Job Shop Scheduling using the Clonal Selection Principle Page 1 of 15

910 HTML Bepcusa danina http://delta.cs.cinvestav.mx/~ccoello/conferences/acdm04.pdf.gz.
G o o0 g | e aBToMaTnyeckn cosgaet HTML Bepcuu JOKYMEHTOB Npu ckaHupoBaHun NHTepHeTa.

VMicnonb3yinte crnegyowmin agpec s CCbISIOK U 3aKnagok Ha 3Ty CTpPaHULy: http://www.google.com/search?
g=cache:NG3CFHMIM8gJ:delta.cs.cinvestav.mx/~ccoello/conferences/acdm04.pdf.gz+acdm04.pdf.gz&hl=ru&ct=clnk

Google HUKAK He CBA3AH ¢ asmopamu amoul cmpaHuysl U He Heceém omeemcmeeHHOCMU 3d eé CD()E[)JKJZLWOQ.

OTK cnoBa NPUCYTCTBYIOT TOMNBKO B CCbINIKax Ha 3Ty cTpaHuuy: acdmO04 pdf gz

Page 1
Job Shop Scheduling using the Clonal
Selection Principle
Carlos A. Coello Coello 1, Daniel Cortés Rivera ? and Nareli Cruz Cortés

CINVESTAV-IPN (Evolutionary Computation Group)
Depto. de Ingenieria Eléctrica, Seccién de Computacion
Av. IPN No. 2508, Col. San Pedro Zacatenco

México, D. F. 07300, MEXICO
1ccoelIo@cs.cinvestav.mx
2dcortes@computacion.cs.cinvestav.mx
3nareli@computacion.cs.cinvestav.mx

Abstract

In this paper, we propose an algorithm based on an artificial immune system to
solve job shop scheduling problems. The approach uses clonal selection,
hypermutations and a mechanism that explores the vicinity of a reference solution.
It also uses a decoding strategy based on a search that tries to eliminate gaps in a
schedule as to improve the solutions found so far. The proposed approach is
compared with respect to three other heuristics using a standard benchmark
available in the specialized literature. The results indicate that the proposed
approach is very competitive with respect to the others against which it was
compared. Our approach not only improves the overall results obtained by the
other heuristics, but it also significantly reduces the CPU time required by at least
one of them.

file://C:\Documents and Settings\ai\Job Shop Scheduling using the Clonal Selection P... 11/20/2007

Job Shop Scheduling using the Clonal Selection Principle Page 2 of 15

Introduction

The purpose of scheduling is to allocate a set of (limited) resources to tasks over
time [1]. Scheduling has been a very active research area during several years, both
in the operations research and in the computer science literature [2,3] with
applications in several disciplines. Research on scheduling basically focuses on
finding ways of assigning tasks (or jobs) to machines (i.e., the resources) such that
certain criteria are met and certain objective (or objectives) function is optimized.
A wide variety of scheduling problems (e.g., job shop, flowshop, production, etc.)
have been tackled with diverse heuristics such as evolutionary algorithms [3,4,5],
tabu search [6], and simulated annealing [7], among others. Note, however, that the
use of artificial immune systems for the solution of scheduling problems of any
type has been scarce (see for example [8,9]).

This paper extends our previous proposal of a new approach based on an artificial
immune system (basically on the clonal selection principle) to solve job scheduling
problems, which was introduced in [10]. Three are the main changes with respect
to our previous proposal are the following: (1) we no longer use a library of
antibodies, (2) we introduced two new domain-specific mutation operators, and (3)
we use a new backtracking mechanism. As we will see later on, these changes
introduce important improvements in our algorithm with respect to the original
version. The proposed approach is compared with respect to GRASP (Greedy
Randomized Adaptive Search Procedure), a Hybrid Genetic Algorithm (in which

Page 2

local search is used), a Parallel Genetic Algorithm and our previous AIS [10] in
several test problems taken from the specialized literature. Our results indicate that
the proposed approach is a viable alternative for solving efficiently job shop
scheduling problems and it also improves on our previous version reported in [10].

