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1 Abstract

In this paper, I discuss the implementation of a robust tabu search algorithm for the Job
Shop Scheduling problem and its extension to efficiently handle a broader class of problems,

specifically Job Shop instances modeled with sequence dependent setup times.

2 Introduction

Motivation The Job Shop Scheduling problem is among the NP-Hard [6] problems with
the most practical usefulness. Industrial tasks ranging from assembling cars to scheduling
airplane maintenance crews are easily modeled as instances of this problem, and improving
solutions by even as little as one percent can have a significant financial impact. Furthermore,
this problem is interesting from a theoretical standpoint as one of the most difficult NP-Hard
problems to solve in practice. To cite the canonical example, one 10x10 (that is, 10 jobs
with 10 operations each) instance of this problem — denoted MT10 in the literature — was

introduced by Muth and Thompson in 1963, but not provably optimally solved until 1989.

Definition The Job Shop Scheduling problem is formalized as a set J of n jobs, and a set
M of m machines. Each job J; has n; subtasks (called operations), and each operation J;;
must be scheduled on a predetermined machine, p;; € M for a fixed amount of time, d;;,
without interruption. No machine may process more than one operation at a time, and each
operation J;; € J; must complete before the next operation in that job (Ji;41)) begins. The
successor of operation x on its job is denoted S.J[z], and the successor of x on its machine is

denoted SM|z]. Likewise, the predecessors are denoted P.J[x] and PM|z|. Every operation



x has a release (start) time denoted r,, and tail time denoted t, which is the the longest

path from the time x is completed to the end.

Sequence dependent setup times Sequence dependent setup times are a tool for model-
ing a problem where there are different “classes” of operations which require machines to be
reconfigured. For example two tasks in a machine shop may both be performed on the same
drill press, but require different drill bits. In an instance of the Job Shop Scheduling problem
with sequence dependent setup times, we assign a class identifier ¢;; to each operation and
we impose a fixed setup cost Peijepy 1O scheduling an operation of class c;y; immediately

after an operation of class ¢;; on the same machine.

Objective functions To solve this problem, we must, for each machine, find an ordering
of the operations to be scheduled on it that optimizes the objective function. There are
several objective functions which are frequently applied to this problem. Far and away the
most common is the minimization of the makespan, or the total time to complete all tasks.
This objective function is widely used because it models many industrial problems well, and
because it is very easy to compute efficiently. Others of note are the minimization of the total
(weighted) tardiness, which is useful when modeling a problem where each job has its own
due date, and minimization of total (weighted) cost, which is useful for modeling problems

in which there is a cost associated with the operation of a machine.

Overview of local search techniques Since the first local search algorithms were tailored
for the job shop problem in late 1980’s, many different approaches have been developed.
P.J.M. van Laarhoven et al.[13] introduced the first simulated annealing algorithm for
the job shop problem in 1988. That same year, H. Matsuo et al. [9] introduced a similar
algorithm which was considerably more efficient. Since then, there has been considerable
technical improvement, and an algorithm of Aarts et al. [1] published in 1994 is now the
standard bearer of the area in terms of mean percentage error from the optimal [14]. Genetic
Algorithms have also flourished as an area of study. Yamada and Nakano[15] introduced one
of the first such algorithms tailored to this problem in 1992. Two years later, Aarts et al. [1]
published one that was fairly efficient and robust. In 1995, Della Croce, et al.[5] presented
another good algorithm amongst a flurry of activity. Tabu Search has also been an active field
of study. Taillard [12] introduced the first tabu search-based algorithm in 1989. Dell’Amico
and Trubian [4] pushed forward with several new advances in 1993. Barnes and Chambers [3]

unveiled another tabu search algorithm in 1995, and Nowicki and Smutnicki [10] published a
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Figure 1: An illustration of a disjunctive graph

fast and robust one in 1996. One other entry of note is the “Guided Local Search” algorithm
of Balas and Vazacopoulos [2] first published in 1994. While slow, it tends to find very good
solutions on hard instances of the job shop problem.

Vaessens, et al. [14] in their 1996 survey of local search algorithms demonstrate that
the available tabu search algorithms dominate the genetic algorithms and perform substan-
tially better than the simulated annealing algorithms in most cases. The guided local search
algorithms of Balas and Vazacopoulos compares favorably with the robust tabu search algo-
rithms on the data sets tested. Hence tabu search seems to be a good basis framework for

exploring a wider class of problems.

Representations Over the decades of research into solving the job shop scheduling prob-
lem with relative computational efficiency, several different ways to represent the problem

have been introduced.

Disjunctive Graph The disjunctive graph representation for scheduling problems was
first introduced by Roy and Sussmann in 1964 [11]. In this representation, the problem is
modeled as a directed graph with the vertices in the graph representing operations, and with
edges representing precedence constraints between operations. More precisely, a directed
edge (v1,vy) exists if the operation at v; completes before the operation at v, begins.

These edges are divided into two sets called conjunctive arcs and disjunctive arcs. The
conjunctive arcs are the precedences deriving from the ordering of the operations on their
respective jobs. These edges are inherent in the problem definition and exist irrespective of
the machine configurations. The disjunctive arcs, on the other hand, represent the precedence

constraints imposed by the machine orderings. Before an ordering is imposed, Vx;,y; to be



performed on machine M;, there exist two conjunctive arcs, (z;,y;) and (y;, z;). Selecting a
machine ordering is performed by removing exactly one arc from each pair to form a directed
acyclic subgraph.

In figure 1 is an example of a subset of a disjunctive graph where 4 operations are to
be scheduled on machine 1. In diagram a none of machine 1’s disjunctive arcs have been
selected, and so every operation has a pair of disjunctive arcs linking it with every other
operation on the same machine. In diagram b is a selection of disjunctive arcs which defines

an ordering of the operations on machine 1.

Earliest Start / Latest Completion Times The earliest start time of an operation,
and its corresponding latest completion time are necessary to produce a usable schedule.
The earliest start time (or release time) of an operation x is defined as the longest path from
the start of the problem to x. Since the disjunctive graph must be acyclic to be a valid
schedule, the release times will all be finite. The latest start time is almost the symmetric
case. Computing the longest path from an operation x to the end of a problem will produce
the tail time for that operation. The latest starting time of z is then equal to makespan —t,.
The release and tail times can be computed in linear time. This is done in a constructive
manner: since r, = MAX(7p iz + dpya), "PMie) + dpafe)) the values of rpjp and 7pys,) can
be computed, stored, and used to compute r,. In this case, we visit each edge in a schedule
a constant number of times, all of the release and tail times can be computed in time linear

in the number of operations.

Critical Path A critical path of a solution s to an instance of the job shop scheduling
problem is a list of operations which determines the length of time s takes to complete. In
other words, the length of the critical path is equal to the value of the makespan. In a disjunc-
tive graph representation, the critical path is the longest path in the solution graph. When
defined in terms of earliest start (£S) and latest end (LE) times, the following properties

hold for all operations on the critical path:

ES,, =0 LE, =ES

Tit1

ES,, +d,, = LE,,

3 Exploring the neighborhood

Overview The performance of a local search algorithm, both in terms of the quality of

solutions, and in the time required to reach them is heavily dependent on the neighborhood
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Figure 2: An illustration of the neighborhood N1

structure. Formally, given a solution s a neighborhood is a set N(s) of candidate solutions
which are adjacent to s. This means that if we are currently examining solution s the next
solution we examine will be some s’ € N(s). Typically, the solutions in N(s) are generated
from s with small, local modifications to s commonly called mowves.

A neighborhood function must strike a balance between efficient exploration and wide
coverage of the solution space. Using neighborhoods which are small and easy to evaluate
may not allow the program to find solutions very different from the initial solution, while
using those that are very large may take a long time to converge to a reasonably good
solution. Some properties that seem to be useful for job shop neighborhood functions are

described below, as are several neighborhood functions described in the literature.

Ideals The two overriding goals for designing neighborhoods for the job shop scheduling
problem are feasibility and connectivity. A neighborhood with the former property ensures
that, if provided a feasible solution, all neighboring solutions will be feasible as well. The
latter ensures that there exists some finite sequence of moves between any feasible solution
and a globally minimal solution.

Feasibility is important because, unlike some other combinatorial problems, infeasible
configurations cannot be easily evaluated in a meaningful way (e.g. every infeasible configu-
ration has a makespan of infinite length). Moreover, restoring feasibility from an infeasible
configuration is, in general, a computationally expensive task which would dominate the
time required to perform a move.

Connectivity is a desirable because it demonstrates that a globally minimal solution is
reachable; without it, a local search algorithm is implicitly abandoning the hope of finding
an optimal solution. It should be noted that connectivity guarantees the existence of a path
to an optimal solution from any point in the solution space, but it gives no assistance in

constructing that path.
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Figure 3: An illustration of the neighborhood NA

N1 and N2 The neighborhood now denoted N1 is a simple neighborhood concerning arcs
which lie on a critical path. Specifically, given a solution s, every move leading to a solution
in N (s) reverses one machine arc on a critical path in s. Reversing an arc (z, SM|z]) consists
of locally reordering the machine tasks [PM|z], , SM[z], SM[SM]|z]]] (figure 2) to form
(PMlz|, SM|z|, x, SM[SM|z]]). N1 was first introduced by van Laarhoven [13] in 1988,
in which paper it was demonstrated that N1 satisfied both the feasibility and connectivity
criteria.

N2 is a neighborhood derived from N1 which reduces the number of neighboring solutions.
N2 also reverses arcs on the critical path of a solution, but it does not consider an arc (z,
SM|z]) if both (PM[z]|, z) and (SM|[z], SM[SM|z]]) lie on a critical path, because the
reversal of arc (z, SM[z]) cannot improve the makespan. This restriction is valid because,
since there is no slack on the critical path, roysar(z)] = rpmie] + dz + dsnfe). This is clearly
independent of the orientation of the selected arc. Unfortunately, the reduction in the size

of the neighborhood comes at a price — N2 does not preserve connectivity.

NA and RNA The neighborhoods NA and RNA were introduced by Dell’Amico and
Trubian [4] in 1993. NA, like N1 concerns itself with arcs on the critical path of a solution.
However, instead of examining one edge at a time, NA considers the permutation of up to
3 operations at a time. In figure 3, the operations (0,1,2,3) are assumed to all lie on a
critical path in the problem. The primary arc being investigated is (1,2); in all of the the
5 modifications to this sequence, operation 2 precedes operation 1. In the first modified
solution (1,2) is the only arc reversed. In the second, arc (1,2) is reversed, and then the
arc (1, 3) in the resultant intermediate solution is reversed. The other 3 permutations follow
similarly. This neighborhood is obviously a superset of N1, so it preserves connectivity, and

the authors prove that it preserves feasibility as well. RNA is a variant of NA restricted the
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Figure 4: An illustration of the neighborhood NB

same way that N2 is: it does not consider an arc (x, SM|z]) if both (PM|x], x) and (SM|x],
SM[SM]z]]) lie on a critical path.

NB the neighborhood NB was also introduced by Dell’Amico and Trubian [4] in 1993.
NB operates on “blocks” of critical operations, defined as sets of consecutively scheduled
operations on a single machine, all of which belong to a critical path. In this neighborhood,
an operation is moved either toward the start or the end of its block. More specifically, an
operation z in a block is swapped with its predecessor (or successor) as long as that swap
produces a feasible configuration or until it is swapped with the first (or last) operation in
that block. The original authors proved the connectivity of NB. In figure 4, it is assumed
that the original sequence [0, 1,2, 3] is a block of critical path operations. The permutations
in the left column all swap one of the operations in the block to the front of the block. The
permutations on the right swap one of the block’s operations to the end.

This neighborhood has the potential to swap a considerable number of arcs in one move,
and as a result, it is not guaranteed to preserve feasibility. Hence, it becomes necessary to
test for feasibility before each swap. Performing an exact feasibility test would require O(nm)
time and would severely affect the running time of this neighborhood as the number of swaps
required for each block b is O(b?). To circumvent this, a constant time — but inexact — test
is proposed. To wit, operation z is not scheduled before operation y if rg i + dspy < 7Py

because this indicates the possibility of an existing path from y to x.



4 General tabu search framework

Tabu Search is a meta-heuristic for guided local search which deterministically tries to avoid
recently visited solutions. Specifically, the algorithm maintains a tabu list of moves which
are forbidden. The list follows a FIFO rule and is typically very short (i.e. the length is
frequently O(\/N ), where N is the total number of operations in the instance). Every time

a move is taken, that move is placed on the tabu list.

The neighborhood The neighborhood function is the most important part of the tabu
search algorithm, as it significantly affects both the running time and the quality of solutions.
The neighborhood used in this implementation is one introduced by Dell’Amico and Trubian
[4], which they call NC. NC is the union of the neighborhoods RNA and NB. NC is connected
because NB is, and NC is a smaller neighborhood than NA because each arc examined in

NC leads to fewer than 5 possible adjacent moves.

The tabu list The items placed on the tabu list are the reversed arcs, and a move is
considered tabu if any of its component arcs are tabu. This model is used because, in the
case of neighborhoods which may reverse multiple arcs, making only the move itself tabu
would allow many substantively similar moves (i.e. those which share arcs with the tabu

move) to be taken.

5 Generating an initial solution

List Scheduling There has been a great deal of research to find good, efficient heuristics
to the job shop scheduling problem. Notably among these are the so-called List Scheduling
(or Priority Dispatch) algorithms. These are constructive heuristics which examine a subset
of operations and schedule these operations one at a time. While there are no guarantees
on their quality, these algorithm have the advantage of running in sub-quadratic time (in
normal use), and producing reasonable result with any of a number of good priority rules.
List scheduling algorithms were first developed in the mid 1950’s, and until about 1988 were
the only known techniques for solving arbitrary large (> 100 element) instances.

While List Scheduling algorithms are no longer considered to be the state of the art for
solving large job shop instances, they can still produce good initial solutions for local search
algorithms. Omne of the most popular is the Jackson Schedule which selects the operation

with the most work remaining (i.e. with the greatest tail time).



TABUSEARCH(JSSP)

—_

> JSSP is an instance of the Job Shop Scheduling problem
sol «— INITIALSOLUTION(JSSP)
bestCost «— CcOST(sol)
bestSolution < sol
tabuList — ()
while KEEPSEARCHING()
do Nyaia(sol) « {s € N(sol)|Move[sol, s| & tabuList}
if Nvalid(SOl) 7é @
then sol’ «— x € Nyqq(s0l)|Vy € Nyaia(sol) cosT(z) < COST(y)
UPDATETABULIST(s0l’)
if cosT(Move[sol, sol']) < bestCost
then bestSolution « sol’
bestCost «— CcOST(sol")
sol « sol’
return bestSolution

Figure 5: Pseudocode for a tabu search framework

L1ST-SCHEDULE(JSSP)

1

O~ O U = W N

> JSSP is an instance of the Job Shop Scheduling problem
> L is a list, t is an operation, yu; is the machine on which ¢ must run
for each Job J, € JSSP
do L « LU first[J;]
for each Machine M, € JSSP
do avail[M;] < 0;
while L # ()
do t «+ BESTOPERATION(L)

pelavail [p]] —

avail[p] — avail[pu] + 1

L— L\t

if t # last]J;]

then L «— L U JOBNEXT(?)

Figure 6: Pseudocode for a List Scheduling algorithm




Bidirectional List Scheduling Bidirectional List Scheduling[4] is an extension of the
basic list scheduling framework. In this algorithm, one starts with two lists; one initialized
with the first operation of each job and the other with the last operation of each job. The
algorithm then alternates between lists, scheduling one operation and updating any necessary
data each time, until all operations are scheduled. This algorithm aims to avoid a critical
problem with basic list scheduling algorithms, namely that as they near completion, most of
the operations are scheduled poorly (with respect to their priority rule) because the better
placements have already been taken.

Additionally, the proposed bidirectional search chooses from the respective lists using
a cardinality-based semi-greedy heuristic with parameter ¢[7], which means that the priority
rule selects an operation uniformly at random from amongst the ¢ operations with the lowest
priority. This provides for a greater diversity of initial solutions which means that over several
successive runs, a local search algorithm will explore a larger amount of total solution space

than would otherwise be possible. In this implementation, the parameter ¢ was set to 3.

6 'Tweaking the tabu search

The tabu search framework described in figure 5 shows the tabu search in its canonical
form. In practice, several modifications are made to this framework to improve the quality
of solutions found, and to reduce the amount of time spent on computation. There are
two high-level goals for improving the quality of solutions. The first is to attempt to visit
nearby improving solutions that would be unreachable. The second goal is to increase the
total amount of the solution space the tabu search visits. The former tries to ensure that all
nearby local optima are explored to find reasonable solutions quickly. The latter tries to find

solutions close to a global optimum by visiting many different areas of the solution space.

