. We focus on three features that have been used by some
of these classifications - level of abstraction, bias implementation and hardware
evaluation process. Classification by level of abstraction was introduced by Hirst
[25], and has been used by both Andersen [1] and Torresen [89] in different
guises, using different levels of abstraction. Here we combine the levels of
abstraction used by these three reviews to produce a more comprehensive means
of highlighting the scale of behaviors open to the evolutionary process. We
introduce a second feature - the bias implementation. With this addition we can
see not only what abstractions researchers have found useful, but also how these
abstractions can be imposed on an evolving system through the learning algorithm
bias. This reveals a developing trend of movement from the imposition of static
biases towards ones that alter throughout an evolutionary run. Finally, hardware
evaluation process was a feature used by Hirst, Andersen, Torresen and Zebulum
[97]. Although this classification is usually tightly linked to the level of
abstraction, it will become clear that the evaluation process can lead to some
important implementation choices and so is worth discussing in its own right.

Level of Abstraction

As we have already mentioned, the level of abstraction employed by evolvable
hardware systems is often important. Hirst identified a number of stages within the
design and synthesis lifecycle of reconfigurable hardware where the problem
representation could be used as a genotype for an evolutionary algorithm [25].
This has been used as the basis for the classification of design abstraction used
here, although categories that have not been applied to date have not been
included, and additional levels have been added where other work in the field
requires it. A diagram of the levels used here is shown in Fig. 3.

10

[30]

Hardware Behavior

Logic Gates

Behavioural Description

RTL / Dataflow

FSM + Logic

Netlist

Device Specific Netlist

Function Gates

Asynchronous Logic

Configuration Level Units

Function Level Units

Analog Components

Eqtns. in state space

A
B
S
T
R
A
C
T
IO
N

MORE

LESS

[22, 40]HDL

[75, 57]

[23, 52]

[2, 18, 41, 49, 50, 79, 99]

 [28, 11, 66, 99]

[21, 43, 44, 46, 78, 80, 81,
82, 83, 84, 85, 86, 87,]

[8, 27,30, 32, 35, 39, 46, 47, 51, 59,
60, 61, 55, 62, 88, 89, 90, 92,93,94]

[36, 48, 67, 68, 74]

 [80, 82]

Fig. 3: Levels of abstraction needed to characterize behavior of evolved circuits.

Torresen [89] partitioned levels of abstraction into the digital and analog
paradigms that are commonly used in the evolvable hardware literature, and are
included here. Anderson [1] further divided the netlist level into netlists of
function-level units and netlists of logical gates. We also make this differentiation.
Note that the resultant levels are arbitrary levels that happen to fit most of the
work in the field. Many variations of the abstractions shown here could and have
been used to describe the field. However in the context of our discussion,
grouping work into one of these levels allows the reader to understand the essence
of work at different levels. The levels used throughout section three are displayed
in Fig. 3 along with references to work that can be envisaged as evolving at each
particular abstraction.

Bias Implementation

Implementation of a design abstraction is not only brought about through
genotype constraint. All learning algorithms can be characterized in terms of a
bias that guides the system though a space of possible solutions. These biases can
be defined according to a concept learning framework introduced by Rendell [71]

11

and clarified by Gordon and des Jardins [17], which is illustrated in Fig. 4.

Ordering
Accessibility

Mapping

Representational Procedural

Static Dynamic

Inductive Bias

Representational Procedural

Ordering
Accessibility

Mapping

Fig. 4: Learning Biases

In this framework, the bias of a learning algorithm is defined in terms of functions
operating on a solution space. Bias is separated into representational bias and
procedural bias. The representational bias is the language that defines the search
space within the entire space of possible solutions. We term constraints applied to
the system by using such a bias as strong biases, because these biases are always
obeyed. An example of this is the bias imposed by the genotype representation in
a standard genetic algorithm. For the same algorithm we can make a further
distinction between the representational bias that limits the search space and the
representational bias that maps the search space to the solution space.

The procedural bias determines how the algorithm moves through the search
space. The canonical genetic algorithm has three operators – selection, crossover
and mutation, each of which exerts a different procedural bias on the search.
Usually procedural biases consist of two components. The first is an accessibility
mapping, which is used to map one point in search space to another. Selection and
crossover have complex dynamic procedural accessibility mappings dependent on
the genetic information present in the population at a given time. Mutation exerts
no accessibility mapping bias, as any point in the population can be reached from
any other. The second type of procedural bias accounts for mutation’s effect. This
is a partial ordering which is used to structure the candidate solutions in such a
way that an order for search space traversal is defined. For mutation the ordering
bias is that states close in space to the current state are preferred, the extent of
which is determined by the mutation rate. Crossover points are chosen at random,
so crossover has no ordering bias. Selection has an ordering bias determined by
the fitness score awarded to each candidate solution by the evaluation function.

Dynamic representational biases can allow us to search a space of strong biases,
and can easily be incorporated into evolutionary algorithms. For instance the
Messy Genetic Algorithm implements such a search through new operators [16].
Another approach is that of developmental genotype-phenotype mappings [4].

12

Hardware Evaluation Process

Fitness values for the evaluation step of the evolutionary algorithm must be
calculated for each member of the evolving population. To do this, early evolvable
hardware experiments used simulations of the hardware that each member of the
population specified. The main reason for this was because the production of
hardware was impossible within the time-scale needed to use it for the evaluation
stage of an evolutionary algorithm. Hardware designs evolved using simulation
for evaluation was labelled extrinsic by de Garis [9], who also noted that
developments in reconfigurable hardware technology could lead to the possibility
of implementing solutions fast enough to evaluate real hardware within an
evolutionary algorithm framework. This he called intrinsic evolvable hardware.
Such reconfigurable hardware has been available for some time, most commonly
in the form of field programmable gate arrays (FPGAs) although other devices are
available. It is important to realize that the choice of an intrinsic or extrinsic
system rarely determines the type of the circuit that can be evolved - it is the total
design abstraction that imposes this limitation. As any abstraction can be modelled
by simulation on any platform, it is possible to represent any kind of circuit if
enough time and care are taken. However this may not be a feasible or sensible
approach in terms of time and resources. Hence the intrinsic / extrinsic distinction
is often useful as it tends to be well correlated with the use of high / low levels of
abstraction.

With the three classification features of level of abstraction, bias implementation
and hardware evaluation process in mind, we will now continue to review research
in the field of evolvable hardware in three major threads - innovation,
generalization and evolvability.

3.2 Innovation

The set of all possible circuits is a large space indeed. When humans come to
design circuits, they do not consider this space. Rather, they simplify it so that the
space of designs that they have to consider is much smaller. They do this by
applying constraints to the search space, commonly termed design rules. This
process is called abstraction.

Two common abstractions for circuits are analog and digital. Analog circuit
design usually requires highly skilled practitioners who have developed sets of
rules of such complexity that many see the field as an art. The need for the
designer to understand the interactions within these designs eventually limit circuit
complexity, as with increasing circuit complexity the interactions they must
consider to search their design space effectively rapidly become unmanageable.

Designers of synchronous digital circuits use a much more constrained set of
rules, which ideally reduces them to considering a sequence of circuits which can

13

be fully specified logically. Successive applications of design rules can eventually
reduce the search space to a single circuit configuration, or a very small choice of
circuits. Because of the more restrictive abstraction of digital over analog
behavior, humans can discover circuits of greater computational complexity
within a digital search space. This however comes at a cost - for instance digital
circuits tend to require more components than their analog counterparts to achieve
a computation. As a result of such trade-offs, design abstractions tend to be chosen
to suit the application, and possibly the designers available.

Evolution searches large spaces objectively - given a method of evaluating design
performance, it can use this to guide its search of the space. Because evolution
searches the design space in a different way to humans, the abstractions that
human designers rely on are no longer necessary, and in many only serve to
restrict evolution from finding novel designs.

3.2.1 Relaxation of Abstractions

Seminal work in this idea was carried out by Thompson. He first set out to show
that evolution could successfully manipulate the dynamics and structure of circuits
when the dynamical and structural constraints that human designers depend on
heavily on had been relaxed. In [84] he demonstrated this by evolving a complex
recurrent network of high-speed gates at a netlist level abstraction to behave as a
low frequency oscillator. Fitness was measured as an average error based on the
sum of the differences between desired and measured transition periods. Circuits
were evaluated in simulation using an asynchronous digital abstraction. If we
interpret this in terms of bias, we see a static representational bias was used to
ensure only the space of recurrent netlists of logic gates was searched. The
simulator imposed a static procedural ordering bias on the selection operator
through the evaluation function. Hence the space of any behavior of electronic
circuits not modelled by the simulator was not searched. On the other hand, the
selection operator could explore the asynchronous dynamics afforded by the
simulation, free to make use of any such behavior or ignore it as it saw fit.

The required behavior of the circuit was successfully evolved, showing that it is
possible for evolution to search without the constraints usually needed by human
designers. Further, a graph-partitioning algorithm showed the structure of the
circuit contained no significant structural modules as would be seen through the
successive abstraction approach of a top-down human approach. In addition
circuit behavior relied on methods that would not have been used by human
designers. So not only had evolution found a solution by searching the space
beyond conventional circuit design space, but also it had found one that that
actually lay in this space.

Thompson went on to show evolution with relaxed restrictions on circuit
dynamics was possible in real hardware. The hardware was a finite state machine
for a robot controller. However whether the states were controlled synchronously

14

by a given clock or not was under genetic control. The evolved robot controller
used a mixture of synchronous and asynchronous behavior, and interacted with the
environment in a complex dynamical manner to produce behavior that would not
have been possible using the finite state machine abstraction with such limited
resources. Again evolution had found a solution through relaxation of a human
design constraint, in this case the constraint being the synchrony imposed on the
finite state machine abstraction. But in addition evolution has found a circuit that
uses the rich dynamics that can arise by relaxing design constraints, demonstrating
that such dynamics technique can be useful.

Thompson also carried out the first intrinsic evolution of a circuit evaluated on an
FPGA. A 10x10 area of a Xilinx 6126 bitstream was evolved. Almost all bits in
the bitstream corresponding to this area were evolved, directly as the bits of the
chromosome of a genetic algorithm [80]. Thereby Thompson set about evolving a
circuit at the lowest level of abstraction possible - that of the physical behavior of
the target technology. The task was to evolve a circuit do discriminate between
1kHz and 10kHz signals. Fitness was calculated by subjecting each circuit to five
500ms bursts of each signal in a random order, and awarding high fitness to
circuits with a large difference between the average voltage of the output during
these bursts. The average voltages were measured with an analog integrator. The
only input to the circuit was the 1kHz / 10 kHz signal - no clock was given. Again,
a highly innovative circuit was evolved that used a fraction of the resources that a
human designer would need. Following months of analysis Thompson and Layzell
described the functionality of the circuit as 'bizarre' and to date the nature of some
of the mechanisms it uses are not completely understood [85].