Statement of the Problem

In this paper, we will be dealing with the Job Shop Scheduling Problem (JSSP), in
which the general objective is to minimize the time taken to finish the last job
available (makespan). In other words, the goal is to find a schedule that has the
minimum duration required to complete all the jobs [2]. More formally, we can say

that in the JSSP, we have a set of n jobs {J } S that have to be processe
~Tn

asetof g machines {]\/} - . Each job has a sequence that depends on the

=rm

file://C:\Documents and Settings\ai\Job Shop Scheduling using the Clonal Selection P... 11/20/2007

Job Shop Scheduling using the Clonal Selection Principle Page 3 of 15

existing precedence constraints. The processing of a job J/. in a machine

called operation o e The operation O . requires the exclusive use of

jr

uninterrupted period of time P, (this is the processing time). A schedule is then a

set of duration times for each operation {c f}} that satisfi
1=Fn 15Fm

previously indicated conditions. The total duration time required to complete all
the jobs (makespan) will be called L . The goal is then to minimize L.

Garey and Johnson [11] showed that the JSSP is an NP-hard problem and within
its class it is indeed one of the least tractable problems [3]. Several enumerative
algorithms based on Branch & Bound have been applied to JSSP. However, due to
the high computational cost of these enumerative algorithms, some approximation
approaches have also been developed. The most popular practical algorithm to date
is the one based on priority rules and active schedule generation [12]. However,
other algorithms, such as an approach called shifting bottleneck (SB) have been
found to be very effective in practice [13]. The only other attempt to solve the
JSSP using an artificial immune system that we have found in the literature is the
proposal presented in [8,9] and our previous version of the algorithm presented
here [10] (whose differences with our current proposal have been previously
indicated). In [8,9], the authors use an artificial immune system in which an
antibody indirectly represents a schedule, and an antigen describes a set of
expected arrival dates for each job in the shop. The schedules are considered to be
dynamic in the sense that sudden changes in the environment require the
generation of new schedules. The proposed approach compared favorably with
respect to a genetic algorithm using problems taken from [14]. However, the
authors do not provide the problems used nor their results.

Description of our Approach

As indicated in [17], an artificial immune system is an adaptive system, inspired on
our immune system (its observed functions, principles and models), and intended
to be used as a problem-solving tool. Our approach is based on the clonal selection

Page 3

principle, and can be seen as a variation of an specific artificial immune system
called CLONALG, which is has been successfully used for optimization [15].

file://C:\Documents and Settings\ai\Job Shop Scheduling using the Clonal Selection P... 11/20/2007

Job Shop Scheduling using the Clonal Selection Principle Page 4 of 15

CLONALG uses two populations: one of antigens and another one of antibodies.
When used for optimization, the main idea of CLONALG is to reproduce
individuals with a high affinity, then apply mutation (or blind variation) and select
the improved maturated progenies produced. Note that “affinity” in this case, is
defined in terms of better objective function values rather than in terms of
genotypic similarities (as, for example, in pattern recognition tasks), and the
number of clones is the same for each antibody. This implies that CLONALG does
not really use antigens when solving optimization problems, but, instead, the
closeness of each antibody to the global optimum (measured in relative terms with
respect to the set of solutions produced so far) defines the rate of hypermutation to
be used. It should also be noted that CLONALG does not use a mechanism that
allows a change of the reference solution as done with the approach reported in this
paper. In order to apply an artificial immune system to the JSSP, it is necessary to
use a special representation. In our case, each individual represents the sequence of
jobs processed by each of the machines. An antibody is then a string with the job
sequence processed by each of the machines (of length mn). Anan
represented in the same way as an antibody. The representation adopted in this
work is the so-called permutations with repetitions proposed in [16] (see an
example in Table 1).