6.1 Efficiency

Fast Estimation One optimization critical to an efficient local search algorithm is the
rapid computation of the value of a neighboring solution. Ideally it is possible to perform an
exact evaluation quickly, but if this cannot be done, a good estimation will suffice. In the
present problem, computing the exact value of the makespan for a neighboring solution is
expensive. However, we can find the value of a reasonable estimation in time proportional to
the number of arcs reversed by the move. That is, we can compute the value of the longest

path through the affected arcs. To recompute the release times of an affected node z, we

10



BIDIRECTIONAL-LIST-SCHEDULE(JSSP)
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> S and T are lists of unscheduled operations, L. and R are sets of scheduled operations
N « >, n; > N is the number of operations in JSSP
for each Job J; € JSSP
do S «— S U first[J;]
T «— T Ulast[J;]
VeeSr, <0 VeeTt, 0
L—0® R0
for each Machine M, € JSSP
do firstAvail[M;] < 0
last Avail [M;] — | M;| — 1

> Priority Rule: choose s € S (¢t € T)) such that the longest known path through s (¢) is minimal

while |R|+ |L| < N
do for each s € S
do © t! is the tail time of = considering only already scheduled operations
est[s] « rs + ds + MAX(ds (s + g5, MAX(dy + ;)2 € ps, ¢ is unscheduled )
choice «+ S|SEMIGREEDY- WITH- PARAMETER-C(est, ¢)]
SWAP (Lhcnoice| fir st Avail[fichoice)], choice)
first Avail [fenoice] < firstAvailpichoice] + 1
S « S\ choice L <« LU choice
if choice € T
then 7'« T'\ choice
if SJ[choice] & R
then S «— S U SJ[choice]
> recompute the release times of the operations in S
> recompute the tail times of the unscheduled operations to set up for step 2
if |L|+ |R| < N
then for eacht e T
do © 7l is the release time of x considering only already scheduled operations
est[s] «— MAX(dsJs) + s y:
choice «— T[SEMIGREEDY-WITH-PARAMETER-C(est, ¢)]
SWAP(Lehoice|last Avail [ fichoice |, choice)
last Avail [fenoice) < lastAvail [fichoice] — 1
T « T\ choice R <« RU choice
if choice € S
then S « S\ choice
if PJ[choice| ¢ L
then T «— T U PJ[choice]
> recompute the tail times of the operations in T
> recompute the release times of the unscheduled operations to set up for step 1
> recompute all release and tail times in fully scheduled JSSP

Figure 7: Pseudocode for a Bidirectional List Scheduling algorithm

11
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SEMIGREEDY- WITH-PARAMETER-C(L, ¢)
1 > Lis alist, ¢ is an integer

2 > cLowestElements is a list of ¢ elements of L which are the smallest seen to date

3 > cLowestOrderStatistics is a list of the ranks of the elements in cLowestElements
4 > rand() is a function which returns a number uniformly at random from the interval [0, 1)
5 if size[l] < ¢

6 then return |size[L] - RAND()|

7 else for i« 1 toc

8 do cLowestElements|i] = oo

9 for i — 1 to size[L]

10 do for j—1toc

11 do if L[i] < cLowestElements[j]

12 then break

13 for k—c—1toj+1

14 do cLowest Elements|k] = cLowest Elements[k — 1]

15 cLowestOrderStatistics[k] = cLowestOrderStatistics[k — 1]

16 if j <c

17 then cLowestElements|j] = L]i]

18 cLowestOrderStatistics[j| =i

19 return cLowestOrderStatistics||c - RAND()|]

Figure 8: Pseudocode for an implementation of a cardinality-based semi-greedy heuristic
with parameter c

Figure 9: A portion of a schedule with a newly resequenced machine
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need only to consider PM[z] and PJ[z|; likewise, to recompute the tail times, we only need
to examine z’s two successors. The proof of this is fairly straightforward. A node x(’s release
time can only be changed by modifying a node x; if x; lies on some path from the start to xy.
Since the nodes modified succeed their predecessors, the release times of their predecessors
remain unchanged. A symmetric argument gives us the same result for the tail times of the
SUCCessors.

Consider the example in figure 9. The set of operations { M1, M2, M3} have just been re-
sequenced on their machine. The release time of M1, in the new schedule,r),;, is MAX (ry0+

dyo, 7ps1+dpy1), the new release time of M2 is MAX (7, +dnro, 7py2 +dpys), and so forth.

Tabu list implementation Another optimization important to the overall running time
of a Tabu search algorithm is the implementation of the Tabu list. While it is convenient
to think of this structure as an actual list, in practice, implementing it as such results in a
significant amount of computational overhead for all but the smallest lists.

Another approach is to store a matrix of all possible operation pairs (i.e. arcs). A time
stamp is affixed to an arc when it is introduced into the problem by taking a move, and the
timestamping value is incremented after every move. With this representation, a tabu list
query may be performed in constant time (i.e. currTime—timeStamp;; < lengthltabuList)).

Furthermore, the tabu list may be dynamically resized in constant time.

6.2 Finding better solutions

The goal of any optimization algorithm is to quickly find (near-) optimal solutions. Tabu
search has been shown to be well-suited to this task, but researchers have determined sev-
eral conditions where it could perform better and have proposed techniques for overcoming
these. The first concerns cases where the algorithm misses improving solutions in its own
neighborhood, and the second concerns cases in which the algorithm spends much of its time

examining unprofitable solutions (i.e. ones which will not lead to improving solutions).

Aspiration Criterion The aspiration criterion is a function which determines when it
is acceptable to ignore the tabu-state of a move. The intent of this is to avoid bypassing
moves which lead to substantially better solutions simply because those moves are currently
marked as tabu. Conventionally, the aspiration criterion accepts an otherwise tabu move if
the cost (or estimated cost) of the solution it leads to is better than the cost of the best

solution discovered so far.
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Resizing the tabu list Another technique, which complements the aspiration criterion
involves modifying the length of the tabu list. Typically, the tabu list is shortened when
better solutions are discovered, and lengthened when moves leading to worse solutions are
taken. The main assumption behind this is that when a good solution is found, there may be
more within a few moves. Increasing the number of valid neighboring moves makes finding
these better solutions more likely. In this implementation, when the current solution is better
than the previous one, the tabu list is shortened by 1 move (until min) and when the current
solution is worse than the previous one, the tabu list is lengthened by one move (until maz).

As a special case, when a new overall best solution is found, the length of the tabu list is

n+m
3

selected uniformly at random from the interval [min + 6, min 4+ 6 + |®£ |]. min and max

set to 1. min is selected uniformly at random from the interval [2,2 + |

], and mazx is

are reset every 60 iterations.

Restoring the Best Known Solution One way to avoid spending excessive amounts
of time examining unprofitable solutions is to periodically reset the current solution to be
the best known known solution. While this artificially narrows the total solution coverage
of the algorithm, it does so in a manner designed to continually explore regions where good
solutions have been found. The time to wait before resetting must be set very carefully. If the
reset delay chosen is too short, the tabu search may not be able to escape local minima,; if it
is too long, much time is still wasted exploring poor solutions. In practice, with a reasonable
delay time (e.g. 800 - 1000 iterations), resetting the current solution seems to improve the
quality of solutions found while preserving low running times. In this implementation, the

solution was reset every 800 iterations.

6.3 Expanded Coverage

It is important for a tabu search algorithm to cover as much of the solution space as possible
to increase the probability of finding a better solution. One particular problem to overcome
is cycling amongst solutions. Visiting the same solutions repeatedly wastes moves that
could otherwise be leading the search to unexplored solutions. The tabu list prevents the
algorithm from spinning in small, tight cycles by making recently visited solutions tabu.
However, this cannot guard against cycles whose length is longer than the tabu list. There

are two techniques which help alleviate this problem.
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Cycle Avoidance The easier to implement (and less effective) approach is to adjust the
length of the tabu list from time to time. The rationale behind this is that when the list is
longer, it prevents longer cycles. However, it will also prevent moves which are not part of
the cycle and which could potentially lead to unexplored areas of the solution space. The
second approach is to select a representative arc for every move taken, and store a small
amount of the solution state (e.g. the cost of the current solution) with it. The next time a
move with this representative arc is examined, the stored state is compared with the current
state. If the two agree, this demonstrates the possibility of being within a cycle. If too
many consecutive moves meet this criteria, it is assumed that the search is in a cycle, and
all such potentially cyclic moves are avoided in the next step. In this implementation, the
representative arc was chosen to be the first arc reversed, and the maximum number of

potentially cyclic moves allowed was set to 3.

Exhaustion of Neighboring Solutions Another problem arises when the tabu search
algorithm has explored enough of the local area to make all neighboring moves tabu. If this
is the case, and there are no neighboring moves which satisfy the aspiration criterion, the
tabu search should terminate prematurely. The strategy used to avoid this is to pick a move
at random from N (s) and follow it. This provides some chance of escaping a well-examined

area and moving toward unexplored solutions.

7 Results

Data Collected The results in figure 10 demonstrate the robustness of this approach on
conventional benchmark instances for the Job Shop problem (i.e. without setup times). The
data for each instance was gathered over 20 runs of the algorithm. The times recorded are
the average time over 20 runs. In the cases where the algorithm’s best solution was the
known optimal solution, the multiplicity of its occurrence is indicated in parentheses. All

runs were performed on a 440MHz Sun Ultra 10 workstation.

Stability of the algorithm As can be seen from figures 11, 12, 13, and 14, the overall
quality of solutions changes slightly when small modifications are made to the algorithm.
This can be measured by the relative error of a solution, which is the percentage by which the
best solution in a run exceeds the optimal (or best known) solution. The mean relative error
of the solutions in figure 10 is 0.57% Figure 11, shows the results of running a variant of T'S

using the unrestricted version of neighborhood NA along with NB. While it produces similar
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Instance | Init. sol. | Init. sol. | Final sol. | Final sol. | Optimal | time
(best) | (mean) (best) (mean) Value | (sec)
MT6 58 70.3 (20)55 55.0 55 4.0
MT10 1051 1171.7 935 944.5 930 8.7
MT20 1316 1431.4 | (15)1165 1166.8 1165 | 16.4
ABZ5 1343 1424.1 1236 1238.8 1234 | 7.8
ABZ6 1043 1097.9 (7)943 944 .4 943 8.2
ABZ7 743 807.0 669 677.8 656 | 20.7
ABZS8 792 826.6 674 686.6 | (645-669) | 23.1
ABZ9 817 852.0 699 707.6 | (661-679) | 20.3
ORB1 1230 1352.3 1064 1089.9 1059 9.2
ORB2 975 1107.5 (2)888 890.3 888 7.8
ORB3 1293 1389.7 1008 1030.4 1005 9.3
ORB4 1118 1212.5 (1)1005 1015.2 1005 8.5
ORBb5 1037 1167.6 889 897.4 887 | 8.1
Figure 10: Results for 20 runs of algorithm TS on job shop instances using neighborhood

NC with initial solution from the bidirectional list scheduling algorithm

Instance | Init. sol. | Init. sol. | Final sol. | Final sol. | Optimal | time
(best) | (mean) (best) (mean) Value | (sec)
MT6 58 66.8 (20)55 55.0 55 5.3
MT10 1018 1164.1 934 944.1 930 | 12.6
MT20 1349 1426.3 (2)1165 1176.3 1165 | 29.3
ABZ5 1313 1460.4 1236 1238.6 1234 | 9.8
ABZ6 979 1078.1 (20)943 943.0 943 9.3
ABZ7 767 810.8 672 686.1 656 | 31.2
ABZ8 781 833.5 679 692.5 | (645-669) | 30.2
ABZ9 792 858.5 703 720.9 | (661-679) | 29.7
ORB1 1173 1335.0 1060 1093.4 1059 | 13.3
ORB2 991 1097.5 889 893.0 888 9.8
ORB3 1243 1340.7 1015 1036.0 1005 | 12.9
ORB4 1108 1191.9 1011 1019.2 1005 | 12.3
ORBb5 1068 1200.4 891 897.9 887 | 10.8
Figure 11: Results for 20 runs of algorithm TS on job shop instances, neighborhood NA U

NB with initial solution from the bidirectional list scheduling algorithm
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Instance | Init. sol. | Init. sol. | Final sol. | Final sol. | Optimal | time
(best) | (mean) (best) (mean) Value | (sec)

MT6 66 66.4 (20)55 55.0 55| 4.0
MT10 1413 1416.4 937 947.4 930 9.1
MT20 1960 1968.0 1178 1214.7 1165 | 31.7
ABZ5 1463 1498.6 1236 1239.9 1234 | 10.0
ABZ6 1200 1217.0 (20)943 943.0 943 9.5
ABZ7 916 928.3 668 679.6 656 | 20.9
ABZS8 1078 1091.0 680 690.8 | (645-669) | 20.9
ABZ9 1063 1073.8 697 707.4 | (661-679) | 20.1
ORB1 1648 1669.7 (1)1059 1088.1 1059 | 13.1
ORB2 1253 1253.0 889 891.8 888 9.8
ORB3 2004 2004.0 1020 1039.8 1005 | 13.1
ORB4 1286 1286.0 1011 1016.9 1005 8.5
ORBb5 1389 1443.6 889 894.7 887 | 8.2

Figure 12: Results for 20 runs of algorithm TS on job shop instances, neighborhood NC with
initial solution from a list schedule with a Most-Work-Remaining priority rule

Instance | Init. sol. | Init. sol. | Final sol. | Final sol. | Optimal | time
(best) | (mean) (best) (mean) Value | (sec)

MT®6 57 68.5 (20)55 55.0 55 3.9
MT10 1076 1164.3 936 943.8 930 8.8
MT20 1361 1440.4 | (16)1165 1166.0 1165 | 16.2
ABZ5 1313 1429.3 1236 1238.4 1234 7.6
ABZ6 1018 1100.7 (6)943 944.7 943 7.3
ABZ7 788 812.9 668 678.1 656 | 20.2
ABZ8 807 847.0 677 684.4 | (645-669) | 20.3
ABZ9 813 850.8 698 706.5 | (661-679) | 19.4
ORB1 1219 1346.6 1060 1085.7 1059 9.1
ORB2 1003 1100.8 889 892.4 888 7.5
ORB3 1249 1342.3 1020 1028.0 1005 9.2
ORB4 1116 1198.2 1011 1017.6 1005 8.5
ORBb5 1047 1173.6 891 896.9 887 8.1

Figure 13: Results for 20 runs of algorithm TS on job shop instances, neighborhood NC with
initial solution from the bidirectional list scheduling algorithm, without restoring the best

known solution
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Instance | Init. sol. | Init. sol. | Final sol. | Final sol. | Optimal | time
(best) | (mean) (best) (mean) Value | (sec)

MT6 58 68.2 (20)55 55.0 55 4.0
MT10 1085 1163.5 (1)930 9424 930 8.9
MT20 1319 1416.1 | (14)1165 1167.0 1165 | 16.2
ABZ5 1351 1429.0 1236 1238.9 1234 7.9
ABZ6 1035 1104.5 (7)943 944.7 943 7.5
ABZ7 774 810.0 670 678.5 656 | 21.0
ABZS8 785 831.4 677 690.0 | (645-669) | 20.8
ABZ9 801 851.8 695 708.0 | (661-679) | 20.0
ORB1 1240 1364.4 1064 1087.8 1059 9.1
ORB2 993 1089.3 (1)888 890.4 888 7.7
ORB3 1256 1333.1 (1)1005 1035.2 1005 9.2
ORB4 1128 1209.7 (2)1005 1014.9 1005 8.5
ORB5 1049 1178.0 889 896.2 887 | 8.1

Figure 14: Results for 20 runs of algorithm TS on job shop instances using neighborhood
NC with initial solution from the bidirectional list scheduling algorithm, without resetting
the min and max bounds on the size of the tabu list

results for many of the problems, its mean relative error is 0.79%. Figure 12, shows the results
of running a variant of T'S whose starting solution is from a unidirectional list scheduling
algorithm with a Most-Work-Remaining priority rule, and with 0.81% mean relative error.
Figure 13 shows the results of running a variant of T'S where the current solution is never
reset to the best known solution; its mean relative error is 0.72%. Lastly, figure 14 shows the
results of running a variant of TS where the bounds on the length of the tabu list are never
reset. This gives slightly better results, with a mean relative error of 0.50%, even though
the average final solution tends to be slightly worse than in the original T'S. These results
indicate that the algorithm TS is fairly well-tuned for instances of the job shop problem
without setup times. In essence, this shows that TS should give good solutions to instances
of the job shop scheduling problem with sequence dependent setup times, and indicates that

better results may be had by modifying the algorithm.

8 Sequence Dependent Setup Times

The variant of job shop scheduling which includes sequence-dependent setup times shares
a great deal of structure with the original. One important consequence is that job shop
neighborhoods which are connected or maintain feasibility across moves preserve these prop-

erties when setup times are included. One notable difference lies in the suitability of re-
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SETUPTIMEGENERATE(JSSP)

numOperations

10
. Zou d
maxTransitionCost «—

numOperations
for each operation O;;
do class[O;;] < |RAND() - numClasses |
for each class ¢
do for each class ¢;
do if Co = C
then p. ., <0
else Py < |RAND() - mazTransitionCost |

numClasses «—

ij

© 00 I O Ui W N =

—_
)

Figure 15: Pseudocode of sequence-dependent setup time instance generation

stricted neighborhoods. Recall that restricting N1 to N2 (which does not consider arcs
internal to a block) was deemed valid because, since there is no slack on the critical path,
TSM[SM[z]] = TPM[z] + dz + dsne). However, when sequence dependent setup times are intro-
duced, rsymismia)] = TPM] T Peprrppes T Qo T Pevesare T A5Mz) + Pesprppesrsare Furthermore,
this restriction can only be valid if Peprapee T Pevesnr) T Pesnrapesarsaay = Pepntiacsare) T

Pesarapee + Pearcsarisnia which is not true in general.

Data generation The instance data for problems with sequence dependent setup times
were generated from existing job shop instances of varying difficulties (MT6, MT10, MT20,
ABZ5, ABZ6, ABZ7, ABZ8, ABZ9). For each generated instance, the number of distinct

numOperations
10

random from the available classes. The setup times for operations in the same class was set

classes was set to . Each operation was assigned a class selected uniformly at

to 0, and all other setup times were integers selected uniformly at random from the interval
0, —Z0u®

) numOperations

). (see fig. 15 for the implementation).