Thompson and Layzell carried out a similar experiment, this time providing the
circuit with a 6 MHz oscillator signal, which could be used or ignored as evolution
required [86]. The prime motivation for the experiment was to investigate
robustness, and so evaluation was carried out under a range of conditions specified
by the operational envelope detailed in section 3.3. Hence the constraints to the
system were the same as before except that a weak bias towards robust behavior
had been added. However an additional dynamical resource had been provided.
The resulting circuit made use of the clock, and the design was simulated using
the PSpice digital simulator. The simulated design behaved exactly as that of the
real circuit, showing that evolution had found a solution within the digital design
abstraction, even through the constraints did not require that. However, analysis of
the simulation waveforms showed a large number of transient signals. This led
Thompson to hypothesize that evolution can find circuits within the digital
abstraction, with all the benefits of robustness and technology insensitivity that
this entails, but that these circuits may lie outside the scope of the human digital
design space. To put it another way, evolution can find innovative digital designs
by searching a bigger space than human designers, but by using a different
mapping though space.

15

3.2.2 Combining Common Abstractions

Miller et al. have also conducted research into the discovery of innovative circuits,
one of their main motivations being the derivation of new design principles. In
[55] they note that Boolean or other algebraic rules can map from a truth table of
required circuit behavior to an expression in terms of that algebra. They then
suggest that a bottom-up evolutionary approach can search not just the class of
expressions that the algebraic rules map to, but a larger space of logical
representations, beyond commonly used algebras.

In an aim to demonstrate this they successfully evolved one and two bit adders
based on the ripple adder principle using a feed-forward netlist representation of
AND, OR, NOT, XOR and MUX gates. This space lies beyond the commonly
used Boolean and Reed-Muller algebra spaces, but is of interest as the multiplexer
is available as a basic unit in many technologies. Hence this approach is very
similar to Thompson's approach in principle - that the discovery of innovative
circuits can be facilitated through the modification of design abstractions
implemented through representational biases.

Many of the circuits reported in this and other work [56, 62] were unusual but
interesting because of their efficiency in terms of gate count. They lay in the space
of circuits making use of multiplexers and XOR gates, outside the space of
traditional atomic Boolean logic units. They argued that these circuits were
unlikely to be found using traditional algebraic methods, and so evolutionary
“assemble-and-test” is a useful way that such a space can be explored. The work
continued with the evolution of two bit and three bit multipliers. All work was
carried out in simulation. Similar work has been carried out with multiple valued
algebras [36].

Another aspect of this group’s work is the contention that design principles could
be discovered by searching for patterns in evolved circuits. In particular they
hypothesis that by evolving a series of modules of increasing size, design
principles that they have in common may be extracted from them. In [55] and [62]
they evolved many one and two bit adders, and by inspection deduced the
principle of the ripple adder. Although this principle is known, they went on to
argue that evolution discovered and made use of it with no prior knowledge or
explicit bias. As the design principle could be extracted from comparing one and
two bit adders that had evolved to use the principle, they asserted that evolution
could be used as a method of design principle discovery.

Their recent work in this area has concentrated on developing an automatic
method of principle detection [57]. Having successfully evolved two and three bit
multipliers that are much more compact than those of traditional design, they have
integrated a data mining procedure [33] to search for design principles. The
learning algorithm used for the data mining process is an instance based learning
technique called Case Based Reasoning [64, Chapter 8].

16

3.3 Generalization

Inductive learners such as evolutionary algorithms infer hypotheses from observed
training examples. If it is infeasible for all possible training examples to be
observed by the learner, it must use an inductive bias to generalize beyond the
cases it has observed. This is a very common situation. For example, a
combinational circuit with eighty input pins has 280 possible sets of inputs. Even if
we observe each of these training examples at the rate of one million examples a
second, observing all the examples only once would take over three times the age
of the universe. Choosing a good inductive bias is therefore crucial to the success
of our learner.

Two approaches to generalization can be found in the evolvable hardware
literature:

(a) Introduce knowledge about the nature of circuits that have the generalization
characteristics required, perhaps in the form of a heuristic.

(b) Introduce knowledge about the behavior of circuits that have the
generalization characteristics required, and make evolution learn about the nature
of such circuits in addition to the primary task.

Both of these can be applied either as a strong bias in which case a circuit with the
generalization capability follows deductively, or a weak bias in which case the
other biases innate in the evolutionary process must make up the shortfall in
knowledge.

3.3.1 Generalization Across Inputs

Iwata et al. have successfully managed to improve the generalization abilities of
evolved pattern recognizers in the manner of case (a) above [32]. They introduced
a heuristic commonly used in the machine learning literature to improve
generalization. The heuristic results from the application of the Minimum
Description Length (MDL) principle to the discovery of maximum a posteriori
hypotheses in Bayesian settings, and biases the search towards small circuits. For
details of this interpretation of MDL see [64, chapter 6]. Miller and Thomson
investigated the generalization abilities of a system evolving a three bit multiplier
with respect to the size of its input training set [60]. The task was to evolve a
functional circuit from a subset of the truth table. They found that if evolution was
presented with a subset of training cases throughout the entire evolutionary run it
was not able to produce general solutions. This suggests that in the setting of this
problem and algorithm there was no implicit bias towards generality. They also
reported that even when evolution was provided with a new set of training cases
randomly drawn from the truth table every generation, general solutions were still
not found. This is an example of case (b) above, and would suggest that evolution
had little memory in the context of this problem.

17

Miller and Thomson also investigated the evolution of square root functions [61].
In these cases, they discovered that some acceptable solutions were generated
when evolution was limited to an incomplete training set. These cases occurred
when the missing training cases tested low-order bits, which contributed less to
the fitness. Hence they concluded that real-valued functions could be
approximated.

Imamura, Foster and Krings have also considered the generalization problem [31],
and concluded that evolving fully correct circuits to many problems was difficult.
They pointed out that the problem was exacerbated in functions where each test
vector contained equal amounts of information relevant to the problem, such as
the case of the three bit multiplier studied by Miller and Thomson. However they
suggested that in cases where the data contained a large amount of ‘don’t care’
values evolvable hardware could be successful using a smaller test vector. They
suggested suitable applications might be feature extraction, data mining and data
cleaning.

3.3.2 Generalization Across Operating Environments

It is unrealistic for the algorithm to train from every conceivable circuit input. It is
also unrealistic to train under every conceivable operating environment. Operating
environments might include a range of technologies or platforms on which the
designed circuit should operate, and a range of conditions that the embodied
circuit may be subjected to.

Human designers often manage such generalization by imposing strong biases on
the nature of the circuit. These biases are representational abstractions that are
known to produce behavior common across all necessary operating environments.
The abstractions are then mirrored on the physical hardware through some
constraint on its behavior. A circuit that behaves correctly in all necessary
conditions should then follow. For instance, the digital design abstraction requires
that the physical gates of the target technology behave as perfect logic gates. In
reality, they are physical devices that behave as high gain amplifiers. Timing
constraints and operating environment constraints specified by the manufacturer
of the physical device are imposed on the real hardware. This ensures that when
an abstract computation takes place the voltages of the gates have saturated, any
transient behavior generated before saturation has dissipated. From this point, their
outputs can be treated as logical values. In synchronous systems, these constraints
are usually imposed with respect to a clock. The manufacturer will then guarantee
that for a range of operating conditions, the device will behave as it appeared to
within the design abstraction. The design is then portable across a range of devices
and operating conditions.

When automation is a more important requirement than innovation, evolutionary
circuit design often takes a similar approach to the human design process.
Consequently, human design abstractions are often used by evolutionary

18

algorithms to ensure that certain familiar behaviors are embedded in the design.
This is most easily done by imposing a representational bias. For example the
Electrotechnical Lab in Tsukuba has centered on a netlist level design abstraction,
implemented through a static representational bias. Early experiments were
designed around the AND-OR networks of a Lattice GAL16V8 PLA. Test circuits
were evaluated using a logic simulator, as this device could only be reprogrammed
in the order of 104 times before failing. A circuits behavior in simulation is its
behavior in one operating environment. In order for the behavior of the simulation
to generalize to any GAL16V8 operating under standard conditions, a further
representational bias was imposed such that no feedback was permitted. This
prevented the search including any circuits that would rely on timing-specific
features of the gates in simulation, and so the behavior of the circuit in both
hardware and simulation would be identical. Note that in practice a real
implementation of the evolved circuits would have a physical delay before the
desired output signal reached the output. This would be dependent on the delays of
the actual gates on that particular chip and the operating environment. Initially a 6-
mulitplexer was evolved [23].

Work with the GAL16V8 at ETL broadened to use of a finite state machine (FSM)
abstraction. First the same netlist representation was used to evolve the state
transition functions of a counter given the counter inputs [23]. This was extended
to the successful evolution of a four state Mealy FSM with one input and one
output. The FSM abstraction was applied through the fitness evaluation, a static
procedural ordering bias. This is a weak bias. Consequently circuits
corresponding to FSM, and thereby providing the generalized states were not the
only points searched. In fact function FSMs only appeared towards the end of the
evolutionary runs. It is not clear whether this additional exploration was
advantageous. Similar work has been carried out by Manovit et al. [52].

3.3.3 Generalization Across Operating Environments using Behavior

In cases where no knowledge about the nature of solutions that generalize across
all operating environments is available, the only solution is for evolution to infer
this information from examples.

Early work with intrinsically evolved circuits by Thompson focused on design
innovation through relaxation of constraints [80]. He successfully evolved an
innovative circuit to distinguish between two frequencies, using a Xilinx 6200
FPGA. However he then went on to note the lack of robustness to environmental
conditions such as temperature, electronic surroundings, and power supply may
occur. It was also noted that the design was not portable, not only when moved to
a different FPGA, but also a different area of the same FPGA. Similar results have
been reported by Masner et al. [53]. We can think of Thompson’s solution as
including the bounds of the operating requirements as a procedural ordering bias,
although not one specified directly by the fitness function [83]. He took a

19

previously evolved FPGA circuit that discriminated between two tones. He then
specified a number of parameters for an operational envelope which when varied
affected the performance of this circuit: temperature, power supply, fabrication
variations, packaging, electronic surroundings, output load and circuit position on
the FPGA. The final population from the previous experiment was then allowed to
evolve further, this time on a five different FPGAs maintained at the limits of
environmental conditions specified by the operational envelope parameters.
Although there was no guarantee that the circuit would generalize to behave
robustly to all environmental conditions within the envelope, Thompson found a
level of robustness evolved in four out of five cases. Hence, it appears that the
biases of the evolutionary algorithm and the 6200 architecture promoted good
operating condition generalization characteristics. It is interesting to note that
incorporating a procedural bias towards generality in this way was successful
when applied to operating conditions, but not in the case of Miller’s input test
cases discussed in section 3.3.1.