Job machine(time)
1 1(2) 2(2) 3(2) 4(2)
2 4(2) 3(2) 2(2) 1(2)
3 2(2) 1(2) 4(2) 3(2)
4 3(2) 4(2) 1(2) 2(2)
5 1(2) 2(2) 3(4) 4(1)
6 4(3) 2(3) 1(1) 3(1)

Table 1: A problem of size 6 x 4

Input data include the information regarding the machine in which each job must
be processed and the duration of this job in each machine. Gantt diagrams are a
convenient tool to visualize the solutions obtained for a JSSP. An example of a
Gantt diagram representing a solution to the 6 X4 problem previously indit
is shown in Step 1 of Figure 1 also requires some further explanation:
L' The string at the bottom of Figure 1 corresponds to the solution that we
are going to decode.
[Step 1: This shows the decoding before reaching the second operation of
job 2.
“' Step 2: This shows the way in which job 2 would be placed if a normal

decoding was adopted. Note that job 2 (J ,) is shown to the extreme

of machine3 (A ;).

U step 3: Our approach performs a local search to try to find gaps in the
current schedule. Such gaps should comply with the precedence

file://C:\Documents and Settings\ai\Job Shop Scheduling using the Clonal Selection P... 11/20/2007

Job Shop Scheduling using the Clonal Selection Principle Page 5 of 15

Page 4

constraints imposed by the problem. In this case, the figure shows job 2
placed on one of these gaps for machine 3.

"' Step 4: In this case, we apply the same local search procedure (i.e.,
finding available gaps) for the other machines. This step shows the
optimum solution for this scheduling problem.

Our approach extends the algorithm (based on clonal selection theory) proposed in
[17] using a local search mechanism that consists of placing jobs in each of the
machines using the available time slots.

Requiere: Input file (in the format adopted in [18]).

Input parameters: #antigens, mutation rate, random seed (optional), degree of
freedom

p - number of iterations

i - counter

Retrieval of problem (read file) and algorithm's parameters.
Generate (randomly) an antigen (i.e., a sequence of jobs) and decode it.
Generate (randomly) an antibody.

repeat
Decode the antibody.
if (the (antibody - degree of freedom) is better than the antigenl) then
Make the antigenl the same as the antibody
if (the antibody is better than the antigen2) then
Make the antigen2 the same as the antibody
end if
end if
Generate a clone of the antibody
Mutate the clone generated
Select the best antibody
until 7

Report the best solution found, stored in antigen2

Algorithm 1: Our AIS for job shop scheduling

Our approach is described in Algorithm 1. First, we generate the initial population.

What we do is to randomly generate an antibody and an antigen (it is important to

keep in mind that we use a special representation and that both the antibody and

the antigen have the same structure). To generate these two elements (antibody and
antigen), we adopt a string of length mn ,whichis filled with m value:

from 0 to 5 — 1. Once we fill in the array, we perform a set of random
permutations in order to obtain the individual to start the search. At the next stage,
the main cycle of the algorithm is executed. Within this cycle, we first decode the

file://C:\Documents and Settings\ai\Job Shop Scheduling using the Clonal Selection P... 11/20/2007

Job Shop Scheduling using the Clonal Selection Principle Page 6 of 15

antibody (note that the antigen was decoded at a previous step).

Page 5

file://C:\Documents and Settings\ai\Job Shop Scheduling using the Clonal Selection P... 11/20/2007

Job Shop Scheduling using the Clonal Selection Principle Page 7 of 15

Figure 1: The graphical representation of a solution to the 64 problem shown i
1 using a Gantt diagram. The string at the bottom of the figure indicates the antibody that we
are going to decode. See the text for an explanation of the different steps included.

Page 6

The process required to decode an individual as to determine its fitness (i.e., the
makespan of the corresponding schedule) is the following:

1. We need to have in a matrix all the problem's data (i.e., the processing
order of each of the jobs to be handled by the machines available as well
as their processing times).

2. We read the string encoding a solution in order to identify each of the jobs
contained within (each job is represented by a number between 0 and m).