8.1 Results

Data Collected In figures 16, 17 and 18 are the computational results for the job shop
instances with sequence dependent setup times. Figure 16 displays the results for 20 runs
of this tabu search algorithm using neighborhood NC, and figure 17 shows the results of
the runs on the same data sets, but using the neighborhood (NA U NB). The lower bounds
on the optimal solution are the best known lower bounds for the corresponding problems

without transition times. The upper bounds are the best results obtained from several long
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Instance | Init. sol. | Init. sol. | Final sol. | Final sol. Optimal | time
(best) | (mean) (best) (mean) Value | (sec)

MT6-TT 62 69.3 (12)55 55.4 55 | 4.2
MT10-TT 1177 1346.3 1037 1050.9 | (930-1018) 8.7
MT20-TT 1592 1714.1 1322 1343.6 | (1165-1316) | 15.7
ABZ5-TT 1534 1669.9 1333 1359.2 | (1234-1325) 7.7
ABZ6-TT 1122 1230.3 1002 1027.1 | (943-1002) 7.8
ABZ7-TT 889 950.9 760 771.6 (656-752) | 20.9
ABZ8-TT 921 981.5 774 789.6 (645-772) | 23.1
ABZ9-TT 958 1000.3 785 795.2 (661-776) | 20.2

Figure 16: Results for 20 runs of algorithm TS on instances with sequence dependent setup
times, using neighborhood NC and initial solution from Bidir

Instance | Init. sol. | Init. sol. | Final sol. | Final sol. Optimal | time
(best) | (mean) (best) (mean) Value | (sec)

MT6-TT 60 71.2 (5)55 55.8 55 5.5
MT10-TT 1199 1328.0 1026 1059.5 | (930-1018) | 12.9
MT20-TT 1631 1755.8 1328 1378.6 | (1165-1316) | 30.1
ABZ5-TT 1578 1651.9 1355 1370.6 | (1234-1325) | 10.5
ABZ6-TT 1163 1256.1 1009 1028.5 | (943-1002) | 10.3
ABZ7-TT 893 958.1 762 784.5 (656-752) | 32.0
ABZ8-TT 927 968.5 788 800.6 (645-772) | 30.7
ABZ9-TT 923 992.9 791 807.4 (661-776) | 30.4

Figure 17: Results for 20 runs of algorithm TS on instances with sequence dependent setup
times using neighborhood (NA U NB) and initial solution from Bidir

Instance | Init. sol. | Init. sol. | Final sol. | Final sol. Optimal | time
(best) | (mean) (best) (mean) Value | (sec)

MT6-TT 66 66.5 (13)55 55.4 55 4.0
MT10-TT 1413 1423.2 1026 1052.3 | (930-1018) 9.1
MT20-TT 1960 1962.4 1320 1347.2 | (1165-1316) | 15.9
ABZ5-TT 1463 1501.7 1335 1357.9 | (1234-1325) 7.9
ABZ6-TT 1200 1212.8 1008 1028.7 | (943-1002) 7.8
ABZ7-TT 916 928.8 758 768.1 (656-752) | 20.8
ABZS8-TT 1078 1095.7 772 788.1 (645-772) | 20.7
ABZ9-TT 1063 1081.2 778 790.5 (661-776) | 19.9

Figure 18: Results for 20 runs of algorithm TS on instances with sequence dependent setup
times using neighborhood NC and initial solution from a list schedule with a Most-Work-
Remaining priority rule
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runs of algorithm TS. Figure 18 displays the results for 20 runs of this tabu search algorithm

starting from a unidirectional list schedule and using neighborhood NC.

Analysis of Variants The mean relative error of the basic TS algorithm is 0.62% (figure
16). In the variant where the unrestricted version of NA is used in conjunction with NB, the
mean relative error is 1.25% (figure 17). Surprisingly, NC (RNA U NB) provided slightly
better results on average than (NA U NB) even though the theoretical justification for the
restriction of NA does not hold for these instances. Figure 18 reports the results of running a
variant of T'S where the initial solution is computed with a list scheduling algorithm using a
Most-Work-Remaining priority rule; its mean relative error is 0.44%. This variant provided
better overall solutions than the first algorithm even though the initial solutions were often
poorer. This seems to indicate that finding a very good starting solution is not as important

to instances with setup times as it is to instances without setup times.

9 Conclusions

This research has demonstrated that it is possible to take existing tabu search algorithms
and adjust them to provide reasonable solutions to a wider class of problems. As is evident
from the data, the initial solution provided by the bidirectional list scheduling algorithm is
substantially poorer for the instances with sequence dependent setup times than for those
instances without them. This is likely because the bidirectional list scheduling algorithm
does nothing to prevent large setup times on the machine arcs connecting the left and right
halves. Even so, the Bidirectional list schedule typically found better initial solutions that
those found by the unidirectional list schedule tested. However, the neighborhood NC was
able to converge to slightly better solutions when using the “poorer” initial starting solutions
provided by the unidirectional list schedule.

Unfortunately, without further work on the instances with sequence dependent setup
times, the relative error from the optimal values cannot be established accurately for most
of them.

10 Future work

Among the questions that could be addressed in future research are:

e [s there a solid theoretical justification for restricted neighborhoods behaving better

than their unrestricted counterparts on problem instances with sequence dependent

21



setup times?

Is it possible to reasonably extend these algorithms to even broader classes of job shop

problems? (e.g. A wider class of objective functions).

What are some other neighborhood functions which are better suited to solving problem

instances with sequence dependent setup times?

What are some other heuristics that are better suited to providing good initial solutions

to problem instances with sequence dependent setup times?

Where can a good source of data for problem instances arising in industry be found?
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A Code

A.1 DataStructures.H

/**
* FILE: DataStructures. H
* AUTHOR: kas
* RAISON D’ETRE: data structures for modeling the shifting
* bottleneck heuristic for the Job Shop Scheduling problem.
*
/
#define NULL 0
#define FALSE 0
#define TRUE 1
10
#ifndef DATA_STRUCTURES_H
#define DATA_STRUCTURES_H

#include <iostream.h>
R R

*

* CLASS: List
*

* **********************************************************************f/
20
using namespace std;

template <class T>
class List {

public:
class ListNode {

public: 30
ListNode() { ListNode
data_ = NULL;
next_ = NULL;
prev_ = NULL;

}

virtual "ListNode() { “ListNode
if (next_)
delete next_;
} 40

void setNext(const ListNode* const next) { setNext
next_ = (ListNode*)next;

}

void setPrev(const ListNode* const prev) { setPrev
prev_ = (ListNode*)prev;

}
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void setData(const T data) {
data_ = data;

}

const T data() const {
return data_;

}

const ListNode* const next() const {
return next_;

}

const ListNode* const prev() const {
return prev_;

}

private:

T data_;
ListNode* next_;
ListNode* prev_;

b
typedef ListNode Node;

List() {
headPtr_ = NULL;
tailPtr_ = NULL;
size_ = 0;

}

virtual “List(){
if (headPtr.)
delete headPtr_;
}

void addFirst(T toAdd) {
Node* newNode = new Node();
newNode—>setData(toAdd);
newNode—>setNext(headPtr_);
newNode—>setPrev(NULL);

if (tailPtr- == NULL) {
tailPtr_ = newNode;

}

else {
headPtr_—>setPrev(newNode);

}

headPtr_ = newNode;

size_++;

}

void addLast(T toAdd) {
Node* newNode = new Node();
newNode—>setData(toAdd);
newNode—>setPrev(tailPtr_);

50 setData

data

next
60

prev

70

List

80 " List

addFirst

90

100 addLast
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newNode—>setNext(NULL);

if (headPtr_ == NULL) {
headPtr_ = newNode;

}

else {
tailPtr_—>setNext(newNode);

}

tailPtr_ = newNode;

size_++;

}

void addAfter(T toAdd, Node* curr) {

Node* newNode = new Node();
newNode—>setData(toAdd);

newNode—>setNext(next(curr));
newNode—>setPrev(curr);
curr—>setNext(newNode);

if (curr == tailPtr_) {
tailPtr_ = newNode;
}
else {
next(newNode)—>setPrev(newNode);
}
size_++;

}

bool addAtIndex(T toAdd, unsigned int idx) {

if (idx == 0) {
addFirst(toAdd);
size_++;
return TRUE;

}

else if (idx == size_) {
addLast(toAdd);
size_++;
return TRUE;

else if (idx > 0 && idx < size_) {
inti=0;
Node* ptr = first();
while (NULL != ptr) {
if (i==(dx — 1)) {
Node* newNode = new Node();
newNode—>setData(toAdd);

newNode—>setNext(next(ptr));
newNode—>setPrev(ptr);
next(newNode)—>setPrev(newNode);
ptr—>setNext(newNode);
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size_++;
return TRUE;
}
ptr = next(ptr);
i++;
}
}
else { return FALSE; }

}

void removeltem(T toDelete) {
Node* f_ptr = first();

while (NULL != f_ptr && f_ptr—>data() != toDelete) {
f_ptr = next(f_ptr);

if (f_ptr |= NULL && f_ptr—>data() == toDelete) {
if (prev(f_ptr) = NULL) {
prev(f_ptr)—>setNext(next(f_ptr));

}

if (next(f_ptr) != NULL) {
next(f_ptr)—>setPrev(prev(f_ptr));

}

if (f_ptr == headPtr_) {
headPtr_ = next(f_ptr);

}

if (f_ptr == tailPtr_) {
tailPtr_ = prev(f_ptr);

}

f_ptr—>setNext(NULL);

f_ptr—>setPrev(NULL);

f_ptr—>setData(NULL);

delete f_ptr;

size_——;

Node* findItem(T toFind) const {
Node* ptr = first();
while (NULL != ptr) {
if (ptr—>data() == toFind)
return ptr;
ptr = next(ptr);

return NULL;

}

int findIndex(T toFind) const {
int i = 0;
Node* ptr = first();
while (NULL != ptr) {
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if (ptr—>data() == toFind)
return i;
ptr = next(ptr);
i+
}

return —1;

}

Node* first() const {
return headPtr_;

}

Node* last() const {
return tailPtr_;

}

void removeFirst() {
if (headPtr_ != NULL) {
Node* n = next(first());

if (n != NULL) {
n—>setPrev(NULL);
}

headPtr_—>setNext(NULL);
headPtr_—>setData(NULL);
delete headPtr_;

size_——;

if (headPtr_ == tailPtr_) {
tailPtr_. = n;

}

headPtr_ = n;

}
}

void removeLast() {
if (tailPtr_ != NULL) {
Node* p = prev(last());

if (p != NULL) {
p—>setNext(NULL);
}

tailPtr_—>setPrev(NULL);

tailPtr_—>setData(NULL);

delete tailPtr_;

size_——;

if (headPtr- == tailPtr_) {
headPtr_ = p;

}

tailPtr_ = p;

220 first

last

removeFirst

230

240

removel ast

250

260
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Node* atRank(int rank) const { atRank
if (rank < 0 || rank >= size()) {
return NULL;
}
else { 270
Node* iter = first();
for (int i = 0; i < rank; i++) {
iter = next(iter);
}
return iter;
}
}

Node* next(Node* curr) const { next
return (Node*)(curr—>next()); 280
Node* prev(Node* curr) const { prev

return (Node*)(curr—>prev());

}

int size() const { size
return size_;

}

private:

290

int size_;
Node* headPtr_;
Node* tailPtr_;

I
/**

* Some typedefs for cleaner code
*/ 300

class Job;
class Operation;
class Machine;

typedef List<Job*> JobList;
typedef List<Operation*> OperationList;
typedef List<Machine*> MachineList;

310

/* K K ok 3 3k K oK K ok ok 3k K Ok o K ok 3k 3K Sk ok ok K oK Sk ok sk K o ok ok K oK ok ok 3k K K ok ok K K oK ok 3k oK oK ok 3k O K ok 3k K oK ok kK oK K ok 3k oK ok ok ok ok ok ok ok ok oK
*

* CLASS: Job

*
* >k>k>k>k>k>k>k>k>k>k>k>k>k>k>l<>/<>/<>l<>/<>l<>/<>/<>l<>l<*******************>/<>/<>l<>l<>/<>l<>l<>l<>l<*******************/

class Job {
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public: 320

Job();

virtual ~Job();

int numOperations() const; numOperation:
void setNumOperations(int numOperations);

void setAtRank(int i, Operation* toAdd); 330
Operation* atRank(int i) const;

Operation** operations() const;
void dump() const;
private:

int size_;
Operation** operationVector_; 340

H

/>/< K K ok ok 3k 3k oK o S ok ok ok 3k Sk oK Sk ok ok K oK K ok 3k K K ok 3k K K ok ok K K K ok 3k K K ok ok 3k K K ok kK oK ok ok 3k K K ok kK O K ok ok K oK ok ok ok oK ok ok ok ok ok
*

* CLASS: Machine

*
* >k>k>k>k>k>k>k>k>k>k>k>k>k>k>l<>/<>/<>l<>/<>l<>/<>/<>l<>l<*******************>/<>/<>l<>l<>/<>/<>/<>I<>I<*******************/

class Machine { 350
public:

Machine();

Machine(const OperationList* const opList);

virtual "Machine();

int numOperations() const; 360 numOperat
void setNumOperations(int numOperations);

void setAtRank(int i, Operation* toAdd);
Operation* atRank(int i) const;

Operation** operations() const;
void dump() const;

private: 370
Operation** operationVector_;

int size_;

s
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/>/< 3113t i I I I I I I I I I I I I I T I I I
*

* CLASS: Operation
*

* Add accessors/ mutators for machine & time. add job_
*

* *****************>/<>/<>/<>I<>I<>l<>l<>/<>/<>l<>l<>k>k>/<>I<>I<>I<>l<>l<>/<>l<>l<>k>k>k>k>I<>I<>l<>l<>/<#<>/<>I<>l<>k>k*****************/

class Operation {
public:
typedef enum {
HEAD = 0,
TAIL
} CumulativeType;
Operation();

Operation(const int job, const int jobldx,
const int host, const double time);

virtual ~Operation();

int job() const;
int jobldx() const;

int machineldx() const;
void setMachineldx(int newlIdx);

int machine() const;
void setMachine(int newMachine);

void setTime(double newTime);
double time() const;

double cumulativeTime(CumulativeType type) const;
void setCumulativeTime(CumulativeType type, double newTime);

int operationClass() const;
void setOperationClass(int newClass);

double transitionTime() const;
void setTransitionTime(double newTime);

void dump() const;
private:

int host_;
int job_;

int hostldx_;
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int jobldx_;

double time_; 430
double transitionTime_;

double timeToReturn_;
double cumulativeTime_[2];

int operationClass_;

} : 440

#endif
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A.2 DataStructures.C

*¥k

* FILE: DataStructures. H

* AUTHOR: kas

* RAISON D’ETRE: data structures for modeling the Job Shop
* Scheduling problem.

Y/

#ifndef DATA_STRUCTURES_H
#include "DataStructures.H"
#endif

#include <math.h>
#include <iostream.h>

/>/< K K ok ok 3k 3k oK o ok ok ok dk 3k Sk oK Sk ok ok K K K ok 3k K K ok 3k oK K ok ok K K K ok 3k K oK ok dk 3k K K ok kK oK ok ok 3k K oK ok kK oK K ok ok K ok ok ok ok oK oK ok ok ok ok
*

* CLASS: Job

*

* Note: add Operation insertion.

*

* **********************************************************************f/

Job::Job() {
size_ = 0;
operationVector_. = NULL;

}

Job::"Job() {
if (operationVector_)
delete [] operationVector_;

Operation**
Job::operations() const {
return operationVector_;

}

int
Job::numOperations() const {
return size_;

}

void
Job::setNumOperations(int numOperations) {
size_ = numOperations;

if (operationVector.) {
delete [] operationVector_;

}

operationVector_ = new Operation*[numOperations;
for (int i = 0; i < size_; i++) {
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operationVector_[i] = NULL;

}
}

void
Job::setAtRank(int i, Operation* toAdd) {
if (1 >=0&& i < size) {
operationVector_[i] = toAdd;
}
}

Operation*
Job::atRank(int i) const {
if (1 >=0&& i < size) {
return operationVector_[i];

}

else return NULL;
}

void
Job::dump() const {

if (operationVector. == NULL) {
cout << "Empty" << endl;
}
else {
cout << "[";
for (int i = 0; i < size_; i++) {
if (operationVector_[i] != NULL){
(operationVector_[i])—>dump();

}

cout << endl;

}

cout << "]" << end],

}
}

/* K oK oK K oK oK K oK K K oK K oK oK K K oK K K oK K K oK oK K K oK oK K oK oK K K oK K K oK oK K K oK oK K ok oK K K oK oK K K oK K K oK oK K oK oK K K K oK K Kk KK K Kk K

*

* CLASS: Machine

*

* Note: add Operation insertion.
*

* **********************************************************************f/

Machine::Machine() {
size_ = 0;
operationVector_. = NULL;

}

Machine::"Machine() {
if (operationVector._)
delete [] operationVector_;
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}

Operation**
Machine::operations() const {
return operationVector_;

}

int
Machine::numOperations() const {
return size_;

}

void
Machine::setNumOperations(int numOperations) {
size_ = numOperations;
if (operationVector.) {
delete [] operationVector_;

operationVector_ = new Operation*[numOperations];
for (int i = 0; 1 < size_; i++) {
operationVector_[i] = NULL;
}
}

void
Machine::setAtRank(int i, Operation* toAdd) {
if (1 >=0&& i< size) {
operationVector_[i] = toAdd;
}
}

Operation*
Machine::atRank(int i) const {
if (1 >=0&& i < size) {

return operationVector_[i];

}
else return NULL;

}

void
Machine::dump() const {

if (operationVector. == NULL) {
cout << "Empty" << endl;
}
else {
cout << "(";
for (int i = 0; i < size_; i++) {
if (operationVector_[i] != NULL){
(operationVector_[i])—>dump();

}

cout << endl;

}

cout << ")" << endl,
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*
* CLASS: Operation
*
R

170
Operation::Operation() { Operation::Op:
job_ = —1;
host. = —1;

jobldx_ = —1;
hostldx_. = —1;

time_ = 0;
cumulativeTime_[0
cumulativeTime_[1

}

Operation::Operation(const int job, const int jobldx, Operation::Op
const int host, const double time) {

] = 0;
] =0

180

host_ = host;
job_ = job;
jobldx_ = jobldx;

transitionTime_ = 0.0;
time_ = time; 190

operationClass_ = 0;

}

Operation::"Operation() { Operation::~ O

}

int
Operation::job() const { 200 Operation::
return job_;

}

int
Operation::jobldx() const { Operation::job
return jobldx_;

}

int

Operation::machineldx() const { 210 Operation::
return hostldx_;

}

void

36



Operation::setMachineldx(int newldx) {
hostldx_ = newldx;

}

int
Operation::machine() const {
return host_;

}

void

Operation::setMachine(int newMachine) {
host_ = newMachine;

}

double

Operation::time() const {
return time_;

}

void

Operation::set Time(double newTime) {
time_ = newTime;

}

double

Operation::cumulativeTime(CumulativeType type) const {
return cumulativeTime_[(int)type];

}

void
Operation::setCumulativeTime(CumulativeType type, double newTime) {
cumulativeTime_[(int)type] = newTime;

}

int
Operation::operationClass() const {
return operationClass_;

}

void

Operation::setOperationClass(int newClass) {
operationClass_ = newClass;

}

double

Operation::transitionTime() const {
return transitionTime_;

}

void
Operation::set TransitionTime(double newTime) {
transitionTime_ = newTime;

}
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void

Operation::dump() const { 270 Operation::
cout << "<M: (" << host_ << ", " << hostldx_<< "), J: (" << job_
<< M, " << jobldx << "), £ << time_ << ", r,q: ("

<< cumulativeTime_[0] << ", " << cumulativeTime_[1] <<")>";
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A.3 TS _Solution.H

#include "DataStructures.H"

class Job;

class Machine;
class Operation;
class Tabulist;
class CycleWitness;

class TS_Solution {

public:

TS_Solution:: TS_Solution(Job** jLists, Machine** mLists,

double** classTransitions,

int numJobs, int numMachines, int numClasses);

virtual ~“TS_Solution();

const OperationList* const computeCriticalPath(Operation::CumulativeType type);
void longestPathHelper(Operation* toCompute, Operation::CumulativeType);
void longestPathHelperIncomplete(Operation* toCompute,
Operation::CumulativeType type,
const int* const lastFreeL,
const int* const firstFreeR);
void longestPathLinear(Operation::CumulativeType);
Operation* jobPrev(const Operation* const curr) const;
Operation* jobNext(const Operation* const curr) const;

Operation* machinePrev(const Operation* const curr) const;

Operation* machineNext(const Operation* const curr) const;

Job* jList(int idx) const;
Machine* mList(int idx) const;

void swap(Operation* ol, Operation* 02);

OperationList* criticalPath() const;

int numJobs() const;
int numMachines() const;

double makespan() const;

double transitionTime(int startClass, int endClass);
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TabuList* tabuList() const;
CycleWitness* witness() const;
void dump() const;

private:
Job** jLists_;

Machine** mLists_;

int numJobs_;
int numMachines_;

double makespan_;
OperationList* criticalPath_;
TabuList* tabu_;
CycleWitness* witness_;

double** transitionMatrix_;

class Tabulist {

private:
// underlying data structure

typedef struct {
int endldx_; // index of the end Node of the swap
int timeStamp_;

} TLData;

int** tIMatrix_;

int time_;

int tlLength_;

int numJobs_;
int numOperations_;

public:
// we expect each job to have the same number of operations.
TabuList(int numJobs, int numOperations);
virtual ~TabuList();

bool query(const Operation* const start, const Operation* const end) const;
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void incrementTime();

int currentTime() const; 110
void reset(); // resets the time to 0 and cleans out the list.

void updateLength(int newLength);

int length() const;

void mark(const Operation* const start, const Operation* const end);
b

class CycleWitness {

120

private:
// underlying data structure

typedef struct {
int endldx_; // index of the end Node of the swap
double value_;
}+ CWData;
130
double** cwMatrix_;

int numJobs_;
int numOperations_;

int cycleDepth_;
int timeToBreak_;

public:
140
// we expect each job to have the same number of operations.
CycleWitness(int numJobs, int numOperations);
virtual ~CycleWitness();
bool query(const Operation* const start, const Operation* const end, int value) const; query
void mark(const Operation* const start, const Operation* const end, int value);
150
void setTimeToBreak(int newTime);
void adjustCycleDepth(bool queryVal);

bool isInCycle() const;

void reset(); // cleans out the list.