Another example of this is the portability problem of evolving analog circuits
extrinsically. Analog circuit simulators tend to simulate circuit behavior very
closely. Hence we would expect extrinsically evolved circuits to generalize well to
the real circuit. However this does not happen in practice. One issue is that some
behaviors that simulate according to the physics programmed into the simulator
may not be feasible in the chosen implementation technology. A common example
is that simulators often allow the use of extremely high currents. Koza et al. have
evolved many circuits extrinsically at an analog abstraction using the Berkeley
SPICE simulator [41], but have not been able to build them in real life because of
such behaviors. Additionally analog simulators use very precise operating
conditions. The circuits of Koza et al. are evolved to operate at 27°C, and so there
is no explicit bias towards generalization across a range of temperatures.

Portability both between simulated and real environments and between changing
real environments is problem for robot controllers. In order to develop robustness
in both cases Keymeulen et al used a combination of both generalization
techniques - they introduced the robot to as many simulated environments as
possible and also introduced mutation operators designed to generalize the
evolved circuit model.

Stoica et al. have evolved networks of transistors intrinsically and suffered from
the reverse problem - circuits evolved intrinsically operate well in hardware, but
may not in software [78]. Their solution to the problem is to impose a procedural
ordering bias towards working in simulation and in hardware by evaluating some
circuits of each generation intrinsically, and some extrinsically. This they term
mixtrinsic evolution [79]. They also suggested that another use of mixtrinsic
evolution would be to reward solutions which operate differently in simulation
than when instantiated in a physical circuit. This would place a procedural
ordering bias towards innovative behavior not captured by simulation.

20

3.3.4 Inherent Generalization

One other possibility is that the biases of the evolutionary algorithm have an
inherent tendency to generate solutions that generalize across certain conditions.
Thereby evolved circuits would exhibit robustness to changes in those particular
conditions “for free”.

One example of such robustness is robustness to faults. The obvious method of
evolving such robustness is to include a requirement to robustness in the fitness
function, thereby altering the procedural ordering bias of the selection operator
[83]. This method of generalization has already been discussed.

Thompson has also postulated that evolved circuits may be inherently robust to
some types of fault. He observed that an evolutionary algorithm will by nature be
drawn to optima surrounded by areas of high fitness, and suggested that as a
result, a single bit mutation from such an optimum will also tend to also have a
high fitness. He then conducted experiments on an artificial NK landscape to
demonstrate this. For details of this type of landscape see [38]. He then proposed
that such an effect could have beneficial engineering consequences if a mutation
causes a change in the circuit that is similar to a fault - namely that the evolved
system is likely to be inherently robust to such faults. He went on to highlight this
using the evolution of a state machine for a robot controller as an example. The
state machine used a RAM to hold a lookup table of state transitions. Each bit of
the RAM was directly encoded in the chromosome, and so mutation of one of
these bits had a similar effect to a ‘single stuck at’ (SSA) fault. Examination of the
effect of SSA faults on a previously evolved state machine revealed that it was
quite robust to faults. However as state machines for this problem with similar
fitness could not be easily generated by any means other than evolution, statistical
tests of the evolved machine’s resilience to faults could not be carried out. Even
so, the idea of a general characteristic developing inherently as a result of a
mapping bias inducing the same move through space as a change in environment
seems reasonable, and in some cases may be easier than specifying a
generalization requirement directly through the procedural ordering bias.

Following this, Masner et al. [53] have carried out studies of the effect of
representational bias on the robustness of evolved sorting networks to a range of
faults. The aim of the work was to explore the relationship between size and
robustness of sorting networks using two representations - tree and linear. They
noted that robustness first increases and then decreases with size, and is therefore
not due purely to the existence of redundant non-functional gates in the sorting
networks. They also noted that the linear representation tended to decrease in
robustness with respect to size faster than the tree representation. Again this
demonstrates that robustness is a feature that can be evolved through the proper
selection of procedural ordering and representational biases.

Layzell has suggested that robustness of solutions can also be generated at the

21

level of populations [44]. In particular he was interested in the ability of another
member of the population to be robust with respect to a fault that causes the
original best solution to fail. This he called populational fault tolerance (PFT). He
went on to demonstrate that PFT is inherent in certain classes of evolved circuit,
and test various hypotheses that could explain its nature [45]. As with Masner et
al. he noted that fault tolerance did not seem to be a result of non-functional
redundancy in the current design. Instead he showed that descendants of a
previously best and inherently different design were still present in redundant
genes in the members of the population. It was these individuals that resulted in
PFT.

3.4 Evolvability

The evolutionary paradigm is no panacea for searching the extremely large spaces
that we have been discussing. Researchers have found evolution of small low
complexity circuits such as a three bit multiplier difficult [60]. For evolution to
search for useful (i.e. large and/or complex) designs over large spaces, we need to
make the search for incremental improvements by the evolutionary algorithm
easier.

Traditional theory in evolutionary computation suggests that evolution cannot
continue to search effectively after a population has converged. [15, 63] Hence
from this point of view, making evolution’s job as easy as possible improves the
quality of the search, as well as the speed.

Intuitively, one would expect evolvability to be improved by limiting the search to
a smaller space than the space of all circuits possible in a target technology.
However we do not have to limit the space using human design rules - we could
apply new abstractions, which assist the method of search that evolution employs.
These abstractions may reduce the size of the space that evolution searches, or
they may transform the space into something of the same size (or bigger) that is
more tractable to evolution.

Finding useful abstractions may be very hard. However we could allow evolution
itself to search for abstractions that it finds useful. Also, these abstractions no
longer need to be hard constraints that must be adhered to, but may be soft
constraints used to bias the search without forcing it to avoid potentially useful
areas of space. (The flip-side of this is that evolution is given more work to do.)

3.4.1 Static Representational Biases

Choosing a good representational bias is very important to the success of the
algorithm. As discussed in the section on innovation, we must ensure that
solutions we are interested in finding can be represented. However there is another
issue. Because the directions of many of the dynamic biases within a genetic
algorithm depend on the space around them, the choice of representation will

22

affect the efficiency of the algorithm. Work has been carried out on how static
representational biases can affect the evolvability of logic netlist design spaces.
Miller and Thomson explored how changes in circuit geometry [60], and how
functionality-to-routing ratio affected evolvability [59]. Both appeared to be
important. In the case of geometry little else was concluded but for
functionality/routing more could be said. They found that forcing differentiated
routing and functional units for evolution was important, but functional resources
were more important than routing. They also noted that the importance of tuning
the average number of neighbors to each cell. Kalganova et al. have analyzed how
representational biases can affect the geometry both of multiple valued logic
netlists [36] and Boolean logic netlists [37]. However all these studies are likely to
be dependent on the problem and the other biases employed, making it difficult to
draw general conclusions.

3.4.2 Function Level Evolution

The function level approach to improving evolvability was developed at ETL, and
has been adopted by many others. Early evolvable hardware work at ETL used a
combinational digital netlist representation that could be easily mapped to
hardware. For harder problems they suggested that the size of the chromosome
limited the speed of evolution. They suggested two solutions - one was to use
more abstract structures in the representation, thereby reducing the search space.
This was dubbed function-level evolvable hardware [48, 67]. The difficulty here is
in choosing the correct structures to use in the representation. Any abstraction
made makes assumptions about the type of problem. Therefore problem-
dependent functions would have to be developed for each class of problem. Once
this trade-off has been made, evolution is now limited to search the space of this
abstraction, and any innovative solutions at the lower abstraction will be
unattainable.

In response to the work on function level evolvable hardware Thompson argued
that such course-grained representations could reduce the evolvability of a
hardware design space [82], noting that as the control evolution has over an
evolving platform becomes coarser, so can the fitness landscape. This can result in
less evolvable landscapes, at the limit reducing evolutionary search to random
search. Instead, Thompson argues that traditional evolution has the capability to
search larger spaces than are advocated by those at ETL in [48, 57]. In particular
he suggests that there may be features of many hardware design landscapes that
allow us to search large spaces beyond the point where the evolving population
has converged in fitness. Such a feature, he suggested, was the neutral network.

3.4.3 Neutral Networks

If the genotype search space is considered as a high dimensional fitness landscape,
neutral networks can be conceived as pathways or networks of genotypes whose

23

phenotypes share the same fitness. It has been suggested [29] that genetic drift
along such networks can allow evolution to escape local optima they would
otherwise be anchored to. The idea of neutral mutations has been recognized in the
field of evolutionary biology for some time but has only recently been used as a
paradigm for search in evolutionary computation. Taking advantage of such a
paradigm requires the evolutionary algorithm to be modified to include this
knowledge. To this end Harvey [20] developed the Species Adaptation Genetic
Algorithm (SAGA), which advocates incremental changes in genotype length and
a much greater mutation rate than is common for genetic algorithms. Thompson
however used a fixed length genetic algorithm with a SAGA-style mutation rate to
search an incredibly large circuit design space (21800) for good solutions. This he
succeeded in doing, and when the algorithm was stopped owing to time
constraints, fitness was still increasing even though the population had converged
long before. [21] Analysis of the evolutionary process did indeed reveal that a
converged population had drifted along neutral networks to more fruitful areas of
the search space. He put much of this behavior down to the increased mutation
rate, a change to the static procedural mapping of the algorithm. (In this paradigm,
mutation usurps the role of the genetic algorithm’s primary variation operator
from crossover) He noted that the nature of the solution representation space was
also important – without the existence of neutral networks in the solution space
would not be possible, and speculated that neutral networks might be a feature of a
great deal of design spaces including many hardware design spaces.

Vassiliev and Miller also endorse the neutral network theory. Their work on
neutrality in the three bit multiplier logic netlist space [93] suggests that neutral
changes at the start of an evolutionary run occur because of high redundancy in
the genotype. As the run continues and fitness becomes higher, redundancy is
reduced. However the number of neutral changes does not drop as quickly,
suggesting that selection actually promotes neutral changes in order to search the
design space. They then went on to show that when neutral mutations were
forbidden, the evolvability of the landscape was reduced. Comparisons between
the three bit multiplier space and other problem spaces with the same
representational bias suggested that the nature of the spaces was similar, and so
the results from this space may well hold for others. They have also proposed
shown that the search for innovation may be assisted by using current designs as a
starting point for evolution, and proposed that neutral bridge could be used to lead
us from conventional design space to areas beyond. [92]

Much of the work on neutrality uses evolutionary strategies as opposed to the
more traditional genetic algorithm. Evolutionary strategies do not use the
crossover operator. Because of this their use in studies of neutral mutations, the
driving force of evolution in the neutral network paradigm, simplifies analysis.

3.4.4 Dynamic Representational Biases

The second proposal from ETL to improve the speed of evolution was to use a

24

variable length representation. This imposes a dynamic representational bias – it
allows evolution to searches the space of representations in addition to the
problem space. If successful, a representation useful to the algorithm can be
found. This is a good idea, as the search is be directed by the procedural ordering
bias imposed by the problem, rather than a bias of the algorithm, meaning the
technique could be portable to a range of problems. Applied to a pattern
recognition problem, the results were greatly improved over an algorithm that did
not search the bias space, both in terms of solution parsimony and efficacy [34].
However, the evaluation of the chromosome was such that the representational
space was still always limited to a feed-forward network of Boolean gates.