3. Once we know the corresponding job number, we keep a count of the
order of occurrence of each of the numbers as to identify the
corresponding job operations (i.e., if this is the first occurrence, then it
corresponds to the first job operation). We also determine the machine in
which each job is processed using the corresponding input matrix.

4. The following step is to place the operation in the schedule. In order to do
this, we use a structure that has been previously initialized and which
contains the schedule with the necessary information to accommodate the
operations without violating any of the constraints of the problem.

5. In order to place an operation in its corresponding place in the schedule,
we provide an example in Figure 1. In this figure we can see that the
operation is first placed in its corresponding machine (based on the input
matrix). After that, we try to locate a gap in the schedule in which we can
place this operation, avoiding to interfere with other operations and

file://C:\Documents and Settings\ai\Job Shop Scheduling using the Clonal Selection P... 11/20/2007

Job Shop Scheduling using the Clonal Selection Principle Page 8 of 15

avoiding to violate the existing constraints.

6. This process of finding gaps to place operations may cause that several
strings encoding different orderings can be decoded to the same solution.

7. The next step is to reorder the string encoding a solution such that the next
time that such string is decoded it becomes unnecessary to apply the
strategy previously described to find gaps. The ordering performed is
based on the order of appearance of each operation and considering each
machine from the first to the last. By adopting these criteria, we minimize
the amount of possible gaps available in the next iteration.

8. Once we have finished this ordering, we create a data structure that is very
important for the mutation operator. Such a data structure consists of
generating an ordering of the operations per machine such that it is easy to
know the position of each operation and the machine to which it belongs
without having to check this in an exhaustive manner.

9. We report the corresponding makespan.

The decoding process is the most expensive (computationally speaking) part of our
algorithm.

In the next stage of the algorithm, we compare the antigen with respect to the
antibody. Note that we do not adopt a phenotypic similarity metric as the affinity
measure. Instead, we use the makespan value as our affinity measure. During this
process, we use the best solution found so far as a reference for further search (this
is called antigenl in Algorithm 1). Each time a better solution is found, it is used as
a new reference. In the original version of our algorithm [10], we used a single
antigen as a reference. However, we decided to keep a second antigen to allow

Page 7

good (but not the best) solutions to be used as references as well (this is called
antigen2 in Algorithm 1). What we do is to keep a second solution that is one or
two units away (in terms of makespan value) from the best solution found so far
and we also use it as a reference. This second antigen serves as some sort of
backtracking mechanism of the algorithm that allows it to escape from local
optima. By using this second antigen, we were able to obtain significant gains in
terms of computational time. Once we finish the verification stage in which we
check if any of our two antigens (or both) have been improved, the following stage
is the cloning of the antibody. This cloning stage consists of copying the antibody a
certain number of times without doing any changes to its structure. The number of

file://C:\Documents and Settings\ai\Job Shop Scheduling using the Clonal Selection P... 11/20/2007

Job Shop Scheduling using the Clonal Selection Principle Page 9 of 15

clones to be produced was varied from 1 to 10 depending on the complexity of the
problem tackled. Note however, that if many clones are adopted, the improvement
gained is only marginal and the high computational cost increase makes this option
unattractive. Thus, we adopted values of either 1 or close to 1 for the number of
clones to be produced. Once the clones are available, each of them is mutated in
such a way that they suffer a slight variation in in their structure. The algorithm has
two types of mutation operators available, and the one to be used is selected with a
50% probability. The similarities and differences between these two mutation
operators (which we will call Mutation-A and Mutation-B) are the following:

I In both cases, the mutation operator is applied by using 1li;

each string location.

L' In both cases, the mutation rate is a function of the antibodies length and it
is defined such that 1 mutation takes place for each string (i.e., antibody).

O In both cases, the operator locates an operation, then finds another
operation of another job and then swaps the positions of the 2 operations.