I3
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A.4 TS _Solution.C

#include "TS_Solution.H"

#define MAX(a,b) (((a) < (b)) ? (b) : (a))
[ RRRR A AAA AR RIS R RAAIAFSFFF IS ASSSSAAAAA R AR EE RIS II SRR K
*

* TS Solution
*

* >k>k>k>k>k>k>k>k>k>k>k>k>k>k>l<>k>k>k>k>k>/<>/<>l<>l<**********>/<>/<>l<>l<>/<>/<>l<>l<>l<>/<>/<>l<>l<***********************/

TS_Solution:: TS_Solution(Job** jLists, Machine** mLists,
double** classTransitions,
int numJobs, int numMachines, int numClasses) {

jLists_ = jLists;

mLists_. = mlLists;
numJobs_ = numJobs;
numMachines. = numMachines;

criticalPath_ = new OperationList();
transitionMatrix_ = classTransitions;

tabu_. = new TabuList(numJobs, jList(0)—>numOperations());
witness. = new CycleWitness(numJobs, jList(0)—>numOperations());

}

TS_Solution:: " TS_Solution() {

delete tabu_;
delete witness_;
delete criticalPath_;

}

const OperationList* const
TS_Solution::computeCriticalPath(Operation:: CumulativeType type) {

int 1, j;
Operation* nextInPath;

// clear out existing critical path.

while (criticalPath_—>first() != NULL) {
criticalPath_—>removeFirst();

}

if (type == Operation::HEAD) {
// start with the end of the machines.
for (i = 0; i < numJobs_; i++) {
if (jList(i)—>atRank(jList(i)—>numOperations() —1)—>cumulativeTime(type) +
jList(i)—atRank(jList(i)—>numOperations() —1)—>time() == makespan_) {
// we found the endpt of a critical path.
nextInPath = jList(i)—>atRank(jList(i)—>numOperations() —1);
break;
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}

}
while (jobPrev(nextInPath) != NULL || machinePrev(nextInPath) != NULL) {

criticalPath_—>addFirst(nextInPath);
if (jobPrev(nextInPath) != NULL && machinePrev(nextInPath) != NULL) {
if (jobPrev(nextInPath)—>cumulativeTime(type) ==
nextInPath—>cumulativeTime(type) — jobPrev(nextInPath)—>time()) {

nextInPath = jobPrev(nextInPath); 60
else {
nextInPath = machinePrev(nextInPath);

}

}
else if (jobPrev(nextInPath) != NULL) {

nextInPath = jobPrev(nextInPath);

else if (machinePrev(nextInPath) != NULL) {
nextInPath = machinePrev(nextInPath); 70

}
}

criticalPath_-—>addFirst(nextInPath);

}
else { // type == Operation:: TAIL
// preserve the order of the critical path. ..

// start with the end of the machines.
for (i = 0; i < numJobs_; i++) {
if (jList(i)—>atRank(0)—>cumulativeTime(type) + jList(i)—>atRank(0)—>time() == makespan_) { 80
// we found the endpt of a critical path.
nextInPath = jList(i)—>atRank(0);
break;
}

}
while (jobNext(nextInPath) = NULL || machineNext(nextInPath) !|= NULL) {

criticalPath_—>addLast(nextInPath);
if (jobNext(nextInPath) != NULL && machineNext(nextInPath) != NULL) {
if (jobNext(nextInPath)—>cumulativeTime(type) == 90
nextInPath—>cumulativeTime(type) — jobNext(nextInPath)—>time()) {
nextInPath = jobNext(nextInPath);
}
else {
nextInPath = machineNext(nextInPath);

}

}
else if (jobNext(nextInPath) != NULL) {

nextInPath = jobNext(nextInPath);
} 100
else if (machineNext(nextInPath) != NULL) {

nextInPath = machineNext(nextInPath);

}

criticalPath_—>addLast(nextInPath);
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}

return criticalPath_;

}

void
TS_Solution::longestPathHelper(Operation* toCompute, Operation::CumulativeType type) {

if (toCompute—>cumulativeTime(type) > —HUGE_VAL) {
return;

}

else {
Operation* nextMachine;
Operation* nextJob;

double 1j = 0, Im = 0, cumulative = 0;
if (type == Operation::TAIL) {

nextJob = jobNext(toCompute);
if (nextJob != NULL) {
longestPathHelper(nextJob, type);
lj = nextJob—>cumulativeTime(type) + nextJob—>time();

}

nextMachine = machineNext(toCompute);
if (nextMachine != NULL) {
longestPathHelper(nextMachine, type);
Im = (nextMachine—>cumulativeTime(type) + nextMachine—>time() +
toCompute—>transitionTime());
}

else {

nextJob = jobPrev(toCompute);
if (nextJob != NULL) {
longestPathHelper(nextJob, type);
lj = nextJob—>cumulativeTime(type) + nextJob—>time();

}

nextMachine = machinePrev(toCompute);
if (nextMachine != NULL) {
longestPathHelper(nextMachine, type);
lm = (nextMachine—>cumulativeTime(type) + nextMachine—>time() +
nextMachine—>transitionTime());
}

}

cumulative = MAX(lj, lm);
toCompute—>setCumulativeTime(type, cumulative);
Y // longest path not yet cached
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// this will be used when we need to estimate the longest path of a
// partially scheduled machine. This is only necessary for generating
// an initial solution. I need to be able to determine if a given

// operation is unscheduled, and follow edges from that operation to
// the next operation on that machine which has been scheduled.

// suggestion: take the arrays indicating which machine operations
// have been scheduled. If the current Operation has not been
// scheduled, test the first Operation that has been scheduled.

170
void
TS_Solution::longestPathHelperIncomplete(Operation* toCompute, Operation::CumulativeType type, longestPathHe
const int* const lastFreeL, const int* const firstFreeR) {
if (toCompute—>cumulativeTime(type) > —HUGE_VAL) {
return;
else {
Operation* nextMachine;
Operation* nextJob; 180
double 1j = 0, Im = 0, cumulative = 0;
if (type == Operation::TAIL) {
nextJob = jobNext(toCompute);
if (nextJob != NULL) {
longestPathHelperIncomplete(nextJob, type, lastFreel, firstFreeR);
lj = nextJob—>time() + nextJob—>cumulativeTime(type);
}
190

if (toCompute—>machineldx() >= lastFreeL[toCompute—>machine()] &&
toCompute—>machineldx() <= firstFreeR[toCompute—>machine()]) {

nextMachine = mList(toCompute—>machine())—>atRank(firstFreeR[toCompute—>machine()] + 1);
if (nextMachine != NULL) {
longestPathHelperIncomplete(nextMachine, type, lastFreeL, firstFreeR);
Im = (nextMachine—>time() + nextMachine—>cumulativeTime(type) +
toCompute—>transitionTime());

} 200

else {

nextJob = jobPrev(toCompute);

if (nextJob != NULL) {
longestPathHelperIncomplete(nextJob, type, lastFreel, firstFreeR);
lj = nextJob—>time() + nextJob—>cumulativeTime(type);

}

if (toCompute—>machineldx() >= lastFreeL[toCompute—>machine()]
toCompute—>machineldx() <= firstFreeR[toCompute—>machine()]

210
&&
) {

nextMachine = mList(toCompute—>machine())—>atRank(lastFreeL[toCompute—>machine()] — 1);

45



if (nextMachine != NULL) {
longestPathHelperIncomplete(nextMachine, type, lastFreel, firstFreeR);
Im = (nextMachine—>time() + nextMachine—>cumulativeTime(type) +
nextMachine—>transitionTime());

} 220

}

cumulative = MAX(lj, lm);

toCompute—>setCumulativeTime(type, cumulative);
} // longest path not yet cached

void 230
TS_Solution::longestPathLinear(Operation::Cumulative Type type) { TS_Solution::l
int i,j;

OperationList rootSet;
// can clean up the following code with abstractions. should do so. ..

// initialize the values.
if (type == Operation::TAIL) {
for (i = 0; i < numJobs_; i++) { 240
for (j = 0; j < jList(i)—>numOperations(); j++) {
Operation* curr = jList(i)—>atRank(j);
if (j ==0&&
curr—>machineldx() == 0) {
// object is in initial set
rootSet.addFirst(curr);
curr—>setCumulativeTime(type, —HUGE_VAL);

if (j == jList(i)—>numOperations() — 1 &&
curr—>machineldx() == mList(curr—>machine())—>numOperations() — 1) { 250

// object is terminal
curr—>setCumulativeTime(type, 0.0);

}

else {
curr—>setCumulativeTime(type, —HUGE_VAL);

}

}
}

}
else { // type == Operation::HEAD 260
for (i = 0; i < numJobs_; i++) {
for (j = 0; j < jList(i)—>numOperations(); j++) {
Operation* curr = jList(i)—>atRank(j);
if (j ==0&&
curr—>machineldx() == 0) {
// object is terminal
curr—>setCumulativeTime(type, 0.0);

}

46



if (j == jList(i)—>numOperations() — 1 &&

curr—>machineldx() == mList(curr—>machine())—>numOperations() — 1) {

// object is in initial set
rootSet.addFirst(curr);
curr—>setCumulativeTime(type, —HUGE_VAL);
}
else {
curr—>setCumulativeTime(type, —HUGE_VAL);

}
}
}
}

OperationList::Node* iter = rootSet.first();
while (iter != NULL) {

longestPathHelper(iter—>data(), type);
iter = rootSet.next(iter);

}

iter = rootSet.first();
makespan_. = —HUGE_VAL;

while (iter != NULL) {

if (iter—>data()—>cumulativeTime(type) + iter—>data()—>time() > makespan_) {
makespan_ = iter—>data()—>cumulativeTime(type) + iter—>data()—>time();

¥
iter = rootSet.next(iter);
}
}
Operation*

TS_Solution::;jobPrev(const Operation* const curr) const {

}

if (curr—>job() >=0 && curr—>job() < numJobs_ &&

curr—>jobldx() > 0 && curr—>jobldx() < jList(curr—>job())—>numOperations()) {
return jList(curr—>job())—>atRank(curr—>jobldx() — 1);

}

else {
return (Operation*)NULL;

}

Operation*

TS_Solution::;jobNext(const Operation* const curr) const {

if (curr—>job() >=0 && curr—>job() < numJobs_ &&

curr—>jobldx() >= 0 && curr—>jobldx() < jList(curr—>job())—>numOperations() —1) {
return jList(curr—>job())—>atRank(curr—>jobldx() + 1);

else {
return (Operation*)NULL;
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}
}

Operation*
TS_Solution::machinePrev(const Operation* const curr) const { TS_Solution::n
if (curr—>machine() >=0 && curr—>machine() < numJobs_ &&
curr—>machineldx() > 0 && curr—>machineldx() < mList(curr—>machine())—>numOperations()) {
return mList(curr—>machine())—>atRank(curr—>machineldx() — 1); 330

else {
return (Operation*)NULL;

}
}

Operation*
TS_Solution::machineNext(const Operation* const curr) const { TS_Solution::n
if (curr—>machine() >=0 && curr—>machine() < numJobs_ &&
curr—>machineldx() >= 0 && 340

curr—>machineldx() < mList(curr—>machine())—>numOperations() — 1) {
return mList(curr—>machine())—>atRank(curr—>machineldx() + 1);
}
else {
return (Operation*)NULL;

}
}

Job* 350
TS_Solution::jList(int idx) const { TS_Solution:jl
return jLists_[idx];

}

Machine*
TS_Solution:mList(int idx) const { TS_Solution::n
return mLists_[idx];

}

void 360
TS_Solution::swap(Operation* ol, Operation* 02) { TS_Solution::s
if (ol—>machine() != 02—>machine()) {
return;

if (ol == 02) {
return;

}

int m = ol—>machine();

int templdx = ol—>machineldx(); 370
ol—>setMachineldx(02—>machineldx());

02—>setMachineldx(tempIdx);

mList(m)—>setAtRank(ol—>machineldx(), ol);

mList(m)—>setAtRank(o2—>machineldx(), 02);

// now to handle transition data
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int tempClass = ol—>operationClass();
ol—>setOperationClass(o2—>operationClass());
02—>setOperationClass(tempClass);

Operation* prev;
Operation* next;

if (ol—>machineldx() > 0) {
prev = mList(m)—>atRank(ol—>machineldx() — 1);
prev—>setTransitionTime(transitionTime(prev—>operationClass(), ol—>operationClass()));
}
if (02—>machineldx() > 0) {
prev = mList(m)—>atRank(o2—>machineldx() — 1);
prev—>setTransitionTime(transitionTime(prev—>operationClass(), 02—>operationClass()));

}

if (o1—>machineldx() < mList(m)—>numOperations() — 1) {
next = mList(m)—>atRank(ol—>machineldx() + 1);
ol—>setTransitionTime(transitionTime(ol—>operationClass(), next—>operationClass()));
}
if (02—>machineldx() < mList(m)—>numOperations() — 1) {
next = mList(m)—>atRank(o2—>machineldx() + 1);
02—>setTransitionTime(transitionTime(o2—>operationClass(), next—>operationClass()));

}

OperationList*
TS_Solution::criticalPath() const {
return criticalPath_;

int

TS_Solution::numJobs() const {
return numdJobs_;

int

TS_Solution::numMachines() const {
return numMachines_;

double

TS_Solution::makespan() const {
return makespan_;

double

TS_Solution::transitionTime(int startClass, int endClass) {
return transitionMatrix_[startClass][endClass];

TabuList*

TS_Solution::tabuList() const {
return tabu._;
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}

CycleWitness*
TS_Solution::witness() const { TS_Solution::w
return witness_;

}

void
TS_Solution::dump() const { TS_Solution::d
440
int i;

cout << "Jobs " << endl;

for (i = 0; 1 < numJobs_; i++) {
jList(i)—>dump();
cout << endl,

}

cout << endl;
cout << "Machines " << endl; 450
for (i = 0; i < numMachines_; i++) {

mList (i) —>dump();

cout << endl;

}
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460
TABU LIST

*******************************************>/<>/<>/<>/<***********************/

TabuList:: TabuList(int numJobs, int numOperations) { TabuList:: Tabu
numJobs_ = numJobs;
numOperations. = numJobs*numOperations;

time_ = 0;
tlLength_ = 0; 470

tIMatrix- = new int*[numOperations_];
for (int i = 0; i < numOperations_; i++) {
tIMatrix_[i] = new int[numOperations_];

}

for (int i = 0; i < numOperations_; i++) {
for (int j = 0; j < numOperations_; j++) {
tIMatrix_[i][j] = —numOperations_;
480
¥
¥

TabuList:: " TabuList() { TabulList::"Tak
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for (int i = 0; i < numOperations_; i++) {
delete [] tIMatrix_[i];

delete [] tIMatrix_;

}

// returns TRUE if a move is tabu, FALSE otherwise

bool
TabuList::query(const Operation* const start, const Operation* const end) const {

int startldx = numOperations_/numJobs_ * start—>job() + start—>jobldx();
int endldx = numOperations_/numJobs_ * end—>job() + end—>jobldx();

return tlMatrix_[startIdx][endIdx] + tlLength_ >= time_;

}

void

TabuList::incrementTime() {
time_+-+;

}

int
TabuList::currentTime() const {
return time_;

}

void
TabuList::reset() {
time_ = 0;

for (int i = 0; i < numOperations_; i++) {
for (int j = 0; j < numOperations_; j++) {
tIMatrix_[i][j] = —numOperations_;

}
}

void
TabuList::updateLength(int newLength) {
tlLength. = newLength;

}

int
TabuList::length() const {
return tlLength_;

}

void

TabuList::mark(const Operation* const start, const Operation* const end) {
int startldx = numOperations_/numJobs_ * start—>job() + start—>jobIdx();
int endldx = numOperations_/numJobs_ * end—>job() + end—>jobldx();
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tiMatrix_[startIdx][endIdx] = time_;