A similar approach was taken by Zebulum in an experiment to evolve Boolean
functions using a chromosome of product terms that were summed by the fitness
function [98]. However the search order of representation space differed from the
ETL experiments. Inspired by the observation that complex organisms have
evolved from simpler ones, the population was seeded with short chromosomes. A
new operator was introduced to increase chromosome length, under the control of
a fixed parameter. Hence a fixed dynamic bias to move from short representations
to long ones was set. It was found that a low rate of increase allowed fully
functional, but more parsimonious solutions to be found over a larger rate.

An interesting approach was that of the Adaptive Architecture Methodology
(AdAM) system [22]. Here a system was developed to evolve a hardware
description language (HDL). These are high-level behavioral languages, but also
allow register transfer level constructs to be embedded within the code. The
approach taken here was to evolve a tree, each node of which referred to a
rewriting rule from a set that effectively make up the grammar of the HDL. As the
mapping between genotype and phenotype depends on the structure of the
genotype itself, this becomes a method of searching representation space - it is a
dynamic representational bias. This allowed evolution to find representations in
which problem-dependent structures or modules could be better represented.

Modularity has been recognized as important in evolutionary systems for some
time, particularly in genetic programming [3, 41] and more recently in evolvable
hardware [57]. For this purpose, Kitano has proposed a similar rule-based system
that promotes large-scale modularity [40].

The representation used by Koza has similar properties. It is a tree of circuit
modifying functions that act on an embryonic circuit. It is this mapping between
the embryo and the phenotype that is evolved, again allowing search of the
representational bias space. The rules are chosen to avoid creation of invalid
circuits [41]. Lohn and Columbano have used a similar approach, but with a linear
mapping representation which is applied to an embryonic circuit in an unfolding
manner, rather than a circuit modifying one. Although its representational power
is limited, it has been found to be effective. [49]

25

3.4.5 Dynamic Procedural Biases

Rather than finding new ways in which to express the solution, we can search the
space of ways to express the problem.

Torresen recognized both the benefits of modularity and the advantages of
allowing evolution to search for its own modules. He has suggested using what we
can interpret as dynamic procedural ordering biases to search for them. The first is
to partition the training vector for a problem by hand and evolve solutions to each
separate section. He applied this to a character recognition problem and gained
promising results [88]. The second method he suggested was inspired by the
concept of incremental learning introduced by Brooks [5]. This bias advocates
presentation of training vectors representative of an increasingly large set of
behaviors to a single learner over time. This way, more complex behavior can be
learned over time. Both methods provide a way of generating problem modularity,
but they both require intervention from the designer in order to determine how to
break up the problem into sets of behaviors. Torresen showed this technique
improved evolvability for a real-world image recognition problem [90].

Lohn et al. have also worked on dynamic procedural biases. They compared three
dynamic fitness functions against a static one. [50] The dynamic fitness functions
increased in difficulty during an evolutionary run, directly altering the procedural
ordering bias. One had a fixed increase in difficulty, one had a simple adaptive
increase based on the best fitness within the population, and one put the level of
difficulty was under genetic control by co-evolving the problem and the solution.
In the former cases the newly introduced biases are new procedural ordering
biases. In the latter, a complex interaction between the procedural ordering and
mapping biases of two evolving systems is set up. The results showed that static
and co-evolutionary biases performed best on an amplifier design problem.

The evolvability of two bit multipliers have also been studied with respect to the
evolutionary operator bias, a procedural ordering bias [94]. Uniform crossover and
point mutation were studied. Analysis of the ruggedness of the landscape showed
that uniform crossover generated a large amount of ruggedness and was therefore
unsuitable for searching this space. Point mutation fared much better.

3.5 Platform Research

We have now reviewed most of the research into evolvable hardware. We have
seen that many researchers believe that working at low levels of abstraction can
have advantages. We have also seen mechanisms to deal with the increased size of
the search space, if needed at all, are being actively investigated. What we have
not considered is the availability of platforms for low abstraction hardware
evolution.

26

In this section, we cover the platforms that have been reported in the evolvable
hardware literature. Some are commercially available, and some have been
developed by researchers. Of these, few have been developed with evolvable
hardware as a primary goal, and so suffer from various shortcomings. Some have
been developed expressly for evolvable hardware. However, industry is already
interested in evolvable hardware [24, 66], and as research tools all of these
solutions are unlikely to be available to industry for real-world experiments. Even
if they are, the cost associated with low-volume research platforms may be
prohibitive.

Other devices are commercial, and have not been designed with evolvable
hardware in mind. Because of this, most struggle to compete with dedicated
evolvable hardware on performance, versatility and ease of use for our purposes.
However they have the advantages of availability and cost, and so are a more
likely candidate for future industrial applications.

3.5.1 Criteria for successful evolutionary platforms

In [82] Thompson listed a number of criteria for intrinsic circuit evolution
platforms. These are discussed below:

Reconfigurable an unlimited number of times - Many field programmable
devices are designed to be programmed only once. Others are designed to be
programmed a small number of times, but repeated configuration can eventually
cause damage. Evolutionary experiments can require millions of evaluations, and
so devices for intrinsic experiments should be able to be reconfigured infinitely.

Fast and / or partial reconfiguration - If millions of evaluations are needed, the
evaluation process should be fast. Modern programmable devices have millions of
configurable transistors and consequently have large configuration bitstreams.
This can mean that downloading the configuration becomes the bottleneck of the
evolutionary process. The brute force solution to this problem is to use devices
with high bandwidth configuration ports. Another solution is to evaluate many
individuals at once, as proposed by Higuchi amongst others. [28] Batch evaluation
limits the type of evolutionary algorithm to those with large populations, ruling
out the use of steady state genetic algorithms, or low-population evolutionary
strategies. A more elegant solution is that of partial reconfiguration, where only
the changes from the current configuration need to be uploaded. This yields
similar bandwidth use with no constraints on the learning algorithm.

Indestructibility or Validity Checking - In conventional CMOS technologies, a
wire driven from two sources can result a short circuit if one drives the wire to a
different voltage level than another. The high currents generated from such an
event are extremely undesirable, as they can damage the device, and so should be
prevented by hard constraints, rather than the softer ones advocated so far. Some

27

hardware platforms are designed around an architecture with which contention is
impossible. For those that are not, there are two options - either an abstract
architecture can be imposed on top of the real hardware, or circuits can be tested
for contention before they are synthesized, and evaluated by an alternative means
if such a condition is detected.

Fine Grain reconfigurability - In order to allow evolution the ability to innovate,
evolution must be able to manipulate candidate circuits at a low level of
abstraction. Hence a good platform needs fine-grain control over the evolving
platform. Thompson also points out the distinction between fine grain
architectures and fine grain reconfigurability - namely that although a device's
architecture may be based on repeated large units, if these can be reconfigured at a
finer level then this criterion will be met.

Flexible I/O - The method of supplying input and retrieving output from an
evolved circuit can affect the feasibility of successful evolution, and so a platform
that allows experimentation with this is useful.

Low cost - This is of particular importance when the motive behind using
evolution is to lower costs through design automation.

Observability - In order to analyze how evolved circuits work, their internal
signals need to be probed. Although when working with low design abstractions it
may be impossible to avert the potential of signal probes to change the behavior of
the circuit, and the probed signal, architectures should be chosen with this as a
consideration.

3.5.2 Platforms

Whilst bearing these criteria in mind, the platforms that have been used or
proposed for use for evolvable hardware experiments are now considered briefly.
These can be classified into three groups - commercial digital, commercial analog
and research platforms, and are tabulated below.

Commercial Analog Platforms
Zetex TRAC [11] - Based around two pipelines of op. amps. Linear and non-
linear functions successfully evolved. Large grained reconfigurability and
limited topology limit worth for evolution. Has been used with evolvable
motherboard to provide external components.
Motorola MPAA020 [99]- 20 cells containing an op. amp, comparator,
transistors, capacitors and SRAM. Range of circuits have been evolved. Much
of the bitstream is proprietary. Geared towards circuits based around the op.
amp.

28

Commercial Digital Platforms
Xilinx 6200 [80, 86, 41] - Developed for dynamic reconfig. apps. Fast and
infinite reconfig., fully or partially. Homogenous fine-grained architecture of
MUXes. All configurations valid. Good I/O. Expensive, no longer produced.
Xilinx XC4000 [46] - Low cost, infinite but slow reconfig. SRAM LUT based
architecture. Damaged by invalid configurations. Parts of bitstream proprietary
and undisclosed. Reconfigurable at resource level using Xilinx JBits software.
Xilinx Virtex [27, 47] - Medium cost. Can be reconfigured infinitely and
quickly, fully and partially. Can be damaged by invalid configurations. Some
of the bitstream is proprietary and undisclosed, but most hardware resources
can be reconfigured Xilinx JBits software. Widely available.

Research Platforms
Field Programmable Transistor Arrays [78, 79] - Reconfigurable at
transistor level, additionally supporting capacitors and multiple I/O points.
Programmable voltages control resistances of connecting switches, hence they
act as additional transistors. Flexible enough to evolve both filters and
amplifiers. Fits criteria for evolvable hardware well.
Field Programmable Processor Arrays [13] - Bio-inspired fault tolerant
architecture. Early prototypes used a multiplexer as the reconfigurable unit.
New revisions increased the granularity of the unit under genetic control
through decision tree machine to RISC processor. Now better suited to
evolution of more abstract structures, e.g. genetic programming.
Palmo [19] - Based around array of integrators. Signals encoded using PWM.
All configurations valid. Integrator unit is useful for evolution of analog and
mixed signal processing circuits. Beyond this, not so versatile.
Programmable Transistor Array [42] - 16x16 array of programmable PMOS
and NMOS transistor cells. Each cell contains 20 transistors of varying channel
height and width, allowing great flexibility. Transistors can be connected in
parallel to approximate other channel widths. Fast configuration, good I/O.
Evolvable Motherboard [43] - Array of analog switches, connected to six
interchangeable evolvable units. Evolution of gates, amplifiers and oscillators
demonstrated using bipolar transistors as evolvable unit. Good I/O. Board-
based architecture is not suitable for real world problems due to size, cost and
number of evolvable units.
FIPSOC [65] - Complete evolutionary system aimed at mixed signal
environments. Analog and digital units that can undergo evolution. CPU and
memory to encode evolutionary algorithm. Analog units based around
amplifiers. Digital units based on LUTs and flipflops. Context-based dynamic
reconfiguration suitable for real-time adaptive systems.
Complete Hardware Evolution [91] - FPGA-independent evolutionary
system on a chip consisting of a genetic algorithm pipeline including
evaluation, functional design and storage for population. Limited to small
populations of small chromosomes. Large FPGAs required.