L' In order to have a quick indexing of the positions of each operation, we
use the data structure previously created for the current antibody.

U The only difference between the two mutation operators is that in the case
of Mutation-A, we find the first operation and then locate the other
operation with which it will swap places. However, if there are other
operations of the same job before the current operation, we traverse them
all. As a consequence, we not only change those operations, but we also
produce more changes to the schedule.

U In the case of Mutation-B, we only locate two operations and swap their
locations without any further exploration.

These are all the processes performed by our algorithm. Once it reaches its
convergence criterion (a maximum number of iterations), the algorithm reports the
best solution found during the process, which is stored in one of the two reference
antigens (in antigen2). The algorithm then reports the full schedule with all the
detailed information regarding the ordering of the machines and the initial and
termination times for each of the available operations.

" The function flip fpm) returns TRUE with a probability pm .

Page 8

file://C:\Documents and Settings\ai\Job Shop Scheduling using the Clonal Selection P... 11/20/2007

Job Shop Scheduling using the Clonal Selection Principle Page 10 of 15

Comparison of Results

We compare our Artificial Immune System (AIS) with respect to 3 different
approaches: a Hybrid Genetic Algorithm (HGA) reported in [19], a GRASP
approach [20], and a Parallel Genetic Algorithm (PGA) [21]. We chose these
references for two main reasons: (1) they provide enough information (e.g.,
numerical results) as to allow a comparison; (2) these algorithms have been found
to be very powerful in the job shop scheduling problem studied in this paper. Note
that the test problems adopted were taken from the OR-Library [18]. Additionally,
we also compared results with respect to our previous AlS [10]. All our tests were
performed on a PC with an Intel Pentium 4 running at 2.6 GHz with 512 MB of
RAM and using Red Hat Linux 9.0. Our approach was implemented in C++ and
was compiled using the GNU g++ compiler.

deviation Deviation Improvement
AIS
HGA 0.42% 0.18% 0.23%
GRASP 0.47% 0.18% 0.28%
PGA 0.93% 0.18% 0.74%

Table 2: Comparison of results between our Artificial Immune System (AIS) and three
other algorithms: Greedy Randomized Adaptive Search Procedure (GRASP) [20], the
Hybrid Genetic Algorithm (HGA) [19], and the Parallel Genetic Algorithm (GA) [21].

Table 2 shows the overall comparison of results. In the first column, we show the
algorithm with respect to which we are comparing our results. In the second
column, we show the average deviation of the best results obtained by each
algorithm with respect to the best known solution for the 43 test problems adopted
in our study. In the third column, we show the average deviation of our AlIS with
respect to the best known solution for the 43 test problems adopted in our study.
The last column indicates the improvement achieved by our AIS with respect to
each of the other algorithms compared. From Table 2, we can see that our approach
was able to improve on the overall results produced by the 3 other techniques. The
most remarkable improvement produced was with respect to the PGA [21].

AlS
Win Tie Lose
HGA 3 32 8
GRASP 3 30 10
PGA 0 23 17

Table 3: Overall performance of our AIS with respect to the 3 other algorithms against
which it was compared. The column labeled Win shows the number of problems in which
each algorithm beat our AIS. The column labeled Tie indicates ties between our AIS and the
other algorithms. Finally, the column labeled Lose indicates the number of problems in
which each algorithm lost with respect to our AlS.

In Table 3, we show the overall performance of our AIS with respect to the 3 other
algorithms against which it was compared. Results indicate that the HGA beat our

file://C:\Documents and Settings\ai\Job Shop Scheduling using the Clonal Selection P... 11/20/2007

Job Shop Scheduling using the Clonal Selection Principle Page 11 of 15

Page 9

AIS in 3 problems and it lost in 8. In the remainder (32 problems), they tied.
GRASP beat our AIS in 3 problems and lost in 10. The worst contender was the
PGA, which was not able to beat our AIS in any problem and lost in 17 problems.