/>/< 3231333333333 233333333313333333323333 3333333323333 3333333333332323323
*

* CYCLE WITNESS

*
* ********************>I<>l<>l<>l<*******>I<>I<>/<>l<>l<*******>I<>l<>l<>l<***********************/

CycleWitness::CycleWitness(int numJobs, int numOperations) {

numJobs_ = numJobs;
numOperations. = numJobs*numOperations;
cwMatrix. = new double*[numOperations._];

for (int i = 0; i < numOperations_; i++) {
cwMatrix_[i] = new double[numOperations._];

}

for (int i = 0; i < numOperations_; i++) {
memset(cwMatrix_[i], 0, numOperations_*sizeof(double));

}
}

CycleWitness::~CycleWitness() {

for (int i = 0; i < numOperations_; i++) {
delete [JewMatrix_[i];

delete [] cwMatrix_;
}
// returns TRUE if an arc has the query value, FALSE otherwise

bool
CycleWitness::query(const Operation* const start, const Operation* const end, int value) const {

int startldx = numOperations_/numJobs_ * start—>job() + start—>jobIdx();
int endldx = numOperations_/numJobs_ * end—>job() + end—>jobldx();

return cwMatrix_[startIdx][endIdx] == value;

}

void

CycleWitness::mark(const Operation* const start, const Operation* const end, int value) {
int startldx = numOperations_/numJobs_ * start—>job() + start—>jobldx();
int endldx = numOperations_/numJobs_ * end—>job() + end—>jobldx();
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cwMatrix_[startIdx][endIdx] = value;

}

void
CycleWitness:reset() {

for (int i = 0; i < numOperations_; i++) {
memset(cwMatrix_[i], 0, numOperations_*sizeof(double));

}

}

void

CycleWitness::set TimeToBreak(int newTime) {
timeToBreak_ = newTime;

}

void

CycleWitness::adjustCycleDepth(bool queryVal) {
if (queryVal) {
cycleDepth_++;
}
else {
cycleDepth_ = 0;
}
}

bool
CycleWitness::isInCycle() const {
return (cycleDepth_ > timeToBreak_);

}
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A.5 Utilities.H

class Job;
class Machine;
class Operation;

void

parse(const char* fileName, int& numJobs, Job**& jobs, int& numMachines, parse
Machine**& machines, int& numOps, Operation**& operations,
int& numClasses, double**& classTranstions);
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A.6 Utilities.C

#include "DataStructures.H"
#include <iostream.h>
#include <fstream.h>
#include <string.h>

using namespace std;

void

parse(const char* fileName, int& numJobs, Job**& jobs, int& numMachines,

Machine**& machines, int& numOps, Operation**& operations,
int& numClasses, double**& classTransitions) {

int i, j;
ifstream ifs(fileName);
char buf[256];

numClasses = 0;
classTransitions = NULL;

ifs >> buf;
if (Istrcmp(buf, "NUM_OPERATIONS")) {
ifs >> numOps;

}

operations = new Operation*[numOps];

ifs >> buf;

if (!strcmp(buf, "NUM_JOBS")) {
ifs >> numJobs;
jobs = new Job*[numJobs];

for (i = 0; i < numJobs; i++) {
jobs[i] = new Job;

}

else if (Istrcmp(buf, "NUM_CLASSES")) {
ifs >> numClasses;
ifs >> buf;
if (Istrcmp(buf, "NUM_JOBS")) {
ifs >> numJobs;
jobs = new Job*[numJobs];

for (i = 0; i < numJobs; i++) {
jobs[i] = new Job;
}
}
}

ifs >> buf;
if (!strcmp(buf, "NUM_MACHINES")) {
ifs >> numMachines;
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}

machines = new Machine*[numMachines];

for (i = 0; i < numMachines; i++) {
machines[i] = new Machine;

}

int hostNum, numJobOps, numMachineOps, machineldx;
double time;
int opClass;

numJobOps = numOps/numJobs;
numMachineOps = numOps/numMachines;

int* hostldx = new int[numMachines];

for (int i = 0; i < numMachines; i++) {
machines[i]—>setNumOperations(numMachineOps);
hostIdx[i] = 0;

}

for (int jobNum = 0; jobNum < numJobs; jobNum++) {

jobs[jobNum]—>setNumOperations(numJobOps);

for (int jobldx = 0; jobldx < numJobOps; jobldx++) {

ifs >> hostNum;
ifs >> time;
operations[jobNum*numJobOps + jobldx] =
new Operation (jobNum, jobldx, hostNum, time);

if (numClasses > 0) {
ifs >> opClass;

}

operations[jobNum*numJobOps + jobldx]—>setOperationClass(opClass);

jobs[jobNum]—>set AtRank(jobIdx, operations[jobNum*numJobOps + jobldx]);
operations[jobNum*numJobOps + jobldx]—>setMachineldx(hostIdx[hostNum]);
machines[hostNum]—>set AtRank(hostIdx[hostNum], operations[jobNum*numJobOps + jobldx]);

hostIdx[hostNum]++;

}
}

if (numClasses == 0) {
numClasses = 1; // must do this for default table

}

classTransitions = new double*[numClasses];
for (i = 0; i < numClasses; i++) {
classTransitions[i] = new double[numClasses];

}

if (numClasses > 1) {
for (i = 0; i < numClasses; i++) {
for (j = 0; j < numClasses; j++) {
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ifs >> classTransitions[i][j];

}
}

else {
classTransitions[0][0] = 0.0;

}

delete [] hostldx;
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A.7 main.C

#include <alloca.h>
#include <unistd.h>
#include <sys/time.h>
#include <assert.h>

#include "TS_Solution.H"
#include "DataStructures.H"
#include "Utilities.H"

#define MAX(a,b) (((a) < (b)) ? (b) : (a)) 10
#define MIN(a,b) (((a) < (b)) ? (a) : (b))

typedef struct {
int job_;
int jobldx_;

} OperationSig;

typedef struct { 20

bool hasMove_;
double bestMove_;
bool movelsNA_;

int naPermutation_;
Operation* start_;
Operation* end_;

int toMove_; 30
int destination_;
int toModify_;

} NeighboringSolutions;

Jxx
* Prototypes
x4/

void tabuSearchJS(TS_Solution* ts); 40

double estimateLongestPath(Operation* sNode, Operation* eNode, estimatelLonge:
int& permutation, TS_Solution& tss);

double longestPath(const Machine* const m, int startldx, int num, const TS_Solution& tss);
bool isOnCriticalPath(const Operation* const toTest, double makespan);

// Bidirectional list schedule
void initialSolution(TS_Solution* sol); 50

// Unidirectional list schedule with Most-Work-Remaining priority rule

o8



void initialSolution2(TS_Solution* sol);
int semiGreedy(int ¢, const double* const vals, int numVals);
void exploreNeighborhood(TS_Solution* sol);

void nl(NeighboringSolutions& nt, NeighboringSolutions& rand,

TS_Solution* sol, double& num, double& reserveNum); 60
void n2(NeighboringSolutions& nt, NeighboringSolutions& rand,

TS_Solution* sol, double& num, double& reserveNum);
void na(NeighboringSolutions& nt, NeighboringSolutions& rand,

TS_Solution* sol, double& num, double& reserveNum);

void rna(NeighboringSolutions& nt, NeighboringSolutions& rand,
TS_Solution* sol, double& num, double& reserveNum);

bool naMovelsNotTabu(Operation* start, int permutation, TS_Solution* sol);

70
void
fillNASolutions(NeighboringSolutions& nt, NeighboringSolutions& rand,
double currTest, int permutation, Operation* start, Operation* end,
bool isCycle, bool isNotTabu, double& num, double& reserveNum);
double testNBMove(Machine* m, int toMove, int destination, T'S_Solution* sol);
void nb(NeighboringSolutions& nt, NeighboringSolutions& rand,
TS_Solution* sol, double& num, double& reserveNum);
80
void
fillNBSolutions(NeighboringSolutions& nt, NeighboringSolutions& rand,
double currTest, int toMove, int destination, Machine* toModify,
bool isCycle, bool isNotTabu, double& num, double& reserveNum);
bool keepSearching();
bool meetsAspirationCriterion(double estimate);
void print(const OperationList* const);
90
const bool RESET_SOLUTIONS = TRUE;
const int INITIAL_TABU_LENGTH = 10;
const int INITIAL_CYCLE_TEST_LENGTH = 3;
const int RESTART_DELAY = 800;
const int RESET_TL_LENGTH_EXTREMA_DELAY = 60;
const int MAX_ITERS = 12000;
const int SEMI_GREEDY_PARAM = 3;
100

int last_improvement_or_restart = 0;
int num_iters = 0;

bool non_tabu_moves = TRUE;

29



double best_makespan = HUGE_VAL;

bool use_N1 = FALSE;
bool use_N2 = FALSE;
bool use_NA = FALSE;
bool use_.RNA = FALSE;
bool use_NB = FALSE;

int
main(int argc, const char** argv) {

int numOperations;
int numMachines;
int numJobs;

int numClasses;

Job** jobs;
Machine** machines;

Operation** operations;
double** classTransitions;

if (arge > 2) {
int idx = 1;
while (idx < arge—1) {
if (!strcasecmp(argv[idx], "-N1")) {
use_N1 = TRUE;

else if (!strcasecmp(argv[idx], "-N2")) {
use_N2 = TRUE;

else if (Istrcasecmp(argv[idx], "-NA")) {
use_NA = TRUE;
}
else if (Istrcasecmp(argv[idx], "-RNA")) {
use_RNA = TRUE;
}
else if (!strcasecmp(argv[idx], "-NB")) {
use_NB = TRUE;
}
idx—++;
}
cout << "using file " << argv[idx] << end];
parse(argv[idx], numJobs, jobs, numMachines, machines,

numOperations, operations, numClasses, classTransitions);

else if (arge > 1) {
cout << "using file " << argv[l] << endl;
parse(argv[1l], numJobs, jobs, numMachines, machines,

numOperations, operations, numClasses, classTransitions);

use_NB = TRUE;
use_RNA = TRUE;

}
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else {
cout << "Usage: " << argv[0] << " [-N1] [-N2] [-NA] [-RNA] [-NB] <filename>" << endl;
exit(0);

}

// we will need some random numbers
srand48(time(NULL) ~ (getpid() + (getpid() << 15)));
srand(time(NULL) ~ (getpid() + (getpid() << 15)));

long start, end,;

time(&start);

TS_Solution* ts = new TS_Solution(jobs, machines, classTransitions,
numJobs, numMachines, numClasses);

tabuSearchJS(ts);
time(&end);

cout << "execution took " << end—start << " seconds" << endl,;
cout << "best makespan: " << best_makespan << endl;
cout << Mmmmmm e " << endl;

delete ts;

/* S K ok ok 3k 3k K S Sk ok ok ok 3k 3k K K ok ok 3k ok K ok ok K oK ok ok ok K ok ok ok ok ok K ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
*

* TABU SEARCH JS

*
* *************************************************f/

void

tabuSearchJS(TS_Solution* ts) {
int ij;
int min, max; // lengths of Tabu List
const OperationList* cp;

int numMachines = ts—>numMachines();

OperationSig** solutionSig = new OperationSig*[numMachines];
for (i = 0; i < numMachines; i++) {
solutionSig[i] = new OperationSig[ts—>mList(i)—>numOperations()];

}

num_iters = 0;

non_tabu_moves = TRUE;
ts—>tabuList()—>updateLength(INITIAL_TABU_LENGTH);
ts—>witness()—>setTimeToBreak(INITIAL_CYCLE_TEST_LENGTH);

if (RESET_SOLUTIONS) {
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last_improvement_or_restart = 0;
ts—>tabuList()—>reset();
ts—>witness()—>reset();

}
initialSolution(ts); 220

double currMakespan, prevMakespan;
prevMakespan = best_makespan;

currMakespan = ts—>makespan();
if (currMakespan < best_makespan) {
best_makespan = currMakespan;

for (i = 0; i < numMachines; i++) {
for (j = 0; j < ts—>mList(i)—>numOperations(); j++) { 230
solutionSigl[i][j].job- = ts—>mList(i)—>atRank(j)—>job();
solutionSig[i][j].jobIdx- = ts—>mList(i)—>atRank(j)—>jobldx();
}
}
}

cp = ts—>computeCriticalPath(Operation: HEAD);

cout << "initial makespan: " << ts—>makespan() << endl;
240

cp = ts—>computeCriticalPath(Operation::TAIL);
while (keepSearching()) {

if (ts—>tabuList()—>currentTime() % RESET_TL_LENGTH_EXTREMA_DELAY == 0) {
min = (int)(drand48()*(ts—>numMachines() + ts—>numJobs()) / 3) + 2;
max = (int)(drand48()*(ts—>numMachines() + ts—>numJobs()) / 3) + 6 + min;

}

if (RESET_SOLUTIONS && 250
(last_improvement_or_restart + RESTART_DELAY == ts—>tabuList()—>currentTime())) {

for (i = 0; i < numMachines; i++) {
for (j = 0; j < ts—>mList(i)—>numOperations(); j++) {
ts—>jList(solutionSig[i][j].job-) —>atRank(solutionSig][i][j].jobIdx_)—>setMachine(i);
ts—>jList(solutionSig[i][j].job-) —>atRank(solutionSig[i][j].jobIdx_)—>setMachineldx(j);
ts—>mList(i)—>setAtRank(j, ts—>jList(solutionSig[i][j].job-)—>atRank(solutionSig[i][j].jobIldx_));
}
}

ts—>longestPathLinear(Operation:: HEAD);
ts—>longestPathLinear(Operation:: TAIL);
cp = ts—>computeCriticalPath(Operation:: HEAD);

260

last_improvement_or_restart = ts—>tabuList()—>currentTime();
cout << "resetting the solution at time " << last_improvement_or_restart << endl;
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exploreNeighborhood(ts);

ts—>longestPathLinear(Operation:: HEAD);
ts—>longestPathLinear(Operation:: TAIL);

cp = ts—>computeCriticalPath(Operation:: HEAD);

ts—>tabuList()—>incrementTime();
num_iters—+-+;

currMakespan = ts—>makespan();

if (currMakespan < best_makespan) {
best_makespan = currMakespan;

for (i = 0; i < numMachines; i++) {
for (j = 0; j < ts—>mList(i)—>numOperations(); j++) {
solutionSig[i][j].job- = ts—>mList(i)—>atRank(j)—>job();
solutionSig[i][j].jobldx- = ts—>mList(i)—>atRank(j)—>jobldx();
}

ts—>tabuList()—>updateLength(1);
cout << "found solution of length " << best_makespan
<< " at time " << ts—>tabuList()—>currentTime() << endl;

if (RESET_SOLUTIONS) {
last_improvement_or_restart = ts—>tabuList()—>currentTime();

}
}

else {
if (prevMakespan <= currMakespan && ts—>tabuList()—>length() < max) {
ts—>tabuList()—>updateLength(ts—>tabuList()—>length() + 1);

else if (prevMakespan > currMakespan && ts—>tabuList()—>length() > min) {
ts—>tabuList()—>updateLength(ts—>tabuList()—>length() — 1);
}
}

prevMakespan = currMakespan;

}

CoUut << "HHHHHHHHHHEHEEHEEEEEEE R << end;
cout << best_makespan << endl;
CoUt << "HHHHHHHHHHHHHHHEEEEEEE SR << end;

for (i = 0; i < numMachines; i++) {
for (j = 0; j < ts—>mList(i)—>numOperations(); j++) {
ts—>jList(solutionSig[i][j].job-) —>atRank(solutionSig[i][j].jobIdx_) —>setMachine(i);

ts—>jList(solutionSig[i][j].job-) —>atRank(solutionSig[i][j].jobIdx_) —>setMachineldx(j);
ts—>mList(i)—>setAtRank(j, ts—>jList(solutionSigl[i][j].job-)—>atRank(solutionSig[i][j].jobIdx_));

}
}
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ts—>longestPathLinear(Operation:: HEAD);
ts—>longestPathLinear(Operation:: TAIL);

cp = ts—>computeCriticalPath(Operation:: HEAD);

for (i = 0; i < numMachines; i++) {
delete [] solutionSig[i];

delete [] solutionSig;

/>/< 323233333333 232323233333333333232323333333333331123
*
* ESTIMATE LONGEST PATH
*
* >k>k>k>k>k>k>k>k>k>k>k>k>k>k>l<>/<>/<>l<>l<>l<>/<>/<>l<>l<>/<>/<>/<>l<>l<*********************/

double
estimateLongestPath(Operation* sNode, Operation* eNode,
int& permutation, TS_Solution& tss) {

double bestVal = HUGE_VAL;
double currVal;
int bestldx = 0;

Operation* start = sNode;
Operation* end = eNode;

Machine* m = tss.mList(start—>machine());
int startldx = start—>machineldx();

/>/<
Permutations:
1: ( end, start, )
2: ( end, PM/start], start, )
3: ( end, start, PM/start], )
4: (end, SM[end], start, )
5: ( SM[end], end, start, )
*
/

tss.swap(m—>atRank(startldx), m—>atRank(startIdx+1));

bestldx = 1;

'

bestVal = longestPath(m, startldx, 2, tss);

// undo swap
tss.swap(m—>atRank(startIdx), m—>atRank(startIdx+1));

// arc must exist AND be on critical path!!
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if (start—>machineldx() > 0 &&
isOnCriticalPath(m—>atRank(startIdx—1), tss.makespan()) &&
(m—>atRank(startIdx)—>cumulativeTime(Operation: HEAD) ==
m—>atRank(startIdx—1)—>cumulativeTime(Operation:HEAD) +
m—>atRank(startldx—1)—>time() + m—>atRank(startIdx—1)—>transitionTime())) {

// set up test 2
tss.swap(m—>atRank(startIdx), m—>atRank(startIdx+1));
tss.swap(m—>atRank(startIdx—1), m—>atRank(startIdx));

// test value
currVal = longestPath(m, startldx—1, 3, tss);

// undo swaps
tss.swap(m—>atRank(startIdx—1), m—>atRank(startldx));
tss.swap(m—>atRank(startldx), m—>atRank(startIdx+1));

if (currVal < bestVal) {
bestldx = 2;
bestVal = currVal;