29

4 Case Studies

The final section of this paper presents two case studies – one evolved at a logic
netlist level and evaluated extrinsically, and one evolved at a device specific
netlist level, evaluated intrinsically. The problem selected for both was the
evolution of a two bit adder. This problem has been well studied in the past,
initially by Louis and Rawlins [51] and more recently by Miller, Thomson and
Fogarty [62], Coello and Aguirre [7] and Hollingworth and Tyrell [29].

4.1 Case Study 1 – Logic Level Evolution

4.1.1 Phenotype Abstraction

In this experiment we evolve the adder at a reasonably high level of abstraction.
The representation is restricted to combinational digital circuits only. The
minimum reconfigurable structural units are at the level of gates - we allowed
AND, OR , NOT, XOR, and multiplexer gates. The selection of these resources
was based loosely on the resources available in the Xilinx 6200 series FPGA
architecture. This means we have abstracted away any of the physics in the device
and consider only logical solutions, which limits the opportunity for innovation.
However we have made the search space a lot smaller than if such features were
included. This abstraction allows fast simulation of the evaluation function. If
mapping rules are followed properly and the circuit is operated within the
constraints set by the manufacturer of the technology it is mapped onto, it will
function as it did in the abstracted simulation.

The circuit abstraction used in the first case study is based on that used by Miller
et al. [62] to investigate the evolution of combinational circuits. The circuit is
represented by a numbered rectangle of cells. They are indexed from the top left
cell, row-wise then column-wise. Each cell has two inputs and one logic function.
The function may either be a two input logic gate or a multiplexer. Inputs to a cell
can be either from other cells, or the circuit inputs. The circuit inputs are the test
input vector, the inverted test input vector, logic 0 or logic 1. To avoid feedback,
each input must be from a cell with a lower number than the cell itself. The circuit
outputs required are restricted to the top and right hand side of the cell array.

4.1.2 Genetic Algorithm and Genotype

The circuit is presented to the algorithm as an integer string. There is a triplet of
integers for each cell, representing the sources of the two cell inputs and the cell
function, with the triplet locus mapping to the cell index. If the cell function is a
logic gate, the function allele represents a specific logic gate. If the cell function is
a multiplexer, then the allele represents the multiplexer control signal source,

30

which can be either the output of another cell or a circuit input. The list of
functions used is shown below. Cell outputs are represented by an integer each,
the allele referring to the output cell index.

The genetic algorithm used was a standard population-based linear genetic
algorithm with selection, crossover and mutation operators, after Goldberg [15].
However the allele range of each gene varied. Therefore it was required that the
cardinality of each gene can be set independently of the others. On application to a
gene the mutation operator selected a random integer between zero and the
cardinality. No bias was placed on selecting integers similar to the current value,
as in most cases the relationship between the alleles in the context of this problem
was not clear, and so the ordering of the alleles was arbitrary.

Fitness was measured by subjecting each candidate circuit to a test vector
containing the complete two bit adder truth table. One fitness point was awarded
for each correct bit in the output sequence, giving a total of 96 for maximum
fitness.

The circuit inputs were A0, A1, B0, B1, Carry In, !A0, !A1, !B0, !B1, !Carry In,
0, and 1. The outputs were S0, S1, and Carry Out.

Allele Function Allele Function
0 A . B 7 !A
1 A . !B 8 !A +B
2 !A . B 9 !B
3 A ⊕ B 10 !A + B
4 A + B 11 !A + !B
5 !A . !B 12.... !C . A + C . B, C = circuit input 0
6 !A ⊕ B ...(n) !C . A + C . B, C = input (n-12)

Table 2: List of function to allele mappings used.

Following informal experiments the genetic parameters were mostly chosen by
selecting those that Miller had found useful in [62]. Uniform crossover was used
with breeding rate at 100%. The mutation rate was set to 5% of all genes in the
population. The population size was set to 30. Qualitative examination of early
runs led us to believe that the suggested 40,000 - 80,000 generations were not
necessary to achieve good results, with 20,000 generations sufficing. Two-
member tournament selection was used. A tournament selection pressure as
described by Miller was also introduced, and set to 0.7, meaning that the winner of
each tournament was selected only with 70% probability. The first generation of
each run was randomly generated.

31

4.1.3 Results

10 runs were each made for cell array sizes of 3 x 3, 3 wide by 4 high, and 4 x 4.
Overall results are shown below, and relate well to the results presented by Miller.
Fitnesses and deviations have been scaled to 100. Each evolutionary run took
around four minutes to complete on a 433MHz Celeron CPU.

Array
Size

Mean fitness of
Best Solutions

Std. Dev. Of Best
Solutions

% of Runs with
Perfect Solutions

3x3 96.25 4.99 50%
4x3 96.88 3.71 50%
4x4 97.50 4.03 60%

Table 3: Results from 10 runs of 2 bit adder evolution across a range of array sizes

A series of 10 random searches were also carried out on the 3x3 array search
space, using the same number of evaluations as the evolutionary runs. These are
shown in Fig. 5, along with the best fitnesses of each generation of the 3x3 array
evolutionary runs.

Evolved
Circuits

Random
Searches

Fig. 5: Best fitness against generations of an evolved 2 bit adder on a 3x3 array along with
10 random searches of the same length.

32

4.1.4 Discussion

The results achieved from these experiments broadly agree with Miller's results.
For example, for a 3x3 array, Miller reported a mean fitness of 96.14 with a
standard deviation of 4.52, and 50% of cases perfect.

An example of a two bit adder evolved on the 3x3 array is show n in Fig. 6. It can
be seen that this is a minor variation on a traditional two bit ripple-carry adder
[26].

Note that this design uses XOR gates to generate the sum signals, and XOR and
multiplexer gates to generate both carry signals. We have already noted that it is
not trivial for human designers to develop efficient circuits that use only XOR and
multiplexer gates. Thus evolution is demonstrated as a means for successfully
searching a poorly understood design space for an efficient (in terms of gate
count) circuit. Miller et al. have presented similar circuit designs.

The results display a trend towards higher mean fitnesses for larger arrays. This
suggests that it is easier to find perfect solutions in larger arrays. However the
solutions found within these arrays tended to involve more gates and connections
than those discovered on smaller arrays, and so in this respect are less efficient.
This is not surprising as no bias was used to search for parsimonious solutions.
Miller et al also noted such trends.

There were some minor differences between the algorithm and that reported by
Miller. Miller used a "levels back" parameter to limit the length of the routing
connections to a certain number of columns to the left of the current cell. When
using such small arrays, we felt this was not necessary. Miller also ran his
algorithm for more generations. Informal examination of our early results showed
no or little improvement from running more than 20,000 generations. Miller also
used a slightly different scheme to map multiplexer behavior to the chromosome.

B0

C In

A0

B1

A1

S1

C Out

S0

Fig. 6: Example of an adder evolved on a 3x3 grid.

33

4.2 Case study 2: Device Specific Netlist Level Evolvable
hardware

For our intrinsic case study we selected the Xilinx Virtex FPGA. Of current
commercial FPGA architectures, it fitted the criteria for a general evolvable
hardware platform specified above better than any others. It is also a relatively
new architecture with a long life ahead of it, so architecture-specific findings will
be of interest for some time to come.

4.2.1 The Virtex Architecture

The SRAM-based Virtex can be reconfigured infinitely. With up to 60 MBs-1 of
configuration bandwidth, it can also be configured quickly. Although some of the
bitstream is proprietary and undisclosed, most hardware resources can be
configured in Java with the Xilinx JBits software. It allows partial reconfiguration
to reduce configuration time, and is widely available at reasonable cost.

A simplified diagram of the Virtex architecture is shown in Fig. 7. It is arranged as
an array of configurable logic blocks (CLBs). There are three categories of routing
between CLBs - single lines that connect CLBs to their neighbors, hex lines that
connect a CLB to CLBs six blocks away, and long lines. I/O blocks providing
logic and drivers for several I/O standards, surround the CLB array.

Each CLB consists of two slices, which each contain two SRAM-based four input
function lookup tables (LUTs), some fast carry logic, and two flip-flops. The
inputs to each CLB slice consist of thirteen inputs. These are the inputs to both
LUTs, and flip-flop clock, data, enable and set/reset lines. Outputs from each CLB
can be drawn from a range of internal signals, including the lookup tables, the
carry logic and the flip-flops. Configurable multiplexers select the connection
between the routing and the CLB inputs and outputs.

The main problem with Virtex is that it can be damaged by invalid configurations.
Each CLB is driven independently, so it is possible for contention to arise between
two drivers if two output multiplexers from two different CLBs drive the same
line.

Experiments showing the feasibility of Virtex as a reconfigurable platform were
first presented by Hollingworth et al. [27]. JBits was used to map circuit designs to
the configuration bitstream. Contention has been avoided by using fixed,
handcrafted routing between the CLBs, initially only in a feed forward structure,
but more recently by imposing a 6200-like sea of gates structure where one
routing signal for each neighbor is allowed in and out of each CLB [28]. Levi has
also used Virtex for evolutionary experiments [47], but the method of contention
avoidance has not been reported.

34

F LUT

G LUT
Carry
Logic

Carry
Logic

LUT
Inputs

LUT
Inputs

Set /
Reset

Clock

D Q

D Q

CE

Carry Out

Carry In

CLB
Outputs

CLB CLB

CLB CLB

CLB CLB

CLB CLB

CLB CLB

CLB CLB

CLB CLB

CLB CLB

Slice 1 Slice 0

Routing Matrix

Carry In

Carry Out

West
Routing

East
Routing

South
Routing

North
Routing

Fig. 7: A simplified diagram of the Virtex Architecture

4.2.2 Genotype Abstraction

As discussed earlier, the most innovative design space of circuits that can be
represented using an FPGA is that provided by the configuration bitstream itself –
the finest level of reconfigurability of the FPGA. Although the Virtex architecture
is course grained it can be configured at a fine level of detail. Unfortunately a
good deal of the bitstream-to-architecture mapping is proprietary knowledge.
However Xilinx JBits software allows us to reconfigure at a fairly low level of
detail, that of a netlist specific to the Virtex device with timing, routing and

35

geometry included in the abstraction. With this we were able to encode almost all
the resources available on the hardware, thereby allowing evolution to search a
large space for innovative solutions.

To capture the netlist level abstraction correctly in the genotype, we opted to avoid
using a binary representation. This was mainly due to our desire to include as
many of the resources available to us as possible. First, if all possible
configurations were encoded as a series of unique binary strings, arbitrary bias
would be introduced against resources that spanned several bits. Alternatively, if
each fine-grain resource were separately encoded as a number of bits, arbitrary
redundancy would be introduced when the number of states that resource could
assume (i.e. number of alleles) is not a power of two. This would also introduce
unknown biases.

For these reasons it was decided that each resource that could be modified by the
JBits API would be encoded as a separate integer gene. (The exception to this was
the LUT configurations, which were encoded as sixteen bits.)