Table 4 summarizes the results obtained by each of the 4 approaches compared in

the 43 test problems taken from the OR-Library [18]. We use boldface to indicate

both the best known results and when an algorithm reached such result. Note that

the number of evaluations performed is only reported for our two AIS and for

GRASP. The reason is that we only found such information available for GRASP.

We can clearly see that our AIS obtained competitive results with respect to the

other approaches compared. Furthermore, the number of evaluations performed by

our AIS was significant lower than those performed by GRASP. * Some ren
examples are the following:

FT10: In this problem, GRASP found the best known solution, but it
required 2.5 million evaluations. Our AIS found a solution which is only

1% away from the best known solution and it only required 250,000
evaluations. Note that in our original AIS produced a poorer solution than
the new version, and it required 20 million evaluations.

U LA28: In this problem, the best solution found by GRASP is slightly
worse than the best solution found by our AIS (1225 vs. 1216). However,
our AIS required 1 million evaluations whereas GRASP required 20
million iterations. Note that the original version of our AIS found a worse
solution using 5 million evaluations.

L' LA16: Both GRASP and our AIS reached the best known solution.
However, GRASP required 1.3 million evaluations and our approach
required only 10,000 evaluations. Note that the original version of our
AIS required 2 million evaluations to reach this solution.

As can be seen in Table 4, the new version of the algorithm presents a significant
improvement with respect to the original version reported in [10], both in terms of
the quality of the solutions obtained as in terms of the computational efforts
required to obtain them.

Instance Size BKS HGA AIS Evals OAIS Evals GRASP
(mxn) AIS 0AIS C
FTO06 6 X6 55 55 55 0.0001 55 0.001 55 (
FT10 10x 10 930 930 936 0.25 941 20 930
FT20 20x5 1165 1165 1165 0.5 - - 1165
LAOL 10x5 666 666 666 0.001 666 0.01 666
LAO2 10x5 655 655 655 0.01 655 0.01 655

file://C:\Documents and Settings\ai\Job Shop Scheduling using the Clonal Selection P... 11/20/2007

Job Shop Scheduling using the Clonal Selection Principle

Page 12 of 15

2 In fact, what we report as the number of evaluations for GRASP is actually the number of
iterations performed by the algorithm. Since at each iteration, GRASP performs several
evaluations of the objective function, the real number of evaluations is much higher than
those reported in Table 4.

LAO3
LAO4
LAO5
LA06
LAO7
LAO8
LAO09
LA10
LA11
LA12
LA13
LA14
LA15
LA16
LA17
LA18
LA19
LA20
LA21
LA22
LA23
LA24
LA25
LA26
LA27
LA28

10x5 597 597
10x5 590 590
10x5 593 593
15x5 926 926
15x5 890 890
15x5 863 863
15x5 951 951
15x5 958 958
20x5 1222 1222 1222
20x5 1039 1039 1039
20x5 1150 1150 1150
20x5 1292 1292 1292
20x5 1207 1207 1207

10 x 10 945 945

10x 10 784 784

10x 10 848 848

10x 10 842 842

10x 10 902 907

15 x 10 1046 1046 1046

15x 10 927 935

15x10 1032 1032 1032

15x 10 935 953

15x 10 977 986

20 x 10 1218 1218 1218

20x 10 1235 1256 1240

20 x 10 1216 1232 1216

597
590
593
926
890
863
951
958

945
784
848
842
907

927

935
979

0.01 597
0.001 590
0.001 593
0.001 926
0.001 890
0.001 863
0.001 951
0.001 958
0.001
0.001
0.001
0.001
0.001

0.01 945

0.01 785

0.01 848

0.01 848

0.25 907

0.25

0.25

0.25

0.25

0.25 1022

0.2
0.5
11277

10
0.01
0.01
0.01
0.01
0.01
0.01

N NN

10

file://C:\Documents and Settings\ai\Job Shop Scheduling using the Clonal Selection P...