}

// set up test 3

tss.swap(m—>atRank(startIdx), m—>atRank(startIdx+1));
tss.swap(m—>atRank(startldx—1), m—>atRank(startIdx));
tss.swap(m—>atRank(startIdx), m—>atRank(startIdx+1));

// test value
currVal = longestPath(m, startldx—1, 3, tss);

tss.swap(m—>atRank(startldx), m—>atRank(startIdx+1));
tss.swap(m—>atRank(startIdx—1), m—>atRank(startldx));
tss.swap(m—>atRank(startldx), m—>atRank(startIdx+1));

if (currVal< bestVal) {
bestldx = 3;
bestVal = currVal,;

}
}

// arc must exist AND be on critical path!!

if (startldx < tss.mList(start—>machine())—>numOperations() — 2 &&
isOnCriticalPath(m—>atRank(startIdx+2), tss.makespan()) &&
(m—>atRank(startldx+2)—>cumulativeTime(Operation: HEAD) ==
m—>atRank(startIdx+1)—>cumulativeTime(Operation: HEAD) +
m—>atRank(startIdx+1)—>time() + m—>atRank(startIdx+1)—>transitionTime()) ) {

// set up test 4
tss.swap(m—>atRank(startldx), m—>atRank(startIdx+1));

tss.swap(m—>atRank(startIdx+1), m—>atRank(startIdx+2));
currVal = longestPath(m, startldx, 3, tss);

// undo swaps
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tss.swap(m—>atRank(startIdx+1), m—>atRank(startIdx+2));
tss.swap(m—>atRank(startIdx), m—>atRank(startIdx+1));

if (currVal < bestVal) {
bestldx = 4;
bestVal = currVal;

}

// set up test 5

tss.swap(m—>atRank(startldx), m—>atRank(startIdx+1));
tss.swap(m—>atRank(startIdx+1), m—>atRank(startIdx+2));
tss.swap(m—>atRank(startldx), m—>atRank(startIdx+1));

currVal = longestPath(m, startldx, 3, tss);

// undo swaps

tss.swap(m—>atRank(startIdx), m—>atRank(startIdx+1));
tss.swap(m—>atRank(startIdx+1), m—>atRank(startIdx+2));
tss.swap(m—>atRank(startIdx), m—>atRank(startIdx+1));

if (currVal < bestVal) {
bestldx = b5;
bestVal = currVal;

}
}

permutation = bestldx;
return bestVal,

s

/* K K oK 3k 3k K K K ok ok 3k 3k K O K ok K 3K K oK ok K oK K ok 3k K O ok ok ok oK ok ok ok oK oK ok kK oK K ok 3k Ok oKk ok ok ok
*

* LONGEST PATH

*
* >k>k>k>k>k>k>k>k>l<>k>k>l<>k>k>l<>/<>/<>l<>l<>l<>/<>/<>l<>l<>/<>/<>/<>l<>l<*********************/

double

longestPath(const Machine* const m, int startldx, int num, const TS_Solution& tss) {
int i;
int numNodes = num;

double* newHeadVals = (double*)(alloca(numNodes*sizeof(double)));
double* newTailVals = (double*)(alloca(numNodes*sizeof(double)));

double jVal;
double mVal;

// comptute the new head values

// special case for the first new head value
if (startldx > 0) {
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mVal = (m—>atRank(startldx—1)—>cumulativeTime(Operation:: HEAD) +
m—>atRank(startIdx—1)—>time() +
m—>atRank(startIdx—1)—>transitionTime()); // Previous Operation in Machine

else {
mVal = 0;
}

if (tss.jobPrev(m—>atRank(startldx)) != NULL) {
jVal = (tss.jobPrev(m—>atRank(startldx))—>cumulativeTime(Operation:: HEAD) +
tss.jobPrev(m—>atRank(startldx))—>time()); // Previous Operation in Job
}

else {
jval = 0;
}

newHeadVals[0] = MAX(mVal, jVal);

for (i = 1; 1 < numNodes; i++) {
if (tss.jobPrev(m—>atRank(startldx+i)) != NULL) {
jVal = (tss.jobPrev(m—>atRank(startIdx—+i))—>cumulativeTime(Operation: HEAD) +
tss.jobPrev(m—>atRank(startIdx+i))—>time()); // Previous Operation in Job

}

else {
jVal = 0;
}

mVal = (newHeadVals[i—1] + m—>atRank(startIdx+i—1)—>time() +

m—>atRank(startIdx+i—1)—>transitionTime()); // Previous Operation in Machine

newHeadVals[i] = MAX(mVal, jVal);

// comptute the new tail values

// special case for the last new tail value
if (startldx + numNodes < m—>numOperations()) {
mVal = (m—>atRank(startIdx+numNodes)—>cumulativeTime(Operation:: TAIL) +
m—>atRank(startIdx+numNodes)—>time() +
m—>atRank(startIdx+numNodes—1)—>transitionTime());
}
else {
mVal = 0;

}

if (tss.jobNext(m—>atRank(startldx+numNodes—1)) != NULL) {

jVal = (tss.jobNext(m—>atRank(startIdx+numNodes—1))—>cumulativeTime(Operation:: TAIL) +

tss.jobNext(m—>atRank(startIdx+numNodes—1))—>time());

}

else {
jVal = 0;
}
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newTailVals[numNodes—1] = MAX(mVal, jVal);

540
for (i = numNodes — 2; 1 >=0; i——) {
if (tss.jobNext(m—>atRank(startldx + i)) != NULL) {
jVal = (tss.jobNext(m—>atRank(startIdx + i))—>cumulativeTime(Operation::TAIL) +
tss.jobNext(m—>atRank(startldx + i))—>time());
}
else {
jVal = 0;
} 550
mVal = (newTailVals[i+1] +
m—>atRank(startIdx+i+1)—>time() +
m—>atRank(startIdx+i)—>transitionTime());
newTailVals[i] = MAX(jVal, mVal);
}
double toReturn = 0;
560
for (i = 0; i < numNodes; i++) {
toReturn = MAX(newHeadVals[i] + m—>atRank(startIdx+i)—>time() + newTailVals[i], toReturn);
}
return toReturn;
}
[ RRRRR A AAAA RIS KRR IAAASAAAF SRS FFFSSAF Ak
* 570
* INITIAL SOLUTION
*
* >k>k>k>k>k>k>k>k>k>k>k>k>k>k>k>/<>/<>l<>l<>l<>/<>/<>l<>l<>/<>/<>/<>l<>l<*********************/
void
initialSolution(TS_Solution* sol) { initialSolution
int i,j;
// Initialization: 580
OperationList S, T;
for (i = 0; i < sol-—>numJobs(); i++) {
S.addFirst(sol—>jList(i)—>atRank(0));
S first()—>data()—>setCumulativeTime(Operation:: HEAD, 0);
T.addFirst(sol—>jList(i) —>atRank(sol—>jList(i)—>numOperations() — 1));
T first()—>data()—>setCumulativeTime(Operation:: TAIL, 0);
590

// free spots on machines
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int* firstFree = new int[sol—>numMachines()];
int* lastFree = new int[sol—>numMachines()];

for (i = 0; i < sol—>numMachines(); i++) {
firstFree[i] = 0;
lastFree[i] = (sol—>mList(i))—>numOperations() — 1;

// operations in jobs that have already been scheduled.
int* lastOperationInL. = new int[sol—>numJobs()];
int* firstOperationInR = new int[sol—>numJobs()];

for (i = 0; i < sol-—>numJobs(); i++) {
lastOperationInL[i] = —1;
firstOperationInR[i] = sol—>jList(i)—>numOperations();

}

double* estimate = new double[sol—>numJobs()];

int sizeOfL. = 0;

int sizeOfR = 0;

int N = 0;

for (i = 0; i < sol-—>numJobs(); i++) {
N += sol—>jList(i)—>numOperations();

}

// main algorithm

Operation* choice;

Operation* iData;

OperationList::Node* iter;

Machine* m;

double mVal, jVal; // used to compute head or tail values.

while (sizeOfR + sizeOfL < N) {

int idx = 0;
int mldx;

// choose some Operation \in S with a priority rule

for (iter = S.first(); iter != NULL; iter = S.next(iter)) {
iData = iter—>data();

sol—>swap(sol—>mList(iData—>machine())—>atRank(firstFree[iData—>machine()]), iData);

estimate[idx] = iData—>time() + iData—>cumulativeTime(Operation::HEAD);

jVal = iData—>cumulativeTime(Operation:: TAIL);

mVal = 0.0;
// compute mVal here.

for (mldx = firstFree[iData—>machine()]+1; mIdx <= lastFree[iData—>machine()]; mIdx++) {

m = sol—>mList(iData—>machine());

69

600

610

620

630

640



mVal = MAX(mVal,
m—>atRank(mIdx)—>time() +
sol—>transitionTime(iData—>operationClass(), m—>atRank(mIdx)—>operationClass()) +
sol—>mlList(iData—>machine())—>atRank(mIdx)—>cumulativeTime(Operation:: TAIL)); 650

}

estimate[idx] += MAX(jVal, mVal);
idx++;

sol—>swap(sol—>mList(iData—>machine())—>atRank(firstFrec[iData—>machine()]), iData);

}

int choiceldx = semiGreedy(SEMI_GREEDY_PARAM, estimate, S.size()); 660
choice = S.atRank(choiceldx)—>data();
// put choice on machine in the first position free from the beginning

sol—>swap(sol—>mList(choice—>machine())—>atRank(firstFree[choice—>machine()]), choice);
firstFree[choice—>machine()]++;

// update sets

S.removeltem(choice); 670
sizeOfL++;

lastOperationInL[choice—>job()]++;

// remove the Operation from T, if it is there.
if (T.findItem(choice)) {
T.removeltem(choice);

}

if (firstOperationInR[choice—>job()] > choice—>jobldx() + 1) {
S.addFirst(sol—>jobNext(choice)); 680

}

// compute the head values of the elements in S

for (i = 0; i < sol—>numJobs(); i++) {
for (j = lastOperationInL[i] + 1; j < firstOperationInR[i]; j++) {
sol—>jList(i)—>atRank(j)—>setCumulativeTime(Operation:: TAIL, —-HUGE_VAL);
}
}

for (iter = S.first(); iter != NULL; iter = S.next(iter)) {
iter—>data()—>setCumulativeTime(Operation:HEAD, —HUGE_VAL);

690

for (iter = S.first(); iter != NULL; iter = S.next(iter)) {
iData = iter—>data();

sol—>swap(sol—>mList(iData—>machine())—>atRank(firstFree[iData—>machine()]), iData);
sol—>longestPathHelper(iData, Operation::HEAD);
sol—>longestPathHelperIncomplete(iData, Operation::TAIL, firstFree, lastFree);

700
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sol—>swap(sol—>mList(iData—>machine())—>atRank(firstFrec[iData—>machine()]), iData);

}

if (sizeOfL + sizeOfR < N) {

// choose some Operation \in T with a priority rule
idx = 0;
for (iter = T first(); iter |= NULL; iter = T.next(iter)) {
iData = iter—>datal();
710
sol—>swap(sol—>mList(iData—>machine())—>atRank(lastFree[iData—>machine()]), iData);
estimate[idx] = iData—>time() + iData—>cumulativeTime(Operation::TAIL);

jVal = iData—>cumulativeTime(Operation:: HEAD);

mVal = 0.0;
// compute mVal here.
for (mlIdx = firstFree[iData—>machine()]; mIdx < lastFree[iData—>machine()]; mIdx++) {
mVal = MAX(mVal,
sol—mlList(iData—>machine())—>atRank(mIdx)—>time() + 720
sol—>transitionTime(m—>atRank(mIdx)—>operationClass(), iData—>operationClass()) +
sol—>mList(iData—>machine())—>atRank(mIdx)—>cumulativeTime(Operation:: HEAD));

}
estimate[idx] += MAX(jVal, mVal);
idx—++;

sol—>swap(sol—>mList(iData—>machine())—>atRank(lastFree[iData—>machine()]), iData);
} 730

choiceldx = semiGreedy(SEMI_.GREEDY_PARAM, estimate, T.size());
choice = T.atRank(choiceldx)—>data();

// put i on machine_i in the first position free from the end
sol—>swap(sol—>mList(choice—>machine())—>atRank(lastFree[choice—>machine()]), choice);
lastFree[choice—>machine()]——;

// update the sets 1o
T.removeltem(choice);

sizeOfR++;

firstOperationInR[choice—>job()]——;

if (S.findItem(choice)) {
S.removeltem(choice);

}

if (lastOperationInL[choice—>job()] < choice—>jobldx() — 1) {
T.addFirst(sol—>jobPrev(choice)); 750

}

// compute the tail values of the elements in T
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for (i = 0; i < sol—>numJobs(); i++) {
for (j = lastOperationInL[i] + 1; j < firstOperationInR[i]; j++) {
sol—>jList(i)—>atRank(j)—>setCumulativeTime(Operation:: HEAD, —HUGE_VAL);
}
}

for (iter = T first(); iter |= NULL; iter = T.next(iter)) {
iter—>data()—>setCumulativeTime(Operation:: TAIL, —-HUGE_VAL);

760

for (iter = T first(); iter |= NULL; iter = T.next(iter)) {
iData = iter—>data();

sol—>swap(sol—>mList(iData—>machine())—>atRank(lastFree[iData—>machine()]), iData);
sol—>longestPathHelper(iData, Operation::TAIL);

sol—>longestPathHelperIncomplete(iData, Operation::HEAD, firstFree, lastFree);
sol—>swap(sol—>mList(iData—>machine())—>atRank(lastFree[iData—>machine()]), iData); 770

}

sol—>longestPathLinear(Operation:: TAIL);
sol—>longestPathLinear(Operation:: HEAD);

delete [] firstOperationInR;
delete [] lastOperationInL;
780
delete [] firstFree;
delete [] lastFree;

delete [] estimate;

/>/< 323233333333 23232333233333333332323333333333333123

* 790
* EXPLORE NEIGHBORHOOD

*
* >k>k>k>k>k>k>k>k>k>k>k>k>k>k>l<>/<>/<>l<>l<>l<>/<>/<>l<>/<**************************/

void

exploreNeighborhood(TS_Solution* sol) { exploreNeighbc
// this function should explore the given neighborhood and return
// the appropriate candidate solution.

// NT means Non Tabu 800
NeighboringSolutions nt;

nt.hasMove_. = FALSE;

nt.bestMove_. = HUGE_VAL;
nt.movelsNA_ = FALSE;

nt.naPermutation_. = —1;
nt.start_ = NULL;
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nt.end_ = NULL;

810
nt.toMove_ = —1;
nt.destination. = —1;
nt.toModify_. = —1;

// rand means random move. only used if no move is non-tabu or meets
// the aspiration criterion.
NeighboringSolutions rand;

rand.hasMove_. = FALSE;
rand.bestMove_. = HUGE_VAL; 820
rand.movelsNA_ = FALSE;

rand.naPermutation_. = —1;
rand.start_ = NULL;
rand.end_ = NULL;
rand.toMove_ = -1
rand.destination. = —1;
rand.toModify. = —1;
830
// num is used to break ties when two solutions have the same
// estimated value
double num;
// we will want to have a reserve move in case there exist no
// non-tabu moves, and none of the non-tabu moves satisfy the
// aspiration criterion.
double reserveNum = 1.0;
840
//Here is where the magic happens.
if (use_N1) {
nl(nt, rand, sol, num, reserveNum);
if (use_N2) {
nl(nt, rand, sol, num, reserveNum);
}
if (use_NA) {
na(nt, rand, sol, num, reserveNum);
850

}
if (use_RNA) {

rna(nt, rand, sol, num, reserveNum);

}
if (use_NB) {

nb(nt, rand, sol, num, reserveNum);

}

NeighboringSolutions toUse;
if (nt.hasMove_) {
toUse = nt; 860

}

else if (rand.hasMove_) {
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toUse = rand;

}

else {
// there are no valid moves
non_tabu_moves = FALSE;
return;

}

if (toUse.movelsNA_) {
Vs

Permutations indicated from estimateLongestPath(.) :

: (PM][start], end, start, SM[end])

. (PM[PM[start]], end, PM/[start], start, SM[end])
. (PM[PM[start]], end, start, PM[start], SM[end])
: (PM][start], end, SM[end], start, SM[SM/[end])

. (PM[start], SMfend], end, start, SM[SM/[end])

N G o e

*

Operation* startOp = toUse.start_;
Operation* endOp = toUse.end_;

Operation* thirdOp; // used if swapping three elements
Machine* m = sol—>mList(startOp—>machine());

sol—>witness()—>adjustCycleDepth(sol—>witness() —>query(startOp, endOp, sol—>makespan()));
sol—>witness()—>mark(startOp, endOp, sol—>makespan());//witness arc

//

// Now to update the machine list and tabu list.