Routing representation was also an issue. It was so important to avoid damage of
the device due to contention that we restricted the representation to avoid these
areas of space. In more detail, only the single (nearest neighbor) wires were
evolved. It was noted that although CLB input multiplexers can connect to a wide
range of single lines, the connections between the output multiplexers and singles
are sparse, and few can connect to any that their neighbors can. In fact, only eight
of the possible forty-eight connections had to be prohibited to prevent any possible
contention arising. The connection points between routing wires were not evolved.
An overview of the chromosome structure for one CLB and its associated routing
is shown in Table 4.

Number of
Genes

Type of Gene Alleles / gene
(Cardinality)

16 LUT Input MUXes 27
2 Clock Input MUXes 11
2 SR Input MUXes 10
2 Clock Enable Input MUXes 11
4 Other Input MUXes 4
64 LUT Configuration 2
48 Other CLB Logic 1-3
8 Output signal MUX 13
40 Output MUX to single switches 2

Table 4: Overview of the genotype for one CLB.

A small rectangle of the chip was selected for evolution. The cells on the edges of
this area were further restricted. They were only allowed to use the routing

36

connections to the rest of the evolved area or circuit input wires, and not outside.
Inputs were fed directly into LUTs on the west edge. For instance all four LUTs
on the southwest corner were restricted to using the A0 and B0 inputs, the carry
input and the remaining input for each LUT was restricted to west and north
connections. All other inputs to the CLB were also restricted to the west and north.
The output of the evolved area was taken from hex lines on the west edge, which
were not evolved. This led to a chromosome of 604 genes for a 2x2 evolved area.
A diagram of the inputs to and outputs from the evolved area is shown in Fig. 8.

G
LUT

F
LUT

F
F

F
F

A0
B0

CIn
B0
A0

CIn
CIn
B0

A0
B0

CIn

A0

A1
B1

B1
A1

B1

A1
B1

A1

G
LUT

F
LUT

F
F

F
F

G
LUT

F
LUT

F
F

F
F

G
LUT

F
LUT

F
F

F
F

G
LUT

F
LUT

F
F

F
F

G
LUT

F
LUT

F
F

F
F

G
LUT

F
LUT

F
F

F
F

G
LUT

F
LUT

F
F

F
F

COut,
 Sum1

Sum0

Fig. 8: Inputs and outputs to the evolved area. Unlabelled LUT inputs were completely
under evolutionary control.

One-point crossover was used as opposed to uniform, following recent work by
Vassilev and Miller [94] on the suitability of uniform crossover to three bit
multiplier landscapes. The population size was also increased to 50. All other
parameters were set as in the first experiment.

Unlike the experiment in simulation described in the first case study, the solutions
were not constrained to combinational circuits, as the representation allowed a
feedback. Working at low abstractions it may be necessary to specify
generalization that is normally hidden by higher abstractions, as discussed in
section 3.3. In order to ensure generalization across any order of input sequences
the order of presentation was randomized for each evaluation. The genetic
representation allows for circuits that may not generate the same fitness when
evaluated twice - the outputs may exhibit dynamical variations unrelated to the
inputs. Although such circuits are not useful final solutions they may contain
valuable information about how to solve part of the problem, or how to traverse
the fitness landscape. Because of this each individual was evaluated five times,
and its worst fitness selected rather than discarding these solutions.

37

Initial experiments suffered from the speed it takes to reconfigure the FPGA. With
a bitstream of over 300k configuration of each individual took around 1 second.
Consequently the number of evaluations that could be carried out in a reasonable
timeframe were low.2 The work in simulation by both Miller and us suggested that
large numbers of evaluations are needed, and this was confirmed by failure to
evolve fully functional two bit adders within 1000 generations of two test runs. As
we were evolving only a small area of the FPGA we had two options open to us –
either batch multiple evaluations together in one configuration or use partial
reconfiguration to reduce the bus traffic. As discussed earlier the most elegant
solution to this problem is the use of partial reconfiguration. This is the approach
we took, giving us an evaluation speedup of an order of magnitude. Simulation in
the much more abstract logical space used in the first case study was still faster to
complete the genotype-phenotype map and evaluation of the intrinsic evolution.

4.2.3 Results

10 runs were carried out for a 2x2 cell. Overall results are shown below. Fitnesses
and deviations have again been scaled to 100. The mean number of generations to
find a perfect solution and the corresponding standard deviation ignore the run that
did not find a perfect solution. The average time to find a perfect solution was
around 3 hours and 45 minutes using a 433MHz Celeron PC.

Fig. 9: Best fitness and average Euclidean distance between members of the population
against generations for the first 1000 generations of the initial run.

2 Note that this highlights the misconception that extrinsic evaluation is slower
than intrinsic. If a logical abstraction is used, evaluation in simulation on a PC can
be very fast as the microprocessor is designed to carry out fast logical calculations.

38

Mean Fitness
of Best

Solutions

Std. Dev. of
Best Solutions

% of Runs
With Perfect

Solutions

Mean Gens
to Find
Perfect

St. Dev of
Gens to Find

Perfect
99.58 1.26 90 2661 2169

Table 5: Results from 10 runs of intrinsic 2 bit adder evolution

4.2.4 Discussion

The results achieved from these experiments show an improvement in all statistics
over the results carried out in simulation, even though the size of the space that the
search was conducted across is much greater. Hence the combination of biases
mean this space is more tractable to search. However it is difficult to say much
more than this. The biases of the two experiments are very different - there were
variations in representation, mapping and ordering biases. One point that should
be made is that the Virtex architecture is rich in resources suitable for creating
adders, which is likely to help evolvability. The LUT is a very useful primitive for
generating logical behaviors, especially when the behavior is specified in truth
tables. Additionally, logic is present within each Virtex CLB intended for
performing logical carrys. In the spirit of working at a low level of abstraction that
we have advocated during this discussion, our representation allows much of this
logic to be manipulated by the algorithm.

Hollingworth that Tyrell have also evolved two bit adders (but without carry)
intrinsically using Virtex [28]. In this case they used a fixed feed-forward routing
structure and evolved only the bits of six LUTs. Such a representation cannot
make use of the additional carry logic, which many of the two bit adders evolved
here do. Hence we see that relaxing abstraction constraints may facilitate design
innovation as discussed in section 3.2.

We should expect that such relaxations mean more work for the algorithm.
Comparison with Hollingworth that Tyrell’s results support this. They evolved a
population of 100 chromosomes using a genetic algorithm with one point
crossover and mutation. Their results showed a 100% success rate, and a mean
and standard deviation of 808 and 259 generations respectively to find a perfect
solution. What is most revealing is that such a huge increase in space does not
appear to have been accompanied by a huge decrease in algorithm performance,
rather only a moderate decrease. It was noted in section 3.4 that evolvability does
not necessarily decrease with relaxation of constraints, and in some cases
increases. So again this can be taken as a sign that working in low abstraction
spaces should be advocated.

However it should be noted that adder circuits are not the best problems to
demonstrate innovation over a sequential search space. Such a space is more
suited to problems that make use of the range of behaviors over the time

39

dimension opened by the relaxation in abstraction, such as Thompson’s tone
discriminator [80]. More complex problems such as this are also likely to benefit
from the use of dynamic representational biases such as developmental processes.

This experiment was carried out using parameters in line with neutral network
theory, which was discussed in section 3.4. It can be seen from Fig. 9 that
evolution continues long after the initial convergence of the population, which in
this example occurs within the first few generations. In addition, improvements
take place after long periods of no improvement, which may correspond to periods
when the population is moving across neutral planes or ridges. These
improvements are also associated with a sudden convergence of the population,
which then gradually diverges again. Our observations are in line with the
hypothesis that neutral networks permeate this kind of search space.

5 Summary

The problems of electronic circuit design are increasing as demand for
improvements increases. In this review we have introduced a promising new type
of solution to these difficulties - evolvable hardware. This emerging field exists at
the intersection of electronic engineering, computer science and biology. The
benefits brought about by evolvable hardware are particularly suited to a number
of applications, including the design of low cost hardware, poorly specified
problems, creation of adaptive systems, fault tolerant systems and innovation.

As research in this field accelerates, new methods of classifying the many strands
of research must be found. Here we identified three viewpoints: the level of
abstraction, the bias implementation and the hardware evaluation process. With
these in mind, current research trends in evolvable hardware were reviewed and
analyzed. In particular, the research focusing on innovation, evolvability and
platforms were described.

Finally, this work presented two case studies - one evolved at a logic netlist level
and evaluated extrinsically, and one evolved at a device specific netlist level,
evaluated intrinsically. The problem selected for both was the evolution of a two
bit adder. These demonstrated the ability of evolution to successfully find
solutions using a low abstraction and illustrated how such an approach can allow
innovation in addition to automation.

Evolvable hardware is still a young field. It does not have all the answers to the
problems of circuit design and there are still many difficulties to overcome.
Nevertheless, these new ideas may be one of the brightest and best hopes for the
future of electronics.

40

Acknowledgements

The authors would like to thank Dr. Peter Rounce for his insights and advice.
Timothy Gordon is supported by an EPSRC studentship.

References
[1] Andersen P. (1998) Evolvable Hardware: Artificial Evolution of Hardware Circuits in

Simulation and Reality, M.Sc. Thesis, University of Aarhus, Denmark.
[2] Arslan T. and Horrocks D.H. (1995), The Design of Analogue and Digital Filters

Using Genetic Algorithms, Proc. of the 15th SARAGA Colloquium on Digital and
Analogue Filters and Filtering Systems, pp. 2/1 – 2/5, London, U.K.

[3] Banzhaff W., Nordin P., Keller E. and Francone F.D. (1998), Genetic Programming,
Morgan-Kaufmann, San Francisco, CA, U.S.A.

[4] Bentley P.J. and Kumar S. (1999), Three Ways to Grow Designs: A Comparison of
Evolved Embryogenies for a Design Problem, Proc. of the Genetic and Evolutionary
Computation Conf., Orlando, FL, U.S.A., pp.35-43.

[5] Brooks R. A. (1991), Intelligence without representation, Artificial Intelligence J., 47,
pp. 139-159.

[6] Cliff D., Harvey I., and Husbands P. (1993), Explorations in Evolutionary Robotics,
Adaptive Behaviour, 2, 1, pp.73-110.

[7] Coello Coello C.A., Christiansen A.D and Hernández Aguirre A. (2000), Using
Evolutionary Techniques to Automate the Design of Combinational Circuits,
International Journal of Smart Engineering System Design, 2, no. 4, pp. 229-314.

[8] Damiani E., Liberali V. and Tettamanzi A.G.B. (2000), Dynamic Optimisation of
Non-linear Feed-Forward Circuits, Proc. of the 3rd Int. Conf. on Evolvable Systems,
Edinburgh, U.K., pp. 41-50.

[9] de Garis H. (1994), An Artificial Brain: ATR's CAM-Brain Project Aims to
Build/Evolve an Artificial Brain with a Million Neural Net Modules Inside a Trillion
Cell Cellular Automata Machine, New Generation Computing J., 12, no. 2, pp. 215-
221.