Page 10

597
590
593
926
890
863
951
958
1222
1039
1150
1292
1207
945
784
848
842
902
1057
927
1032
954
984
1218
1269
1225

11/20/2007

Job Shop Scheduling using the Clonal Selection Principle

Page 13 of 15

LA29 20x 10 1157 1196 1170 51248 6.4 1203
LA30 20x10 135513551355 0.1 - 1355
LA31 30x 10 1784 1784 1784 0.005 - 1784
LA32 30x10 18501850 1850 0.025 - 1850
LA33 30x 10 17191719 1719 0.025 - 1719
LA34 30x10 172117211721 0.01 - 1721
LA35 30x 10 1888 1888 1888 0.05 1903 5 1888
LA36 15 x 15 1268 1279 1281 0.5 1323 6.4 1287
LA37 15x15 1397 1408 1408 0.5 - 1410
LA38 15x15 1196 1219 1204 0.5 1274 6.4 1218
LA39 15x15 1233 1246 1249 0.5 1270 6.4 1248
LA40 15x 15 1222 1241 1228 2.5 1258 6.4 1244

Table 4: Comparison of results between our artificial immune system (AlS), GRASP

(Greedy Randomized Adaptive Search Procedure) [20], HGA (Hybrid Genetic Algorithm)
[19], and PGA (Parallel Genetic Algorithm) [21]. oAlS refers to our original AlS, reported
in [10] and is included only to have a rough idea of the improvements achieved with the new

file://C:\Documents and Settings\ai\Job Shop Scheduling using the Clonal Selection P...

Page 11

version. The number of evaluations reported is in millions. Only the number of evaluations
of GRASP and our two AIS versions are reported because this value was not available for
the other approaches. We show in boldface both the best known solution and the cases in
which an algorithm reached such value.

Conclusions and Future Work

We have introduced a new approach based on an artificial immune system to solve
job shop scheduling problems. The approach uses concepts from clonal selection
theory (extending ideas from CLONALG [15]), and adopts a permutation
representation that allows repetitions. The comparison of results indicated that the
proposed approach is highly competitive with respect to other heuristics, even
improving on their results in some cases. It also improves in the previous version
of the algorithm reported in [10]. In terms of computational efficiency, our
approach performs a number of evaluations that is considerably lower than those
performed by GRASP [21] while producing similar results.

As part of our future work, we intend to add a mechanism that avoids the

11/20/2007

Job Shop Scheduling using the Clonal Selection Principle Page 14 of 15

generation of duplicates (something that we do not have in the current version ot
our algorithm). It is also desirable to find a set of parameters that can be fixed for a
larger family of problems as to eliminate the empirical fine-tuning that we
currently perform. Finally, we also plan to work on a multiobjective version of job
shop scheduling in which 3 objectives would be considered [3]: 1) makespan, 2)
mean flowtime and 3) mean tardiness. This would allow us to generate trade-offs
that the user could evaluate in order to decide what solution to choose.

Acknowledgments

The first author acknowledges support from CONACyT project No. 34201-A. The
second and third authors acknowledge support from CONACyYT through a
scholarship to pursue graduate studies in Computer Science at the Seccién de
Computacion of the Electrical Engineering Department at CINVESTAV-IPN.

References

1. M. Pinedo. Scheduling---Theory, Algorithms, and Systems. Prentice Hall,
Englewood Cliffs, 1995.

2. Kenneth R. Baker. Introduction to Sequencing and Scheduling. John
Wiley & Sons, New York, 1974.

3. Tapan P. Bagchi. Multiobjective Scheduling by Genetic Algorithms.
Kluwer Academic Publishers, New York, September 1999.

4. R. Cheng, M. Gen, and Y. Tsujimura. A tutorial survey of job-shop
scheduling problems using genetic algorithms: 1. Representation.
Computers and Industrial Engineering, 30:983--997, 1996.

5. R. Cheng, M. Gen, and Y. Tsujimura. A tutorial survey of job-shop
scheduling problems using genetic algorithms: I1. Hybrid genetic search
strategies. Computers and Industrial Engineering, 36(2):343--364, 1999.