/7

switch (toUse.naPermutation_) {

case 1:
//update tabulist
sol—>tabuList()—>mark(endOp, startOp);

// swap (start, end)
sol—>swap(startOp, endOp);
break;
case 2:
thirdOp = sol—>machinePrev(startOp);

//update tabulist
sol—>tabuList()—>mark(endOp, startOp);
sol—>tabuList()—>mark(endOp, thirdOp);

// the paper indicates that this should be here. . .
sol—>tabuList()—>mark(startOp, thirdOp);

// swap (start, end), (PM[start], end)
sol—>swap(startOp, endOp);
sol—>swap(endOp, thirdOp);
break;

case 3:
thirdOp = sol—>machinePrev(startOp);
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//update tabulist
sol—>tabuList()—>mark(endOp, startOp);
sol—>tabuList()—>mark(endOp, thirdOp);
sol—>tabuList()—>mark(startOp, thirdOp);

// swap (start, end), (PM[start], end), (PM[start], start)
sol—>swap(startOp, endOp);
sol—>swap(endOp, thirdOp);
sol—>swap(thirdOp, startOp);
break;
case 4:
thirdOp = sol—>machineNext(endOp);

//update tabulist
sol—>tabuList()—>mark(endOp, startOp);
sol—>tabuList()—>mark(thirdOp, startOp);

// the paper indicates that this should be here. . .
sol—>tabuList()—>mark(thirdOp, endOp);

// swap (start, end), (start, SM/[end])
sol—>swap(startOp, endOp);
sol—>swap(startOp, thirdOp);
break;

case b5:
thirdOp = sol—>machineNext(endOp);

//update tabulist
sol—>tabuList()—>mark(endOp, startOp);
sol—>tabuList()—>mark(thirdOp, startOp);
sol—>tabuList()—>mark(thirdOp, endOp);

// swap (start, end), (start, SM[end]), (end, SM/end])
sol—>swap(startOp, endOp);

sol—>swap(startOp, thirdOp);

sol—>swap(thirdOp, endOp);

break;
}
else { // using NB
int destination = toUse.destination_;
int toMove = toUse.toMove_;

Machine* toModify = sol—>mList(toUse.toModify_);
CycleWitness* cw = sol—>witness();

Operation* temp = toModify—>atRank(toMove);
if (destination < toMove) {

cw—>adjustCycleDepth(cw—>query(temp, toModify—>atRank(toMove—1), sol—>makespan()));
cw—>mark(temp, toModify—>atRank(toMove—1), sol—>makespan()); //witness arc

for (int i = toMove; i > destination; i——) {

sol—>tabuList()—>mark(temp, toModify—>atRank(i—1));
toModify —>setAtRank(i, toModify—>atRank(i—1));
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toModify—>atRank(i)—>setMachineldx(i);
}
toModify—>set AtRank(destination, temp);
toModify—>atRank(destination)—>setMachineldx(destination);

}

else {

cw—>adjustCycleDepth(cw—>query(toModify —>atRank(toMove+1), temp, sol—>makespan()));
cw—>mark(toModify—>atRank(toMove+1), temp, sol—>makespan());//witness arc

for (int i = toMove; i < destination; i++) {
sol—>tabuList()—>mark(toModify—>atRank(i+1), temp);
toModify—>setAtRank(i, toModify—>atRank(i+1));
toModify —atRank(i)—>setMachineldx(i);

}

toModify—>set AtRank(destination, temp);

toModify —>atRank(destination)—>setMachineldx(destination);

}

/* 3323313333331 333333132 32 SRS RS P IS ST 2
*
* TEST NB MOVE
*
* >k>k>k>k>k>k>k>k>k>k>k>k>k>k>k***********************************/

double

testNBMove(Machine* m, int toMove, int destination, TS_Solution* sol) {
int k;
double toReturn;
Operation* temp;

if (destination > toMove) {
temp = m—>atRank(toMove);
for (k = toMove; k < destination; k++) {
m—>setAtRank(k, m—>atRank(k+1));
}
m—>setAtRank(destination, temp);
toReturn = longestPath(m, toMove, destination—toMove+1, *sol);

temp = m—>atRank(destination);

for (k = destination; k > toMove; k——) {
m—>setAtRank(k, m—>atRank(k—1));

}

m—>setAtRank(toMove, temp);
}
else {
temp = m—>atRank(toMove);
for (k = toMove; k > destination; k——) {
m—>setAtRank(k, m—>atRank(k—1));
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m—>setAtRank(destination, temp);
toReturn = longestPath(m, destination, toMove—destination+1, *sol);

temp = m—>atRank(destination);
for (k = destination; k < toMove; k++) { 1030
m—>setAtRank(k, m—>atRank(k+1));

}

m—>setAtRank(toMove, temp);

}

return toReturn;

}

1040

JRRRAAAAAAAAAAAAAAASAAFFAA KIS AAAAAAAAAFFFAAH A

*

* SEMI GREEDY

*

KRR RKEEAAAS SR KIEAAS S KIAAS RS KKEAASS SR KKAAA |
int
semiGreedy(int c, const double* const vals, int numVals) { semiGreedy

int 1, j, k; 1050

if (numVals <= c) {
return rand()%numVals;

}

else {
int* cLowestOrderStatistics = (int*)(alloca(c*sizeof(int)));
double* cLowestValues = (double*)(alloca(c*sizeof(double)));

for (i=0;1<c¢; i++) {
cLowestValues[i] = HUGE_VAL; 1060
}

for (i = 0; i < numVals; i++) {
for (j =0;j < ¢ j++) {
if (vals[i] < cLowestValues[j]) {
break;

}

}

for (k = c—1; k >= j+1; k—) {
cLowestValues[k] = cLowestValues[k—1]; 1070
cLowestOrderStatistics[k] = cLowestOrderStatistics[k—1];

}

if (j <c¢){
cLowestValues[j] = vals[i];
cLowestOrderStatistics[j] = i;

}
}

int returnRank = rand()%c;

7



return cLowestOrderStatistics[returnRank];

}
}

/* 3323313333331 333333132 32 SRS Ry P P IS ST 2
*
* KEEP SEARCHING
*
* >k>k>k>k>k>k>k>k>k>k>k>k>k>k>k***********************************/

bool
keepSearching() {
return ((num-_iters < MAX(MAX_ITERS, last_improvement_or_restart + RESTART_DELAY)) &&
non_tabu_moves == TRUE );
}

/>l< K K ok ok 3k 3k K S ok ok ok ok 3k 3k oK K ok kK ok K ok kK oK ok ok kK K ok ok koK K ok ok ok ok ok ok koK ok ok ok ok ok ok ok
*
* MEETS ASPIRATION CRITERION
*
* ********************>l<>l<>/<>/<**************************/

bool

meetsAspirationCriterion(double estimate) {
// If selected move improves better than best so far, accept.
return (estimate < best_makespan);

s

void

print(const OperationList* const ol) {
OperationList::Node* iter = ol—>first();
cout << "List: " << endl;
while (iter != NULL) {

iter—>data()—>dump();
cout << endl;

iter = ol—>next(iter);

}
}

[ RRRRA A AAA AR R R RI RIS IS SIS SRR IRRRRRR IR
*
* IS ON CRITICAL PATH
*
K RRRRRRRRRRRRRRRRRRRRRREEIIIERAAAAE IR RRRIIRK |
bool
isOnCriticalPath(const Operation* const toTest, double makespan) {
// r-p + d_p + t_p == makespan ==> p \in critical path
return (toTest—>cumulativeTime(Operation::HEAD) + toTest—>time() +
toTest—>cumulativeTime(Operation::TAIL) == makespan);
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/* KAFKKKKRKF KK KKK KIKRK KKK I KK KF KKK KA KKK KKK KK AN A
*
* NA MOVE IS NOT TABU
*
* *************************************************f/

bool
naMovelsNotTabu(Operation* start, int permutation, TS_Solution* sol) { 1140 naMovels|
/>/<

Permutations indicated from estimateLongestPath(.) :

: (PM][start], end, start, SM[end])

. (PM[PM[start]], end, PM/[start], start, SM[end])
. (PM[PM[start]], end, start, PM[start], SM[end])
: (PM][start], end, SM[end], start, SM[SM/[end])

. (PM[start], SM[end], end, start, SM[SM/[end])

*

/

bool isNotTabu = TRUE;

Grds Lo o~

1150

int startldx = start—>machineldx();
Machine* m = sol—>mList(start—>machine());

// query returns TRUE if a move is tabu.
// all RNA tests reverse this arc. If it is tabu, no move is feasible.
isNotTabu = !sol—>tabuList()—>query(m—>atRank(startIdx), m—>atRank(startldx + 1));
if (isNotTabu) {
switch(permutation) { 1160
case 2:
isNotTabu = isNotTabu &&
Isol—>tabuList()—>query(m—>atRank(startIdx—1), m—>atRank(startIdx+1));
break;
case 3:
isNotTabu = isNotTabu &&
Isol—>tabuList()—>query(m—>atRank(startIdx—1), m—>atRank(startldx+1)) &&
Isol—tabuList()—>query(m—>atRank(startldx—1), m—>atRank(startIdx));
break;
case 4: 1170
isNotTabu = isNotTabu &&
Isol—>tabuList()—>query(m—>atRank(startIdx), m—>atRank(startIdx+2));
break;
case b:
isNotTabu = isNotTabu &&
Isol—>tabuList()—>query(m—>atRank(startIdx), m—>atRank(startldx+2)) &&
Isol—tabuList()—>query(m—>atRank(startldx+1), m—>atRank(startIdx+2));
break;
¥

} 1180
return isNotTabu;

}

/* 323233333333 232323233333333333332323333333333331123
*

* FILL NA SOLUTIONS
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*
* >k>k>k>k>k>k>k>k>k>k>k>k>k>k>k>/<>/<>l<>l<>l<>/<>/<>l<>l<>/<>/<>/<>l<>l<*********************/
void
fillNASolutions(NeighboringSolutions& nt, NeighboringSolutions& rand,
double currTest, int permutation, Operation* start, Operation* end,
bool isCycle, bool isNotTabu, double& num, double& reserveNum) {

if ((isNotTabu && !isCycle) || meetsAspirationCriterion(currTest)) {

if (currTest < nt.bestMove_) {

nt.hasMove_ = TRUE;
nt.movelsNA_ = TRUE;
nt.start_ = start;

nt.end_ = end;
nt.naPermutation. = permutation;
nt.bestMove_ = currTest;
num = 2.0;

else if (currTest == nt.bestMove_ && drand48() < 1/num) {

nt.movelsNA_ = TRUE;
nt.start_ = start;

nt.end_ = end;
nt.naPermutation. = permutation;
num--+;

}

}
else if (!(nt.hasMove_) && drand48() < 1/reserveNum) {

rand.hasMove_ = TRUE;
rand.movelsNA_ = TRUE;
rand.start_ = start;
rand.end_ = end;
rand.naPermutation_ = permutation;
reserveNum--+;

}
}

/>/< P I I I I I I T I I T T Tt
*
* FILL NB SOLUTIONS
*
R
void
fillNBSolutions(NeighboringSolutions& nt, NeighboringSolutions& rand,
double currTest, int toMove, int destination, int toModify,
bool isCycle, bool isNotTabu, double& num, double& reserveNum) {

if ((isNotTabu && !isCycle) || meetsAspirationCriterion(currTest)) {
if (currTest < nt.bestMove_) {

nt.hasMove_ = TRUE;
nt.movelsNA_ = FALSE;
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nt.destination_ destination;
nt.toMove_ = toMove;
nt.toModify_ = toModify;
nt.bestMove_ currTest;

num = 2.0;

}
else if (currTest == nt.bestMove_ && drand48() < 1/num) {

nt.movelsNA_ = FALSE;
nt.destination. = destination;
nt.toMove_ = toMove;

nt.toModify_

toModify;

num-+-+;

}

else if (!(nt.hasMove_) && drand48() < 1/reserveNum) {

rand.hasMove_ = TRUE;
rand.movelsNA _ = FALSE;
rand.destination_ = destination;
rand.toMove_ = toMove;
rand.toModify_ = toModify;
reserveNum--+;

}
}

/* K oK o o o e ok o o o e ok K oK e K e o e ok e oK oK e oK e oK K KK oK KK oK KK ok KR KOk KR KOk K
*
* NEIGHBORHOOD NB
*
* *************************************************f/
/* o oK o KK KKk KOk K kKKK

* Neighborhood NB
* 1) Identify blocks.
*

* 2) For each block b found
8) for each operation x in b
4) for each k from PJ[z] to b.start
5) if (head[SJT[k]] + time[SJT[k]] < head[PJ[x]])
6) break;
7) test move (r, SM[k])
8) for each k from SJfx] to b.end
9) if (head[SJ[z]] + time[ST[x]] < head[PJ[k]])
10) break;
* 11) test move (x, PM[k])

* ********************f/

* % %X %X %X %X %X %

void
nb(NeighboringSolutions& nt, NeighboringSolutions& rand,
TS_Solution* sol, double& num, double& reserveNum) {

static int i, j, k;
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static int fIdx, bldx, blocksize;
static double currTest;

static bool isCycle, isNotTabu;
static Machine* m;

int offset = 1; 1300
if (use_.RNA || use_NA) {
offset = 3;

}
const int RNA_OFFSET = offset;

for (int n = 0; n < sol->numMachines(); n++) {
m = sol—>mList(n);
for (int p = 0; p < sol—>mList(n)—>numOperations(); p++) {
bldx = p;
fldx = p; 1310

// this is very important. it ensures that a block is actually

// on the critical path.

if (lisOnCriticalPath(m—>atRank(p), sol—>makespan())) {
continue;

}

while (p < sol—>mList(n)—>numOperations()—1 &&
isOnCriticalPath(m—>atRank(p+1), sol—>makespan()) &&
m—>atRank(p+1)—>cumulativeTime(Operation: HEAD) == 1320
m—>atRank(p)—>cumulativeTime(Operation:: HEAD) +
m—>atRank(p)—>time() + m—>atRank(p)—>transitionTime()) {
p++;

}

fldx = p;
blocksize = fldx — bldx + 1;

if (blocksize > RNA_OFFSET) { // else, everything is covered by RNA

1330
// try to swap operation to as low an index as possible
for (i = bldx + RNA_OFFSET; i <= fldx; i++) {
for (j =i-1;j > bldx; j——) {
if (sol—>jobNext(m—>atRank(j)) != NULL && sol—>jobPrev(m—>atRank(i)) = NULL &&
sol—>jobNext(m—>atRank(j))—>cumulativeTime(Operation: HEAD) +
sol—>jobNext(m—>atRank(j))—>time() <=
sol—>jobPrev(m—>atRank(i))—>cumulativeTime(Operation:: HEAD)) {
++
1340
break;

}
}

if (j == bldx &&
sol—>jobNext(m—>atRank(j)) = NULL && sol—>jobPrev(m—>atRank(i)) != NULL &&
sol—>jobNext(m—>atRank(j))—>cumulativeTime(Operation: HEAD) +
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sol—>jobNext(m—>atRank(j))—>time() <=
sol—>jobPrev(m—>atRank(i))—>cumulativeTime(Operation:: HEAD)) { 1350
J++

if (i == j) { continue; }
isNotTabu = TRUE;
for (k =1 k > j k—) {

isNotTabu = isNotTabu && !(sol—>tabuList()—>query(m—>atRank(k—1), m—>atRank(i)));

}

1360
isCycle = sol—>witness()—>isInCycle() &&
sol—>witness()—>query(m—>atRank(i), m—>atRank(i—1), sol—>makespan());
currTest = testNBMove(m, i, j, sol);
filINBSolutions(nt, rand, currTest, i, j, n, isCycle, isNotTabu, num, reserveNum);
}
// end swap to low
1370
// try to swap operations to as high an index as possible
for (i = bldx; i <= fldx — RNA_OFFSET; i++) {
for (j = i+1; j < fldx; j++) {
if (sol—jobNext(m—>atRank(i)) != NULL && sol—>jobPrev(m—>atRank(j)) != NULL &&
sol—>jobNext(m—>atRank(i))—>cumulativeTime(Operation:: HEAD) +
sol—>jobNext(m—>atRank(i))—>time() <=
sol—>jobPrev(m—>atRank(j))—>cumulativeTime(Operation:: HEAD)) {
==
1380
break;
}
}
if (j == fldx &&
sol—>jobNext(m—>atRank(i)) != NULL && sol—>jobPrev(m—>atRank(j)) != NULL &&
sol—>jobNext(m—>atRank(i))—>cumulativeTime(Operation:: HEAD) +
sol—>jobNext(m—>atRank(i))—>time() <=
sol—>jobPrev(m—>atRank(j))—>cumulativeTime(Operation:: HEAD)) { 1390
==
if (i ==j) { continue; }
//test move
isNotTabu = TRUE;
for (k =j k> 1 k—) {
isNotTabu = isNotTabu && !sol—>tabuList()—>query(m—>atRank(i), m—>atRank(k));
} 1400

isCycle = sol—>witness()—>isInCycle() &&
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sol—>witness()—>query(m—>atRank(i), m—>atRank(i+1), sol—>makespan());
currTest = testNBMove(m, i, j, sol);

filINBSolutions(nt, rand, currTest, i, j, n, isCycle, isNotTabu, num, reserveNum);

}
// end swap to high 1410
}
}
}
}

/* K K ok ok 3k 3k K S ok ok ok ok 3k 3k oK K ok ok Sk K K ok kK oK ok ok ok K ok ok ok K oK K ok ok K ok ok ok ok ok ok ok ok ok ok ok ok
*

* NEIGHBORHOOD RNA
* 1420
* *****************>/<>k>k>k>/<>l<>l<>/<>/<>l<>k>l<>k>k*******************/

/* K oK oK K oK K K oK K K oK K K oK K K oK KK K oK oK K K oK K K oK oK K K oK oK K oK oK oK K oK oK K K oK oK K K oK KK KoK KK K KK K K ok K

* RNA:

*

for each pair of consecutive cp operations belonging to the same machine {
if (!(PM[start] \in cp \AND SM[end] \in cp)) {
if (estimateLongestPath(.) > bestSoFar) {
bestSoFar <- estimateLongestPath(.);
store Nodes; 1430
store # of permutation;

}
}
}

* ***********************************************************f/

* % % %X X X X X *

void
rna(NeighboringSolutions& nt, NeighboringSolutions& rand, rna
TS_Solution* sol, double& num, double& reserveNum) {

int permutation, fIdx, bldx, blocksize; 1440
double currTest;

bool isCycle, isNotTabu;

Machine* m;

for (int n = 0; n < sol->numMachines(); n++) {
m = sol—>mList(n);

for (int p = 0; p < sol—>mList(n)—>numOperations(); p++) {
bldx = p;
fldx = p; 1450

// this is very important. it ensures that a block is actually

// on the critical path.

if (lisOnCriticalPath(m—>atRank(p), sol—>makespan())) {
continue;

}
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while (p < sol—>mList(n)—>numOperations()—1 &&
isOnCriticalPath(m—>atRank(p+1), sol—>makespan()) &&
m—>atRank(p+1)—>cumulativeTime(Operation: HEAD) == 1460
m—>atRank(p)—>cumulativeTime(Operation:: HEAD) +
m—>atRank(p)—>time() + m—>atRank(p)—>transitionTime()) {
p++;

}

fldx = p;
blocksize = fldx — bldx + 1;
if (blocksize > 1) {
currTest = estimateLongestPath(m—>atRank(bIdx), m—>atRank(bIdx+1), permutation, *sol);
// test the first arc 1470
isCycle = sol—>witness()—>isInCycle() &&
sol—>witness() —>query(m—>atRank(bIdx), m—>atRank(bIdx+1), sol—>makespan());

//we only test arcs in the RNA neighborhood, so we don’t need
//to check this condition.

isNotTabu = naMovelsNotTabu(m—>atRank(bIldx), permutation, sol);

filINASolutions(nt, rand, currTest, permutation,
m—>atRank(bldx), m—>atRank(bIdx+1), 1480
isCycle, isNotTabu, num, reserveNum);

if (blocksize > 2) {
currTest = estimateLongestPath(m—>atRank(fldx—1), m—>atRank(fIdx), permutation, *sol);