[10] de Jong, K.A. (2001), Evolutionary Computation, MIT Press, Cambridge MA, U.S.A.
[11] Flockton S.J. and Sheehan K. (1999), A system for Intrinsic Evolution of Linear and

Non-linear Filters, Proc. of the 1st NASA/DoD Workshop on Evolvable Hardware,
Pasadena, CA, U.S.A, pp.93-100.

[12] Fukunaga A. and Stechert A. (1998), Evolving Nonlinear Predictive Models for
Lossless Image Compression with Genetic Programming, Proc. of the 3rd Annual
Genetic Programming Conf., Madison, WI, U.S.A, pp. 95-102.

[13] Girau B., Marchal P., Nussbaum P. and Tisserand A. (1999), Evolvable Platform for
Array Processing: A One-Chip Approach, Proc. of the 7th Int. Conf. on
Microelectronics for Neural, Fuzzy and Bio-inspired Systems, Granada, Spain, pp.
187-193.

[14] Göckel N., Drechsler R. and Becker B. (1997), A Multi-Layer Detailed Routing
Approach based on Evolutionary Algorithms, Proc. of the IEEE Int. Conf. on
Evolutionary Computation, Indianapolis, IN, U.S.A., pp. 557-562.

[15] Goldberg D.E. (1989), Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley, Reading, MA, U.S.A.

41

[16] Goldberg D.E., Deb K. and Korb B. (1991), Don't Worry, Be Messy, Proc. of the 4th
Int. Conf. on Genetic Algorithms and their Applications, San Diego, CA, U.S.A., pp.
24-30.

[17] Gordon D.F. and des Jardins M. (1995), Machine Learning J., 20, pp. 1-17.
[18] Grimbleby J.B. (2000), Automatic Analogue Circuit Synthesis Using Genetic

Algorithms, IEE Proc. - Circuits Devices, Systems, 147, no. 6, pp. 319-323.
[19] Hamilton A., Papathanasiou K., Tamplin M. and Brandtner T. (1998), Palmo: Field

Programmable Analogue and Mixed-Signal VLSI for Evolvable Hardware, Proc. of
the 2nd Int. Conf. on Evolvable Systems, Lausanne, Switzerland, pp. 335-344.

[20] Harvey I. (1991), Species Adaptation Genetic Algorithms: The basis for a continuing
SAGA, Proc. of the 1st European Conf. on Artificial Life, Paris, Franc, pp. 346-354.

[21] Harvey I and Thompson A. (1996), Through the Labyrinth Evolution Finds a Way: A
Silicon Ridge, Proc. of the 1st Int. Conf. on Evolvable Systems, Tsukuba, Japan, pp.
406-422.

[22] Hemmi H., Mizoguchi J and Shimohara K. (1996), Evolving Large Scale Digital
Circuits, Proc. of the 5th Int. Workshop on the Synthesis and Simulation of Living
Systems, Nara, Japan, pp. 168-173.

[23] Higuchi T., Iba H., and Manderick B. (1994), Evolvable Hardware, in Massively
Parallel Artifical Intelligence, MIT Press, Cambridge, MA, U.S.A., pp. 398-421.

[24] Higuchi T., Iwata M., Kajitani I., Iba H., Hirao Y., Manderick B., and Furuya T.
(1996), Evolvable Hardware and its Applications to Pattern Recognition and Fault-
tolerant Systems, in Towards Evolvable Hardware: The Evolutionary Engineering
Approach, Sanchez E. and Tomassini M. (Eds.), Springer-Verlag, Berlin, Germany,
pp. 118-135.

[25] Hirst A.J. (1996), Notes on the Evolution of Adaptive Hardware, Proc. of Adaptive
Computing in Engineering Design and Control, Plymouth, U.K., pp. 212-219.

[26] Holdsworth B. (1993) Digital Logic Design, Butterworth-Heinemann, Oxford, UK.
[27] Hollingworth G., Smith S. and Tyrrell A. (2000), The Safe Intrinsic Evolution of

Virtex Devices, Proc. of the 2nd NASA/DoD Workshop on Evolvable Hardware, Palo
Alto, CA, U.S.A.

[28] Hollingworth G., Smith S. and Tyrell A. (2000), The Intrinsic Evolution of Virtex
Devices Through Internet Reconfigurable Logic, Proc. of the 3rd Int. Conf. on
Evolvable Systems, Edinburgh, U.K., pp. 72-79,

[29] Huynen M.A., Stadler P.F. and Fontana W. (1996), Smoothness within ruggedness:
The role of neutrality in adaptation, Proc. of the National Academy of Science, 93,
397-401.

[30] Heyworth K. (1998), The “Modeling Clay” Approach to Bio-inspired Electronic
Hardware, Proceedings of the Second International Conference on Evolvable Systems:
From Biology to Hardware, Lausanne, Switzerland, pp. 248-255.

[31] Imamura K., Foster J. A. and Krings A.W. (2000), The Test Vector Problem and
Limitations to Evolving Digital Circuits, Proc. of the 2nd NASA/DoD Workshop on
Evolvable Hardware, Palo Alto, CA, U.S.A, pp.75-79.

[32] Iwata M., Kajitani I., Yamada H., Iba H. and Higuchi T. (1996), A Pattern
Recognition System Using Evolvable Hardware, Proc. of the 4th Int. Conf. on Parallel
Problem Solving from Nature, Berlin, Germany, pp. 761-770.

[33] Job D., Shankararaman V. and Miller J.F. (1999), Hybrid AI Techniques for Software
Design, Proc. of the 11th Int. Conf. on Software Engineering and Knowledge
Engineering, Kaiserslautern, Germany, pp. 315-319.

[34] Kajitani I., Hoshino T., Iwata M. and Higuchi T. (1996), Variable length chromosome
GA for Evolvable Hardware, Proc. of the 3rd Int. Conf. on Evolutionary Computation,
Nagoya, Japan, pp. 443-447.

42

[35] Kajitani I., Hoshino T., Nishikawa D., Yokoi H., Nakaya S., Yamauchi T., Inuo T.,
Kajihara N., Iwata M., Keymeulen D. and Higuchi T. (1998), A Gate-Level EHW
Chip: Implementing GA Operations and Reconfigurable Hardware on a Single LSI,
Proc. of the 2nd Int. Conf. on Evolvable Systems, Lausanne, Switzerland, pp. 1-12.

[36] Kalganova T., Miller J.F. and Lipnitskaya N., (1998), Multiple Valued Combinational
Circuits Synthesised using Evolvable Hardware Approach, Proc. of the 7th Workshop
on Post-Binary Ultra Large Scale Integration Systems, Fukuoka, Japan.

[37] Kalganova T. and Miller J.F. (1999), Evolving More Efficient Digital Circuits by
Allowing Circuit Layout Evolution and Multi-Objective Fitness, Proc. of the 1st
NASA/DoD Workshop on Evolvable Hardware, Pasadena, CA, U.S.A, pp. 54-63.

[38] Kauffman S. and Levin S. (1987), Towards a General Theory of Adaptive Walks on
Rugged Landscapes, J. of Theoretical Biology, 128, pp.11-45.

[39] Keymeulen D., Iwata M., Kuniyoshi Y. and Higuchi T. (1998), Comparison between
an Off-line Model-free and an On-line Model-based Evolution applied to a Robotics
Navigation System using Evolvable Hardware, Proc. of the 6th Int. Conf. on Artificial
Life, Los Angeles, CA, U.S.A. pp.109-209.

[40] Kitano H. (1998), Building Complex Systems Using Developmental Process: An
Engineering Approach, Proc. of the 2nd Int. Conf. on Evolvable Systems, Lausanne,
Switzerland, pp. 218-229.

[41] Koza J., Bennett F. H, III, Andre D., Keane M.A. (1999), Genetic Programming III,
Morgan-Kauffmann, San Francisco, CA, U.S.A.

[42] Langeheine J., Folling S., Keir K., Schemmel J. (2000), Towards a Silicon Primordial
Sourp: A Fast Approach to Hardware Evolution with a VLSI Transistor Array, Proc.
of the 3rd Int. Conf. on Evolvable Systems, Edinburgh, U.K., pp. 123-132.

[43] Layzell P. (1999), Reducing Hardware Evolution’s Dependency on FPGAs, Proc. of
the 7th Int. Conf. on Microelectronics for Neural, Fuzzy and Bio-inspired Systems,
Granada, Spain, pp. 171-178

[44] Layzell P. (1999), Inherent Qualities of Circuits Designed by Artificial Evolution: A
Preliminary Study of Populational Fault Tolerance, Proc. of the 1st NASA/DoD
Workshop on Evolvable Hardware, Pasadena, CA, U.S.A, pp. 85-86.

[45] Layzell P. and Thompson A. (2000), Understanding Inherent Qualities of Evolved
Circuits: Evolutionary History as a Predictor of Fault Tolerance, Proc. of the 3rd Int.
Conf. on Evolvable Systems, Edinburgh, U.K., pp. 133-144.

[46] Levi D. and Guccione S.A. (1999), GeneticFPGA: Evolving Stable Circuits on
Mainstream FPGA Devices, Proc. of the 1st NASA/DoD Workshop on Evolvable
Hardware, Pasadena, CA, U.S.A, pp. 12-17.

[47] Levi D. (2000), HereBoy: a fast evolutionary algorithm, Proc. of the 2nd NASA/DoD
Workshop on Evolvable Hardware, Palo Alto, CA, U.S.A, pp. 17-24.

[48] Liu W., Murakawa M., and Higuchi T. (1996), ATM Cell Scheduling by Function
Level Evolvable Hardware, Proc. of the 1st Int. Conf. on Evolvable Systems, Tsukuba,
Japan, pp. 180-192.

[49] Lohn J.D. and Columbano S.P. (1998), Automated Analog Circuit Synthesis Using a
Linear Representation, Proc. of the 2nd Int. Conf. on Evolvable Systems, Lausanne,
Switzerland, pp. 125-133.

[50] Lohn J.D., Haith G.L., Colombano S.P. and Stassinopoulos D. (1999), A Comparison
of Dynamic Fitness Schedules for Evolutionary Design of Amplifiers, Proc. of the 1st
NASA/DoD Workshop on Evolvable Hardware, Pasadena, CA, U.S.A, pp.87-92.

[51] Louis S.J. and Rawlins G.J.E. (1991), Designer Genetic Algorithms: Genetic
Algorithms in Structure Design, Proc. of the 4th Int. Conf. on Genetic Algorithms, San
Diego, CA, U.S.A., pp. 53-60.

43

[52] Manovit C, Aporntewan C. and Chongstitvatana P. (1998), Synthesis of Synchronous
Sequential Logic Circuits from Partial Input/Output Sequences, Proc. of the 2nd Int.
Conf. on Evolvable Systems, Lausanne, Switzerland, pp.98-105..

[53] Masner J., Cavalieri J., Frenzel J. and Foster J., Representation and Robustness for
Evolved Sorting Networks, Proc. of the 1st NASA/DoD Workshop on Evolvable
Hardware, Pasadena, CA, U.S.A, pp.255-261.