Page 12

6. J.W. Barnes and J.B. Chambers. Solving the Job Shop Scheduling
Problem using Taboo Search. IIE Transactions, 27(2):257--263, 1995.

7. Olivier Catoni. Solving Scheduling Problems by Simulated Annealing.
SIAM Journal on Control and Optimization, 36(5):1539--1575,
September 1998.

R Fmma Hart Pater Rnee and 1 Nelenn Pradiicina rahiict echediileg via an

file://C:\Documents and Settings\ai\Job Shop Scheduling using the Clonal Selection P... 11/20/2007

Job Shop Scheduling using the Clonal Selection Principle

file://C:\Documents and Settings\ai\Job Shop Scheduling using the Clonal Selection P...

T IR T M G T ULUE T AUUU) WU Y YU U MUV Y UM UL UV UMY VG

artificial immune system. In Proceedings of ICEC'98, pp. 464--469,
Anchorage, Alaska, 1998. IEEE Press.

9. Emma Hart and Peter Ross. The Evolution and Analysis of a Potential
Antibody Library for Use in Job-Shop Scheduling. In David Corne et al.,
eds, New Ideas in Optimization, pp. 185—202, McGraw-Hill, 1999.

10. Carlos A. Coello Coello, Daniel Cortés Rivera, and Nareli Cruz Cortés.
Use of an Artificial Immune System for Job Shop Scheduling. In Jon
Timmis et al., eds, Proceedings of ICARIS'2003, pp. 1--10, September
2003. Springer-Verlag. Lecture Notes in Computer Science Vol. 2787.

11. David S. Johnson Michael R. Garey. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., 1979.

12. Albert Jones and Luis C. Rabelo. Survey of Job Shop Scheduling
Techniques. National Institute of Standards and Technology, 1998.

13. J. Adams E. Balas and D. Zawack. The shifting bottleneck procedure for
job shop scheduling. Management Science, 34(3):391-401, 1988.

14. Thomas E. Morton and David W. Pentico. Heuristic Scheduling Systems:
With Applications to Production Systems and Project Management. John
Wiley & Sons, 1993.

15. Leandro Nunes de Castro and Fernando José Von Zuben. Learning and
Optimization Using the Clonal Selection Principle. IEEE Transactions on
Evolutionary Computation, 6(3):239--251, 2002.

16. Takeshi Yamada and Ryohei Nakano. Job-shop scheduling. In A.M.S.
Zalzala and P.J. Fleming, editors, Genetic Algorithms in Engineering
Systems, pp. 134--160. The Institution of Electrical Engineers, 1997.

17. Leandro Nunes de Castro and Jonathan Timmis. Artificial Immune
System: A New Computational Intelligence Approach. Springer Verlag,
Great Britain, September 2002. ISBN 1-8523-594-7.

18. J. E. Beasley. OR-Library: Distributing Test Problems by Electronic Mail.
Journal of the Operations Research Society, 41(11):1069--1072, 1990.

19. José Fernando Goncalves, Jorge José Mendes, and Mauricio G.C.
Resende. 4 Hybrid Genetic Algorithm for the Job Shop Scheduling
Problem. Technical Report TD-5EAL6J, AT&T Labs Research, 180 Park
Avenue, Florham Park, NJ 07932 USA, September 2002.

20. Renata M. Aiex, S. Binato, and Mauricio G.C. Resende. Parallel GRASP
with path-relinking for job shop scheduling. Parallel Computing,
29(4):393--430, 2003.

21. José Fernando Goncalves and N.C.Beirao. Um algoritmo genético
baseado em chaves aleatdrias para sequenciamiento de operacoes. Revista
Associacdo Portuguesa de Desenvolvimento e Investigacdo Operacional,
19:123 -- 137, 1999. (in Portuguese).

Page 15 of 15

11/20/2007