// test the second arc
isCycle = sol—>witness()—>isInCycle() &&
sol—>witness() —>query(m—>atRank(fldx—1), m—>atRank(fldx), sol—>makespan());
1490
//we only test arcs in the RNA neighborhood, so we don’t
//need to check this condition.

isNotTabu = naMovelsNotTabu(m—>atRank(fldx—1), permutation, sol);

filINASolutions(nt, rand, currTest, permutation,
m—>atRank(fldx—1), m—>atRank(fIdx),
isCycle, isNotTabu, num, reserveNum);

} 1500

/>/< 323233333333 232323333333333332333333333333333331123
*

* NEIGHBORHOOD NA

*
* ********************>l<>/<>/<>/<**************************/ 1510
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/>/< 3333333333332 333333 3333333333333 233333333333333332323333335

* NA:
*
for each pair of consecutive cp operations belonging to the same machine {
if (estimateLongestPath(.) < bestSoFar) {
bestSoFar <- estimateLongestPath(.);
store Nodes;
store # of permutation;
} 1520

* % % % X %

*
K RRKRIEAAASSFFFAKIEAASFFAKIEIAA SIS KRS SFAKIIAAS S KAAAASS |

void

na(NeighboringSolutions& nt, NeighboringSolutions& rand, na
TS_Solution* sol, double& num, double& reserveNum) {

int permutation, fIdx, bldx, blocksize;

double currTest;

bool isCycle, isNotTabu;

Machine* m; 1530

for (int n = 0; n < sol->numMachines(); n++) {
m = sol—>mList(n);

for (int p = 0; p < sol—>mList(n)—>numOperations(); p++) {
bldx = p;
fldx = p;

// this is very important. it ensures that a block is actually
// on the critical path. 1540
if (!isOnCriticalPath(m—>atRank(p), sol—>makespan())) {

continue;

}

while (p < sol—>mList(n)—>numOperations()—1 &&
isOnCriticalPath(m—>atRank(p+1), sol—>makespan()) &&
m—>atRank(p+1)—>cumulativeTime(Operation: HEAD) ==
m—>atRank(p)—>cumulativeTime(Operation:: HEAD) +
m—>atRank(p)—>time() + m—>atRank(p)—>transitionTime()) {
p++; 1550

}

fldx = p;
blocksize = fldx — bldx + 1;
if (blocksize > 1) {
for (int start = bldx; start < fIdx; start++) {
currTest = estimateLongestPath(m—>atRank(start), m—>atRank(start+1), permutation, *sol);

// test the first arc
isCycle = sol—>witness()—>isInCycle() && 1560
sol—>witness()—>query(m—>atRank(start), m—>atRank(start+1), sol—>makespan());

isNotTabu = naMovelsNotTabu(m—>atRank(start), permutation, sol);
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filINASolutions(nt, rand, currTest, permutation,
m—>atRank(start), m—>atRank(start+1),
isCycle, isNotTabu, num, reserveNum);

/* 3323333333331 333333132 3SR S Ry P P I ST 2
*
* NEIGHBORHOOD N1
*
* >k>k>k>k>k>k>k>k>k>k>k>k>k>k>k***********************************/

/* KoK K KoK K K oK K K oK K oK oK K oK oK K K oK K K K oK K K oK oK K oK oK K K oK K K oK oK K K oK oK K ok oK K K KKK K KKk KKKk kK

* NI:
*
for each pair of consecutive cp operations belonging to the same machine {
if (estimateLongestPath(.) < bestSoFar) {
bestSoFar <- estimateLongestPath(.);
store Nodes;
store # of permutation;

S

* ***********************************************************f/

* % %X %X %X %

void
nl(NeighboringSolutions& nt, NeighboringSolutions& rand,
TS_Solution* sol, double& num, double& reserveNum) {

int fIdx, bldx, blocksize;
double currTest;

bool isCycle, isNotTabu;
Machine* m;

for (int n = 0; n < sol-—>numMachines(); n++) {
m = sol—>mList(n);

for (int p = 0; p < sol—>mList(n)—>numOperations(); p++) {
bldx = p;
fldx = p;

// this is very important. it ensures that a block is actually

// on the critical path.

if (!isOnCriticalPath(m—>atRank(p), sol—>makespan())) {
continue;

}

while (p < sol—>mList(n)—>numOperations()—1 &&
isOnCriticalPath(m—>atRank(p+1), sol—>makespan()) &&
m—>atRank(p+1)—>cumulativeTime(Operation:HEAD) ==
m—>atRank(p)—>cumulativeTime(Operation:: HEAD) +
m—>atRank(p)—>time() + m—>atRank(p)—>transitionTime()) {
p++;
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}

fldx = p;
blocksize = fldx — bldx + 1;
if (blocksize > 1) {
for (int start = bldx; start < fIdx; start++) {

sol—>swap(m—>atRank(start), m—>atRank(start+1));

currTest = longestPath(m, start, 2, *sol);
// undo swap

sol—>swap(m—>atRank(start), m—>atRank(start+1));

// test the first arc
isCycle = sol—>witness()—>isInCycle() &&

sol—>witness()—>query(m—>atRank(start), m—>atRank(start+1), sol—>makespan());

isNotTabu = naMovelsNotTabu(m—>atRank(start), 1, sol);

filINASolutions(nt, rand, currTest, 1,

m—>atRank(start), m—>atRank(start+1),
isCycle, isNotTabu, num, reserveNum);

KRR AAAAAAAAAAAAAAASAFFFFASIEEIIKAAAAAAAAAAAFFAK
*
* NEIGHBORHOOD N2
*
ERRRRRFFFFFF SRS EEAAAAAAAAAASASFFFSSSSHAAAAK |
void
n2(NeighboringSolutions& nt, NeighboringSolutions& rand,
TS_Solution* sol, double& num, double& reserveNum) {

int fIdx, bldx, blocksize;
double currTest;

bool isCycle, isNotTabu;
Machine* m;

for (int n = 0; n < sol->numMachines(); n++) {
m = sol—>mList(n);

for (int p = 0; p < sol—>mList(n)—>numOperations(); p++) {

bldx = p;
fldx = p;

// this is very important. it ensures that a block is actually

// on the critical path.

if (!isOnCriticalPath(m—>atRank(p), sol—>makespan())) {

continue;

}

38
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while (p < sol—>mList(n)—>numOperations()—1 &&
isOnCriticalPath(m—>atRank(p+1), sol—>makespan()) &&
m—>atRank(p+1)—>cumulativeTime(Operation:HEAD) ==
m—>atRank(p)—>cumulativeTime(Operation:: HEAD) +
m—>atRank(p)—>time() + m—>atRank(p)—>transitionTime()) {
p++;
}

fldx = p;
blocksize = fldx — bldx + 1;
if (blocksize > 1) {
sol—>swap(m—>atRank(bldx), m—>atRank(bIdx+1));
currTest = longestPath(m, bldx, 2, *sol);
// undo swap
sol—>swap(m—>atRank(bIdx), m—>atRank(bIdx+1));

// test the first arc
isCycle = sol—>witness()—>isInCycle() &&
sol—>witness()—>query(m—>atRank(bldx), m—>atRank(bIdx+1), sol—>makespan());

isNotTabu = naMovelsNotTabu(m—>atRank(bIdx), 1, sol);

filINASolutions(nt, rand, currTest, 1,
m—>atRank(bIdx), m—>atRank(bIdx+1),
isCycle, isNotTabu, num, reserveNum);

if (blocksize > 2) {
sol—>swap(m—>atRank(fldx—1), m—>atRank(fldx));
currTest = longestPath(m, fIdx—1, 2, *sol);
// undo swap
sol—>swap(m—>atRank(fldx—1), m—>atRank(fldx));

// test the first arc
isCycle = sol—>witness()—>isInCycle() &&
sol—>witness()—>query(m—>atRank(fldx—1), m—>atRank(fIdx), sol—>makespan());

isNotTabu = naMovelsNotTabu(m—>atRank(fldx—1), 1, sol);

filINASolutions(nt, rand, currTest, 1,
m—>atRank(fldx—1), m—>atRank(fIdx),
isCycle, isNotTabu, num, reserveNum);

/* AR A A A A KA A A A A KA KA KA KA A KA KA KA KA KKK
*

* INITIAL SOLUTION 2

*
* **************************************************/
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void
initialSolution2(TS_Solution* sol) { initialSolutionZ
1730
int ij;
// Initialization:

OperationList S;

for (i = 0; i < sol—>numJobs(); i++) {
S.addFirst(sol—>jList(i)—>atRank(0));
S.first()—>data()—>setCumulativeTime(Operation: HEAD, 0);

1740
int* firstFree = new int[sol—>numMachines()];
int* lastFree = new int[sol—>numMachines()];

for (i = 0; i < sol—>numMachines(); i++) {
firstFree[i] = 0;
lastFree[i] = (sol—>mList(i))—>numOperations() — 1;

}

int* lastOperationInl, = new int[sol—>numJobs()];
int* firstOperationInR = new int[sol—>numJobs()]; 1750

for (i = 0; i < sol—>numJobs(); i++) {
lastOperationInL[i] = —1;
firstOperationInR[i] = sol—>jList(i)—>numOperations();

}

int sizeOfL = 0;
int N = 0;
for (i = 0; i < sol—>numJobs(); i++) {
N += sol—>jList(i)—>numOperations(); 1760

}

// main algorithm
while (sizeOfL < N) {
Operation* choice;
int swapldx;
double bestTime = —HUGE_VAL;
OperationList::Node* iter;
double num;
1770
// compute the work remaining for each z \in S
for (i = 0; i < sol—>numJobs(); i++) {
for (j = lastOperationInL[i] 4+ 1; j < firstOperationInR[i]; j++) {
sol—>jList(i)—>atRank(j)—>setCumulativeTime(Operation:: TAIL, —HUGE_VAL);
}

}
for (iter = S.first(); iter != NULL; iter = S.next(iter)) {

sol—>longestPathHelperIncomplete(iter—>data(), Operation::TAIL, firstFree, lastFree);

}

1780
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// choose some Operation \in S with MWKR priority rule
for (iter = S.first(); iter != NULL; iter = S.next(iter)) {
if (iter—>data()—>cumulativeTime(Operation::TAIL) > bestTime) {
bestTime = iter—>data()—>cumulativeTime(Operation:: TAIL);
choice = iter—>data();
num = 2.0;
}
else if (iter—>data()—>cumulativeTime(Operation::TAIL) == bestTime) {
if (drand48() < 1/num) {
choice = iter—>data(); 1790
num--+;
}
}

}

// put choice on machine in the first position free from the beginning
choice—>setMachineldx(firstFree[choice—>machine()]);

sol—>mList(choice—>machine())—>set AtRank(firstFree[choice—>machine()], choice);
firstFree[choice—>machine()]++; 1800

// update sets
S.removeltem(choice);

sizeOfL++;
lastOperationInL[choice—>job()]++;

if (firstOperationInR[choice—>job()] > choice—>jobldx() + 1) {
S.addFirst(sol—>jobNext(choice));
}

} 1810

sol—>longestPathLinear(Operation:: TAIL);
sol—>longestPathLinear(Operation:: HEAD);

delete [] firstOperationInR;
delete [] lastOperationInL;

delete [] firstFree;
delete [] lastFree;
; 1820
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B Test Instances

In all of the following test instances, the number of operations, operation classes, jobs and
machines are given by their respective tags. Following the initial tags, there is a line of
text for each job. On each job, the operations are defined as a triple of numbers. The first
number is the index (0 to NUM_MACHINES-1) of the machine on which the operation is to
be executed. The second number is the duration of the operation, and the third number is
the index of the class to which it belongs. Following the operation data is a NUM_CLASSES
x NUM_CLASSES matrix of the setup times where the element 75 denotes the time to setup

when changing from an operation in class ¢ to an operation in class j.

B.1 MT6-TT

NUM_OPERATIONS 36
NUM_CLASSES 3

NUM_JOBS 6

NUM_MACHINES 6
21 00 3 01 6 2 3 7 05 3 0 4 6 2
1 8 2 2 65 1 410 2 510 0 010 2 3 4 1
2 5 2 3 4 05 8 2 0 9111 2 471
1 51 0 5 2 25 03 3 1 48 15 9 2
2 9 213 2 45 25 4 0 0 3 0 3 1 2
1 313 3 25 9 0 010 0 4 4 1 2 1 1
0 0 1

0 1

1 0 O
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B.2 MT10-TT

NUM_OPERATIONS 100

NUM_CLASSES 10

NUM_JOBS 10

NUM_MACHINES 10

6

8 662 7 756 2 844 9 9 21

33 6 449 0 5 11

1

043 6 290 3 475 8 911

1
1

178 9 2 9

029 3

128 5 646 3 546 9 772 9 830 7

8 369 8

1 712 4 689 2 945 2 433 5

4 08 0 339 2 274 7 89 8 510

2 29 9 071

91

9 499 6 6 9 4 852 3 78 8 398 4 922 3 543 O

81

0O 749 9 972 0 653 O

8 326 4 469 7 821
047 3 665 4 4 6 4 725 8

122 9 561
2 7 552 3 395 9 848 9 972

214 0 0 6 7

1

1
146 9 037 5 361

284 5
2 31

0 932 5 88 6 730 3 455 4

521

1
1

0 213 4 6 32

68 4 819 8 948 8 736 4 379 9

146 8 574 2 4 32

4 086 O

78 9 426 8 874 9

1

6 6 40

28 4 911

1

169 3 376 0 551

076 7

9 6 7 7 864 3 976 3 547 7 352 0 490 8 745 3

18 0 013 2 261

011 2511 3 0 317 11 21
0 15 15 23 21 18 16 3 8

21

718 012 3 7 7 4 0 24

20 24 17 0 15

4 23 11 18
115 3 9

1

1815 4 3 0 6

17 3 2024 10 0 5 13 12 20

10 121025 9 7 0 9 217

81212 7 916 24 0 14 14
256 9 8 21625 425 0 8
116 16 22 19 22 10 10 21

0
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B.3 MT20-TT

NUM_OPERATIONS 100

NUM_CLASSES 10

NUM_JOBS 20

NUM_MACHINES 5

9 7 249 9 362 9 444 4

1

029 3
043 7
1
1

175 9 369 3 246 0 472 O

5 039 2 290 5 412 1 345 4

2 071

91

3 4 9 2 28 5 322 6

81

1 472 3
152 7 448 6 047 4 3 6 0

122 3 026 2 321

214 7
284 8

4 30 1

1

4 232 0 332

146 9 0 61

2 31

146 9 032 4 319 4 4 36 4

4

140 0 4 26 8

28 4

1

076 9 376

9 064 3 347 3 49 5

18 4 261

456 7 221 9

1
128 9 346 7 430 9

110

178 3 33 6 011

29 3 011

8

38 5 433 6

1

08 7 274 O

295 8 099 6

152 0 398 7 443 3
6 469 6 249 2 353 4

0 6 0 161
2 9 09 8 372 2 465 8 225 6

1

6 38 3 455 7

21

1
174 9 48 5 248 3 379 7

037 4 213 O

08 b5

8 011 9 38 0 474 9
1

169 3 251

013 3

276 2 352 9 445 5

7

1

019 131219 5 2 18 3 14

1
8

020 4 62122 020 11

11

119 24

6

1

0 8 9

824 3 0 51013 5 10 18

4 615 6 0 211

720 5

16 14 914 8 0 b5 24 15 18

10 16 4 22 14 23 0 9 6 17

14 23 22 6 7 17 256 0 23 10

18 9 15 11

7 02012 0 9

6 11 21 16 9 8 21 16 12 O
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B.4 ABZ5-TT

NUM_OPERATIONS 100

NUM_CLASSES 10

NUM_JOBS 10

NUM_MACHINES 10

28 0 977 9 799 8 08 8 3092 3

167 1

1

572 5 350 7 669 2 475 4 294 9 866 4 092 4

48 6 868 3 694 6 5 99
983 5 861

182 3 794 0 963 8

778 7 48 3 255 2 377 6

1

1656 3 664 9 5 85

5 083 5

0 499 3 3564 3 675 4 566 0 076 7 963 0 867 6

1 61

794 9 268 O

18 7

695 8 568 3 767 4

1
28 8 769 3 962 3 379 3 088 9

369 4 488 2 982 3 89 4 009 b5 267

1
18 9 497 6 396 3 09 5 897 9 266 7 599 8 6 52

5 564 7 666 6 8 80

199 7 481

7 50 3

971 3

1

8 594 8 78 0 062 3 89 9 979 4

171

1 382 0 251 0

498 2 673
094 2 671

166 9 290 5 476 0 558 6 893 2 997 b

4 785 O

6 381

48 9 559 1 296 5

1

182 9 867 4 756 3 996 2 6 58

350 4 059 5

0 30 36 28 22 5 21 25 4 21
20 0 34 12 30 32 7 13 11

021

7

0 31 36 20 28 4 2 12

16 36 27 033 63333 7 9

20 6 18 0 0 26 22 20 32 10

21 18 36 22 18 0 32 17 15 17
11 19 32 26 4 30 O 10 18

1

1

3 35 30 25 10 12 0 33 33

2626 1332 5 0 433 016

33 36 14 26 33 9 18 25 28 O
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B.5 ABZ6-TT

NUM_OPERATIONS 100

NUM_CLASSES 10

NUM_JOBS 10

NUM_MACHINES 10

166 1

525 4 384 4 447 O 638 5 282 5 093 6 924 1
193 9 429 8 756 3 380 8 078 7 667 b5

1
547 5 297 5 892 5 922 8

762 9 824
145 4 7 46

622 2 226 9 938 0 069 5 440 6 333 5 875 4 596 9

1

13 8 077 6 785 6

130 2 598 2 654 5 286 0

33 2 675 5 256 O

1

48 4 876 0 568 4 9 88

1
186 8 622 7 858 6 080 8 765 0

3 0 52

1

860 4 920 9 725 0 363 0 4381
387 9 973 6 551

5 81

4 295 3 465

169 8

8 043 3 426 0 854 4 358 1

5 981

9 253 4 757 3 6171

8 730 4 3146 2

181

2 879 5 962 2 234 5 027 5

420 8 686 4 521

278 8

1

195 7 447

968 8 666 9 598 9 88 5 766 3 056 4 382 9
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