[54] Mazumder P. and Rudnick E. M. (1999), Genetic Algorithms for VLSI Design, Layout
and Test Automation, Prentice-Hall, Upper Saddle River, NJ, U.S.A.

[55] Miller J.F., Kalganova T., Lipnitskaya N. and Job D. (1999), The Genetic Algorithm
as a Discovery Engine: Strange Circuits and New Principles, Proc. of the AISB
Symposium on Creative Evolutionary Systems, Edinburgh, U.K, pp. 65-74.

[56] Miller J.F., Job D. and Vassilev V. K. (2000) Principles in the Evolutionary Design of
Digital Circuits – Part I, Genetic Programming and Evolvable Machines, 1, no. 1/2,
pp. 7-35.

[57] Miller J.F., Job D. and Vassilev V. K. (2000) Principles in the Evolutionary Design of
Digital Circuits – Part II, Genetic Programming and Evolvable Machines, 1, no. 3, pp.
259-288.

[58] Miller J.F. and Thomson P. (1995), Combinational and Sequential Logic Optimisation
using Genetic Algorithms, Proc. of the 1st Int. Conf. on Genetic Algorithms in
Engineering Systems: Innovations and Applications, Sheffield, U.K., pp. 34-38.

[59] Miller J.F. and Thomson P. (1998), Aspects of Digital Evolution: Evolvability and
Architecture, Proc. of the 5th Int. Conf. on Parallel Problem Solving in Nature,
Amsterdam, The Netherlands, pp. 927-936.

[60] Miller J.F. and Thomson P. (1998), Aspects of Digital Evolution: Geometry and
Learning, Proc. of the 2nd Int. Conf. on Evolvable Systems, Lausanne, Switzerland,
pp.25-35.

[61] Miller J.F. and Thomson P. (1998), Evolving Digital Electronic Circuits for Real-
Valued Function Generation using a Genetic Algorithm, Proc. of the 3rd Annual Conf.
on Genetic Programming, San Francisco, CA, U.S.A, pp. 863-868.

[62] Miller J.F., Thomson P. and Fogarty T.C. (1997), Designing Electronic Circuits using
Evolutionary Algorithms. Arithmetic Circuits: A Case Study, in Genetic Algorithms
and Evolution Strategies in Engineering and Computer Science: Recent Advancements
and Industrial Applications, Quagliarella D., Periaux J., Poloni C. and Winter G.
(Eds.), John Wiley & Sons, London, UK.

[63] Mitchell M. (1998), An Introduction to Genetic Algorithms, MIT Press, Cambridge
MA, U.S.A.

[64] Mitchell T.M. (1997), Machine Learning, McGraw-Hill, London, UK
[65] Moreno J.M., Madrenas J., Faura J., Canto E., Cabestany J. and Insenser J.M. (1998),

Feasible Evolutionary and Self-repairing Hardware by Means of the Dynamic
Reconfiguration Capabilities of the FIPSOC Devices, Proc. of the 2nd Int. Conf. on
Evolvable Systems, Lausanne, Switzerland, pp.345-355.

[66] Murakawa M., Yoshizawa S., Adachi T., Suzuki S., Takasuka K., Iwata M. and
Higuchi T. (1998), Analog EHW Chip for Intermediate Frequency Filters, Proc. of the
2nd Int. Conf. on Evolvable Systems, Lausanne, Switzerland, pp. 134-143.

[67] Murakawa M., Yoshizawa S., Kajitani I., Furuya T., Iwata M., and Higuchi T. (1996),
Hardware Evolution at Function Level, Proc. of the 4th Conf. on Parallel Problem
Solving from Nature, Berlin, Germany, pp. 62-71.

[68] Murakawa M., Yoshizawa S., Kajitani I., Yao X., Kajihara N., Iwata M. and Higuchi
T. (1999), The GRD Chip: Genetic reconfiguration of DSPs for Neural Network
Processing, IEEE Trans. on Computers, 48, no. 6, pp. 628-639.

44

[69] Ortega C. and Tyrrell A. (1999), Biologically Inspired Fault-tolerant Architectures for
Real-time Control Applications, Control Engineering Practice, 7, no. 5, pp. 673-678.

[70] Pollack J.B., Lipson H., Ficici S., Funes P., Hornby G. and Watson R. (2000),
Evolutionary Techniques in Physical Robotics, Proc. of the 3rd Int. Conf. on
Evolvable Systems, Edinburgh, U.K., pp. 175-186.

[71] Rendell, L. (1987), Similarity-based Learning and its Extensions, Computational
Intelligence, 3, pp.241-266.

[72] Rosenman, M. (1997), The Generation of form Using an Evolutionary Approach, in
Evolutionary Algorithms in Engineering Applications, Dasgupta D. and Michalewicz
(Eds) Springer-Verlag, pp. 69-86.

[73] Rumelhart, D.E., Widrow B and Lehr M. (1994). The Basic Ideas in Neural Networks,
Communications of the ACM, 37, no. 3, pp. 87-92.

[74] Salami M., Murakawa M. and Higuchi T. (1996), Data Compression based on
Evolvable Hardware, Proc. of the 1st Int. Conf. on Evolvable Systems, Tsukuba, Japan,
pp. 169-179.

[75] Salami M., Sakanashi H., Tanaka M., Iwata M., Kurita T. and Higuchi T. (1998), On-
Line Compression of High Precision Printer Images by Evolvable Hardware, Proc. of
the Data Compression Conf., Los Alamitos, CA, U.S.A. pp. 219-228.

[76] Sechen C. (1988), VLSI Placement and Global Routing Using Simulated Annealing,
Kluwer Academic Publishers, Boston MA, U.S.A.

[77] Stoica A., Fukunaga A., Hayworth K. and Salazar-Lazaro C. (1998), Evolvable
Hardware for Space Applications, Proc. of the 2nd Int. Conf. on Evolvable Systems,
Lausanne, Switzerland, pp. 166-173.

[78] Stoica A., Keymeulen D., Tawel R., Salazar-Lazaro C., Li W. (1999), Evolutionary
Experiments with a Fine-Grained Reconfigurable Architecture for Analog and Digital
CMOS Circuits, Proc. of the 1st NASA/DoD Workshop on Evolvable Hardware,
Pasadena, CA, U.S.A, pp.76-85.

[79] Stoica A., Zebulum R. and Keymeulen D., (2000), Mixtrinsic Evolution, Proc. of the
3rd Int. Conf. on Evolvable Systems, Edinburgh, U.K., pp. 208-217.

[80] Thompson A. (1996), Silicon Evolution, Proc. of the 1st Annual Conf. on Genetic
Programming, Stanford, CA, U.S.A., pp. 444-452.

[81] Thompson A. (1997), Evolving Inherently Fault-Tolerant Systems, Proc. of Institution
of Mechanical Engineers, 211, part I, pp.365-371

[82] Thompson A. (1998), Hardware Evolution, Springer-Verlag, London, U.K.
[83] Thompson A. (1998), On the Automatic Design of Robust Electronics Through

Artificial Evolution, Proc. of the 2nd Int. Conf. on Evolvable Systems, Lausanne,
Switzerland, pp.13-25.

[84] Thompson A., Harvey I. and Husbands P. (1996), Unconstrained Evolution and Hard
Consequences, in Towards Evolvable Hardware: the evolutionary engineering
approach, Sanchez E. and Tomassini M. (Eds.), Springer-Verlag, Berlin, Germany,
pp. 136-165.

[85] Thompson A. and Layzell P. (1999), Analysis of Unconventional Evolved Electronics,
Communications of the ACM, 42, 4, pp. 71-79.

[86] Thompson A. and Layzell P. (2000), Evolution of Robustness in an Electronics
Design, Proc. of the 3rd Int. Conf. on Evolvable Systems, Edinburgh, U.K., pp. 218-
228.

[87] Thompson A. and Wasshuber C. (2000), Design of Single Electron Systems through
Artificial Evolution, Int. J. of Circuit Theory and Applications, 28, no. 6, pp. 585-599.

[88] Torresen J. (1998), A Divide and Conquer Approach to Evolvable Hardware, Proc. of
the 2nd Int. Conf. on Evolvable Systems, Lausanne, Switzerland, pp.57-65.

45

[89] Torresen J. (2000), Possibilities and Limitations of Applying Evolvable Hardware to
Real-World Applications, Proc. of the 10th Int. Conf. on Field Programmable Logic
and Applications, Villach, Austria, pp. 230-239.

[90] Torresen J. (2000), Scalable evolvable hardware applied to road image recognition,
Proc. of the 2nd NASA/DoD Workshop on Evolvable Hardware, Palo Alto, CA,
U.S.A, pp. 245-252.

[91] Tufte G. and Haddow P.C. (1999), Prototyping a GA Pipeline for Complete Hardware
Evolution, Proc. of the 1st NASA/DoD Workshop on Evolvable Hardware, Pasadena,
CA, U.S.A, pp.18-25.

[92] Vassilev V., and Miller J.F. (2000), Embedding Landscape Neutrality To Build a
Bridge from the Conventional to a More Efficient Three-bit Multiplier Circuit, Proc.
of the Genetic and Evolutionary Computation Conf., Las Vegas, NV, U.S.A.

[93] Vassilev V., and Miller J.F. (2000), The Advantages of Landscape Neutrality in
Digital Circuit Evolution, Proc. of the 3rd Int. Conf. on Evolvable Systems, Edinburgh,
U.K., pp. 252-263.

[94] Vassilev V., Miller J.F. and Fogarty T.C. (1999), On the Nature of Two-Bit Multiplier
Landscapes, Proc. of the 1st NASA/DoD Workshop on Evolvable Hardware, Pasadena,
CA, U.S.A, pp.36-45.

[95] Yao X. and Higuchi T. (1996), Promises and Challenges of Evolvable Hardware,
Proc. of the 1st Int. Conf. on Evolvable Systems, Tsukuba, Japan, pp. 55-78.

[96] Yih J.S. and Mazumder P. (1990), A Neural Network Design for Circuit Partitioning,
IEEE Trans. on Computer Aided Design, 9, no.10, pp. 1265-1271.

[97] Zebulum R.S., Aurélio Pacheo M. and Vellasco M. (1996), Evolvable Systems in
Hardware Design: Taxonomy, Survey and Applications, Proc. of the 1st Int. Conf. on
Evolvable Systems, Tsukuba, Japan, pp. 344-358.

[98] Zebulum R.S., Aurélio Pacheo M. and Vellasco M. (1997) Increasing Length
Genotypes in Evolutionary Electronics, Proc. of the 7th Int. Conf. on Genetic
Algorithms, East Lansing, MI, U.S.A.

[99] Zebulum R.S., Aurélio Pacheo M. and Vellasco M. (1998), Analog Circuits Evolution
in Extrinsic and Intrinsic Modes, Proc. of the 2nd Int. Conf. on Evolvable Systems,
Lausanne, Switzerland pp. 154-165.

